二维随机变量(X,Y)的联合分布
3.3 二维连续型随机变量及其分布

1 6xydy 3x(1 x4 ), 故 x2
f
X
(
x)
3x(1 x4 0,其它
),0
x
1,
当0 y 1时,fY ( y)
f (x, y)dx
0
y
6xydx
3x2 y
|x
x0
y
3y 2 , 故得
fY
(
y)
3y2,0 0,其它.
定义:设二维随机变量(X,Y)的联合分布函数为F(x,y),边缘分
布函数为FX(x),FY(y),若对任意的实数x,y,有 F(x,y)=FX(x)FY(y)
则称X与Y相互独立。
推广定义. 设n维随机变量(X1,X2,...Xn)的分布函数为F(x1,x2,...xn), 若Xk 的边缘分布函数为FXk(xk),k=1,2,…,n,
0 3
3
所以, 随机变量X的边缘密度函数为
f
X
x
2x
2
2 3
x
0 x 1
0
其它
当0 y 2 时,
fY
y
f
x,
ydx
1 0
x2
1 3
xy dx
1 3
1 6
y
所以, 随机变量Y的边缘密度函数为
fY
y
1 3
y x2
O
x
(1)求常数c;(2)求关于X及Y的边缘概率密度
1x
解:(1)由归一性 dx cdy 1 c 6
《概率论与数理统计》习题三答案设二维随机变量(x,y)

《概率论与数理统计》习题及答案习题三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.【解】X 和Y 的联合分布律如表:222⨯⨯222⨯⨯2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律.【解】X 和Y 的联合分布律如表:324C 35= 324C 35= 3224C 35= 113224C C 12C 35=1324C 2C 35= 213224C C 6C 35=2324C 3C 35=3.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎪⎩⎪⎨⎧≤≤≤≤.,020,20,sin sin 其他ππy x y x求二维随机变量(X ,Y )在长方形域⎭⎬⎫⎩⎨⎧≤<≤<36,40πππy x 内的概率.【解】如图πππ{0,}(3.2)463P X Y <≤<≤公式ππππππ(,)(,)(0,)(0,)434636F F F F --+ππππππsin sin sin sin sin 0sin sin 0sin 4346362(31).4=--+=-题3图说明:也可先求出密度函数,再求概率。
4.设随机变量(X ,Y )的分布密度f (x ,y )=⎩⎨⎧>>+-.,0,0,0,)43(其他y x A y x e求:(1) 常数A ;(2) 随机变量(X ,Y )的分布函数; (3) P {0≤X <1,0≤Y <2}.【解】(1) 由-(34)0(,)d d e d d 112x y Af x y x y A x y +∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得 A =12(2) 由定义,有(,)(,)d d yxF x y f u v u v -∞-∞=⎰⎰(34)340012ed d (1e )(1e )0,0,0,0,y yu v x y u v y x -+--⎧⎧-->>⎪==⎨⎨⎩⎪⎩⎰⎰其他(3) {01,02}P X Y ≤<≤<12(34)3800{01,02}12ed d (1e )(1e )0.9499.x y P X Y x y -+--=<≤<≤==--≈⎰⎰5.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<--.,0,42,20),6(其他y x y x k(1) 确定常数k ;(2) 求P {X <1,Y <3}; (3) 求P {X <1.5}; (4) 求P {X +Y ≤4}. 【解】(1) 由性质有242(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞-∞-∞=--==⎰⎰⎰⎰故 18R =(2) 13{1,3}(,)d d P X Y f x y y x -∞-∞<<=⎰⎰ 130213(6)d d 88k x y y x =--=⎰⎰(3) 11.5{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=⎰⎰⎰⎰如图1.5402127d (6)d .832x x y y =--=⎰⎰(4) 24{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=⎰⎰⎰⎰如图b240212d (6)d .83xx x y y -=--=⎰⎰题5图6.设X 和Y 是两个相互独立的随机变量,X 在(0,0.2)上服从均匀分布,Y 的密度函数为f Y (y )=⎩⎨⎧>-.,0,0,55其他y y e求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }.题6图【解】(1) 因X 在(0,0.2)上服从均匀分布,所以X 的密度函数为1,00.2,()0.20,.X x f x ⎧<<⎪=⎨⎪⎩其他 而55e ,0,()0,.y Y y f y -⎧>=⎨⎩其他所以(,),()()X Y f x y X Y f x f y 独立5515e25e ,00.20,0.20,0,yy x y --⎧⎧⨯<<>⎪==⎨⎨⎩⎪⎩且其他. (2) 5()(,)d d 25e d d y y xDP Y X f x y x y x y -≤≤=⎰⎰⎰⎰如图0.20.2-550-1d 25e d (5e 5)d =e 0.3679.xyx x y x-==-+≈⎰⎰⎰7.设二维随机变量(X ,Y )的联合分布函数为F (x ,y )=⎩⎨⎧>>----.,0,0,0),1)(1(24其他y x y x e e求(X ,Y )的联合分布密度.【解】(42)28e ,0,0,(,)(,)0,x y x y F x y f x y x y -+⎧>>∂==⎨∂∂⎩其他. 8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x -≤≤≤≤⎧⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ⎧⎧--≤≤⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰12y4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ⎧-⎧-+≤≤⎪=⎨⎨⎩⎪⎩⎰其他题8图 题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<-.,0,0,其他e y x y求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰e d e ,0,=0,.0,y x x y x +∞--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰0e d e ,0,=0,.0,yy x x y y --⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤.,0,1,22其他y x y cx(1) 试确定常数c ; (2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21x x cx y y c ==⎰⎰ 得214c =. (2) ()(,)d X f x f x y y +∞-∞=⎰212422121(1),11,d 840,0,.x x x x x y y ⎧⎧--≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰522217d ,01,420,0, .y y x y x y y -⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他 11.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<.,0,10,,1其他x x y求条件概率密度f Y |X (y |x ),f X |Y (x |y ).题11图【解】()(,)d X f x f x y y +∞-∞=⎰1d 2,01,0,.xx y x x -⎧=<<⎪=⎨⎪⎩⎰其他 111d 1,10,()(,)d 1d 1,01,0,.y Y y x y y f y f x y x x y y -+∞-∞⎧=+-<<⎪⎪⎪===-≤<⎨⎪⎪⎪⎩⎰⎰⎰其他所以|1,||1,(,)(|)2()0,.Y X X y x f x y f y x xf x ⎧<<⎪==⎨⎪⎩其他|1, 1,1(,)1(|),1,()10,.X Y Y y x y f x y f x y y x f y y⎧<<⎪-⎪⎪==-<<⎨+⎪⎪⎪⎩其他 12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大的号码为Y . (1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立?【解】(1) X 与Y 的联合分布律如下表345{}i P X x =1 3511C 10= 3522C 10= 3533C 10= 610 2 0 3511C 10= 3522C 10= 310 32511C 10= 110{}i P Y y =110310610(2) 因6161{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠=== 故X 与Y 不独立13.设二维随机变量(X ,Y )的联合分布律为2 5 80.4 0.15 0.30 0.35YXXY0.8 0.05 0.12 0.03 (1)求关于X 和关于Y 的边缘分布; (2) X 与Y 是否相互独立?【解】(1)X 和Y 的边缘分布如下表2 5 8 P {Y=y i } 0.4 0.15 0.30 0.35 0.8 0.80.05 0.12 0.03 0.2{}i P X x =0.20.420.38(2) 因{2}{0.4}0.20.8P X P Y ===⨯0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为f Y (y )=⎪⎩⎪⎨⎧>-.,0,0,212/其他y y e(1)求X 和Y 的联合概率密度;(2) 设含有a 的二次方程为a 2+2Xa +Y =0,试求a 有实根的概率.【解】(1) 因1,01,()0,X x f x <<⎧==⎨⎩其他; 21e ,1,()20,yY y f y -⎧>⎪==⎨⎪⎩其他. 故/21e01,0,(,),()()20,.y X Y x y f x y X Y f x f y -⎧<<>⎪=⎨⎪⎩独立其他XY题14图(2) 方程220a Xa Y ++=有实根的条件是2(2)40X Y ∆=-≥故 X 2≥Y , 从而方程有实根的概率为:22{}(,)d d x yP X Y f x y x y ≥≥=⎰⎰21/2001d e d 212[(1)(0)]0.1445.x y x yπ-==Φ-Φ=⎰⎰15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X和Y 相互独立,且服从同一分布,其概率密度为f (x )=⎪⎩⎪⎨⎧>.,0,1000,10002其他x x求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}Z XF z P Z z P z Y=≤=≤ (1) 当z ≤0时,()0Z F z =(2) 当0<z <1时,(这时当x =1000时,y =1000z)(如图a) 3366102222101010()d d d d yz Z zx y zF z x y y x x y x y +∞≥==⎰⎰⎰⎰33610231010=d2zzyy zy+∞⎛⎫-=⎪⎝⎭⎰题15图(3) 当z≥1时,(这时当y=103时,x=103z)(如图b)3366222210101010()d d d dzyZxyzF z x y y xx y x y+∞≥==⎰⎰⎰⎰336231010101=d12yy zy z+∞⎛⎫-=-⎪⎝⎭⎰即11,1,2(),01,20,.Zzzzf z z⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故21,1,21(),01,20,.Zzzf z z⎧≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他16.设某种型号的电子管的寿命(以小时计)近似地服从N(160,202)分布.随机地选取4 只,求其中没有一只寿命小于180的概率.【解】设这四只寿命为X i(i=1,2,3,4),则X i~N(160,202),从而123412{min(,,,)180}{180}{180}iP X X X X X P X P X≥≥≥之间独立34{180}{180}P X P X ≥≥1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-<44144180160[1{180}]120[1(1)](0.158)0.00063.P X ⎡-⎤⎛⎫=-<=-Φ ⎪⎢⎥⎝⎭⎣⎦=-Φ==17.设X ,Y 是相互独立的随机变量,其分布律分别为P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….证明随机变量Z =X +Y 的分布律为P {Z =i }=∑=-ik k i q k p 0)()(,i =0,1,2,….【证明】因X 和Y 所有可能值都是非负整数,所以{}{}Z i X Y i ==+={0,}{1,1}{,0}X Y i X Y i X i Y =====-==于是{}{,},ik P Z i P X k Y i k X Y =====-∑相互独立0{}{}ik P X k P Y i k ===-∑()()ik p k q i k ==-∑18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参数为2n ,p 的二项分布. 【证明】方法一:X +Y 可能取值为0,1,2,…,2n .{}{,}ki P X Y k P X i Y k i =+====-∑00202(){}2ki ki n i k i n k ii k k n ki k n k P X i P Y k i n n p q p qi k i n n p qi k i n p q k =---+=-=-===-⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭⎛⎫= ⎪⎝⎭∑∑∑方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则X =μ1+μ2+…+μn ,Y =μ1′+μ2′+…+μn ′, X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,所以,X +Y 服从参数为(2n ,p )的二项分布.19.设随机变量(X ,Y )的分布律为(1) 求P {X =2|Y =2},P {Y =3|X =0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律. 【解】(1){2,2}{2|2}{2}P X Y P X Y P Y ======5{2,2}0.051,0.252{,2}i P X Y P X i Y ========∑ {3,0}{3|0}{0}P Y X P Y X P X ======3{0,3}0.011;0.033{0,}j P X Y P X Y j ========∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i =====<+≤=1{,}{,},i ik k P X i Y k P X k Y i -=====+==∑∑ 0,1,2,3,4,5i =所以V 的分布律为(3) {}{min(,)}P U i P X Y i ===351{,}{,}{,}{,}k ik i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+==∑∑ 0,1,2,3,i =于是 U =min(X ,Y ) 0 1 2 3 P0.280.300.250.17(4)类似上述过程,有 W =X +Y 012345678P0.020.060.130.190.240.190.120.0520.雷达的圆形屏幕半径为R ,设目标出现点(X ,Y )在屏幕上服从均匀分布.(1) 求P {Y >0|Y >X };(2) 设M =max{X ,Y },求P {M >0}.题20图【解】因(X ,Y )的联合概率密度为22221,,(,)π0,.x y R f x y R⎧+≤⎪=⎨⎪⎩其他 (1){0,}{0|}{}P Y Y X P Y Y X P Y X >>>>=>0(,)d (,)d y y xy xf x y f x y σσ>>>=⎰⎰⎰⎰π2π/405π42π/401d dπ1d dπRRr rRr rRθθ=⎰⎰⎰⎰3/83;1/24==(2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y>=>=-≤131{0,0}1(,)d1.44xyP X Y f x yσ≤≤=-≤≤=-=-=⎰⎰21.设平面区域D由曲线y=1/x及直线y=0,x=1,x=e2所围成,二维随机变量(X,Y)在区域D上服从均匀分布,求(X,Y)关于X的边缘概率密度在x=2处的值为多少?题21图【解】区域D的面积为22ee0111d ln 2.S x xx===⎰(X,Y)的联合密度函数为211,1e,0,(,)20,.x yf x y x⎧≤≤<≤⎪=⎨⎪⎩其他(X,Y)关于X的边缘密度函数为1/211d,1e,()220,.xXy xf x x⎧=≤≤⎪=⎨⎪⎩⎰其他所以1(2).4Xf=22.设随机变量X和Y相互独立,下表列出了二维随机变量(X,Y)联合分布律及关于X和Y的边缘分布律中的部分数值.试将其余数值填入表中的空白处.【解】因21{}{,}j j i j i P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824P X x Y y ===-=而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y =====,从而11111{}{,}.624P X x P X x Y y =⨯====即:1111{}/.2464P X x ===又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==即1,3111{},4248P X x Y y =++== 从而131{,}.12P X x Y y ===同理21{},2P Y y == 223{,}8P X x Y y ===又31{}1j j P Y y ===∑,故3111{}1623P Y y ==--=.同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====-===-=故23.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p (0<p <1),且中途下车与否相互独立,以Y 表示在中途下车的人数,求:(1)在发车时有n 个乘客的条件下,中途有m 人下车的概率;(2)二维随机变量(X ,Y )的概率分布.【解】(1) {|}C (1),0,0,1,2,m m n mn P Y m X n p p m n n -===-≤≤=. (2) {,}{}{|}P X n Y m P X n P Y m X n ======e C (1),,0,1,2,.!mmn mnnp p n m n n n λλ--=-≤≤=24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫ ⎝⎛7.03.021,而Y的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ). 【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=0.3{1|1}0.7{2|2}P Y u X P Y u X =≤-=+≤-=由于X 和Y 独立,可见()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-0.3(1)0.7(2).F u F u =-+-由此,得U 的概率密度为()()0.3(1)0.7(2)g u G u F u F u '''==-+-0.3(1)0.7(2).f u f u =-+-25. 25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.解:因为随即变量服从[0,3]上的均匀分布,于是有1, 03,()30, 0,3;x f x x x ⎧≤≤⎪=⎨⎪<>⎩ 1, 03,()30, 0, 3.y f y y y ⎧≤≤⎪=⎨⎪<>⎩ 因为X ,Y 相互独立,所以1, 03,03,(,)90, 0,0,3, 3.x y f x y x y x y ⎧≤≤≤≤⎪=⎨⎪<<>>⎩ 推得 1{max{,}1}9P X Y ≤=.26. 设二维随机变量(X ,Y )的概率分布为其中a ,b ,c 为常数,且X 的数学期望E (X )= -0.2,P {Y ≤0|X ≤0}=0.5,记Z =X +Y .求:(1) a ,b ,c 的值; (2) Z 的概率分布; (3) P {X =Z }.解 (1) 由概率分布的性质知,a+b+c +0.6=1 即 a+b+c = 0.4.由()0.2E X =-,可得0.1a c -+=-.再由 {0,0}0.1{00}0.5{0}0.5P X Y a b P Y X P X a b ≤≤++≤≤===≤++,得 0.3a b +=.解以上关于a ,b ,c 的三个方程得0.2,0.1,0.1a b c ===.(2) Z 的可能取值为-2,-1,0,1,2,{2}{1,1}0.2P Z P X Y =-==-=-=,{1}{1,0}{0,1}0.1P Z P X Y P X Y =-==-=+==-=,{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===-=+==+==-=,{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,{2}{1,1}0.1P Z P X Y =====,即Z 的概率分布为(3) {}{0}0.10.20.10.10.20.4====++=++=.P X Z P Y b【此课件下载可自行编辑修改,供参考,感谢你的支持!】21 / 21实用精品文档。
二维离散型随机变量及其分布

j 1
P{ ( X xi , Y y j )} P{ X xi , Y y j } pij
j 1 j 1 j 1
Two-dimension Discrete Random Variable and Distribution
所以,关于X的边缘分布律为:
X
pi.
x1
x2 …
xi …
pi. …
p1. p2. …
关于Y的边缘分布律为:
Y p.j y1 p.1 y2 … yj …
p.2 … p.j …
Two-dimension Discrete Random Variable and Distribution
[例2]见例1,试求(X,Y)关于X和关于Y的边缘 分布律。
1 2/5
Two-dimension Discrete Random Variable and Distribution
联合分布律 边缘分布律
Two-dimension Discrete Random Variable and Distribution
1、统计学中有两种抽样:不放回抽样和有放 回抽样。将例1中“不放回地取两次球”改为 “有放回地取两次球”,试求(X,Y)的联合分 布律、(X,Y)分别关于X,Y的边缘分布律及判断 X,Y是否相互独立? 2、上述我们解决了:已知二维离散型随机变 量(X,Y)的联合分布律,如何求(X,Y)关于X 或关于Y的边缘分布律的问题。那么,已知X,Y的 边缘分布律,能否求(X,Y)的联合分布律呢?
0, Y 1,
表示第二次取红球 表示第二次取白球
第3章作业参考答案

λ2l
l!
e− λ2 ,
l = 0,1,2,"
P( X + Y = n) = ∑ P{ X = k}P{Y = n − k}
k =0
=∑
k =0
n
λ1
k
k!
e −λ1
λ2
n−k
(n − k )!
e −λ2 =
e −( λ1+λ2 ) n λ1 λ2 e −( λ1+λ2 ) n k k n−k e −( λ1+λ2 ) n ! = ∑ ∑ Cn λ1 λ2 = n! (λ1 + λ2 )n n! k =0 k! (n − k )! n! k =0
18. 设随机变量 X 和 Y 的联合概率密度为
λ1k
e
−λ1
λ2n−k
e−λ2
⎛ λ2 ⎞ ⎜ ⎜λ +λ ⎟ ⎟ ⎝ 1 2⎠
n−k
f ( x, y ) =
1 − 2 (x2 + y2 ) e , ( x, y ) ∈ R 2 2π
1
计算概率 P{− 2 < X + Y < 2 2} 。 解:
19. 随机变量 X 与 Y 相互独立,X 服从参数为 λ 的指数分布,Y~U(0, h), 求 X+Y 的概率密 度。 解:
20. 一射手向某个靶子射击,设靶心为坐标原点,弹着点坐标(X,Y)服从二维正态分布 N(0,1;0,1;0). 求弹着点与靶心的距离 Z 的概率密度函数。 解: (X,Y)的联合概率密度为
f ( x, y ) =
1 − 2(x2 + y2 ) e , ( x, y ) ∈ R 2 2π
1
弹着点与靶心的距离 Z 的分布函数为
复习:二维随机变量函数的分布

的可能取值z 则Z=X+Y的可能取值 k=xi+yj (k=1,2,…),因此 的可能取值 , , ,因此Z 也是离散型随机变量, 也是离散型随机变量 其分布律为
P{ Z = zk } = P{ X + Y = zk } = ∑ ∑ P{ X = xi , Y = y j }
= ∑ ∑ pij
i j
1 f X ( x) = e , − ∞ < x < +∞ 2π y2 1 −2 fY ( y ) = e , − ∞ < y < +∞ 2π
+∞
x2 − 2
因此 ,由卷积公式有 f Z (z) = ∫
−∞
1 f X ( x ) fY ( z − x )dx = 2π
∫
+∞
−∞
e
x2 − 2
⋅e
( z − x )2 − 2
Z3=max{X+Y}的分布律为 的分布律为 Z3 pk -1 0.25 1 0.1 2 0.65
已知随机X、 相互独立 相互独立, 例2 已知随机 、Y相互独立,且X~P(λ1) 、Y ~ P(λ2)。 λ λ 。 试求Z=X+Y的分布律。 的分布律。 试求 的分布律 解 因X与Y均服从泊松分布,所以X与Y的取值为任 与 均服从泊松分布,所以 与 的取值为任 均服从泊松分布 一非负整数,因此 的取值也为全体非负整数。 一非负整数,因此Z=X+Y的取值也为全体非负整数。 的取值也为全体非负整数 由概率的运算法则知,对一任非负整数k,有 由概率的运算法则知,对一任非负整数 ,
由于存在面积不为0的区域, 由于存在面积不为 的区域, 的区域 f (x, y) ≠ f X ( x) fY ( y) 故X和Y不独立 . 和 不独立
《随机过程及其在金融领域中的应用》习题二答案

0
sin
ux
f
xdx
0
sin
ux
f
xdx
0
0
sin
u
x
f
xdx
sin ux 0
f
x dx
0
令其中一式中的 x t
0
sin
ut
f
t
d
t
0
sin
ux
f
xdx
0
sin ut 0
证明:
X u
eiux f xdx
cos ux i sin ux f xdx
cos ux
f
xdx
i
sin
ux
f
xdx
(a)充分性:
当f
x
f
x时,sin ux
f
x
为奇函数
,
则i
c o vY Y, E Y 2 E Y 2 3 80
故(X,Y)的协方差矩阵为
cov X , X cov Y , X
1
cov X ,Y cov Y ,Y
18 0
0
3 80
4、已知二维随机变量(X,Y)服从联合正态分布,且
dFX
x
e tx f xdx
etxexdx etxdx
概率论与数理统计(理工类,第四版)吴赣昌主编课后习题答案第三章

第三章多维随机变量及其分布3.1 二维随机变量及其分布习题1设(X,Y)的分布律为X\Y12311/61/91/1821/3a1/9求a.分析:dsfsd1f6d54654646解答:由分布律性质∑i⋅jPij=1,可知1/6+1/9+1/18+1/3+a+1/9=1,解得a=2/9.习题2(1)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(1)P{a<X≤b,Y≤c};解答:P{a<X≤b,Y≤c}=F(b,c)-F(a,c).习题2(2)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(2)P{0<Y≤b};解答:P{0<Y≤b}=F(+∞,b)-F(+∞,0).习题2(3)2.设(X,Y)的分布函数为F(x,y),试用F(x,y)表示:(3)P{X>a,Y≤b}.解答:P{X>a,Y≤b}=F(+∞,b)-F(a,b).习题3(1)3.设二维离散型随机变量的联合分布如下表:试求:(1)P{12<X<32,0<Y<4;解答:P{12<X<23,0<Y<4P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=P{X=1,Y=1}+P{X=1,Y=2}+P{X=1,Y=3}=14+0+0=14.习题3(2)3.设二维离散型随机变量的联合分布如下表:试求:(2)P{1≤X≤2,3≤Y≤4};解答:P{1≤X≤2,3≤Y≤4}=P{X=1,Y=3}+P{X=1,Y=4}+P{X=2,Y=3}+P{X=2,Y=4}=0+116+0+14=516.习题3(3)3.设二维离散型随机变量的联合分布如下表:试求:(3)F(2,3).解答:F(2,3)=P(1,1)+P(1,2)+P(1,3)+P(2,1)+P(2,2)+P(2,3)=14+0+0+116+14+0=916.习题4设X,Y为随机变量,且P{X≥0,Y≥0}=37,P{X≥0}=P{Y≥0}=47,求P{max{X,Y}≥0}.解答:P{max{X,Y}≥0}=P{X,Y至少一个大于等于0}=P{X≥0}+P{Y≥0}-P{X≥0,Y≥0}=47+47-37=57.习题5(X,Y)只取下列数值中的值:(0,0),(-1,1),(-1,13),(2,0)且相应概率依次为16,13,112,512,请列出(X,Y)的概率分布表,并写出关于Y的边缘分布.解答:(1)因为所给的一组概率实数显然均大于零,且有16+13+112+512=1,故所给的一组实数必是某二维随机变量(X,Y)的联合概率分布. 因(X,Y)只取上述四组可能值,故事件:{X=-1,Y=0},{X=0,Y=13,{X=0,Y=1},{X=2,Y=13,{X=2,Y=1}均为不可能事件,其概率必为零. 因而得到下表:Y01/31pk7/121/121/3习题6设随机向量(X,Y)服从二维正态分布N(0,0,102,102,0),其概率密度为f(x,y)=1200πex2+y2200,求P{X≤Y}.解答:由于P{X≤Y}+P{X>Y}=1,且由正态分布图形的对称性,知P{X≤Y}=P{X>Y},故P{X≤Y}=12.习题7设随机变量(X,Y)的概率密度为f(x,y)={k(6-x-y),0<x<2,2<y<40,其它, (1)确定常数k;(2)求P{X<1,Y<3};(3)求P{X<1.5};(4)求P{X+Y≤4}.解答:如图所示(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数k.∫02∫24k(6-x-y)dydx=k∫02(6-2x)dx=8k=1,所以k=18.(2)P{X<1,Y<3}=∫01dx∫2318(6-x-y)dy=38.(3)P{X<1.5}=∫01.5dx∫2418(6-x-y)dy=2732.(4)P{X+Y≤4}=∫02dx∫24-x18(6-x-y)dy=23.习题8已知X和Y的联合密度为f(x,y)={cxy,0≤x≤1,0≤y≤10,其它,试求:(1)常数c;(2)X和Y的联合分布函数F(x,y).解答:(1)由于1=∫-∞+∞∫-∞+∞f(x,y)dxdy=c∫01∫01xydxdy=c4,c=4.(2)当x≤0或y≤0时,显然F(x,y)=0;当x≥1,y≥1时,显然F(x,y)=1;设0≤x≤1,0≤y≤1,有F(x,y)=∫-∞x∫-∞yf(u,v)dudv=4∫0xudu∫0yvdv=x2y2.设0≤x≤1,y>1,有F(x,y)=P{X≤1,Y≤y}=4∫0xudu∫01ydy=x2.最后,设x>1,0≤y≤1,有F(x,y)=P{X≤1,Y≤y}=4∫01xdx∫0yvdv=y2.函数F(x,y)在平面各区域的表达式F(x,y)={0,x≤0或y≤0x2,0≤x≤1,y>1x2y2,0≤x≤1,0≤y≤1.y2,x>习题9设二维随机变量(X,Y)的概率密度为f(x,y)={4.8y(2-x),0≤x≤1,x≤y≤10,其它,求边缘概率密度fY(y).解答:fX(x)=∫-∞+∞f(x,y)dy={∫0x4.8y(2-x)dy,0≤x≤10,其它={2.4x2(2-x),0≤x≤10,其它.fY(y)=∫-∞+∞f(x,y)dx={∫0y4.8y(2-x)dx,0≤y≤10,其它={2.4y(4y-y2),0≤y≤10,其它.习题10设(X,Y)在曲线y=x2,y=x所围成的区域G里服从均匀分布,求联合分布密度和边缘分布密度. 解答:区域G的面积A=∫01(x-x2)dx=16,由题设知(X,Y)的联合分布密度为f(x,y)={6,0≤x≤1,x2≤y≤x0,其它,从而fX(x)=∫-∞+∞f(x,y)dy=6∫x2xdy=6(x-x2),0≤x≤1,即fX(x)={6(x-x2),0≤x≤10,其它,fY(y)=∫-∞+∞f(x,y)dx=6∫yydx=6(y-y),0≤y≤1,即fY(y)={6(y-y),0≤y≤10,其它.3.2 条件分布与随机变量的独立性习题1二维随机变量(X,Y)的分布律为从而(X,Y)的联合概率分布为P{X≤a,∣X∣≤a}=P{X≤a}⋅P{∣X∣≤a},而事件{∣X∣≤a}⊂{X≤a},故由上式有P{∣X∣≤a}==P{X≤a}⋅P{∣X∣≤a},⇒P{∣X∣≤a}(1-P{X≤a})=0⇒P{∣X≤a∣}=0或1=P{X≤a}⋅(∀a>0)但当a>0时,两者均不成立,出现矛盾,故X与∣X∣不独立.习题9设X和Y是两个相互独立的随机变量,X在(0,1)上服从均匀分布,Y的概率密度为fY(y)={12e-y2,y>00,y≤0,(1)求X与Y的联合概率密度;(2)设有a的二次方程a2+2Xa+Y=0,求它有实根的概率.解答:(1)由题设易知fX(x)={1,0<x<10,其它,又X,Y相互独立,故X与Y的联合概率密度为f(x,y)=fX(x)⋅fY(y)={12e-y2,0<x<1,y>00,其它;(2)因{a有实根}={判别式Δ2=4X2-4Y≥0}={X2≥Y},故如图所示得到:P{a有实根}=P{X2≥Y}=∫∫x2>yf(x,y)dxdy=∫01dx∫0x212e-y2dy=-∫01e-x22dx=1-[∫-∞1e-x22dx-∫-∞0e-x22dx]=1-2π[12π∫-∞1e-x22dx-12π∫-∞0e-x22dx]=1-2π[Φ(1)-Φ(0),又Φ(1)=0.8413,Φ(0)=0.5,于是Φ(1)-Φ(0)=0.3413,所以P{a有实根}=1-2π[Φ(1)-Φ(0)]≈1-2.51×0.3413=0.1433.3.3 二维随机变量函数的分布习题1设随机变量X和Y相互独立,且都等可能地取1,2,3为值,求随机变量U=max{X,Y}和V=min{X,Y}的联合分布.解答:由于U≥V,可见P{U=i,V=j}=0(i<j).此外,有P{U=V=i}=P{X=Y=i}=1/9(i=1,2,3),P{U=i,V=j}=P{X=i,Y=j}+P{X=j,Y=i}=2/9(i>j),于是,随机变量U和V的联合概率分布为=∫01dy∫y2y12dx=14,P{U=1,V=1}=1-P{U=0,V=0}-P{U=0,V=1}-P{U=1,V=0}=1/2,即U\V01011/401/41/2习题4设(X,Y)的联合分布密度为f(x,y)=12πe-x2+y22,Z=X2+Y2,求Z的分布密度.解答:FZ(z)=P{Z≤z}=P{X2+Y2≤z}.当z<0时,FZ(z)=P(∅)=0;当z≥0时,FZ(z)=P{X2+Y2≤z2}=∫∫x2+y2≤z2f(x,y)dxdy=12π∫∫x2+y2≤z2e-x2+y22dxdy=12π∫02πdθ∫0ze-ρ22ρdρ=∫0ze-ρ22ρdρ=1-e-z22.故Z的分布函数为FZ(z)={1-e-z22,z≥00,z<0.Z的分布密度为fZ(z)={ze-z22,z>00,z≤0.习题5设随机变量(X,Y)的概率密度为f(x,y)={12(x+y)e-(x+y),x>0,y>00,其它,(1)问X和Y是否相互独立?(2)求Z=X+Y的概率密度.解答:(1)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞12(x+y)e-(x+y)dy,x>00,x≤0\under2line令x+y=t{∫x+∞12te-tdt=12(x+1)e-x,x>00,x≤0,由对称性知fY(y)={12(y+1)e-y,y>00,y≤0,显然f(x,y)≠fX(x)fY(y),x>0,y>0,所以X与Y不独立.(2)用卷积公式求fZ(z)=∫-∞+∞f(x,z-x)dx.当{x>0z-x>0即{x>0x<z时,f(x,z-x)≠0,所以当z≤0时,fZ(z)=0;当z>0时,fZ(z)=∫0z12xe-xdx=12z2e-z.于是,Z=X+Y的概率密度为fZ(z)={12z2e-z,z>00,z≤0.习题6设随机变量X,Y相互独立,若X服从(0,1)上的均匀分布,Y服从参数1的指数分布,求随机变量Z=X+Y的概率密度.解答:据题意,X,Y的概率密度分布为fX(x)={1,0<x<10,其它,fY(y)={e-y,y≥00,y<0,由卷积公式得Z=X+Y的概率密度为fZ(z)=∫-∞+∞fX(x)fY(z-x)dx=∫-∞+∞fX(z-y)fY(y)dy=∫0+∞fX(z-y)e-ydy.由0<z-y<1得z-1<y<z,可见:当z≤0时,有fX(z-y)=0,故fZ(z)=∫0+∞0⋅e-ydy=0;当z>0时,fZ(z)=∫0+∞fX(z-y)e-ydy=∫max(0,z-1)ze-ydy=e-max(0,z-1)-e-z,即fZ(z)={0,z≤01-e-z,0<z≤1e1-z-e-z,z>1.习题7设随机变量(X,Y)的概率密度为f(x,y)={be-(x+y),0<x<1,0<y<+∞,0,其它.(1)试确定常数b;(2)求边缘概率密度fX(x),fY(y);(3)求函数U=max{X,Y}的分布函数.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1,确定常数b.∫01dx∫0+∞be-xe-ydy=b(1-e-1)=1,所以b=11-e-1,从而f(x,y)={11-e-1e-(x+y),0<x<1,0<y<+∞,0,其它.(2)由边缘概率密度的定义得fX(x)={∫0+∞11-e-1e-(x+y)dy=e-x1-e-x,0<x<1,0,其它,fY(x)={∫0111-e-1e-(x+y)dx=e-y,0<y<+∞,0,其它(3)因为f(x,y)=fX(x)fY(y),所以X与Y独立,故FU(u)=P{max{X,Y}≤u}=P{X≤u,Y≤u}=FX(u)F Y(u),其中FX(x)=∫0xe-t1-e-1dt=1-e-x1-e-1,0<x<1,所以FX(x)={0,x≤0,1-e-x1-e-1,0<x<1,1,x≥1.同理FY(y)={∫0ye-tdt=1-e-y,0<y<+∞,0,y≤0,因此FU(u)={0,u<0,(1-e-u)21-e-1,0≤u<1,1-e-u,u≥1.习题8设系统L是由两个相互独立的子系统L1和L2以串联方式联接而成,L1和L2的寿命分别为X与Y,其概率密度分别为ϕ1(x)={αe-αx,x>00,x≤0,ϕ2(y)={βe-βy,y>00,y≤0,其中α>0,β>0,α≠β,试求系统L的寿命Z的概率密度.解答:设Z=min{X,Y},则F(z)=P{Z≥z}=P{min(X,Y)≤z}=1-P{min(X,Y)>z}=1-P{X≥z,Y≥z}=1-[1P{X<z}][1-P{Y<z}]=1-[1-F1{z}][1-F2{z}]由于F1(z)={∫0zαe-αxdx=1-e-αz,z≥00,z<0,F2(z)={1-e-βz,z≥00,z<0,故F(z)={1-e-(α+β)z,z≥00,z<0,从而ϕ(z)={(α+β)e-(α+β)z,z>00,z≤0.习题9设随机变量X,Y相互独立,且服从同一分布,试证明:P{a<min{X,Y}≤b}=[P{X>a}]2-[P{X>b}]2.解答:设min{X,Y}=Z,则P{a<min{X,Y}≤b}=FZ(b)-FZ(a),FZ(z)=P{min{X,Y}≤z}=1-P{min{X,Y}>z}=1-P{X>z,Y>z}=1-P{X>z}P{Y>z}=1-[P{X>z}]2,代入得P{a<min{X,Y}≤b}=1-[P{X>b}]2-(1-[P{X>a}]2)=[P{X>a}]2-[P{X>b}]2.证毕.复习总结与总习题解答习题1在一箱子中装有12只开关,其中2只是次品,在其中取两次,每次任取一只,考虑两种试验:(1)放回抽样;(2)不放回抽样.我们定义随机变量X,Y如下:X={0,若第一次取出的是正品1,若第一次取出的是次品, Y={0,若第二次取出的是正品1,若第二次取出的是次品,试分别就(1),(2)两种情况,写出X和Y的联合分布律.解答:(1)有放回抽样,(X,Y)分布律如下:P{X=0,Y=0}=10×1012×12=2536; P{X=1,Y=0}=2×1012×12=536,P{X=0,Y=1}=10×212×12=536, P{X=1,Y=1}=2×212×12=136,(2)不放回抽样,(X,Y)的分布律如下:P{X=0,Y=0}=10×912×11=4566, P{X=0,Y=1}=10×212×11=1066,P{X=1,Y=1}=2×112×11=166,习题2假设随机变量Y服从参数为1的指数分布,随机变量Xk={0,若Y≤k1,若Y>k(k=1,2),求(X1,X2)的联合分布率与边缘分布率.解答:因为Y服从参数为1的指数分布,X1={0,若Y≤11,若Y>1, 所以有P{X1=1}=P{Y>1}=∫1+∞e-ydy=e-1,P{X1=0}=1-e-1,同理P{X2=1}=P{Y>2}=∫2+∞e-ydy=e-2,P{X2=0}=1-e-2,因为P{X1=1,X2=1}=P{Y>2}=e-2,P{X1=1,X2=0}=P{X1=1}-P{X1=1,X2=1}=e-1-e-2,P{X1=0,X2=0}=P{Y≤1}=1-e-1,P{X1=0,X2=1}=P{X1=0}-P{X1=0,X2=0}=0,故(X1,X2)联合分布率与边缘分布率如下表所示:习题3在元旦茶话会上,每人发给一袋水果,内装3只橘子,2只苹果,3只香蕉. 今从袋中随机抽出4只,以X记橘子数,Y记苹果数,求(X,Y)的联合分布.解答:X可取值为0,1,2,3,Y可取值0,1,2.P{X=0,Y=0}=P{∅}=0,P{X=0,Y=1}=C30C21C33/C84=2/70,P{X=0,Y=2}=C30C22C32/C84=3/70,P{X=1,Y=0}=C31C20C33/C84=3/70,P{X=1,Y=1}=C31C21C32/C84=18/70,P{X=1,Y=2}=C31C22C31/C84=9/70,P{X=2,Y=0}=C32C20C32/C84=9/70,P{X=2,Y=1}=C32C21C31/C84=18/70,P{X=2,Y=2}=C32C22C30/C84=3/70,P{X=3,Y=0}=C33C20C31/C84=3/70,P{X=3,Y=1}=C33C21C30/C84=2/70,P{X=3,Y=2}=P{∅}=0,所以,(X,Y)的联合分布如下:习题4设随机变量X与Y相互独立,下表列出了二维随机变量(X,Y)的联合分布律及关于X与Y解答:由题设X与Y相互独立,即有pij=pi⋅p⋅j(i=1,2;j=1,2,3), p⋅1-p21=p11=16-18=124,又由独立性,有p11=p1⋅p⋅1=p1⋅16故p1⋅=14.从而p13=14-124-18, 又由p12=p1⋅p⋅2, 即18=14⋅p⋅2.从而p⋅2=12. 类似的有p⋅3=13,p13=14,p2⋅=34.将上述数值填入表中有习题5设随机变量(X,Y)的联合分布如下表:求:(1)a值;(2)(X,Y)的联合分布函数F(x,y);(3)(X,Y)关于X,Y的边缘分布函数FX(x)与FY(y).解答:(1)\because由分布律的性质可知∑i⋅jPij=1, 故14+14+16+a=1,∴a=13.(2)因F(x,y)=P{X≤x,Y≤y}①当x<1或y<-1时,F(x,y)=0;②当1≤x<2,-1≤y<0时,F(x,y)=P{X=1,Y=-1}=1/4;③当x≥2,-1≤y<0时,F(x,y)=P{X=1,Y=-1}+P{X=2,Y=-1}=5/12;④当1≤x<2,y>0时,F(x,y)=P{X=1,Y=-1}+P{X=1,Y=0}=1/2;⑤当x≥2,y≥0时,F(x,y)=P{X=1,Y=-1}+P{X=2,Y=-1}+P{X=1,Y=0}+P{X=2,Y=0}=1;综上所述,得(X,Y)联合分布函数为F(x,y)={0,x<1或y<-11/4,1≤x<2,-1≤y<05/12,x≥2,-1≤y<01/2,1≤x<2,y≥01,x≥2,y≥0.(3)由FX(x)=P{X≤x,Y<+∞}=∑xi<x∑j=1+∞pij, 得(X,Y)关于X的边缘分布函数为:FX(x)={0,x<114+14,1≤x<214+14+16+13,x≥2={0,x<11/2,1≤x<21,x≥2,同理,由FY(y)=P{X<+∞,Y≤y}=∑yi≤y∑i=1+∞Pij, 得(X,Y)关于Y的边缘分布函数为FY(y)={0,y<-12/12,-1≤y<01,y≥0.习题6设随机变量(X,Y)的联合概率密度为f(x,y)={c(R-x2+y2),x2+y2<R0,x2+y2≥R,求:(1)常数c; (2)P{X2+Y2≤r2}(r<R).解答:(1)因为1=∫-∞+∞∫-∞+∞f(x,y)dydx=∫∫x2+y2<Rc(R-x2+y)dxdy=∫02π∫0Rc(R-ρ)ρdρdθ=cπR33,所以有c=3πR3.(2)P{X2+Y2≤r2}=∫∫x2+y2<r23πR3[R-x2+y2]dxdy=∫02π∫0r3πR3(R-ρ)ρdρdθ=3r2R2(1-2r3R).习题7设f(x,y)={1,0≤x≤2,max(0,x-1)≤y≤min(1,x)0,其它,求fX(x)和fY(y).解答:max(0,x-1)={0,x<1x-1,x≥1, min(1,x)={x,x<11,x≥1,所以,f(x,y)有意义的区域(如图)可分为{0≤x≤1,0≤y≤x},{1≤x≤2,1-x≤y≤1},即f(x,y)={1,0≤x≤1,0≤y≤x1,1≤x≤2,x-1≤y≤1,0,其它所以fX(x)={∫0xdy=x,0≤x<1∫x-11dy=2-x,1≤x≤20,其它,fY(y)={∫yy+1dx=1,0≤y≤10,其它.习题8若(X,Y)的分布律为则α,β应满足的条件是¯, 若X与Y独立,则α=¯,β=¯.解答:应填α+β=13;29;19.由分布律的性质可知∑i⋅jpij=1, 故16+19+118+13+α+β=1,即α+β=13.又因X与Y相互独立,故P{X=i,Y=j}=P{X=i}P{Y=j}, 从而α=P{X=2,Y=2}=P{X=i}P{Y=j},=(19+α)(14+α+β)=(19+α)(13+13)=29,β=P{X=3,Y=2}=P{X=3}P{Y=2}=(118+β)(13+α+β)=(118+β)(13+13),∴β=19.习题9设二维随机变量(X,Y)的概率密度函数为f(x,y)={ce-(2x+y),x>0,y>00,其它,(1)确定常数c; (2)求X,Y的边缘概率密度函数;(3)求联合分布函数F(x,y); (4)求P{Y≤X};(5)求条件概率密度函数fX∣Y(x∣y); (6)求P{X<2∣Y<1}.解答:(1)由∫-∞+∞∫-∞+∞f(x,y)dxdy=1求常数c.∫0+∞∫0+∞ce-(2x+y)dxdy=c⋅(-12e-2x)\vline0+∞⋅(-e-y)∣0+∞=c2=1,所以c=2.(2)fX(x)=∫-∞+∞f(x,y)dy={∫0+∞2e-2xe-ydy,x>00,x≤0={2e-2x,x>00,x≤0,fY(y)=∫-∞+∞f(x,y)dx={∫0+∞2e-2xe-ydx,y>00,其它={e-y,y>00,y≤0.(3)F(x,y)=∫-∞x∫-∞yf(u,v)dvdu={∫0x∫0y2e-2ue-vdvdu,x>0,y>00,其它={(1-e-2x)(1-e-y),x>0,y>00,其它.(4)P{Y≤X}=∫0+∞dx∫0x2e-2xe-ydy=∫0+∞2e-2x(1-e-x)dx=13.(5)当y>0时,fX∣Y(x∣y)=f(x,y)fY(y)={2e-2xe-ye-y,x>00,x≤0={2e-2x,x>00,x≤0.(6)P{X<2∣Y<1}=P{X<2,Y<1}P{Y<1}=F(2,1)∫01e-ydy=(1-e-1)(1-e-4)1-e-1=1-e-4.习题10设随机变量X以概率1取值为0, 而Y是任意的随机变量,证明X与Y相互独立.解答:因为X的分布函数为F(x)={0,当x<0时1,当x≥0时, 设Y的分布函数为FY(y),(X,Y)的分布函数为F(x,y),则当x<0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{∅∩(Y≤y)}=P{∅}=0=FX(x)FY(y);当x≥0时,对任意y, 有F(x,y)=P{X≤x,Y≤y}=P{(X≤x)∩(Y≤y)}=P{S∩(Y≤y)}=P{Y≤y}=Fy(y)=FX(x)FY(y),依定义,由F(x,y)=FX(x)FY(y)知,X与Y独立.习题11设连续型随机变量(X,Y)的两个分量X和Y相互独立,且服从同一分布,试证P{X≤Y}=1/2. 解答:因为X,Y独立,所以f(x,y)=fX(x)fY(y).P{X≤Y}=∫∫x≤yf(x,y)dxdy=∫∫x≤yfX(x)fY(y)dxdy=∫-∞+∞[fY(y)∫-∞yfX(x)dx]dy=∫-∞+∞[fY(y)FY(y)]dy=∫-∞+∞FY(y)dFY(y)=F2(y)2∣-∞+∞=12,也可以利用对称性来证,因为X,Y独立同分布,所以有P{X≤Y}=P{Y≤X},而P{X≤Y}+P{X≥Y}=1, 故P{X≤Y}=1/12.习题12设二维随机变量(X,Y)的联合分布律为若X与Y相互独立,求参数a,b,c的值.解答:关于X的边缘分布为由于X与Y独立,则有p22=p2⋅p⋅2 得b=(b+19)(b+49) ①p12=p1⋅p⋅2 得19=(a+19)(b+49) ②由式①得b=29, 代入式②得a=118. 由分布律的性质,有a+b+c+19+19+13=1,代入a=118,b=29, 得c=16.易验证,所求a,b,c的值,对任意的i和j均满足pij=pi⋅×p⋅j.因此,所求a,b,c的值为a=118,b=29,c=16.习题13已知随机变量X1和X2的概率分布为且P{X1X2=0}=1.(1)求X1和X2的联合分布律;(2)问X1和X2是否独立?解答:(1)本题是已知了X1与X2的边缘分布律,再根据条件P{X1X2=0}=1, 求出联合分布. 列表如下:P{X1=1,X2=1}=0,P{X1=-1,X2=1}=0.再由p⋅1=p-11+p11+p01, 得p01=12, p-10=p-1⋅=p-11=14,p10=p1⋅-p11=14,从而得p00=0.(2)由于p-10=14≠p-1⋅⋅p⋅0=14⋅12=18, 所以知X1与X2不独立.习题14设(X,Y)的联合密度函数为f(x,y)={1πR2,x2+y2≤R20,其它,(1)求X与Y的边缘概率密度;(2)求条件概率密度,并问X与Y是否独立?解答:(1)当x<-R或x>R时,fX(x)=∫-∞+∞f(x,y)dy=∫-∞+∞0dy=0;当-R≤x≤R时,fX(x)=∫-∞+∞f(x,y)dy=1πR2∫-R2-x2R2-x2dy=2πR2R2-x2.于是fX(x)={2R2-x2πR2,-R≤x≤R0,其它.由于X和Y的地位平等,同法可得Y的边缘概率密度是:fY(y)={2R2-y2πR2,-R≤y≤R0,其它.(2)fX∣Y(x∣y)=f(x,y)fY(y)注意在y处x值位于∣x∣≤R2-y2这个范围内,f(x,y)才有非零值,故在此范围内,有fX∣Y(x∣y)=1πR22πR2⋅R2-y2=12R2-y2,即Y=y时X的条件概率密度为fX∣Y(x∣y)={12R2-y2,∣x∣≤R2-y20,其它.同法可得X=x时Y的条件概率密度为fY∣X(y∣x)={12R2-x2,∣y∣≤R2-x20,其它.由于条件概率密度与边缘概率密度不相等,所以X与Y不独立.习题15设(X,Y)的分布律如下表所示X\Y -112-12 1/102/103/102/101/101/10求:(1)Z=X+Y; (2)Z=max{X,Y}的分布律.解答:与一维离散型随机变量函数的分布律的计算类似,本质上是利用事件及其概率的运算法则. 注意,Z的相同值的概率要合并.概率(X,Y)X+YXYX/Ymax{X,Y}1/102/103/102/101/101/10(-1,-1)(-1,1)(-1,2)(2,-1)(2,1)(2,2)-2011341-1-2-2241-1-1/2-221-112222于是(1)习题16设(X,Y)的概率密度为f(x,y)={1,0<x<1,0<y<2(1-x)0,其他,求Z=X+Y的概率密度.解答:先求Z的分布函数Fz(z),再求概率密度fz(z)=dFz(z)dz.如右图所示.当z<0时,Fz(z)=P{X+Y≤z}=0;当0≤z<1时,Fz(z)=P{X+Y≤z}=∫∫x+y≤zf(x,y)dxdy=∫0zdx∫0z-x1dy=∫0z(z-x)dx=z2-12x2∣0z=12z2;当1≤z<2时,Fz(z)=∫02-zdx∫0z-xdy+∫2-z1dx∫02(1-x)dy=z(2-z)-12(2-z)2+(z-1)2;当z≥2时,∫∫Df(x,y)dxdy=∫01dx∫02(1-x)dy=1.综上所述Fz(z)={0,z<012z2,0≤z<1z(2-z)-12(2-z)2+(z-1)2,1≤z<21,z≥2,故fz(z)={z,0≤z<12-z,1≤z<20,其它.习题17设二维随机变量(X,Y)的概率密度为f(x,y)={2e-(x+2y),x>0,y>00,其它,求随机变量Z=X+2Y的分布函数.解答:按定义FZ(Z)=P{x+2y≤z},当z≤0时,FZ(Z)=∫∫x+2y≤zf(x,y)dxdy=∫∫x+2y≤z0dxdy=0.当z>0时,FZ(Z)=∫∫x+2y≤zf(x,y)dxdy=∫0zdx∫0(z-x)/22e-(x+2y)dy=∫0ze-x⋅(1-ex-z)dx=∫0z(e-x-e-z)dx=[-e-x]∣0z-ze-z=1-e-z-ze-z,故分布函数为FZ(Z)={0,z≤01-e-z-ze-z,z>0.习题18设随机变量X与Y相互独立,其概率密度函数分别为fX(x)={1,0≤x≤10,其它, fY(y)={Ae-y,y>00,y≤0,求:(1)常数A; (2)随机变量Z=2X+Y的概率密度函数.解答:(1)1=∫-∞+∞fY(y)dy=∫0+∞A⋅e-ydy=A.(2)因X与Y相互独立,故(X,Y)的联合概率密度为f(x,y)={e-y,0≤x≤1,y>00,其它.于是当z<0时,有F(z)=P{Z≤z}=P{2X+Y≤z}=0;当0≤z≤2时,有F(z)=P{2X+Y≤z}=∫0z/2dx∫0z-2xe-ydy=∫0z/2(1-e2x-z)dx;当z>2时,有F(z)=P{2X+Y≤2}=∫01dx∫0z-2xe-ydy=∫01(1-e2x-z)dx.利用分布函数法求得Z=2X+Y的概率密度函数为fZ(z)={0,z<0(1-e-z)/2,0≤z<2(e2-1)e-z/2,z≥2.习题19设随机变量X,Y相互独立,若X与Y分别服从区间(0,1)与(0,2)上的均匀分布,求U=max{X,Y}与V=min{X,Y}的概率密度.解答:由题设知,X与Y的概率密度分别为fX(x)={1,0<x<10,其它, fY(y)={1/2,0<y<20,其它,于是,①X与Y的分布函数分别为FX(x)={0,x≤0x,0≤x<11,x≥1, FY(y)={0,y<0y/2,0≤y<21,y≥2,从而U=max{X,Y}的分布函数为FU(u)=FX(u)FY(u)={0,u<0u2/2,0≤u<1u/2,1≤u<21,u≥2,故U=max{X,Y}的概率密度为fU(u)={u,0<u<11/2,1≤u<20,其它.②同理,由FV(v)=1-[1-FX(v)][1-FY)]=FX(v)+FY(v)-FX(v)FY(v)=FX(v)+FY(v)-FU(v),得V=min{X,Y}的分布函数为FV(v)={0,v<0v2(3-v),0≤v<11,v≥1,故V=min{X,Y}的概率密度为fV(v)={32-v,0<v<10,其它.注:(1)用卷积公式,主要的困难在于X与Y的概率密度为分段函数,故卷积需要分段计算;(2)先分别求出X,Y的分布函数FX(x)与FY(y), 然后求出FU(u),再求导得fU(u); 同理先求出FV(v), 求导即得fV(v).。
二维离散型随机变量的联合分布函数

例1 设
F
(x,
y)
0, 1,
x y 1 x y 1
讨论F (x, y)能否成为二维随机变量的分布函
数?
y
(0,2) •
解 F (2,2) F (0,2)
4
9 99 0
9
11
2
2
99 00 9
1
1
3
27 0 0 0 27
pi•
84 2
1
27 9 9
27 1
(2) 由表可知
P(Y X ) 7 27
P(Y X ) 10 27
(3) 省略.
例4 把3个红球和3个白球等可能地放入编 号为1,2,3的三个盒子中,每盒容纳的球数无 限,记X为落入1号盒的白球数,Y 为落入1号盒 的红球数.求(X ,Y)的联合分布律和边缘分布 律.解
2
8 2 27 9
3
81 27 27
pi•
8 27
1
4 8 9 27 44 99 42 99 4 1 9 27
4 9
2
3 p• j
2 8 1 8 8 9 27 27 27 27
24 1 4 4 9 9 27 9 9 22 1 2 2 9 9 27 9 9 2 1 1 1 1 9 27 27 27 27
(X x) (Y y) (记为 X x,Y y)
的概率 PX x,Y y, 定义了一个二元实
函数 F ( x , y ),称为二维随机变量( X ,Y ) 的分 布函数,即
概率论参考答案1

一、单项选择题1.若E(XY)=E(X))(Y E ⋅,则必有( B )。
A .X 与Y 不相互独立B .D(X+Y)=D(X)+D(Y)C .X 与Y 相互独立D .D(XY)=D(X)D(Y2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 A 。
A .0.1B .0.2C .0.3D .0.43.设随机变量X 的分布函数为)(x F ,下列结论错误的是 D 。
A .1)(=+∞FB .0)(=-∞FC .1)(0≤≤x FD .)(x F 连续4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。
A .nk k m q p CB .kn k k n q p C -C .k n pq -D .k n k q p -5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则(23)D X Y ++= C A .8B .16C .20D .246.设n X X X 21独立同分布,且1EX μ=及2DX σ=都存在,则当n 充分大时,用中心极限定理得()1n i i P X a a =⎧⎫≥⎨⎬⎩⎭∑为常数的近似值为 B 。
A .1a n n μσ-⎛⎫-Φ⎪⎝⎭ B .1a n n μσ-⎛⎫-Φ ⎪⎝⎭C .a n n μσ-⎛⎫Φ ⎪⎝⎭ D .a n n μσ-⎛⎫Φ⎪⎝⎭7.设二维随机变量),(Y X 的联合分布函数为),(y x F ,其联合分布律为Y X0 1 2 -1 0 10.2 0 0.10 0.4 0 0.1 0 0.2则(0,1)F = C 。
A .0.2B .0.4C .0.6D .0.88.设k X X X ,,,21 是来自正态总体)1,0(N 的样本,则统计量22221k X X X ++服从( D )分布A .正态分布B .t 分布C .F 分布D .2χ分布9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则 B 。
二维随机变量(x,y)的联合分布律

二维随机变量(x,y)的联合分布律
二维随机变量的联合分布律是一类重要的参数,它某种程度上反映和描述了两个不同变量
关系的概率性质。
一般来说,定义在一定空间某点上的联合分布概率,可以用一个函数来
表示,即联合分布函数。
它可以是连续的或离散的,它包括条件概率和条件协方差分布两
部分。
联合分布律不仅描述两个变量之间的关系,还可以揭示各个变量的独立性,或特定变量的正态分布等信息。
研究二维随机变量的联合分布律,有助于我们更加深入、全面地理解变
量之间的关系,分析不同概率分布,从而制定合理的投资策略。
联合分布律经常用于自然科学和经济等领域,非常有用。
如艺术家需要对不同色调和饱和度进行评估,就可以用联合分布律来更好地识别不同色调,也可以帮助统计学家更好地预测某一特定变量的行为趋势。
此外,它也可以帮助金融专业人士观察大量投资者之间的独立性,并做出相应的经济决策。
总之,研究二维随机变量的联合分布律对于解决许多问题至关重要,在金融投资中尤其如此。
熟悉这样的数学模型,能够帮助投资人更好地预测市场的走向,获得资金的最高价值。
最新 年月全国自考概率论与数理统计(二)试题及答案

1 / 10全国2018年7月自学考试概率论与数理统计(二)课程代码:02197试卷来自百度文库 答案由绥化市馨蕾園的王馨磊导数提供一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A ={2,4,6,8},B ={1,2,3,4},则A -B =( ) A .{2,4} B .{6,8} C .{1,3}D .{1,2,3,4}.B AB A B A B A B A 中的元素,故本题选中去掉集合合说的简单一些就是在集的差事件,记作与事件不发生”为事件发生而解:称事件“-2.已知10件产品中有2件次品,从这10件产品中任取4件,没有取出次品的概率为( )A .15B .14C .13D .12.31789105678;844104104848410C C C P C C ,故选本题的概率件正品中取,共有从件中没有次品,则只能若种取法;件,共有件产品中任取解:从=⨯⨯⨯⨯⨯⨯== 3.设事件A ,B 相互独立,()0.4,()0.7,P A P A B =⋃=,则()P B =( ) A .0.2 B .0.3 C .0.4D .0.52 / 10()()()()()()()()()()()()()().5.04.04.07.0D B P B P B P B P A P B P A P AB P B P A P B A P B P A P AB P B A ,故选,解得代入数值,得,所以,相互独立,,解:=-+=-+=-+=⋃= 4.设某实验成功的概率为p ,独立地做5次该实验,成功3次的概率为( )A .35CB .3325(1)C p p -C .335C pD .32(1)p p -()()()()()().1335.,...2,1,0110~23355B p p C P k n n k p p C k P k A p p A n p n B X kn kk n n ,故选,所以,本题,次的概率恰好发生则事件,的概率为次检验中事件重贝努力实验中,设每定理:在,解:-====-=<<-5.设随机变量X 服从[0,1]上的均匀分布,Y =2X -1,则Y 的概率密度为( )A .1,11,()20,,Y y f y ⎧-≤≤⎪=⎨⎪⎩其他 B .1,11,()0,,Y y f y -≤≤⎧=⎨⎩其他C .1,01,()20,,Y y f y ⎧≤≤⎪=⎨⎪⎩其他D .1,01,()0,,Y y f y ≤≤⎧=⎨⎩其他()()[]()()()()()()[]()[][][]..01,121.01,1211.01,1212121.01,12121211,1212112010101110~A y y y y f y f y y h y h f y f y h y y h y y x x y x x f U X X Y X Y X 故选其他,,其他,,其他,,,得其他,,由公式,,即,其中,解得由其他,,,,,,解:⎪⎩⎪⎨⎧-∈=⎪⎩⎪⎨⎧-∈⨯=⎪⎩⎪⎨⎧-∈⎪⎭⎫ ⎝⎛+=⎩⎨⎧-∈'=='+=-∈+=-=⎪⎩⎪⎨⎧≤≤=-=3 / 106.设二维随机变量(X ,Y )的联合概率分布为( )则c =A .112B .16C .14 D .13()().611411211214161.1,...2,1,0B c c P j i P Y X jij iij ,故选,解得由性质②,得②,①:的分布律具有下列性质,解:==+++++==≥∑∑7.已知随机变量X 的数学期望E (X )存在,则下列等式中不恒成立....的是( ) A .E [E (X )]=E (X ) B .E [X +E (X )]=2E (X ) C .E [X -E (X )]=0D .E (X 2)=[E (X )]2()()()().D C B A XE X E E X E X 均恒成立,故本题选、、由此易知,即,期望的期望值不变,的期望是解:=8.设X 为随机变量2()10,()109E X E X ==,则利用切比雪夫不等式估计概率P{|X-10|≥6}≤( )A .14 B .518 C .34D .109364 / 10()()()()(){}(){}.416961091001092222A X P X D X E X P X E X E X D ,故选所以;切比雪夫不等式:,解:=≤≥-≤≥-=-=-=εε 9.设0,1,0,1,1来自X ~0-1分布总体的样本观测值,且有P {X =1}=p ,P {X =0}=q ,其中0<p <1,q =1-p ,则p 的矩估计值为( ) A .1/5 B .2/5 C .3/5D .4/5()()().53ˆ5301ˆC px p q p X E x X EX E x ,故选,所以,本题,,即估计总体均值用样本均值矩估计的替换原理是:解:===⨯+⨯== 10.假设检验中,显著水平α表示( ) A .H 0不真,接受H 0的概率 B .H 0不真,拒绝H 0的概率 C .H 0为真,拒绝H 0的概率D .H 0为真,接受H 0的概率{}.00C H H P ,故选为真拒绝即拒真,表示第一类错误,又称解:显著水平αα=二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
二维随机变量的边缘分布与联合分布关系探讨

二维随机变量的边缘分布与联合分布关系探讨摘要本文首先理解二维随机变量的联合分布的概念、性质及其两种基本表达形式:离散型二维随机变量联合概率分布和连续型二维随机变量联合概率密度。
掌握已知两个随机变量的联合分布时分别求它们的边缘分布的方法。
在文献研究的基础上,运用随机事元和随机事元集合,建立了二维随机变量分布和边缘分布的形式化可拓模型。
利用可拓变换和传导变换,结合形式化的可拓推理知识,对二维随机变量在可拓变换下的传导分布模型进行了研究。
将随机事元、随机事元集合、可拓变换、可拓推理知识等引入到二维随机变量分布的研究中,使分析更加形式化,逻辑性更强。
运用随机事元和随机事元集合建立了二维随机变量分布的可拓模型。
本文对这种特例作了深入研究,分析了具有这种性质的二维密度f(x,y)的结构特点与本质,有助于我们更好地了解正态分布的特殊性质。
关键词:二维随机变量;边缘分布;联合分布AbstractIn this paper,we first understand the concept and properties of the joint distribution of two-dimensional random variables and their two basic expressions: joint probability distribution of discrete two-dimensional random variables and joint probability density of continuous two-dimensional random variables. The method of finding the edge distribution of the joint distribution of two known random variables is mastered. On the basis of literature research, a formal extension model of two-dimensional random variable distribution and edge distribution is established by using random event element and random element set. By using extension transformation and conduction transformation combined with formalized knowledge of extension reasoning,the conduction and distribution models of two-dimensional random variables under extension transformation are studied. The random event element,random event set,extension transformation and extension reasoning knowledge are introduced into the study of two-dimensional random variable distribution,making the analysis more formalized and logical. The extension model of the distribution of two dimensional random variables is established by using the random event element and the set of random element. This special case is studied in depth. The structure and nature of the two-dimensional density f (x,y) with this property is analyzed,which helps us to better understand the special properties of normal distribution.Key words:two-dimensional random variables; edge distribution; joint distribution目录摘要 (I)Abstract (II)1 随机变量独立性及其判定 (1)1.1 随机变量独立性定义 (1)1.1.1随机变量及随机变量独立性的定义 (1)1.1.2随机变量独立性的两个简单定理 (2)1.2 离散型随机变量独立性的判定 (4)1.2.1离散型随机变量判别法一 (4)1.2.2离散型随机变量判别法二 (8)1.3 连续型随机变量独立性的判定 (12)1.3.1连续型随机变量判别法一 (12)1.3.2连续型随机变量判别法二 (13)2 边缘分布与联合分布关系探讨 (16)2.1 二维随机变量的分布函数 (16)2.2 二维离散型随机变量 (17)2.3 二维连续型随机变量 (18)2.4 随机变量的独立性 (18)2.5条件分布 (19)2.6 二维随机变量函数的分布 (20)结论 (21)致谢 (21)参考文献 (22)0 引言概率论是研究随机现象数量规律的数学分支,而随机现象是相对于决定性现象而言的。
概率论与数理统计练习

《概率论与数理统计》期(末)练习一.选择题1.甲、乙、丙三人各向目标射击一发子弹,以A、8、。
分别表示甲、乙、丙命中目标,用A、B、C的运算关系表示大事“恰好有一人命中目标”,下列表达式正确的是(C )A. Λ∪B∪CB. Λ∩B∩CC. ABC∪ ABC∪ ABCD. ABC U ABC U ABC2.设大事A,B满意P(A3)=0,则(D )oA. A8是不行能大事B. A和8不相容C. P(A)=()或P(8)=0D. A8不肯定是不行能大事3.设随机变量X4(〃,p),且E(X)=2.4, D(X)=1.44,则二项分布的参数为(B )。
A. n=4,p=0.6B. n=6,p=0.4C. n=8,p=O.3D. n=24,p=0.14.随机变量乂。
(-3,1),丫~"(2,1),且瓦丫相互独立,设2=乂-2丫+7,则及(A )。
A. N(0,5)B. N(0,6)C. N(0, 12)D. N(0,54)5.对于任意两个随机变量X和匕若E(XY)=E(X)E(Y),则(B )。
A. D(XY)=D(X)D(Y)B. D(X+Y)=D(X)+D(Y)c. x和y相互独立D. x和y不独立6.对随机变量X,函数∕x)=P{X≤x}称为X的(D )A.概率分布B.概率C.概率密度D.分布函数7.在对总体的假设检验中,若给定显著性水平为α ,则犯第一类错误的概率为(B )0CCA. 1 —ocB. (XC. —D.不能确定2版X;8.设X∣,X),…,X 〃,…,Xj是来自正态总体N(0,M)的样本,则统计量V = 3一听∕=n÷l从的分布是(B )oA. t(n+1)B. F(π, tn)C. F(H- 1, ∕w-1)D. F(∕n, n)2k9.设X 的概率分布为P{X=A}=-^ (k=0,l,2,...),则O(2X) = ( D )e k∖A. 1B. 2C. 4D. 810.设0,2, 2, 3, 3为来自匀称分布总体U(0,9)的样本观看值,则。
二维随机变量的联合分布函数

二维随机变量的联合分布函数随机变量是概率论和数理统计中的重要概念之一,它可以描述一个随机事件以及该事件可能出现的结果。
二维随机变量则是另一种更为复杂的随机变量类型,它可以同时描述两个随机事件之间的关系。
在二维随机变量中,我们有一个联合分布函数,它描述了两个随机变量的值同时出现的可能性,也就是两个随机变量之间的联合关系。
二维随机变量的联合分布函数定义为:F(x,y)=P(X≤x,Y≤y)
其中,X和Y是两个二维随机变量,F(x,y)表示X≤x且Y≤y的概率。
联合分布函数可以用来描述两个随机变量之间的关系,从而可以计算出相应的统计特征,如均值、方差、协方差等。
在实际应用中,联合分布函数也可以用于概率分布估计、预测和建模等问题。
例如,如果我们有两个随机变量X和Y,它们分别表示某个商品的价格和销量。
我们可以通过计算它们之间的联合分布函数,来研究价格和销量之间的关系。
如果联合分布函数的曲线表现为随价格上升而
销量下降的趋势,那么我们可以得出这个商品的价格和销量之间是负
相关的。
另外,联合分布函数还可以衍生出边际分布函数和条件分布函数。
边际分布函数指的是某一个随机变量的概率分布函数,而条件分布函
数则指的是在已知另一个随机变量取某一值的情况下,另一个随机变
量的概率分布函数。
总之,二维随机变量的联合分布函数是概率论和数理统计中重要
的概念之一。
通过联合分布函数,我们可以研究和描述两个随机变量
之间的相互关系,从而得出相应的统计特征,如均值、方差、协方差等。
同时,联合分布函数还可以衍生出边际分布函数和条件分布函数,有助于在实际应用中进行概率分布估计、预测和建模等问题的解决。
二维连续型随机变量及其联合分布

P(- < X < + , Y= a ) = 0
例1 设二维随机变量( X ,Y ) 具有概率密度
ae2 y ,0 x 2, y 0 f (x, y) 0,其它
(1)确定常数a (2)求分布函数F(X,Y)
(3)求P{Y≤X}
y
•2 x
FX (x) PX x FY ( y) PY y
由联合分布函数可以求得边缘分布函数,逆不真.
y
FX (x) PX x PX x,Y
F (x,)
x
x
y
FY ( y) PY y
y
PX ,Y y
F (, y)
x
例3 设二维随机变量(X ,Y )的联合分布函数为
F
(
x,
xx yy
x y f (x, y)dydx
故有, P{a X b,c Y d}
b
d
f (x, y)dydx
ac
事实上, 4、若G 是平面上的区域,则
P( X ,Y ) G f (x, y)dxdy
G
另外, P( X = a ,Y = b ) = 0 =P( (X ,Y )=(a, b) )
0
v
(x,y)
0•
• (x,y)
2
u
于是得所求分布函数
x 2
(1
e2 y
),0
x
2,
y
0
F (x, y) (1 e2y ), x 2, y 0
0, 其它
(3)设D={(x,y)|y≤x}
D {(x, y) | 0 x 2,0 y x} 1
二维随机变量及分布

二维随机变量及其概率分布复习资料内容摘要一、二维随机变量设随机试验的样本空间为Ω,X 和Y 是定义在Ω上的两个随机变量(X ,Y )为二维随机变量或二维随机向量。
1. 联合分布函数设(X ,Y )是二维随机变量,y x ,是任意实数,函数F (x ,y )=P{X ≤x ,Y ≤y}称为(X ,Y )的分布函数,或称随机变量X 与Y 的联合分布函数. 2. 联合分布函数的性质(1) 0≤F (x ,y )≤1;(2) F(x ,- ∞)= F(-∞,y)= F(-∞,- ∞)=0F(+∞,+ ∞)=1;(3) F(x ,y)对x 和y 分别是不减的.即对于固定的y ,若x 1<x 2,则F (x 1,y )(),y x F 2≤;对于固定的x ,若y 1<y 2,则F(x ,y 1)≤F(x ,y 2);(4) F (x ,y )关于x 右连续,关于y 右连续,即 F (x +0,y )=F (x ,y ),F (x ,y+0)=F (x ,y )。
(5) 对于任意的点(x 1,y 1),(x 2,y 2),x 1<x 2,y 1<y 2,有 F(x 2,y 2)-F(x 2,y 1)-F(x 1,y 2)+F(x 1,y 1)≥0. 3.二维离散型随机变量如果二维随机变量(X ,Y)所有可能取的数对为有限个或可数个,则称(X ,Y )为二维离散型随机变量.并且称P{X=i , Y=y j }=ij p ,i ,j=1,2…为(X,Y)的分布律,或称做X与Y的联合分布律. 分布律也可用表格列出:分布律满足下列3条性质:4.二维连续型随机变量设(X,Y)的分布函数为F(x,y),如果存在非负函数f(x,y),使得对任意实数x,y都有则称(X,Y)为二维连续型随机变量,函数f(x,y)称做(X,Y)的概率密度,或X,Y的联合概率密度.f(x,y)具有下列性质:(1)f(x,y)≥0,(2)⎰+∞∞-⎰+∞∞- f(x,y)d x dy=1(3)若f(x,y)在点(x,y)连续,则有(4)设D为x Oy平面上的区域,则f(x,y)d x dyP{(x,y)∈D}=⎰⎰D二、边缘分布1.边缘分布函数设F(X,Y)是X与Y的联合分布函数,则FX(x)=P{X≤x,Y<+∞}=F(x,+∞)F Y(y)=P{ X<+∞,Y≤y } =F(+∞)分别称为(X,Y)关于X与Y的边缘分布律。
3.1 二维随机变量及其联合分布函数

Dx
y
故
P{a X b,c Y d}
b a
d c
f
( x,
y)dy
dx
注:1在几何上,z f (x, y)表示空间一个曲面,
介于它和xoy平面的空间区域的体积为1
2 P((X ,Y ) D)等于以D为底,以曲面z f (x, y)
为顶面的柱体体积。
9 25
例3.1.1 一箱中有10件产品,其中6件一级品,4件二级品, 现随机抽取2次,每次任取一件,定义两个随机变量X和Y:
1 第一次抽到一级品, X 0 第一次抽到二级品.
1 Y 0
第二次抽到一级品, 第二次抽到二级品.
(2)第一次抽取后不放回, 求(X,Y)的联合分布律.
4 7
e6
3 7
e14
本例是一个典型题.大家应掌握分析与 计算的方法。特别是会根据不同形状的概 率密度非零区域与所求概率的事件区域G来 处理这类问题。
例 已知二维随机变量(X,Y)的联合概率密度为
f
(
x,
y)
1 8
(6
x
y),
0 x 2, 2 y 4
0,
解 (1)
f (x, y)dxdy
Ae(3x4 y)dxdy 00
A e3xdx e4 ydy
0
0
A[
1 3
e3x ]0[
1 4
e4 y ]0
A 1 1 12
所以 A 12
12e(3 x4 y) , x 0, y 0
A (x,y)
3.1.2 联合分布函数及其性质 定义3.1.3 设(X,Y)是二维随机变量, 对任意 实数 x, y,二元函数
概率论期末考试复习题及答案

第一章1.设P (A )=31,P (A ∪B )=21,且A 与B 互不相容,则P (B )=____61_______.2. 设P (A )=31,P (A ∪B )=21,且A 与B 相互独立,则P (B )=______41_____.3.设事件A 与B 互不相容,P (A )=0.2,P (B )=0.3,则P (B A ⋃)=___0.5_____. 4.已知P (A )=1/2,P (B )=1/3,且A ,B 相互独立,则P (A B )=________1/3________. A 与B 相互独立5.设P (A )=0.5,P (A B )=0.4,则P (B|A )=___0.2________.6.设A ,B 为随机事件,且P(A)=0.8,P(B)=0.4,P(B|A)=0.25,则P(A|B)=____ 0.5______.7.一口袋装有3只红球,2只黑球,今从中任意取出2只球,则这两只恰为一红一黑的概率是________ 0.6________.8.设袋中装有6只红球、4只白球,每次从袋中取一球观其颜色后放回,并再放入1只同颜色的球,若连取两次,则第一次取得红球且第二次取得白球的概率等于____12/55____.9.一袋中有7个红球和3个白球,从袋中有放回地取两次球,每次取一个,则第一次取得红球且第二次取得白球的概率p=___0.21_____.10.设工厂甲、乙、丙三个车间生产同一种产品,产量依次占全厂产量的45%,35%,20%,且各车间的次品率分别为4%,2%,5%.求:(1)从该厂生产的产品中任取1件,它是次品的概率; 3.5% (2)该件次品是由甲车间生产的概率.3518第二章1.设随机变量X~N (2,22),则P {X ≤0}=___0.1587____.(附:Φ(1)=0.8413) 设随机变量X~N (2,22),则P{X ≤0}=(P{(X-2)/2≤-1} =Φ(-1)=1-Φ(1)=0.15872.设连续型随机变量X 的分布函数为⎩⎨⎧≤>-=-,0,0;0,1)(3x x e x F x则当x >0时,X 的概率密度f (x )=___ xe33-_____.3.设随机变量X 的分布函数为F (x )=⎩⎨⎧≤>--,0,0;0,2x x e a x 则常数a =____1____.4.设随机变量X~N (1,4),已知标准正态分布函数值Φ(1)=0.8413,为使P{X<a}<0.8413,则常数a<___3_________.5.抛一枚均匀硬币5次,记正面向上的次数为X ,则P{X ≥1}=_____3231_______. 6.X 表示4次独立重复射击命中目标的次数,每次命中目标的概率为0.5,则X~ _B(4, 0.5)____7.设随机变量X 服从区间[0,5]8.设随机变量X 的分布律为 =X 2,记随机变量Y 的分布函数为F Y (y 9.设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a . 110.已知随机变量X 的密度函数为f (x )=A e ?|x |, ?∞<x <+∞,求:(1)A 值;(2)P {0<X <1}; (3) F (x ).21 21(1-e ??) ⎪⎩⎪⎨⎧≤>-=-0210211)(x e x e x F x x11.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-⎧+≥>⎨<⎩(1) 求常数A ,B ;(2) 求P {X ≤2},P {X >3}; (3) 求分布密度f (x ). A=1 B=-1 P {X ≤2}=λ21--e P {X >3}=λ3-e⎩⎨⎧≤>=-0)(x x e x f xλλ 12.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≤-<≤.,0,21,2,10,其他x x x x 求X 的分布函数F (x ).求(1)X 的分布函数,(2)Y =X 的分布律.14.设随机变量X ~U (0,1),试求: (1) Y =e X 的分布函数及密度函数; (2) Z =?2ln X 的分布函数及密度函数.第三章1.设二维随机变量(X ,Y )的概率密度为⎪⎩⎪⎨⎧>>=+-,,0;0,0,),()(其他y x ey x f y x (1)求边缘概率密度f X (x)和f Y (y ),(2)问X 与Y 是否相互独立,并说明理由.因为 )()(),(y f x f y x f Y X = ,所以X 与Y 相互独立2.设二维随机变量221212(,)~(,, ,,)X Y N μμσσρ,且X 与Y 相互独立,则ρ=____0______. 3.设X~N (-1,4),Y~N (1,9)且X 与Y 相互独立,则2X-Y~___ N (-3,25)____. 4.,5.设随机变量(X,Y)服从区域D 上的均匀分布,其中区域D 是直线y=x ,x=1和x 轴所围成的三角形区域,则(X,Y)的概率密度101()2y x f x y others⎧≤<≤⎪=⎨⎪⎩,.62)随机变量Z=XY 的分布律.7求:(1)a 的值;(2)(X ,Y )分别关于X 和Y 的边缘分布列;(3)X 与Y 是否独立?为什么?(4)X+Y 的分布列. a=0.3因为{0,1}{0}{1}P X Y P X P Y ==≠==,所以X 与Y 不相互独立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上页 下页 返回
解:设X可能的取值为 i, i 1,2,3,4
Y可能的取值为 j, j 1, , i .
则: P( X i,Y j)
定义 设二维随机变量(X,Y)的联合分布函数 为F(x,y),分别把X和Y的分布函数记为FX(x)和FY(y), 叫做二维随机变量(X,Y) 关于X和Y的边缘分布函数.
即: FX (x) P{X x} PX x,Y F(x,)
FY ( y) P{Y y} PX ,Y y F(, y)
定义:设二维随机变量(X,Y)的分布函数为 F(x,y),若存在非负函数f(x,y),使对任 意实数 x,y 有
x
y
F( x, y)
f (u, v)dudv
则称(X,Y)是二维连续型随机变量,f(x,y)
称为(X,Y)的联合概率密度函数。
上页 下页 返回
说明
(1) 分布函数 F( x, y) 是连续函数. (因为 F( x, y)
是积分上限函数)
(2)
的性质
(i) f (x, y) 0
(ii)
f ( x, y)dxdy F (,) 1
(注:从几何上看,z f ( x, y)表示空间的一个曲面,
介于它和XOY面的空间区域的体积为1)
上页 下页 返回
xy
F( x, y)
f ( x, y)dxdy
f ( x, y) Fxy ( x, y)
几何意义
(X,Y)平面上随机点的坐标
F (x, y) P { X x,Y y }
F( x, y) 即为随机点(X,Y) 落在以点(x,y)为顶点,位于 该点左下方的无穷矩形区域 G内的概率值。
P( x1 X x2 , y1 Y y2 ) y2
F( x2, y2 ) F( x1, y2 ) F( x2, y1) F( x1, y1)
6e 2x3 y dy 6e 2 x e 3 y dy 2e 2 x
0
0
fX (x)
2e 2x , x 0 0, x 0
fY ( y)
f ( x, y)dx
6e 2 x3 y dx
0
3e 3 y ,
y
0
0
y0
上页 下页 返回
例3:设二维随机变量(X,Y)的概率密度为
解: (X,Y)所有可能的取值为: (0,3)(1,1)(2,1)(3,3) P(X=0,Y=3)=P(反反反)=1/8
YX 0
1
2
3
1 0 3/8 3/8 0
3 1/8 0
0 1/8
例2: 设随机变量X在1,2,3,4中随机地取一个 数,另一随机变量Y在1到X中随机地取一整数 .求(X,Y)的分布律。
0, 第i次取到白球; Xi 1,第i次取到红球;i 1,2.
求(X1 ,X2)的联合分布律及边缘分布律。 假设: (1)采取有放回取球方式 (2)采取不放回取球方式 (3)通过此题你得出何结论?
上页 下页 返回
FX ( x) P( X x,Y ) F( x,)
Hale Waihona Puke xx dx f ( x, y)dy ( f ( x, y)dy)dx
2. 二维离散型随机变量的联合分布
定义 若二维 r.v.(X,Y)所有可能的取值 是有限对或无限可列对,则称(X,Y)是二维 离散型随机变量。
中心问题:(X,Y)可能取哪些值? 它取这些值的概率分别为多少?
二维(X,Y)的联合分布律:
(1)公式法 设( X ,Y )的可能取值为( xi , y j ), 且
上页 下页 返回
我们常在表格上直接求边缘分布律
X Y y1 y2 y3
x1 p11 p12 p13 x2 p21 p22 p23
1
例3:将一枚硬币连掷三次,令X=“正面出现 的次数”,Y=“正反面次数之差的绝对值”,已 在例1中求了(X,Y)的联合分布律,现求二维随机 变量(X,Y)关于X与Y的边缘分布律.
f ( x, y)dxdy
dx
ke2x3 ydy
0
0
k
e 2x dx
0
0
e
3
y
dy
k 6
e2xdx 1 e2xd(2x)
0
20
1 e2x 1
2 02
k6
上页 下页 返回
(2) P(Y X )
y
y=x
f ( x, y)dxdy
G:{ x0, y0, y x}
上页 下页 返回
X (X,Y)
一维随机变量 二维随机变量
( X1, X2, , Xn)
n维随机变量
主要研究二维随机变量(X,Y)的取值规律, 然后将得到的结论平行推广到多维随机变 量 ( X1, X2, , Xn ) 的情形
上页 下页 返回
(X,Y)视为xoy平面上随机点的坐标 (X,Y) 的取值规律: (1)(X,Y)的所有可能值是什么? (2)(X,Y)取任意数值或取任何范围内的数值 的概率是多少?
cy(2 x), 0 x 1, 0 y x
f (x, y)
0, 其他
求:(1) c ; (2) f X ( x) , fY ( y)
解: (1) 1
f ( x, y)dxdy
y y=x
1
x
0 dx0 cy(2 x)dy
0 1x
1
x
0 c(2 x)dx0 ydy
1
c(2
固定x
同理:
固定y
例2:设二维随机变量(X,Y)的概率密度为
6e2x3 y , x 0, y 0
f (x, y)
0, 其他
求( X ,Y )关于X与Y的边缘概率密度。
解:当x 0时,f X ( x)
f ( x, y)dy
=0
当x 0时,f X ( x)
f ( x, y)dy
i 1,2, , m, ; j 1,2, , n,
(2)表格法
(i, j 1,2, )
X Y y1 y2 y3
x1 p11 p12 p13 x2 p21 p22 p23
(X,Y)的概率分布表
(1) pij 0
(2) pij 1
ij
例1: 将一枚硬币连掷三次,令X=“正面出现 的次数”,Y=“正反面次数之差的绝对值”, 试求(X,Y)的联合分布律。
X0
1
2
3 p. j
Y
1
0 3/8 3/8 0 6/8
3
1/8 0 0 1/8 2/8
pi . 1/8 3/8 3/8 1/8 1
X与Y的边缘分布律如下:
X0 1 2 3
pi. 1 3 3 1
8888
Y1 3
p. j
6 8
2 8
思考题: 在一个装有3个红球2个白球的盒子中连续 取球两次,每次取球一只,设
G
上页 下页 返回
例1:设二维随机变量(X,Y)的概率密度为:
ke2x3 y , x 0, y 0
f (x, y)
0, 其他
求 : (1)k; (2)P(Y X );
(3) 分 布 函 数F ( x, y);
(4)P(0 X 1, 0 Y 1)
上页 下页 返回
解: (1) 1
1 24 y(2 x)dx
y5
0 1x
24 y
1
(2
x)dx
24
y(3 2 y
y2 )
5y
52
2
fY ( y)
24 5
y( 3 2
2y
y2 ),0
2
y
1
0, 其他
补充: (二维均匀分布) 设G为平面上的 有界区域 ,其面积为A .若二维随机变 量(X,Y)的概率密度为:
f
y1 0 x1 x2
上页 下页 返回
性质
(1) 有界: 0 F( x, y) 1
(2) F(x,y)分别关于x和y为不减函数:
F (, y) F ( x,) F (,) 0 F (,) 1
(3) F(x,y)分别关于x和y为右连续函数:
即 F(x,y)= F(x+0,y) F(x,y)= F(x,y+0)
x)
x2 dx
5c
c
24
0
2 24
5
(2)0 x 1时,
f X ( x)
f ( x, y)dy
x 24 y(2 x)dy 12 x 2 (2 x)
05
5
y y=x 0 1x
fX
(x)
12 5
x2(2
x),0
x
1
0, 其 他
0 y 1时
y y=x
fY ( y)
f ( x, y)dx
上页 下页 返回
二维随机变量的定义:
设E是一个随机试验,其样本空间为S .设X、Y 是定义在S上的两个随机变量,由 X,Y 构成的 向量(X,Y)称为S的一个二维随机变量。
e
X(e)
RX
Y(e) RY
上页 下页 返回
注意:研究二维随机变量(X,Y),不 仅要研究这两个随机变量作为整体时的 分布情况,还要研究X与Y各自的分布情 况,这就是所谓联合分布与边缘分布的 问题。
f (u, v)dudv
x 2e2udu
0
y 3e3vdv,
0
x 0, y 0
0,
其他
x 2e2udu x e2ud (2u) 1 e2x
0
0