高中数学绝对值不等式的解法

合集下载

《绝对值不等式的解法---说课稿

《绝对值不等式的解法---说课稿

∴ 1 x ∴ 1 x ≤5;
3
3
⑶当 x ≤ 3 时,原不等式可变形为5 x (2x∴综上所述,原不等式的解集为 (, 7) ( 1 , ) 3
5、课时小结
|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法 (1)利用绝对值不等式的几何意义求解. (2)以绝对值的零点为分界点,将数轴分为几个区间,利用 “零点分段法”求解,体现分类讨论的思想.确定各个绝对值符 号内多项式的正、负性进而去掉绝对值符号是解题关键. (3)构造函数,结合函数的图象求解.
-2x-6 (x<-2) 由图象知不等式的解集为
x x≥2或x ≤3
-2 1
-3
2 -2
x
方法小结
方法小结:
解绝对值不等式的基本思路是去绝对值符号 转化为一般不等式来处理。
主要方法有:
⑴ 运用绝对值的几何意义, 数形结合;
⑵ 零点分段法:分类讨论去绝对值符号;
(含两个或两个以上绝对值符号)



x1
ax+b>c 或 ax+b<-c
思考:如何求不等式|x-1|+|x+2|≥5 的解集?
2.探究:怎么解不等式|x-1|+|x+2|≥5
呢? 解绝对值不等式关键是去绝对值符号,
你有什么方法解决这个问题呢?
方法一:利用绝对值的几何意义(体现了数形结 合的思想).
解:|x-1|+|x+2|=5的解为x=-3或x=2
结合近三年来全国卷的高考真题,加以巩固提高 ,培养学生分析问题、解决问题的能力、理解能力, 对培育学生思维的灵活性有很大的帮助,同时能使学 生养成多角度认识事物的习惯;并通过不等式变换的

高中数学 1.2.2 绝对值不等式的解法课件 新人教A版选修45[1]

高中数学 1.2.2 绝对值不等式的解法课件 新人教A版选修45[1]
(1)(几何法)利用绝对值的几何意义求解.只要找到使|x-a|+|x-b|=c
成立的 x 值,依据“大于取两边,小于取中间”的法则写出不等式的解集
即可.
(2)(分段讨论法)分段讨论去掉绝对值符号,以 a,b 为分界点,将实数
集分为三个区间,在每个区间上 x-a,x-b 的符号都是确定的,从而去掉绝
对值符号.
∴x-8≥3,或 x-8≤-3.∴x≥11,或 x≤5.
∴原不等式的解集为{x|x≥11 或 x≤5}.
本题题型已成为“公式”型的问题,即解不等式时,套用|ax+b|≥c 型
的转化方法,进而解之,而数形结合是从函数图象的角度解释不等式,从
中可找到适合的 x.
第九页,共29页。
问题
(wèntí)导

KETANG HEZUO TANJIU
预习(yùxí)
导引
预习交流
如何用分段讨论法解含绝对值的不等式?
提示:用分段讨论法解含绝对值的不等式时,先求出使每一个绝对
值符号内的多项式等于零的未知数的值(称为零点),再将这些值依次在
数轴上标注出来,它们把数轴分成若干个区间,讨论每一个绝对值符号
内的多项式在每一个区间上的符号,去掉绝对值符号,使之转化为不含
KEQIAN YUXI DAOXUE
KETANG HEZUO TANJIU
当堂(dānɡ
tánɡ)检测
3
2
(3)当 x≥1 时,|x+2|+|x-1|<4⇔x+2+x-1<4⇔2x<3⇔x< ,即
≥ 1,
3
的解集为 1, .
2
| + 2| + |-1| < 4

最新人教B版高中数学选修4-5《绝对值不等式的解法》教学设计

最新人教B版高中数学选修4-5《绝对值不等式的解法》教学设计

《绝对值不等式的解法》(第一课时)教学设计一、教学内容解析《绝对值不等式的解法》是选修4-5第一章第三节内容,我们这里讲解第一课时。

该内容是在初中学习了绝对值的概念,学习了一元一次不等式;高中必修1学习了绝对值函数图像的画法,必修5学习了一元二次不等式的基础上展开的。

通过本节课可渗透数形结合、分类讨论、化归与转化等数学思想方法,因此它是本章的重点之一,在整个数学学科中占有重要地位。

解含绝对值不等式问题的基本思想是设法去掉绝对值符号,转化为同解的不含绝对值符号的一般不等式去解.而去绝对值的方法主要有定义法(分类讨论法)、平方法、几何法、图像法等,实际上,这四种方法也是解绝对值不等式问题的基本思路,为下一节学习含有两个绝对值的不等式的解法做好铺垫.而本节的重点是运用绝对值的几何意义去掉绝对值符号,转化为不含绝对值的不等式求解,并从中总结规律,形成解绝对值不等式的规律公式及口诀。

本节课在求解过程中也是对集合知识的应用和巩固,同时,为以后不等式的学习打下了基础,对培养学生分析问题、解决问题的能力、理解能力、思维的灵活性有很大的帮助,同时能使学生养成多角度认识研究事物的习惯;并通过不等式变换的等价性培养思维的可容性。

二、教学目标设置【教学目标】1、知识与技能:使学生熟练掌握()()()0>≤≥aaxfaxf与型不等式的解法;2、过程与方法:培养学生观察、分析、归纳、概括的能力,渗透数形结合、分类讨论、转化与化归等数学思想方法;培养学生养成多角度认识研究事物的习惯;并通过不等式变换的等价性培养思维的可容性。

3、情感态度价值观:向学生渗透“具体-抽象-具体”辩证唯物主义的认识论观点,使学生形成良好的个性品质。

感悟形与数不同的数学形态间的和谐统一美。

【教学重点与难点】重点:()()()0>≤≥aaxfaxf与型不等式的解法;难点:利用绝对值的几何意义解绝对值不等式。

三、学生学情分析学生在初中已经学过绝对值的定义,在高中必修1中,也会画简单的绝对值函数的图像,也接触过两边平方的方法。

绝对值不等式的解法-高中数学知识点讲解

绝对值不等式的解法-高中数学知识点讲解

绝对值不等式的解法1.绝对值不等式的解法【知识点的认识】绝对值不等式的解法1、绝对值不等式|x|>a 与|x|<a 的解集不等式a>0 a=0 a<0|x|<a {x|﹣a<x<a} ∅∅|x|>a {x|x>a,或x<﹣a} {x|x≠0} R2、|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:(1)|ax+b|≤c⇔﹣c≤ax+b≤c;(2)|ax+b|≥c⇔ax+b≥c 或ax+b≤﹣c;(3)|x﹣a|+|x﹣b|≥c(c>0)和|x﹣a|+|x﹣b|≤c(c>0)型不等式的解法:方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.【解题方法点拨】1、解绝对值不等式的基本方法:(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;(3)利用绝对值的几何意义,数形结合求解.2.解绝对值不等式主要是通过同解变形去掉绝对值符号转化为一元一次和一元二次不等式(组)进行求解.含有多个绝对值符号的不等式,一般可用零点分段法求解,对于形如|x﹣a|+|x﹣b|>m 或|x﹣a|+|x﹣b|<m (m 为正常数),利用实数绝对值的几何意义求解较简便.3.不等式|x﹣a|+|x﹣b|≥c 的解就是数轴上到A(a),B(b)两点的距离之和不小于c 的点所对应的实数,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.4.不等式|a|﹣|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0 且|a|≥|b|;不等式|a|﹣|b|≤|a﹣b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0 且|a|≥|b|.。

人教A版高中数学选修4-5绝对值不等式的解法

人教A版高中数学选修4-5绝对值不等式的解法

高中数学学习材料(灿若寒星 精心整理制作)高二年级(下)数学学案绝对值不等式的解法制作人:岳双珊 审核人:张艳芬 时间 2013.03一.基本解法与思想解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。

(一)、公式法:即利用a x >与a x <的解集求解。

主要知识:1.绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离。

2.a x >与a x <型的不等式的解法。

当0>a 时,不等式⇔>a x {}a x a x x -<>或,;不等式⇔<a x {}a x a x <<-; 当0<a 时,不等式⇔>a x {}R x x ∈;不等式⇔<a x ∅. 3.c b ax >+与c b ax <+型的不等式的解法。

把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。

4.关于绝对值不等式的常见类型有下列的同解变形 (1)()()()()();f x g x g x f x g x ≤⇔-≤≤ (2)()()()(),()()f x g x f x g x f x g x ≥⇔≤-≥或 (3)22()()()().f x g x f x g x ≤⇔≤(4)设0b a >>,则不等式()a f x b ≤<⇔()b f x a -<≤-或()a f x b ≤<(二)、定义法:即利用(0),0(0),(0).a a a a a a >⎧⎪==⎨⎪-<⎩去掉绝对值再解。

例如:解不等式22xxx x >++.(三)、平方法:解()()f x g x >型不等式。

例如:解不等式123x x ->-.二.分类讨论法(零点分段法):即通过合理分类去绝对值后再求解。

人教版-高中数学选修4-5_绝对值不等式的解法

人教版-高中数学选修4-5_绝对值不等式的解法

(3)当x 3时, x 1 0, x 3 0, 原不等式变形为( x 1) ( x 3) 2 x,即x 4.
此时, 得{x | x 3} {x | x 4} {x | x 4}; 2 4 将(1)、 2)、 3)的结果取并集 ( ( ,
2
1 5 9
2
四、练习
3. 解不等式|x-3|-|x+1|<1 解:使两个绝对值分别为零的x的值依次为 x=3、x=-1, 将其在数轴上标出,将实数分为三个区间.依次考虑,原不 等式可以转化为下列不等式组.
x≤-1 -1<x≤3 x>3 Ⅰ) Ⅱ) Ⅲ) -(x-3)+(x+1)<1 -(x-3)-(x+1)<1 (x-3)-(x+1)<1
2<2x-5≤7,或- 7≤ 2x-5<-2 7 x 6, 或 1 x 3 2 2
原不等式的解集为: 3 7 或 x6 {x|-1≤x< } 2 2
-1
3 2
7 2
6
x
四、练习
2.解不等式 x 9 x 1 解:
x 9 x 1
x 9 x 1 x5
则原不等式的解集为 x | x 2, 或x 4}. {
三、例题讲解 例3 解不等式| x -1 | + | 2x-4 |>3 + x 解:(1)当x≤1时原不等式化为: 1-x + 4 -2x >3 + x 1 1 ② 2 ① ③ x 2 (2)当1<x ≤2时,原不等式化为:
x 1 4 2x 3 x x 0
3 x 4, 1 x 0 . 或
原不等式的解集是 x | 1 x 0, 3 x 4}. { 或

【高中数学】秒杀秘诀MS01绝对值不等式

【高中数学】秒杀秘诀MS01绝对值不等式

绝对值不等式一、绝对值三角不等式1.定理1:如果a ,b 是实数,则|a +b|≤|a|+|b|,当且仅当ab ≥0时,等号成立.2.定理2:如果a ,b ,c 是实数,则|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.二、绝对值不等式的解法1.含绝对值的不等式|x|<a 与|x|>a 的解集不等式a >0a =0a <0|x |<a-a <x <a ∅∅|x |>a x >a 或x <-a x ≠0R(1)|a x +b|≤c ⇔-c ≤a x +b ≤c ;(2)|a x +b|≥c ⇔a x +b ≥c 或a x +b ≤-c .3.|x -a |+|x -b|≥c(c>0)和|x -a |+|x -b |≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.二、绝对值不等式的解法1.含绝对值的不等式|x|<a 与|x|>a 的解集不等式a >0a =0a <0|x |<a -a <x <a ∅∅|x |>a x >a 或x <-a x ≠0R(1)|a x +b|≤c ⇔-c ≤ax +b ≤c ;(2)|a x +b|≥c ⇔ax +b ≥c 或ax +b ≤-c .3.|x -a|+|x -b|≥c(c>0)和|x -a|+|x -b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.解:原不等式可化为2x -1≥0,x +(2x -1)<3或2x -1<0,x -(2x -1)<3.解得12≤x <43或-2<x <12.解:(1)证明:f (x )=|x -2|-|x -5|=-3,x ≤2,2x -7,2<x <5,3,x ≥5.当2<x <5时,-3<2x -7<3.所以-3≤f (x )≤3.(2)由(1)可知,当x ≤2时,f (x )≥x 2-8x +15的解集为空集;当2<x <5时,f (x )≥x 2-8x +15的解集为{x |5-3≤x <5};当x ≥5时,f (x )≥x 2-8x +15的解集为{x |5≤x ≤6}.综上,不等式f (x )≥x 2-8x +15的解集为{x |5-3≤x ≤6}.解:由题知,|x -1|+|x -2|≤|a -b |+|a +b ||a |恒成立,故|x -1|+|x -2|不大于|a -b |+|a +b ||a |的最小值.∵|a +b |+|a -b |≥|a +b +a -b |=2|a |,当且仅当(a +b )(a -b )≥0时取等号,∴|a -b |+|a +b ||a |的最小值等于2.∴x 的取值范围即为不等式|x -1|+|x -2|≤2的解.解不等式得12≤x ≤52.式|a|-|b|≤|a -b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.2.|x -a|+|x -b|≥c 表示到数轴上点A(a),B(b)距离之和大于或等于c 的所有点,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.例4:若不等式|x +1|+|x -2|≥a 对任意x ∈R 恒成立,则a 的取值范围是________.解:由于|x +1|+|x -2|≥|(x +1)-(x -2)|=3,所以只需a≤3即可.若本题条件变为“∃x ∈R 使不等式|x +1|+|x -2|<a 成立为假命题”,求a 的范围.解:由条件知其等价命题为对∀x ∈R ,|x +1|+|x -2|≥a 恒成立,故a≤(|x +1|+|x -2|)min ,又|x +1|+|x -2|≥|(x +1)-(x -2)|=3,∴a≤3.例5:不等式log3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则实数a 的取值范围是________.解:由绝对值的几何意义知:|x -4|+|x +5|≥9,则log3(|x -4|+|x +5|)≥2所以要使不等式log3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则需a<2.例6:某地街道呈现东——西,南——北向的网络状,相邻街距都为1,两街道相交的点称为格点.若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点,请确定一个格点(除零售点外)________为发行站,使6个零售点沿街道到发行站之间的路程的和最短.解:设格点(x ,y)(其中x ,y ∈Z)为发行站,使6个零售点沿街道到发行站之间的路程的和最短,即使(|x +2|+|y -2|+(|x -3|+|y -1|)+(|x -3|+|y -4|)+(|x +2|+|y -3|)+(|x -4|+|y -5|)+(|x -6|+|y -6|)=[(|x +2|+|x -6|)+(|x +2|+|x -4|)+2|x -3|]+[|y -1|+|y -2|+|y -3|+|y -4|+|y -5|+|y -6|]取得最小值的格点(x ,y)(其中x ,y ∈Z).注意到[(|x +2|+|x -6|)+(|x +2|+|x -4|)+2|x -3|]≥|(x +2)-(x -6)|+|(x +2)-(x -4)|+0=14,当且仅当x =3取等号;|y -1|+|y -2|+|y -3|+|y -4|+|y -5|+|y -6|=(|y -1|+|y -6|)+(|y -2|+|y -5|+(|y -3|+|y -4|)≥|(y -1)-(y -6)|+|(y -2)-(y -5)|+|(y -3)-(y -4)|=9,当且仅当y =3或y =4时取等号.因此,应确定格点(3,3)或(3,4)为发行站.又所求格点不能是零售点,所以应确定格点(3,3)为发行站.1.对绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.2.该定理可以强化为:||a|-|b||≤|a±b|≤|a|+|b|,它经常用于证明含绝对值的不等式.3.对于求y =|x -a|+|x -b|或y =|x +a|-|x -b|型的最值问题利用绝对值三角不等式更简洁、方便.例7:设函数f(x)=|x -a|+3x ,其中a>0.(1)当a =1时,求不等式f(x)≥3x +2的解集;(2)若不等式f(x)≤0的解:(1)当a =1时f(x)≥3x +2可化为|x -1|≥2.由此可得x≥3或x≤-1.故不等式f(x)≥3x +2的解集为{x|x≥3或x≤-1}.(2)由f(x)≤0得|x -a|+3x≤0.此不等式化为不等式组x ≥a ,x -a +3x ≤0,或x ≤a ,a -x +3x ≤0,即x ≥a ,x ≤a 4,或x ≤a ,x ≤-a 2.因为a >0,所以不等式组的解集为{x |x ≤-a 2}.由题设可得-a 2=-1,故a =2.解:当x >1时,原不等式等价于2x <3⇒x <32,∴1<x <32;当-1≤x ≤1时,原不等式等价于x +1-x +1<3,此不等式恒成立,∴-1≤x ≤1;当x <-1时,原不等式等价于-2x <3⇒x >-32,∴-32<x <-1.综上可得:-32<x <32。

含绝对值不等式

含绝对值不等式
f ( x) g( x) f ( x) g( x)或f ( x) g( x)
典型例题
例3、解不等法: (1)零点分段法;(通性通法) (2)几何意义法; (3)函数图象法.
典型例题
xa 例4、已知不等式 x 3 的解集为A. 2 (1)若A= 求实数a 的取值范围;
f ( x) a (a 0) a f ( x) a; f ( x) a (a 0) f ( x) a或f ( x) a
f ( x ) g( x ) f 2 ( x ) g 2 ( x )
3、零点分段法:如 ax b cx d k
若ab 0, 则 a b a b , a b a b
二、含绝对值不等式的解法: 1、等价转化法: 2、平方法:
f ( x) a (a 0) a f ( x) a; f ( x) a (a 0) f ( x) a或f ( x) a
【思维点拨】 1、需分别证明充分性和心要性; 2、通过分类讨论利用结论:
若ab 0, 则 a b a b , a b a b
若ab 0, 则 a b a b , a b a b
典型例题
例2、解不等式:
1 x 2x 2
2
【思维点拨】 本题有多种解法: (1)定义法; (2)等价转化法; (3)函数图象法. 注意: f ( x) g( x) g( x) f ( x) g( x);
高中数学第六章《不等式》 第 5 课
含绝对值不等式
问题:
a>b是a2>b2的什么条件? 答案:既非充分又非必要条件.
知识梳理:
一、含绝对值不等式的证明:

高中数学 第一讲 不等式和绝对值不等式 1.2 绝对值不

高中数学 第一讲 不等式和绝对值不等式 1.2 绝对值不

1.2.2 绝对值不等式的解法课堂导学三点剖析一、绝对值不等式的典型类型和方法(一) 【例1】 解下列不等式: (1)1<|x+2|<5; (2)|3-x|+|x+4|>8.解析:(1)法一:原不等式⇔⎩⎨⎧<<--<->⇔⎩⎨⎧<+<->+⇔⎩⎨⎧<+>+.37,31525125|2|1|2|x x x x x x x 或 故原不等式的解集为{x|-1<x<3或-7<x<-3}.法二:原不等式⎩⎨⎧<--<<+⎩⎨⎧<+<≥+⇔521,02521,02x x x x 或, ⇔⎩⎨⎧-<<--<⎩⎨⎧<<--≥⇔37,231,2x x x x 或-1<x<3或-7<x<-3.∴原不等式的解集为{x|-1<x<3或-7<x<3}.(2)法一:原不等式⎩⎨⎧>++-<<-⎩⎨⎧>---≤⇔,843,34843,4x x x x x x 或⎩⎨⎧>≥⎩⎨⎧><<-⎩⎨⎧>---≤⇔⎩⎨⎧>++-≥.72,387,34821,4843,3x x x x x x x x 或或或 ∴x>27或x<29-. ∴原不等式的解集为{x|x<29-或x>27}.法二:将原不等式转化为|x-3|+|x+4|-8>0,构造函数y=|x-3|+|x+4|-8,即y=⎪⎩⎪⎨⎧≥-<<---≤--.3,72,34,1,492x x x x作出函数的图象如图.从图象可知当x>27或x<29-时,y>0,故原不等式的解集为{x|x>27或x<29-}. 温馨提示在本例中主要利用了绝对值的概念,|x|<a(或|x|>a)的解集以及数形结合的方法,这些方法都是解绝对值不等式的典型方法. 各个击破 类题演练1 解下列不等式:(1)|432-x x|≤1; (2)|x+3|-|2x-1|>2x+1.解析:(1)原不等式⎩⎨⎧≥+-±≠⇔⎪⎩⎪⎨⎧-≤≠-⇔016172)4(904242222x x x x x x ⇔⎩⎨⎧≥≤±≠⇔161222x x x 或-1≤x≤1或x≤-4或x≥4. 故原不等式的解集为{x|-1≤x≤1或x≤-4或x≥4}. (2)由x+3=0,得x 1=-3, 由2x-1=0,得x 2=21. ①当x<-3时,不等式化为x-4>2x+1,解得x>10,而x<-3,故此时无解; ②当-3≤x<21时,不等式化为3x+2>2x +1,解得x>52-,这时不等式的解为52-<x<21;③当x≥21时,不等式化为-x+4>2x +1,即x<2,这时不等式的解为21≤x<2.综合上述,原不等式的解集为{x|52-<x<2}.变式提升1(1)解不等式|x 2-5x+5|<1.解析:不等式可化为-1<x 2-5x+5<1,即⎪⎩⎪⎨⎧->+-<+-.155,15522x x x x解之,得1<x<2或3<x<4.所以原不等式的解集为{x|1<x<2或3<x<4}.(2)求使不等式|x-4|+|x-3|<a 有解的a 的取值范围. 解法一:将数轴分为(-∞,3),[3,4],(4,+∞)三个区间. 当x<3时,得(4-x)+(3-x)<a,x>27a -有解条件为27a-<3,即a>1; 当3≤x≤4,得(4-x)+(x-3)<a,即a>1; 当x>4时,得(x-4)+(x-3)<a,则x<27+a有解条件为27+a >4.∴a>1. 以上三种情况中任何一个均可满足题目要求,故是它们的并集,即仍为a>1.解法二:设数x 、3、4在数轴上对应的点分别为P 、A 、B,由绝对值的几何意义,原不等式即求|PA|+|PB|<a 成立.因为|AB|=1,故数轴上任一点到A 、B 距离之和大于(等于)1,即|x-4|+|x-3|≥1,故当a>1时,|x-4|+|x-3|<a 有解.另外,本题还可利用绝对值不等式性质求函数的最值方法处理: ∵|x -4|+|x-3|=|x-4|+|3-x| ≥|x -4+3-x|=1,∴a 的取值范围是a>1.二、绝对值不等式的典型类型和方法(二)【例2】 解不等式|x 2-9|≤x+3.解析:方法一:原不等式⎪⎩⎪⎨⎧+≤-≥-⇔39,0922x x x ⎪⎩⎪⎨⎧+≤-≥-39,0922x x x 或 由①得x=-3或3≤x≤4,由②得2≤x<3,∴原不等式解集是{x|2≤x≤4或x=-3}.方法二:原不等式⎪⎩⎪⎨⎧≤≤--≤-≥⇔⎩⎨⎧+≤-≤+-≥+⇔433339)3(032x x x x x x x x ⇔或2≤x≤4. ∴原不等式的解集为{x|x=-3或2≤x≤4}. 温馨提示对于|f(x)|≤g(x)型的不等式,通常有两种思路,一种是利用绝对值的意义,将其转化为f(x)≥0,⎩⎨⎧≤-<⎩⎨⎧≤≥).()(,0)()()(,0)(x g x f x f x g x f x f 或 另一种则是转化为⎩⎨⎧≤≤-≥)()()(,0)(x g x f x g x g 来求.当然也可直接转化为-g(x)≤f(x)≤g(x)来解(为什么?请同学们思考). 类题演练2解不等式|2x-1|>3x.解析:①当x<0时,原不等式显然成立;②当x≥0时,两端平方,得(2x-1)2>9x 2,即5x 2+4x-1<0,解之,得-1<x<51, ∴0≤x<51. 由①②知原不等式的解集为{x|x<51}. 变式提升2(1)解不等式|x 2-3x+2|>x 2-3|x|+2.解析:在同一坐标系内分别画出函数y=|x 2-3x+2|和y=x 2-3|x|+2=|x|2-3|x|+2的图象(如图所示).由图可知,原不等式的解集为{x|x<0或1<x<2}. (2)解不等式|x+1|(x-1)≥0. 解析:1° x+1=0,适合不等式;2° x+1≠0,则|x+1|>0,故原不等式等价于x-1≥0,∴x≥1,显然x+1≠0. ∴原不等式的解集为{x|x≥1或x=-1}. 三、绝对值不等式的证明【例3】 设f(x)=ax 2+bx+c,当|x|≤1时,总有|f(x)|≤1,求证:当|x|≤2时,|f(x)|≤7. 证明:由于f(x)是二次函数,|f(x)|在[-2,2]上的最大值只能是|f(2)|,|f(-2)|或|f(a b 2-)|,故只要证明|f(2)|≤7,|f(-2)|≤7;当|a b 2-|≤2时,有|f(ab 2-)|≤7. 由题意有|f(0)|≤1,|f(-1)|≤1,|f(1)|≤1.由⎪⎪⎪⎩⎪⎪⎪⎨⎧=--=--+=⎪⎩⎪⎨⎧+-=-++==).0()],1()1([21)],0(2)1()1([21,)1(,)1(,)0(f c f f b f f f a c b a f c b a f c f 得∴|f(2)|=|4a+2b+c|=|3f(1)+f(-1)-3f(0)|≤3|f(1)|+|f(-1)|+3|f(0)|≤3+1+3=7, |f(-2)|=|4a-2b+c|=|f(1)+3f(-1)-3f(0)|≤|f(1)|+3|f(-1)|+3|f(0)|≤1+3+3=7. ∵|b|=21|f(1)-f(-1)|≤21(|f(1)|+|f(-1)|)≤21(1+1)=1, ∴当|ab2-|≤2时,|f(a b 2-)|=|a b ac 442-|=|c a b 42-|=|c a b 2-·2b |≤|c|+|a b 2|·2||b ≤1+2×21=2<7.因此当|x|≤2时,|f(x)|≤7.类题演练3已知f(x)=x 2+ax+b(x 、a 、b∈R ,a 、b 是常数),求证:|f(1)|、|f(2)|、|f(3)|中至少有一个不小于21. 证明:假设|f(1)|、|f(2)|、|f(3)|全都小于21,即有|f(1)|<21,|f(2)|<21,|f(3)|<21. 于是|f(1)+f(3)-2f(2)|≤|f(1)|+|f(3)|+2|f(2)|<21+21+2×21=2.又f(1)+f(3)-2f(2)=2,二者产生矛盾,故|f(1)|、|f(2)|、|f(3)|中至少有一个不小于21. 变式提升3已知函数f(x)=ax+b,满足|x|≤1,a 2+b 2=1,求证:|f(x)|≤2.证法一:|f(x)|≤2⇔2-≤f(x)≤2⇔f(x)min ≥2-且f(x)max ≤2.若a>0,则f(x)max =f(1)=a+b≤2)(222=+b a ,f(x)min =f(-1)=-a+b≥2])[(222-=+--b a . 若a=0,则f(x)=b 且b 2=1, ∴|f(x)|≤2.若a<0,则f(x)max =f(-1)=-a+b≤2)(222=+b a ,f(x)min =f(1)=a+b≥2)(222-=+-b a . 综上,知不等式成立. 证法二:|f(x)|2-(2)2=(ax+b)2-2(a 2+b 2)=a 2x 2+b 2+2abx-2(a 2+b 2)≤a 2+b 2+2abx-2(a 2+b 2)=2abx-a 2-b 2≤2abx -a 2x 2-b 2=-(ax-b)2≤0, ∴|f(x)|≤2.。

高中数学人教A版选修课件:1.2.2 绝对值不等式的解法

高中数学人教A版选修课件:1.2.2 绝对值不等式的解法
(-6)( + 1) < 0
-5-6 < 0
-1 < < 6.
∴-1<x<2或3<x<6.
∴原不等式的解集为{x|-1<x<2或3<x<6}.
题型一
题型二
题型三
题型四
方法二:作函数y=x2-5x的图象,如图所示.
|x2-5x|<6表示函数图象中直线y=-6和直线y=6之间相应部分的自
故原不等式等价于x2-x+2>x2-3x-4.
∴x>-3.∴原不等式的解集为{x|x>-3}.
反思本题形如|f(x)|>g(x),我们可以借助形如|ax+b|>c的解法转化
为f(x)<-g(x)或f(x)>g(x),当然|f(x)|<g(x)⇔-g(x)<f(x)<g(x).如果f(x)的
正负能确定的话,也可以直接去掉绝对值号再解不等式.
解法二:3≤|x-2|<4⇔3≤x-2<4或-4<x-2≤-3⇔5≤x<6或-2<x≤-1.
∴原不等式的解集为{x|-2<x≤-1或5≤x<6}.
题型一
题型二
题型三
题型四
【例2】 不等式|5x-x2|<6的解集为(
)
A.{x|x<2或x>3} B.{x|-1<x<2或3<x<6}
C.{x|-1<x<6}
借助函数的图象,用数形结合来解得a的范围.而理解这几种表述方
式对掌握本节知识有很好的帮助.
题型一
题型二
题型三
题型四
题型一 解|ax+b|≥c(c>0)和|ax+b|≤c(c>0)型的不等式

绝对值不等式的解法

绝对值不等式的解法

从数轴上可以看到 , 点A1与点B1之间的任何点到 点A, B的距离之和都小于 5; 点A1的左边或点 B1的
右边的任何点到 A, B的距 A1 A B B1 x O 1 2 - 3 - 2 -1 离之和都大于 5 . 所以, 原不等式的解集是 图1.2 11 ,3 2, . 分析 上 述 解法, 可以发现 , 解 | x 1 | | x 2 | 5 时, 数轴上与 2 ,1 对应的点 A , B 把 实数 集分成 了三个区间 ,2 , 2,1 , 1, , 先 分别在这 三个区间上讨论不等式的 解 的情 况 , 然 后 把 它 们综合在一起就得到不等式的解集 .
x1 a
x
x1 a
x1
x1 a
x
| x x1 | a
图1.2 9
| x x1 | a
利用上述式及绝对值的几何意义 , 可以解一些含有绝对值 的不等式.
1 | ax b | c和 | ax b | c
型不等式的解法
例3 解不等式 | 3 x 1 | 2 .
探究 你能给出上述绝对值不 等式的 解的几何解释吗?
2 | x a | | x b | c和 | x a | | x b | c 型不
等式的解法 例5 解不等式| x 1 | | x 2 | 5 .
分析 这个绝对值不等式 A1 A B B1 x 比较复杂, 我们从它的几何 - 3 - 2 -1 O 1 2 意义来分析.如图1.2 11, 设 图1.2 11 数轴上与 2 ,1 对应的点分 别是A, B, 那么不等式的解就是数轴上到A, B两 点的距离之和不小于 5的点所对应的实数 .所以, 我们只要在数轴上确定出具有上述特点的点的 位置, 就可以得出不等式的解 .

高中数学绝对值不等式的解法学习资料

高中数学绝对值不等式的解法学习资料
或3x-4≥2,解得 x 或2 x≥2. 3
答案:
(, 2)U[2,) 3
三、例题讲解
例2、解不等式 3<|3-2x|≤5 .
解1 : 法 3|32x|5 3|2x3|5
||
2x 2x
3| 3|
3 5
2x532x3, 3或 25x33
-(x+1)-(x-1)≥3,解得 x 3 . 2
当-1<x<1时,原不等式可以化为 x+1-(x-1)≥3,即2≥3.不成立,无解.
当x≥1时,原不等式可以化为x+1+x-1≥3.所以 x 3 . 2
综上,可知原不等式的解集为 {x|x3或x3}. 22
例5、解不等式|x+1|+|x-1|≥3.
方法四:利用函数图象观察 这是解含绝对值不等式的四种常用思路
探索:不等式|x|<1的解集。 方法一:利用绝对值的几何意义观察
不等式|x|<1的解集表示到原点的距离小于1 的点的集合。
-1
0
1
所以,不等式|x|<1的解集为{x|-1<x<1}
探索:不等式|x|<1的解集。 方法二:利用绝对值的定义去掉绝对值符号,


-m
-n 0 n
m
题型3: 形如n<| ax + b | <m (m>n>0)不等式
| ax b | n 等 价n 于 不a 等x ① 式b 组 m ,|或 ax m b a |②x mb n
题型4: ① |f(x)|<g(x)型不等式 |f(x)|<g(x)⇔-g(x)<f(x)<g(x), ② |f(x)|>g(x)型不等式 |f(x)|>g(x)⇔f(x)>g(x)或f(x)<-g(x)

高中数学知识点总结(不等式选讲 第一节 绝对值不等式)

高中数学知识点总结(不等式选讲 第一节 绝对值不等式)

不等式选讲第一节绝对值不等式一、基础知识1.绝对值三角不等式定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.↓|a|-|b|≤|a-b|≤|a|+|b|,当且仅当|a|≥|b|且ab≥0时,左边等号成立,当且仅当ab≤0时,右边等号成立.2.绝对值不等式的解法(1)|x|<a与|x|>a型不等式的解法(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法及体现数学思想①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.考点二绝对值不等式性质的应用[解题技法]绝对值不等式性质的应用利用不等式|a+b|≤|a|+|b|(a,b∈R)和|a-b|≤|a-c|+|c-b|(a,b∈R),通过确定适当的a,b,利用整体思想或使函数、不等式中不含变量,可以求最值或证明不等式.考点三绝对值不等式的综合应用[解题技法]两招解不等式问题中的含参问题(1)转化①把存在性问题转化为求最值问题;②不等式的解集为R是指不等式的恒成立问题;③不等式的解集为∅的对立面也是不等式的恒成立问题,此类问题都可转化为最值问题,即f(x)<a恒成立⇔a>f(x)max,f(x)>a恒成立⇔a<f(x)min.(2)求最值求含绝对值的函数最值时,常用的方法有三种:①利用绝对值的几何意义;②利用绝对值三角不等式,即|a|+|b|≥|a±b|≥||a|-|b||;③利用零点分区间法.。

高中数学绝对值不等式的解法

高中数学绝对值不等式的解法

-2
1 2
3
巩固练习:
解下列不等式:
1 1 (1) | x | 4 2
(3) | 5 x 4 | 6 (5)1 | 3 x 4 | 6
2 1 ( 2) | x | 3 3 (4) | 3 2 x | 7
(6) | x 3 x | 4
2
(7) | 3 2 | 1
2017/4/20


-m -n 0 n m 题型3: 形如n<| ax + b | <m (m>n>0)不等式
等价于不等式组

n ax b m, 或 m ax b n
推广: | f(x) | <g(x), | f(x) | >g(x)
2017/4/20 南粤名校——南海中学
3 x 4, 或 1 x 0 .
原不等式的解集是 {x | 1 x 0, 或3 x 4}.
2017/4/20 南粤名校——南海中学
解不等式 3<|3-2x|≤5 .
解法3:3 | 3 2 x | 5 3 | 2 x 3 | 5
3 2 x 3 5, 或 5 2 x 3 3
2 3 4
这是解含绝对值不等式的四种常用思路
1.探索:不等式|x|<1的解集。 方法一: 利用绝对值的几何意义观察
不等式|x|<1的解集表示到原点的距离小于1 的点的集合。
-1 0Байду номын сангаас1
所以,不等式|x|<1的解集为{x|-1<x<1}
探索:不等式|x|<1的解集。 方法二: 利用绝对值的定义去掉绝对值符号, 需要分类讨论 ①当x≥0时,原不等式可化为x<1

解绝对值不等式-涵盖高中所有绝对值不等式解法。

解绝对值不等式-涵盖高中所有绝对值不等式解法。

解绝对值不等式-涵盖高中所有绝对值不等式解法。

绝对值不等式||||||-≤+a b a b+≤+,||||||a b a b基本的绝对值不等式:||a|-|b||≤|a±b|≤|a|+|b|=======================y=|x-3|+|x+2|≥|(x-3)-(x+2)|=|x-3-x-2|=|-5|=5所以函数的最小值是5,没有最大值=======================|y|=||x-3|-|x+2||≤|(x-3)-(x+2)|=|x-3-x-2|=|-5|=5由|y|≤5得-5≤y≤5即函数的最小值是-5,最大值是5=======================也可以从几何意义上理解,|x-3|+|x+2|表示x到3,-2这两点的距离之和,显然当-2≤x≤3时,距离之和最小,最小值是5;而|x-3|-|x+2|表示x到3,-2这两点的距离之差,当x≤-2时,取最小值-5,当x≥3时,取最大值5解绝对值不等式题根探讨题根四解不等式2|55|1-+<.x x[题根4]解不等式2|55|1-+<.x x2<x <6所以原不等式的解集是{x |2<x <6} [收获]形如|()f x |<()g x ,|()f x |>()g x 型不等式这类不等式的简捷解法是等价命题法,即: ①|()f x |<()g x ⇔-()g x <()f x <()g x ②|()f x |>()g x ⇔()f x >()g x 或()f x <-()g x[请你试试4—1]1.解不等式(1)|x-x 2-2|>x 2-3x-4;(2)234xx -≤1 解:(1)分析一 可按解不等式的方法来解. 原不等式等价于:x-x 2-2>x 2-3x-4 ① 或x-x 2-2<-(x 2-3x-4) ② 解①得:1-<x<1+ 解②得:x>-3故原不等式解集为{x |x>-3}分析二 ∵|x-x 2-2|=|x 2-x+2|而x 2-x+2=(x-14)2+74>0所以|x-x 2-2|中的绝对值符号可直接去掉.故原不等式等价于x 2-x+2>x 2-3x-4 解得:x>-3∴ 原不等式解集为{x>-3}(2)分析 不等式可转化为-1≤234x x -≤1求解,但过程较繁,由于不等式234xx -≤1两边均为正,所以可平方后求解. 22原不等式等价于2234x x -≤19x 2≤(x 2-4)2(x ≠±2) x 4-17x 2+16≥0 x 2≤1或x 2≥16-1≤x ≤1或x ≥4或x ≤-4注意:在解绝对值不等式时,若|f(x)|中的f(x)的值的范围可确定(包括恒正或恒非负,恒负或恒非正),就可直接去掉绝对值符号,从而简化解题过程.第2变 含两个绝对值的不等式[变题2]解不等式(1)|x -1|<|x +a |;(2)|x-2|+|x+3|>5.[思路](1)题由于两边均为非负数,因此可以利用|f(x)|〈|g(x)|f 2(x)〈g 2(x)两边平方去掉绝对值符号。

最新高考含绝对值不等式的解法

最新高考含绝对值不等式的解法

高考中常见的七种含有绝对值的不等式的解法类型一:形如)()(,)(R a a x f a x f ∈><型不等式解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础.1、当0>a 时,a x f a a x f <<-⇔<)()(a x f a x f >⇔>)()(或a x f -<)(2、当0=aa x f <)(,无解⇔>a x f )(使0)(≠x f 的解集3、当0<a 时,a x f <)(,无解⇔>a x f )(使)(x f y =成立的x 的解集.例1 (2008年四川高考文科卷)不等式22<-x x 的解集为( )A.)2,1(-B.)1,1(-C.)1,2(-D.)2,2(-解:因为22<-x x ,所以222<-<-x x .即⎪⎩⎪⎨⎧<-->+-020222x x x x , 解得:⎩⎨⎧<<-∈21x R x ,所以 )2,1(-∈x ,故选A. 类型二:形如)0()(>><<a b b x f a 型不等式解法:将原不等式转化为以下不等式进行求解:b x f a a b b x f a <<⇔>><<)()0()( 或a x f b -<<-)(需要提醒一点的是,该类型的不等式容易错解为:b x f a a b b x f a <<⇔>><<)()0()(例2 (2004年高考全国卷)不等式311<+<x 的解集为( )A .)2,0( B.)4,2()0,2( -C .)0,4(- D.)2,0()2,4( --解:311311<+<⇔<+<x x 或11,3-<+<-x20<<⇔x 或24-<<-x ,故选D 类型三:形如)()(x g x f <,)()(x g x f >型不等式,这类不等式如果用分类讨论的方法求解,显得比较繁琐,其简洁解法如下解法:把)(x g 看成一个大于零的常数a 进行求解,即:)()()()()(x g x f x g x g x f <<-⇔<,)()()()(x g x f x g x f >⇔>或)()(x g x f -<例3 (2007年广东高考卷)设函数312)(++-=x x x f ,若5)(≤x f ,则x 的取值范围是 解:53125)(≤++-⇔≤x x x f2122212+-≤-≤-⇔+-≤-⇔x x x x x⎩⎨⎧+-≤--≥-⇔212212x x x x1111≤≤-⇔⎩⎨⎧≤-≥⇔x x x ,故填:[]1,1-. 类型四:形如)()(x g x f <型不等式解法:可以利用两边平方,通过移项,使其转化为:“两式和”与“两式差”的积的方法进行,即: 22)()()()(x g x f x g x f <⇔<0)]()()][()([0)]([)]([22<-+⇔<-⇔x g x f x g x f x g x f 例4 (2009年山东高考理科卷)不等式0212<---x x 的解集为解:2120212-<-⇔<---x x x x0)2()12(2122222<---⇔-<-⇔x x x x0)]2()12)][(2()12[(<----+-⇔x x x x 11<<-⇔x 所以原不等式的解集为{}11<<-x x 类型五:形如)()(),()(x f x f x f x f ><型不等式解法:先利用绝对值的定义进行判断,再进一步求解,即:)()(x f x f <,无解0)()()(<⇔>x f x f x f例5 (2004年海南卷)解关于x 的不等式a x x a x x +-->+--1111 解:0111111<+--⇔+-->+--a x x a x x a x x a x a x -<-⇔<+-⇔11011 (1) 当0=a 时,原不等式等价于:1011<⇔<-x x (2) 当0>a 时,原不等式等价于:111011<<-⇔<-<-x ax a (3) 当0<a 时,原不等式等价于:01<-x 或ax 11->- 1<⇔x 或ax 11-> 综上所述(1) 当0=a 时,原不等式的解集为: {}1<x x(2) 当0>a 时,原不等式的解集为:⎭⎬⎫⎩⎨⎧<<-111x a x (3) 当0<a 时,原不等式的解集为:⎭⎬⎫⎩⎨⎧-><a x x x 111或 类型六:形如使c n x m x c n x m x ≥-+-≥---,恒成立型不等式. 解法:利用和差关系式:b a b a b a +≤±≤-,结合极端性原理即可解得,即:()()()m n n x m x n x m x c n x m x c -=---=---≥⇔---≥max ;()()()m n n x m x n x m x c n x m x c -=---=---≤⇔-+-≤min ;例6 (2010高考安徽卷)不等式a a x x 3132-≤--+对任意的实数恒成立,则实数a 的取值范围是( )A .(][)+∞-∞-,41, B.(][)+∞-∞-,52,C.[]2,1D.(][)+∞-∞-,21,解:设函数()()41313)(=--+≤--+=x x x x x f所以4)(max =x f 而不等式a a x x 3132-≤--+对任意的实数x 恒成立故41432≥-≤⇒≥-a a a a 或,故选择A类型七:形如,)()(a x g x f <-()为常数a a x g x f >-)()()()()(x h x g x f <-,)()()(x h x g x f >-,)()(a x g x f <+()为常数a a x g x f >+)()()()()(x h x g x f <+,)()()(x h x g x f >+1、解法:对于解含有多个绝对值项的不等式,常采用零点分段法,根据绝对值的定义分段去掉绝对值号,最后把各种情况综合得出答案,其步骤是:找出零点,确定分段区间;分段求解,确定各段解集;综合取并,去掉所求解集,亦可集合图像进行求解.例7 (2009年高考福建理科卷)解不等式112+<-x x分析:找出零点:21,0==x x 确定分段区间:21,210,0≥<≤<x x x 解:(1)当0<x 时,原不等式可化为:112+-<+-x x解得:0>x因为 0<x ,所以 x 不存在(2)当210<≤x 时,原不等式可化为: 112+<+-x x解得:0>x又因为21<≤x x , 所以 21<<x x (3)当21≥x 时,原不等式可化为: 112+<-x x ,解得: 2<x又21≥x , 所以221<≤x 综上所述,原不等式的解集为:{}20<<x x2、特别地,对于形如,)()(a x g x f <+()为常数a a x g x f >+)()()()()(x h x g x f <+,)()()(x h x g x f >+型不等式的解法,除了可用零点分段法外,更可转化为以下不等式,即:⇔<+)()()(x h x g x f⎪⎩⎪⎨⎧<-<+)()()()()()(x h x g x f x h x g x f )()()(x h x g x f >+⇔)()()(x h x g x f >+或)()()(x h x g x f >-例8 (2009年辽宁高考理科卷)设函数a x x x f -+-=1)((1)若1-=a ,解不等式3)(≥x f(2)如果,2)(,≥∈∀x f R x 求a 的范围解:(1) 当时,1-=a11)(++-=x x x f由3)(≥x f 得:311)(≥++-=x x x f即:()()311≥++-x x 或 ()()311≥+--x x解得:32≥x ,即:23-≤x 或 23≥x故不等式3)(≥x f 的解集为:⎭⎬⎫⎩⎨⎧≥-≤2323x x x 或 (2)由2)(≥x f 得:21≥-+-a x x即:()()21≥-+-a x x 或 ()()21≥---a x x即:()212≥+-a x 或 21≥-a因为2)(,≥∈∀x f R x 恒成立, 所以21≥-a 成立,解得:1-≤a 或 3≥a故a 的取值范围为:(][)+∞-∞-,31,绝对值不等式一直是高中教学中的一个难点,我们通过化归思想将其进行等价变换,从而避免了繁琐的讨论,减小了运算量,以上所介绍的七种类型的含有绝对值的不等式总体上囊括了近几年高考中有关的题目,当然方法可能并不为一,在解决此类问题的时候很多人也比较喜欢使用数形结合的方法来处理,这其实也体现了数学形式多样化的统一美.方法是多种多样的,只是无论多么优秀的方法最终也是用来解题的工具,如果我们仅仅是停留在最求方法的多样化而忽略了数学的本质——思想,那么就有点得不偿失了. 古今中外有学问的人,有成就的人,总是十分注意积累的。

高中绝对值不等式

高中绝对值不等式

高中绝对值不等式绝对值不等式是高中数学中常见的一类问题,它们与绝对值的性质和不等式的求解密切相关。

在解决绝对值不等式的过程中,我们需要掌握一些基本的技巧和方法,才能准确地得出不等式的解集。

本文将介绍如何解决高中中常见的绝对值不等式题目,并给出一些例题来加深理解。

一、绝对值的定义绝对值是数学中常用的一种运算符号,用两个竖线表示,例如|a|,表示a的绝对值。

绝对值的定义如下:当a ≥ 0时,|a| = a。

当a < 0时,|a| = -a。

二、基本性质绝对值具有以下的基本性质:1. |a| ≥ 0,即绝对值一定大于等于零。

2. |a| = 0 当且仅当 a = 0。

3. |a × b| = |a| × |b|,即两个数的乘积的绝对值等于这两个数绝对值的乘积。

三、绝对值不等式的解法1. 形如 |ax + b| > c 的不等式我们假设a、b、c都是实数,且a ≠ 0。

对于这类不等式,有两种情况:情况1:当c > 0时,不等式解集为 x < - (b + c)/a 或 x > (c - b)/a。

情况2:当c < 0时,不等式解集为 x < (c - b)/a 或 x > - (b + c)/a。

2. 形如 |ax + b| < c 的不等式我们假设a、b、c都是实数,且a ≠ 0。

对于这类不等式,有两种情况:情况1:当c > 0时,不等式解集为 (c - b)/a < x < - (b - c)/a。

情况2:当c < 0时,不等式解集为 - (b - c)/a < x < (c - b)/a。

3. 形如|ax + b| ≤ c 的不等式我们假设a、b、c都是实数,且a ≠ 0。

对于这类不等式,有两种情况:情况1:当c > 0时,不等式解集为x ≤ - (b + c)/a 或x ≥ (c - b)/a。

人教版高中数学必修第二册绝对值不等式的解法

人教版高中数学必修第二册绝对值不等式的解法

绝对值不等式的解法教案教学目的:(1)巩固c b ax <+与)0(>>+c c b ax 型不等式的解法,并能熟练地应用它解决问题;掌握分类讨论的方法解决含多个绝对值的不等式以及含参数的不等式;(2)培养数形结合的能力,分类讨论的思想,培养通过换元转化的思想方法,培养抽象思维的能力;(3)激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想.教学重点:分类讨论的方法解决含多个绝对值的不等式以及含参数的不等式.教学难点:如何正确分类与分段,简单的参数问题.授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析:(略)教学过程:一、复习引入:a x <与)0(>>a a x 型不等式cb ax <+与)0(>>+c c b ax 型不等式的解法与解集 不等式)0(><a a x 的解集是{}a x a x <<- 不等式)0(>>a a x 的解集是{}x x a x a ><-或 不等式)0(><+c c b ax 的解集为{})0(|><+<-c c b ax c x 不等式)0(>>+c c b ax 的解集为{}|(0)x ax b c ax b c c +<-+>>或二、讲解范例:例1解不等式1≤|2x-1|<5分析:怎么转化?怎么去掉绝对值?方法1:原不等式等价于⎩⎨⎧≥-<-1|12|5|12|x x ⇒⎪⎩⎪⎨⎧≥-->-<-112512512x x x ① 或⎪⎩⎪⎨⎧-≤-->-<-112512512x x x ②解①得:1≤x<3;解②得:-2<x ≤0∴原不等式的解集为{x|-2<x ≤0或1≤x<3}方法2:原不等式等价于1≤2x-1<5或–5<2x-1≤-1即2≤2x<6或–4<2x ≤0解得1≤x<3或–2<x ≤0∴原不等式的解集为{x|-2<x ≤0或1≤x<3}小结:比较两种解法,第二种解法比较简单,在解法二中,去掉绝对值符号的依据是a ≤|x|≤b ⇒a ≤x ≤b 或-b ≤x ≤-a(a ≥0)练习:解下列不等式:7522≤-<x ⎭⎬⎫⎩⎨⎧≤<<≤-627231|x x x 或 例2解不等式:|4x-3|>2x+1分析:关键是去掉绝对值方法1:原不等式等价于⎩⎨⎧+>--<-⎩⎨⎧+>-≥-12)34(0341234034x x x x x x 或, 即⎪⎪⎩⎪⎪⎨⎧<<⎪⎩⎪⎨⎧>≥3143243x x x x 或,∴x>2或x<31, ∴原不等式的解集为{x|x>2或x<31} 方法2:整体换元转化法分析:把右边看成常数c ,就同)0(>>+c c b ax 一样∵|4x-3|>2x+1⇒4x-3>2x+1或4x-3<-(2x+1)⇒x>2或x<31, ∴原不等式的解集为{x|x>2或x<31} 例3解不等式:|x-3|-|x+1|<1分析:关键是去掉绝对值方法1:零点分段讨论法(利用绝对值的代数定义)①当1-<x 时,01,03<+<-x x∴1)1()3(<++--x x ∴ 4<1 φ∈⇒x②当31<≤-x 时∴1)1()3(<+---x x ⇒21>x ,∴}321|{<<x x ③当3≥x 时 1)1()3(<+--x x ⇒-4<1R x ∈⇒ ∴}3|{≥x x 综上,原不等式的解集为}21|{>x x也可以这样写:解:原不等式等价于①⎩⎨⎧<++---<1)1()3(1x x x 或②⎩⎨⎧<+---<≤-1)1()3(31x x x 或③⎩⎨⎧<+--≥1)1()3(3x x x ,①的解集为φ,②的解集为{x|21<x<3},③的解集为{x|x ≥3}, ∴原不等式的解集为{x|x>21} 方法2:数形结合 从形的方面考虑,不等式|x-3|-|x+1|<1表示数轴上到3和-1两点的距离之差小于1的点.∴原不等式的解集为{x|x>21} 练习:解不等式:|x+2|+|x|>4分析1:零点分段讨论法.解法1:①当x ≤-2时,不等式化为-(x+2)-x>4即x<-3,符合题意.②当–2<x<0时,不等式化为x+2-x>x 即2>4,不合题意,舍去.③当x ≥0时,不等式化为x+2+x>4即x>1,符合题意.综上,原不等式的解集为{x|x<-3或x>1}分析2:从形的方面考虑,不等式|x+2|+|x|>4表示数轴上到-2和0两点的距离之和大于4的点. 解法2:因取数轴上点1右边的点及点-3左边的点到点-2、0的距离之和均大于4.∴原不等式的解集为{x|x<-3或x>1}例4解关于x 的不等式①)(R a a x ∈<,②)(R a a x ∈>解:∵R a ∈,分类讨论如下①Ⅰ,0∅≤时,解集为当aⅡ},|{0a x a x a <<->时,解集为当①Ⅰ,0R a 时,解集为当<Ⅱ},0|{0≠=x x a 时,解集为当Ⅲ},|{0a x a x x a >-<>或时,解集为当 例5解关于x 的不等式)(132R a a x ∈<-+解:原不等式化为:132+<+a x ,在求解时由于a+1的正负不确定,需分情况讨论.①当a+1≤0即a ≤-1时,由于任何实数的绝对值非负,∴解集为∅②当a+1>0即a>-1时,-(a+1)<2x+3<a+1=>24+-a <x<22-a 综上得:①;时,解集为∅-≤1a ②}2224|{1-<<+-->a x a x a 时,解集为 练习:课本第16页练习1、2备用例题例1.解下列不等式:(1)7522≤-<x (2)1122+<-x x解(1)⎭⎬⎫⎩⎨⎧≤<<≤-∈627231|x x R x 或;(2){}0|≠∈x R x 例2.已知不等式a x ≤-2)0(>a 的解集为{}c x R x <<-∈1|,求c a 2+的值)5,3(==c a 例3.解关于的不等式a x <-+132)(R a ∈三、课内练习:课本第16页练习1、2四、小 结:1.对含有绝对值的不等式的解法,通过上面的例子我们可以看到,其关键就在于去掉绝对值,而去掉绝对值,则需要对绝对值中的零点进行讨论,一般来说一个零点分两个范围,两个零点分三个零点,依次类推.2.对于含有绝对值的不等式,如果其中含有字母参数,则根据基本的绝对值不等式的解法进行分类讨论,讨论时,不重复,也不要遗漏.五、作 业:课本第16页习题4,课本第42页复习参考题7六、板书设计:(略)七、教学反思:重点讲清含一个绝对值不等式的零点分段法;讲清绝对值连不等式的解法.含有两个绝对值的不等式暂不涉及为宜.。

高中数学知识点精讲精析 绝对值不等式的解法

高中数学知识点精讲精析 绝对值不等式的解法

4.2.1绝对值不等式的解法1.含有绝对值的不等式的性质(1) |a|-|b|≤|a+b|≤|a|+|b|证明:∵ -|a|≤a≤|a|, -|b|≤b≤|b|,∴ -(|a|+|b|)≤a+b≤(|a|+|b|),|a+b|≤|a|+|b|........①又 a=a+b-b, |-b|=|b|∴ 由①得|a|=|a+b-b|≤|a+b|+|-b|,即|a|-|b|≤|a+b|.......②由①②得 |a|-|b|≤|a+b|≤|a|+|b|由以上定理很容易推得以下的结论:(2) |a|-|b|≤|a-b|≤|a|+|b|(3) |a1+a2+a3|≤|a1|+|a2|+|a3|2 几个基本不等式的解集(1) |x| -a<X0)(2) |x|>a x>a或x<-a(a>0)(3) |x-m|0) -a<X-M m-a<X<M+A(4) |x-m|>a(a>0) x-m>a或x-m<-a x>m+a 或 x<M-A< SPAN>3.绝对值的定义:|a|=由定义可知:|ab|=|a||b|, .4.绝对值不等式的解法(1)解含有绝对值不等式的基本思路,绝对值符号的存在是解不等式的一大障碍。

因此如何去掉绝对值符号使其转化为等价的不含绝对值符号的不等式是解决这类问题的关键,常采取划分区间逐段讨论,从而去掉绝对值符号转化为一般不等式,或利用绝对值表达的几何意义转化为图像或曲线为解决。

(2)几种主要的类型① |f(x)|>|g(x)| f2(x)>g2(x)② |f(x)|>g(x) f(x)>g(x) 或 f(x)<-g(x)③ |f(x)| -g(x)<F(X)④ 含有两个或两个以上绝对值符号的不等式可用“按零点分区间”讨论的方法来脱去绝对值符号去求解。

⑤ 含有两个或两个以上绝对值符号的不等式可以用图像法来解决5.关于“绝对值”的四则运算规律(1) |ab|=|a|·|b|(2)(3) |a|-|b|≤|a+b|≤|a|+|b|(4) |a|-|b|≤|a-b|≤|a|+|b|在一般情况下,两个数的和或差的绝对值与这两个数的绝对值的和差是不相等的,但在某些情况下,可以取等号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案:
(,2) [2,) 3
三、例题讲解
例2、解不等式 3<|3-2x|≤5 .
解 1 : 3 法 |3 2 x| 5 3|2x3|5
|| 22xx33||53 2x5 32 x3 , 3 或 25x33
即x13, x或 x40
-1 0
34
原不等式{x的 |1 解 x集 0, 或 3是 x4}.
所以原不等式的解集为 (,3] [3,). 22
例5、解不等式|x+1|+|x-1|≥3.
解:方法三:如图,设数轴上与-1,1对应的点分别为A,B,那么
A,B两点间的距离为2,因此区间[-1,上的数都不是不等式
的解.设在A点左侧有一点A1到A,B两点的距离和为3,A1对应数
轴上的 x 3 .. 2
例5、解不等式|x+1|+|x-1|≥3.
方法二:将原不等式转化为|x+1|+|x-1|-3≥0.
构造函数y=|x+1|+|x-1|-3,即
y2x3, x1,
1,
1x1,
2x3, x1.
作出函数的图象(如图).函数的零点是
3,3, 22
从图象可知当 x 或3 2
x时,y3 ≥0. 2
即|x+1|+|x-1|-3≥0.
一、知识联系
1、绝对值的定义 x ,x>0
|x|= 0 ,x=0 -x ,x<0
2、绝对值的几何意义 |x|
x
0
|x-x1|
x
x1
3、函数y=|x|的图象
x ,x>0
y=|x|= 0 ,x=0
y
-x ,x<0
1
-1 o 1
x
1
二、探索解法
2
探索:不等式|x|<1的解集。
3 4
方法一:利用绝对值的几何意义观察
【解】 (1)问题可转化为对一切x∈R恒有 a<f(x)⇔a<f(x)min, ∵f(x)=|x-3|+|x+2|≥|(x-3)-(x+2)|=5, 即f(x)min=5,∴a<5.
(2)问题可转化为a>f(x)的某些值,由题意a>f(x)min, 同上得a>5.
(3)问题可转化为对一切x∈R恒有 a≤f(x)⇔a≤f(x)min,可知a≤5.
三、例题讲解
例1、(1)不等式|x-1|<2的解集是_____. 【解析】由|x-1|<2得-2<x-1<2,解得-1<x<3. 答案:(-1,3)
(2)不等式|4-3x|≥2的解集是_____. 【解析】|4-3x|≥2⇔|3x-4|≥2⇔3x-4≤-2
或3x-4≥2,解得 x 或2 x≥2. 3
三、例题讲解
例2 解不等式 3<|3-2x|≤5 .
解 3 : 法 3 |3 2 x| 5 3|2x3|5
32 x 35 , 或 5 2 x 3 3 3 x 4 , 或 1 x 0 .
原不等式{x的 |1 解 x集 0, 或 3是 x4}.
-1 0
34
三、例题讲解
例3、解不等式|2x-1|<2-3x.
题型4: ① |f(x)|<g(x)型不等式 |f(x)|<g(x)⇔-g(x)<f(x)<g(x), ② |f(x)|>g(x)型不等式 |f(x)|>g(x)⇔f(x)>g(x)或f(x)<-g(x)
题型5: |x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式 含有多个绝对值的不等式的解法 ---零点分段法
y
所以,不等式|x|<1的 解集为{x|-1<x<1}
1
y=1
-1 o 1
x



-c
0
c
题型1: 如果 c 是正数,那么
① x c x 2 c 2 c x c
② x c x 2 c 2 x c ,或 x c
题型2: 如果 c 是正数,那么
① a x + b c ( a x + b ) 2 c 2 c a x + b c
同理设B点右侧有一点B1到A,B两点的距离和为3,B1对应数轴
上的 x ,3 . 2
从数轴上可看到,
点A1的左边或点B1的右边的任何点到A,B的距离之和都大于3,
所以原不等式的解集是 (,3] [3,). 22
小结:|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法.
(1)利用绝对值不等式的几何意义求解,体现数形结合思想, 理解绝对值的几何意义,给绝对值不等式以准确的几何解释. (2)以绝对值的零点为分界点,将数轴分为几个区间,利用“零 点分段法”求解,体现分类讨论的思想.确定各个绝对值符号 内多项式的_正__、__负__性,进而去掉绝对值符号. (3)通过构造函数,利用函数的图象求解,体现了函数与方程 的思想.正确求出函数的_零__点__并画出函数图象(有时需要考查 函数的增减性)是关键.
探索:不等式|x|<1的解集。 方法二:利用绝对值的定义去掉绝对值符号,
需要分类讨论
①当x≥0时,原不等式可化为x<1 ∴ 0≤x<1
②当x<0时,原不等式可化为-x<1,即x>-1 ∴ -1<x<0
综合①②得,原不等式的解集为{x|-1<x<1}
探索:不等式|x|<1的解集。 方法三:两边同时平方去掉绝对值符号
对原不等式两边平方得x2<1 即 x2-1<0 即 (x+1)(x-1)<0 即-1<x<1 所以,不等式|x|<1的解集为{x|-1<x<1}
探索:不等式|x|<1的解集。
方法四:利用函数图象观察
从函数观点看,不等式|x|<1的解集表示函数
y=|x|的图象位于函数y=1的图象下方的部分对
应的x的取值范围。
三、例题讲解
平方法
例4、解不等式 x9x1
解: x9x1
x 9 2 x 1 2
x5
1
5
9
三、例题讲解
题型:|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法.
例5、解不等式|x+1|+|x-1|≥3.
【思路点拨】 可用零点分段讨论,可用图象法, 也可用绝对值几何意义求解.
例6 (1)对任意x∈R,若|x-3|+|x+2|>a恒成立, 求实数a的取值范围.
(2)关于x的不等形式如a>|x|x+-m3||+±|x|x++2|n的|<解(或集>非)a空, 求实数a的取值恒范成围立.的问题
(3)关于x的不等式a>|x-3|+|x+2|在R上无解,求 实数a的取值范围.
【思路点拨】 对(1)(2)(3)来说,问题的关键是 如何转化,求出函数f(x)=|x-3|+|x+2|的最值, 则问题获解.
② a x + b c ( a x + b ) 2 c 2 a x + b c , 或 a x + b c


-m
-n 0 n
m
题型3: 形如n<| ax + b | <m (m>n>0)不等式
| axb|n 等 价n 于 不a 等x ① 式b 组 m , |或 a xm b a |②x mb n
方法二:利用绝对值的定义去掉绝对值符号, 需要分类讨论
方法三:两边同时平方去掉绝对值符号
方法四:利用函数图象观察 这是解含绝对值不等式的四种常用思路
探索:不等式|x|<1的解集。 方法一:利用绝对值的几何意义观察
不等式|x|<1的解集表示到原点的距离小于1 的点的集合。
-1
0
1
所以,不等式|x|<1的解集为{x|-1<x<1}
四、小结
(1)解含绝对值的不等式的关键是要去掉绝对 值的符号,其基本思想是把含绝对值的不等式转 为不含绝对值的不等式。
(2)零点分段法解含有多个绝对值的不等式。



x1
x2
例5、解不等式|x+1|+|x-1|≥3.
方法一:当x≤-1时,原不等式可以化为
-(x+1)-(x-1)≥3,解得 x 3 . 2
当-1<x<1时,原不等式可以化为 x+1-(x-1)≥3,即2≥3.不成立,无解.
当x≥1时,原不等式可以化为x+1+x-1≥3.所以 x 3 . 2
综上,可知原不等式的解集为 {x|x3或 x3}. 22
三、例题讲解
例2 解不等式 3<|3-2x|≤5 .
解 2 : 法 3 |3 2 x| 5 3|2x3|5
32x23x305,或32x3(2x03)5
x
3 2


x
3 2

3 x 4
1 x 0
3 x 4 , 或 1 x 0 .
原不等式{x的 |1 解 x集 0, 或 3是 x4}.
解:原不等式等价为 3x-2<2x-1<2-3x, 即22xx- -11<>23-x-3x2, , 得5xx<<13,,
原不等式解集为{x|x<35}.
形如|f(x)|<g(x),|f(x)|>g(x)型不等式. ①|f(x)|<g(x)⇔-g(x)<f(x)<g(x), ②|f(x)|>g(x)⇔f(x)>g(x)或f(x)<-g(x)
相关文档
最新文档