2010高考数学试题分类汇编----不等式(有答案)

合集下载

(完整)2010年全国高考数学试题及答案-全国2卷,推荐文档

(完整)2010年全国高考数学试题及答案-全国2卷,推荐文档

(完整)2010年全国高考数学试题及答案-全国2卷,推荐文档绝密★启用前2010年普通高等学校招生全国统一考试(全国Ⅱ卷)文科数学第Ⅰ卷(选择题)本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么球的表面积公式(+)()+()P A B P A P B = S=4πR 2如果事件A 、B 相互独立,那么其中R 表示球的半径()()()P A B P A P B ?=? 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么34V R 3π= n 次独立重复试验中事件A 恰好发生k 次的概率其中R 表示球的半径P ()(1)(0,1,2,,)k k n k n n k C p p k n -=-=L一、选择题(1)设全集{}*U 6x N x =∈<,集合{}{}A 1,3B 3,5==,,则U ()A B =U e()(A){}1,4 (B){}1,5 (C){}2,4 (D){}2,5(2)不等式302x x -<+的解集为()(A){}23x x -<< (B){}2x x <-(C){}23x x x <->或(D){}3x x >(3)已知2sin 3α=,则cos(2)πα-= (A) 53- (B) 19- (C) 19(D) 53 (4)函数1ln(1)(1)y x x =+->的反函数是(A) 11(0)x y ex +=-> (B) 11(0)x y e x -=+> (C) 11(R)x y e x +=-∈ (D) 11(R)x y e x -=+∈ (5) 若变量,x y 满足约束条件1325x y x x y ≥-??≥??+≤?,则2z x y =+的最大值为(A) 1 (B) 2 (C) 3 (D)4(6)如果等差数列{}n a 中,3a +4a +5a =12,那么1a +2a +…+7a =(A) 14 (B) 21 (C) 28 (D)35(7)若曲线2y x ax b =++在点(0,)b 处的切线方程式10x y -+=,则(A )1,1a b == (B )1,1a b =-=(C )1,1a b ==- (D )1,1a b =-=-(8)已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA=3,那么直线AB 与平面SBC 所成角的正弦值为(A )3 (B )5 (C )7 (D ) 34(9)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有(A )12种(B )18种(C )36种(D )54种(10)△ABC 中,点D 在边AB 上,CD 平分∠ACB ,若CB a =,CA b =,1,2a b ==,则CD =(A )1233a b + (B )2233a b + (C )3455a b + (D )4355a b + (11)与正方体1111ABCD A B C D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点(A )有且只有1个(B )有且只有2个(C )有且只有3个(D )有无数个(12)已知椭圆C :22x a +22by =1(0)a b >>的离心率为23,过右焦点F 且斜率为k (k >0)的直线与C 相交于A 、B 两点,若AF =3FB ,则k = (A )1(B )2 (C )3 (D )2第Ⅱ卷(非选择题)二.填空题:本大题共4小题,每小题5分,共20分。

十年高考真题分类汇编2010-2019数学专题09不等式Word版含解析

十年高考真题分类汇编2010-2019数学专题09不等式Word版含解析

3
3
8
因为
S△ABC=S△ABM-S△ACM=12·(2+2m)·
(1 +
m)-
2+2m 3
=
(m+1)2,由已知得(m+1)2
3
3
=
4,解得
3
m=1(m=-3<-1
舍去).
- ≥ 0, 20.(2015·山东·理 T6)已知 x,y 满足约束条件 + ≤ 2,若 z=ax+y 的最大值为 4,则 a=( )
x + y ≥ 0,
A.-1 B.1 C.10 D.12
【答案】C
【解析】在平面直角坐标系内画出题中的不等式组表示的平面区域为以(-1,1),(1,-1),(2,2)为顶点的三角
形 区 域 ( 包 含 边 界 ), 由 图 易 得 当 直 线 z=3x+2y 经 过 平 面 区 域 内 的 点 (2,2) 时 ,z=3x+2y 取 得 最 大 值
矩形.又 D(2,-2),C(-1,1),所以
+ -3 ≥ 0, 14.(2016·浙江·文 T4)若平面区域 2 - -3 ≤ 0, 夹在两条斜率为 1 的平行直线之间,则这两条平行直线间
-2 + 3 ≥ 0
的距离的最小值是( )
A.3 5
5
【答案】B
B. 2
C.3 2
2
D. 5
【解析】作出可行域,如图阴影部分所示.
【答案】B
【解析】如图,作出变量 x,y 满足约束条件表示的可行域,为三角形 ABC 及其内部,点 A,B,C 的坐标依次为
(0,2),(3,0),(1,3).由图可知,将 z=2x+5y 变形为 y=-2x+z,可知当 y=-2x+z经过点 B 时,z 取最小值 6.故选

全国各地高考数学真题分章节分类汇编之不等式

全国各地高考数学真题分章节分类汇编之不等式

2010年全国各地高考数学真题分章节分类汇编之不等式一、填空题:1.(2010年高考陕西卷理科15)(不等式选做题)不等式的解集为.【答案】【解析】(方法一)当时,∵原不等式即为,这显然不可能,∴不适合.当时,∵原不等式即为,又,∴适合.当时,∵原不等式即为,这显然恒成立,∴适合.故综上知,不等式的解集为,即.(方法二)设函数,则∵∴作函数的图象,如图所示,并作直线与之交于点.又令,则,即点的横坐标为.故结合图形知,不等式的解集为.二、解答题:1.(2010年高考福建卷理科21)(本小题满分7分)选修4-5:不等式选讲已知函数。

(Ⅰ)若不等式的解集为,求实数的值;(Ⅱ)在(Ⅰ)的条件下,若对一切实数x恒成立,求实数m的取值范围。

【命题意图】本小题主要考查绝对值的意义、绝对值不等式等基础知识,考查运算求解能力。

【解析】(Ⅰ)由得,解得,又已知不等式的解集为,所以,解得。

(Ⅱ)当时,,设,于是=,所以当时,;当时,;当时,。

2.(2010年高考江苏卷试题21)选修4-5:不等式选讲(本小题满分10分)设a、b是非负实数,求证:。

[解析] 本题主要考查证明不等式的基本方法,考查推理论证的能力。

满分10分。

(方法一)证明:因为实数a、b≥0,所以上式≥0。

即有。

(方法二)证明:由a、b是非负实数,作差得当时,,从而,得;当时,,从而,得;所以。

3. (2010年全国高考宁夏卷24)(本小题满分10分)选修4-5,不等式选讲设函数(Ⅰ)画出函数的图像(Ⅱ)若不等式≤的解集非空,求a的取值范围。

(24)解:(Ⅰ)由于则函数的图像如图所示。

(Ⅱ)由函数与函数的图像可知,当且仅当或时,函数与函数的图像有交点。

故不等式的解集非空时,的取值范围为。

4.(2010年高考辽宁卷理科24)(本小题满分10分)选修4-5:不等式选讲已知均为正数,证明:,并确定为何值时,等号成立。

2010年高考真题分类汇编(新课标)考点16 不等式

2010年高考真题分类汇编(新课标)考点16 不等式

考点16 不等式1.(2010·安徽高考文科·T8)设x,y 满足约束条件260,260,0,x y x y y +-≥⎧⎪+-≤⎨⎪≥⎩则目标函数z=x+y 的最大值是( )(A )3 (B ) 4 (C ) 6 (D )8 【命题立意】本题主要考查线性规划问题,考查考生的作图、运算求解能力。

【思路点拨】由约束条件画可行域→确定目标函数的最大值点→计算目标函数的最大值【规范解答】选C .约束条件260,260,0,x y x y y +-≥⎧⎪+-≤⎨⎪≥⎩表示的可行域是一个三角形区域,3个顶点分别是(3,0),(6,0),(2,2),目标函数z x y =+在(6,0)取最大值6,故C 正确.【方法技巧】解决线性规划问题,首先作出可行域,若为封闭区域(即几条直线围成的区域),则区域中的某个端点使目标函数取得最大或最小值.2.(2010·福建高考文科·T5)若,x y R ∈,且1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,则2z x y =+的最小值等于( )A.2B.3C.5D.9【命题立意】本题考查利用线性规划的方法求最值.【思路点拨】先画出不等式组表示的线性区域,再作出直线0:20l x y +=,平移0l ,当其截距越小,z 的值越小.【规范解答】选B .不等式组所表示的平面区域如图阴影所示: 作0:20l x y +=,平移0l至()A 1,1点位置时,z 取得最小值,min 3z ∴=.【方法技巧】本题可以采用多种解法,有些解法一反常规, 颠覆视觉.方法1(特殊点法):因为直线1,230,=-+==x x y y x 分别 交于()()()A 1,1,B 3,3,C 1,2,当1,1==x y 时,23=+=z x y ;当3,3==x y 时,29=+=z x y ;当1,2==x y 时,25=+=z x y ; 所以当1,1==x y 时,min 3=z ,所以选 B .方法2(反代入法):22=+∴=-Q ,z x y x z y ,把2=-x z y 代入1230≥⎧⎪-+≥⎨⎪≥⎩x x y y x 得:2122302-≥⎧⎪--+≥⎨⎪≥-⎩z y z y y y z y 12343-⎧≤⎪⎪+⎪∴≤⎨⎪⎪≥⎪⎩z y z y z y ,132334-⎧≤⎪⎪∴⎨+⎪≤⎪⎩z z z z ,39∴≤≤z ,所以2=+z x y 有最小值3.方法3(向量法):设(,),(1,2),(0,0)Q x y C O ,则=•u u u r u u u r z OC OQ cos =∠u u u r u u u rOC OQ POQ5cos =∠u u u r OQ POQ ,cos OQ POQ ∠u u u r表示的是OQ uuu r 在u u u r OC 方向上的投影,所以当OQ uuu r 在u u ur OA 位置时取得最小值,所以当1,1==x y 时,23=+=z x y 为最小值.故应选B. 3.(2010·浙江高考文科·T7)若实数x,y 满足不等式组合33023010x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则x+y 的最大值为( ) (A )9 (B )157 (C )1 (D )715【命题立意】本题主要考察了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想, 属中档题.【思路点拨】画出不等式组表示的平面区域,再利用图象求x y +的最大值. 【规范解答】选A .令z x y =+,则y x z =-+,z 表示过可行 域内点斜率为-1的直线在y 轴上的截距.由图可知当向上平移0l使它过(4,5)A 时,max 9z =.【方法技巧】(1)画可行域时:“直线定界、特殊点定域”;(2)寻找目标函数的最值时,应先指明它的几何意义,这样才能找到相应的最值.4.(2010·天津高考文科·T2)设变量x ,y 满足约束条件3,1,1,x y x y y +≤⎧⎪-≥-⎨⎪≥⎩则目标函数z=4x+2y 的最大值为( )(A )12 (B )10 (C )8 (D )2【命题立意】考查线性规划的意义,二元一次不等式的最值问题以及数形结合思想的应用. 【思路点拨】应用数形结合,画图分析求得最值.【规范解答】选B .在同一个坐标系中,画出直线1,3,1x y x y y -=-+==的图像,作出可行域可知直线2y x =-平行移动到直线31x y y +==与的交点(2,1)处,目标函数z=4x+2y 取的最大值10. 【方法技巧】 线性规划问题的关键是找准最优点,画图失误或求点失误是常见的失误点,解决最优解问题也将各个边界点代入验证,然后寻找合适点.5.(2010·山东高考理科·T10)设变量x 、y 满足约束条件2,5100,80,x y o x y x y -+≥⎧⎪-+≤⎨⎪+-≤⎩,则目标函数z=3x-4y 的最大值和最小值分别为( ) (A )3,-11(B )-3, -11 (C )11, -3(D )11,3【命题立意】本题考查不等式中的线性规划知识及数形结合的数学思想、考查了考生的推理论证能力和运算求解能力.【思路点拨】先画出不等式组所表示的平面区域,再xyO(4,5)A 230x y --=10x y -+=330x y +-=0:0l x y +=求解.【规范解答】选A .画出平面区域如图所示:可知当直线z=3x-4y 平移到点(5,3)时,目标函数z=3x-4y 取得最大值3;当直线平移到点(3,5)时,目标函数z=3x-4y 取得最小值-11,故选A.6.(2010·浙江高考理科·T7)若实数x ,y 满足不等式组330,230,10,x y x y x my +-≥⎧⎪--≤⎨⎪-+≥⎩且x y +的最大值为9,则实数m =( )(A )2- (B )1- (C )1 (D )2 【命题立意】本题考查线性规划的相关知识,考查数形结合思想. 【思路点拨】画出平面区域,利用x y +的最大值为9,确定区域的边界.【规范解答】选C .令z x y =+,则y x z =-+,z 表示斜率为-1的直线在y 轴上的截距.当z 最大值为9时,y x z =-+过点A ,因此10x my -+=过点A ,所以1m =.【方法技巧】画平面区域时“直线定界、特殊点定域”.7.(2010·北京高考理科·T7)设不等式组110330530x y x y x y 9+-≥⎧⎪-+≥⎨⎪-+≤⎩表示的平面区域为D ,若指数函数y=xa 的图像上存在区域D 上的点,则a 的取值范围是( )(A )(1,3] (B )[2,3] (C ) (1,2] (D )[ 3, +∞] 【命题立意】本题考查平面区域,指数函数的相关知识. 【思路点拨】画出平面区域D ,再观察xy a =的图象.xyO33-1330x y +-=230x y --=32123(,)77(4,5)A y x=-10x my -+=【规范解答】选A .区域D 如图所示,其中(2,9)A .当xy a =恰过点A 时,3a =.因此当13a <≤时,x y a =的图像上存在区域D 上的点.【方法技巧】画区域D 时可采用“直线定界、特殊点定域”的方法.8.(2010·福建高考理科·T8)设不等式组1,230≥⎧⎪-+≥⎨⎪≥⎩x x y y x ,所表示的平面区域是1Ω,平面区域2Ω与1Ω关于直线3490+-=x y 对称,对于1Ω中的任意A 与2Ω中的任意点B ,||AB 的最小值等于( ) A.285 B.4 C. 125D.2 【命题立意】本题主要考查线性可行域的表示, 并结合图像求解点到线距离的最小值. 【思路点拨】画出可行域以及直线3490+-=x y ,要求||AB 的最小值即求A 到直线3490+-=x y 的最小值d的2倍.【规范解答】选B .不等式组所表示的平面区域1Ω如图所示:则点()1,1 到3490+-=x y 的距离即为平面区域1Ω中任意点A 到3490+-=x y 的最小距离d ,2231419234⨯-⨯-∴==+d ,min 24∴==AB d .9.(2010·江苏高考·T12)设x,y 为实数,满足3≤2xy ≤8,4≤yx 2≤9,则43y x 的最大值是 .【命题立意】本题考查不等式的基本性质,等价转化思想.【思路点拨】322421()x x y y xy=⋅xy111131-2-0110x y +-=5390x y -+=330x y -+=A1D【规范解答】22()[16,81]x y ∈,2111[,]83xy ∈,322421()[2,27]x x y y xy =⋅∈,43yx 的最大值是27. 【答案】27.10.(2010·浙江高考文科·T16) 某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等,若一月至十月份销售总额至少达7000万元,则x 的最小值 . 【命题立意】本题主要考察了用一元二次不等式解决实际问题的能力,属中档题. 【思路点拨】把一到十月份的销售总额求和,列出不等式,求解.【规范解答】七月份:500(1%)x +,八月份:2500(1%)x +.所以一至十月份的销售总额为:238605002[500(1%)500(1%)]7000x x +++++≥,解得2.2%1-≤+x (舍)或2.1%1≥+x ,20min =∴x .【答案】20.11.(2010·浙江高考文科·T15)若正实数,x y ,满足26x y xy ++=,则xy 的最小值是 . 【命题立意】本题主要考察了用基本不等式解决最值问题的能力 ,以及换元思想和简单一元二次不等式的解法,属中档题.【思路点拨】本题可利用均值不等式构造出关于xy 的不等式,解出xy 的范围.【规范解答】运用基本不等式,62262+≥++=xy y x xy ,令2t xy =,可得06222≥--t t ,注意到t >0,解得t ≥23,故xy 的最小值为18. 【答案】18.【方法技巧】均值不等式有两个常用变形:(1)当和为定值时,积有最大值,即2()2a b ab +≤;(2)当积为定值时,和有最小值,即a b +≥.12.(2010·山东高考文科·T14)已知,x y R +∈,且满足134x y+=,则xy 的最大值为 . 【命题立意】本题考查均值定理,考查考生运用基本不等式运算求解能力. 【思路点拨】根据,x y R +∈,且134x y+=,【规范解答】Q ,x y R +∈,且134x y+=,由均值不等式有134x y =+≥,解得3xy ≤,当且仅当1342x y ==,即3,22x y ==时,等号成立。

十年真题(2010_2019)高考数学真题分类汇编专题15不等式选讲文(含解析)

十年真题(2010_2019)高考数学真题分类汇编专题15不等式选讲文(含解析)

专题15不等式选讲历年考题细目表历年高考真题汇编1.【2019年新课标1文科23】已知a,b,c为正数,且满足abc=1.证明:(1)a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.【解答】证明:(1)分析法:已知a,b,c为正数,且满足abc=1.要证(1)a2+b2+c2;因为abc=1.就要证:a2+b2+c2;即证:bc+ac+ab≤a2+b2+c2;即:2bc+2ac+2ab≤2a2+2b2+2c2;2a2+2b2+2c2﹣2bc﹣2ac﹣2ab≥0(a﹣b)2+(a﹣c)2+(b﹣c)2≥0;∵a,b,c为正数,且满足abc=1.∴(a﹣b)2≥0;(a﹣c)2≥0;(b﹣c)2≥0恒成立;当且仅当:a=b=c=1时取等号.即(a﹣b)2+(a﹣c)2+(b﹣c)2≥0得证.故a2+b2+c2得证.(2)证(a+b)3+(b+c)3+(c+a)3≥24成立;即:已知a,b,c为正数,且满足abc=1.(a+b)为正数;(b+c)为正数;(c+a)为正数;(a+b)3+(b+c)3+(c+a)3≥3(a+b)•(b+c)•(c+a);当且仅当(a+b)=(b+c)=(c+a)时取等号;即:a=b=c=1时取等号;∵a,b,c为正数,且满足abc=1.(a+b)≥2;(b+c)≥2;(c+a)≥2;当且仅当a=b,b=c;c=a时取等号;即:a=b=c=1时取等号;∴(a+b)3+(b+c)3+(c+a)3≥3(a+b)•(b+c)•(c+a)≥3×8••24abc=24;当且仅当a=b=c=1时取等号;故(a+b)3+(b+c)3+(c+a)3≥24.得证.故得证.2.【2018年新课标1文科23】已知f(x)=|x+1|﹣|ax﹣1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.【解答】解:(1)当a=1时,f(x)=|x+1|﹣|x﹣1|,由f(x)>1,∴或,解得x,故不等式f(x)>1的解集为(,+∞),(2)当x∈(0,1)时不等式f(x)>x成立,∴|x+1|﹣|ax﹣1|﹣x>0,即x+1﹣|ax﹣1|﹣x>0,即|ax﹣1|<1,∴﹣1<ax﹣1<1,∴0<ax<2,∵x∈(0,1),∴a>0,∴0<x,∴a∵2,∴0<a≤2,故a的取值范围为(0,2].3.【2017年新课标1文科23】已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.【解答】解:(1)当a=1时,f(x)=﹣x2+x+4,是开口向下,对称轴为x的二次函数,g(x)=|x+1|+|x﹣1|,当x∈(1,+∞)时,令﹣x2+x+4=2x,解得x,g(x)在(1,+∞)上单调递增,f(x)在(1,+∞)上单调递减,∴此时f(x)≥g(x)的解集为(1,];当x∈[﹣1,1]时,g(x)=2,f(x)≥f(﹣1)=2.当x∈(﹣∞,﹣1)时,g(x)单调递减,f(x)单调递增,且g(﹣1)=f(﹣1)=2.综上所述,f(x)≥g(x)的解集为[﹣1,];(2)依题意得:﹣x2+ax+4≥2在[﹣1,1]恒成立,即x2﹣ax﹣2≤0在[﹣1,1]恒成立,则只需,解得﹣1≤a≤1,故a的取值范围是[﹣1,1].4.【2016年新课标1文科24】已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【解答】解:(Ⅰ)f(x),由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x时,|3x﹣2|>1,解得x>1或x,即有﹣1<x或1<x;当x时,|4﹣x|>1,解得x>5或x<3,即有x>5或x<3.综上可得,x或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).5.【2015年新课标1文科24】已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.【解答】解:(Ⅰ)当a=1时,不等式f(x)>1,即|x+1|﹣2|x﹣1|>1,即①,或②,或③.解①求得x∈∅,解②求得x<1,解③求得1≤x<2.综上可得,原不等式的解集为(,2).(Ⅱ)函数f(x)=|x+1|﹣2|x﹣a|,由此求得f(x)的图象与x轴的交点A(,0),B(2a+1,0),故f(x)的图象与x轴围成的三角形的第三个顶点C(a,a+1),由△ABC的面积大于6,可得[2a+1]•(a+1)>6,求得a>2.故要求的a的范围为(2,+∞).6.【2014年新课标1文科24】若a>0,b>0,且.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.【解答】解:(Ⅰ)∵a>0,b>0,且,∴2,∴ab≥2,当且仅当a=b时取等号.∵a3+b3 ≥224,当且仅当a=b时取等号,∴a3+b3的最小值为4.(Ⅱ)∵2a+3b≥22,当且仅当2a=3b时,取等号.而由(1)可知,2246,故不存在a,b,使得2a+3b=6成立.7.【2013年新课标1文科24】已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[,]时,f(x)≤g(x),求a的取值范围.【解答】解:(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x﹣3<0.设y=|2x﹣1|+|2x﹣2|﹣x﹣3,则y,它的图象如图所示:结合图象可得,y<0的解集为(0,2),故原不等式的解集为(0,2).(Ⅱ)设a>﹣1,且当x∈[,]时,f(x)=1+a,不等式化为1+a≤x+3,故x≥a﹣2对x∈[,]都成立.故a﹣2,解得a,故a的取值范围为(﹣1,].8.【2012年新课标1文科24】已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即,可得x≤1;,可得x∈∅;,可得x≥4.取并集可得不等式的解集为 {x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当 1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].9.【2011年新课标1文科24】设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.【解答】解:(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.由此可得x≥3或x≤﹣1.故不等式f(x)≥3x+2的解集为{x|x≥3或x≤﹣1}.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0此不等式化为不等式组或即或因为a>0,所以不等式组的解集为{x|x}由题设可得1,故a=210.【2010年新课标1文科24】设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【解答】解:(Ⅰ)由于f(x),函数y =f (x )的图象如图所示.(Ⅱ)由函数y =f (x )与函数y =ax 的图象可知,极小值在点(2,1)当且仅当a <﹣2或a 时,函数y =f (x )与函数y =ax 的图象有交点.故不等式f (x )≤ax 的解集非空时,a 的取值范围为(﹣∞,﹣2)∪[,+∞).考题分析与复习建议本专题考查的知识点为:解绝对值不等式、证明不等式、利用不等式恒成立求参数的值或范围,求含有绝对值的函数最值也是考查的热点.求解的一般方法是去掉绝对值,也可以借助数形结合求解.历年考题主要以解答题题型出现,重点考查的知识点为解绝对值不等式、证明不等式、利用不等式恒成立求参数的值或范围,求含有绝对值的函数最值也是考查的热点.预测明年本考点题目会比较稳定,备考方向以知识点解绝对值不等式、利用不等式恒成立求参数的值或范围,证明不等式为重点较佳.最新高考模拟试题 1.已知函数()22()f x x a x a R =-+-∈.(1)当2a =时,求不等式()2f x >的解集;(2)若[2,1]x ∈-时不等式()32f x x ≤-成立,求实数a 的取值范围.【答案】(1)2{|3x x <或()4cos(2)6f x x π=-;(2)空集. 【解析】 解:(1)不等式()2f x >,即2222x x -+->.可得22222x x x ≥⎧⎨-+->⎩,或122222x x x <<⎧⎨-+->⎩或12222x x x ≤⎧⎨--+>⎩, 解得23x <或2x >,所以不等式的解集为2{|2}3x x x <>或. (2)当[2,1]x ∈-时,220x -<,所以()22f x x a x =-+-,由()32f x x ≤-得1x a -≤,即11a x a -≤≤+,则1211a a -≤-⎧⎨+≥⎩,该不等式无解, 所以实数a 的取值范围是空集(或者∅).2.已知()221f x x x =-++.(1)求不等式()6f x <的解集;(2)设m 、n 、p 为正实数,且()3m n p f ++=,求证:12mn np pm ++≤.【答案】(1) ()1,3- (2)见证明【解析】(1)①2x ≥时,()24133f x x x x =-++=-,由()6f x <,∴336x -<,∴3x <,即23x ≤<,②12x -<<时,()4215f x x x x =-++=-,由()6f x <,∴56x -<,∴1x >-,即12x -<<, ③1x ≤-时,()42133f x x x x =---=-,由()6f x <,∴336x -<,∴1x >-,可知无解, 综上,不等式()6f x <的解集为()1,3-;(2)∵()221f x x x =-++,∴()36f =,∴()36m n p f ++==,且,,m n p 为正实数∴()222222236m n p m n p mn mp np ++=+++++=,∵222m n mn +≥,222m p mp +≥,222n p np +≥, ∴222m n p mn mp np ++≥++,∴()()2222222363m n p m n p mn mp np mn mp np ++=+++++=≥++ 又,,m n p 为正实数,∴可以解得12mn np pm ++≤. 3.[选修4—5:不等式选讲]已知函数()|||2|(0)f x x m x m m =--+>. (1)当1m =,求不等式()1f x ≥的解集;(2)对于任意实数,x t ,不等式()21f x t t <++-恒成立,求实数m 的取值范围. 【答案】(1)113x x ⎧⎫-≤≤-⎨⎬⎩⎭;(2)()0,2 【解析】(1)当1m =时,()1f x ≥为:1211x x --+≥当1x ≥时,不等式为:1211x x ---≥,解得:3x ≤-,无解当112x -≤<时,不等式为:1211x x -+--≥,解得:13x ≤-,此时1123x -≤≤- 当12x <-时,不等式为:1211x x -+++≥,解得:1x -≥,此时112x -≤<-综上所述,不等式的解集为113x x ⎧⎫-≤≤-⎨⎬⎩⎭(2)对于任意实数x ,t ,不等式()21f x t t <++-恒成立等价于()()max min |2||1|f x t t <++- 因为|2||1||(2)(1)|3t t t t ++-≥+--=,当且仅当(2)(1)0t t +-≤时等号成立 所以()min |2||1|3t t ++-=因为0m >时,()2f x x m x m =--+=2,23,22,m x m x m x x m x m x m ⎧+<-⎪⎪⎪--≤≤⎨⎪-->⎪⎪⎩,函数()f x 单调递增区间为(,)2m -∞-,单调递减区间为(,)2m-+∞ ∴当2m x =-时,()max 322m mf x f ⎛⎫=-= ⎪⎝⎭332m∴<,又0m >,解得:02m << ∴实数m 的取值范围()0,24.选修4-5不等式选讲已知关于x 的不等式20x m x -+≤的解集为{|2}x x ≤-,其中0m >. (1)求m 的值;(2)若正数a ,b ,c 满足a b c m ++=,求证:2222b c aa b c++≥.【答案】(1)2m =(2)见证明 【解析】(1)由题意知:20x m x -+≤即20x m x m x ≥⎧⎨-+≤⎩或20x mm x x ≤⎧⎨-+≤⎩化简得:3x mm x ≥⎧⎪⎨≤⎪⎩或x m x m ≤⎧⎨≤-⎩ 0m > ∴不等式组的解集为{}x x m ≤- 2m ∴-=-,解得:2m =(2)由(1)可知,2a b c ++=由基本不等式有:22b a b a +≥,22c b c b +≥,22a c a c +≥三式相加可得:222222b c a a b c b c a a b c +++++≥++222b c a a b c a b c ∴++≥++,即:2222b c a a b c++≥ 5.选修4-5:不等式选讲已知函数()13f x x x a =+++ (1)当1a =-时,解不等式()2f x ≥;(2)若存在0x 满足00()211f x x ++<,求实数a 的取值范围. 【答案】(1) 1|02x x x ⎧⎫≤≥⎨⎬⎩⎭或 (2) 24a << 【解析】(1)当1a =-时,()|1||31|f x x x =++-,当13x ≥时,不等式等价于1312x x ++-≥,解得12x ≥,12x ∴≥; 当113x -<<时,不等式等价于1312x x +-+≥,解得0x ≤,10x ∴-<≤;当1x ≤-时,不等式等价于1312x x ---+≥,解得12x ≤-,1x -∴≤.综上所述,原不等式的解集为1|02x x x ⎧⎫≤≥⎨⎬⎩⎭或. (2)由()00211f x x ++<,得003131x x a +++<,而()()000000313333333|3|x x a x x a x x a a +++=+++≥+-+=-, (当且仅当()()003330x x a ++≤时等号成立) 由题可知min (()2|1|)1f x x ++<,即31a -<, 解得实数a 的取值范围是24a <<. 6.已知函数()|2|f x ax =-.(Ⅰ)当4a =时,求不等式()|42|8f x x ++≥的解集;(Ⅱ)若[2,4]x ∈时,不等式()|3|3f x x x +-≤+成立,求a 的取值范围. 【答案】(I )(,1][1,)-∞-+∞;(II )[1,2]- 【解析】(I )当4a =时,原不等式即|42||42|8x x -++≥,即|21||21|4x x -++≥. 当12x ≥时,21214x x -++≥,解得1x ≥,∴1x ≥;当1122x -≤≤时,12214x x -++≥,无解; 当12x ≤-时,12214x x ---≥,解得1x ≤-,∴1x ≤-;综上,原不等式的解集为(,1][1,)-∞-+∞(II )由()|3|3f x x x +-≤+得|2||3|3ax x x -+-≤+(*) 当[2,3]x ∈时,(*)等价于|2|33|2|2ax x x ax x -+-≤+⇔-≤ 即22a x -≤,所以2222a x x -+≤≤+恒成立,所以813a -≤≤ 当(3,4]x ∈时,(*)等价于|2|33|2|6ax x x ax -+-≤+⇔-≤ 即48ax -≤≤,所以48a x x-≤≤恒成立,所以12a -≤≤ 综上,a 的取值范围是[1,2]-7.已知函数()21f x x x a =-++,()2g x x =+. (1)当1a =-时,求不等式()()f x g x <的解集; (2)设12a >-,且当1,2x a ⎡⎫∈-⎪⎢⎣⎭,()()f x g x ≤,求a 的取值范围.【答案】(1)()0,2;(2)11,23⎛⎤- ⎥⎝⎦【解析】(1)当1a =-时,不等式()()f x g x <化为:21120x x x -+---<当12x ≤时,不等式化为12120x x x -+---<,解得:102x <≤当112x <≤时,不等式化为21120x x x -+---<,解得:112x <≤ 当1x >时,不等式化为21120x x x -+---<,解得:12x << 综上,原不等式的解集为()0,2 (2)由12a x -≤<,得221a x -≤<,21210a x --≤-< 又102x a a ≤+<+则()()211f x x x a x a =--++=-++∴不等式()()f x g x ≤化为:12x a x -++≤+得21a x ≤+对1,2x a ⎡⎫∈-⎪⎢⎣⎭都成立 21a a ∴≤-+,解得:13a ≤又12a >-,故a 的取值范围是11,23⎛⎤- ⎥⎝⎦8.已知函数()|2|f x x =-.(Ⅰ)求不等式()|1|f x x x <++的解集;(Ⅱ)若函数5log [(3)()3]y f x f x a =++-的定义域为R ,求实数a 的取值范围. 【答案】(I )1,3⎛⎫+∞ ⎪⎝⎭(II )(,1)-∞ 【解析】解:(I )由已知不等式()|1|f x x x <++,得|2||1|x x x -<++, 当2x ≥时,不等式为21x x x -<++,解得3x >-,所以2x ≥; 当12x -<<时,不等式为21x x x -<++,解得13x >,所以123x <<; 当1x ≤-时,不等式为21x x x -<--,解得3x >,此时无解. 综上:不等式的解集为1,3⎛⎫+∞ ⎪⎝⎭.(II )若5log [(3)()3]y f x f x a =++-的定义域为R ,则(3)()30f x f x a ++->恒成立. ∵|1||2|3|12|333x x a x x a a ++--≥+-+-=-,当且仅当[1,2]x ∈-时取等号. ∴330a ->,即1a <.所以实数a 的取值范围是(,1)-∞. 9.已知函数()123f x x x =-+-. (Ⅰ)解关于x 的不等式()4f x ≤;(Ⅱ)若()20f x m m -->恒成立,求实数m 的取值范围.【答案】(Ⅰ)111,3⎡⎤⎢⎥⎣⎦;(Ⅱ)()2,1-.【解析】解:(I )当1x ≤时,不等式为:()1234x x -+-≤,解得1x ≥,故1x =. 当13x <<时,不等式为:()1234x x -+-≤,解得1x ≥,故13x <<1<x <3, 当3x ≥时,不等式为:()1234x x -+-≤,解得113x ≤,故1133x ≤≤. 综上,不等式()4f x ≤的解集为111,3⎡⎤⎢⎥⎣⎦.(II )由()20f x m m -->恒成立可得()2m m f x +<恒成立.又()37,35,1337,1x x f x x x x x -≥⎧⎪=-+<<⎨⎪-+≤⎩,故()f x 在(],1-∞上单调递减,在()1,3上单调递减,在[)3,+∞上单调递增,∴()f x 的最小值为()32f =. ∴22m m +<,解得21m -<<. 即m 的最值范围是()2,1-.10.已知函数()211f x x x =-++. (Ⅰ)解不等式()3f x ≥;(Ⅱ)记函数()f x 的最小值为m ,若,,a b c 均为正实数,且232a b c m ++=,求222a b c ++的最小值. 【答案】(Ⅰ){}11x x x ≤-≥或;(Ⅱ)914. 【解析】(Ⅰ)由题意, 3,11()2,1213,2x x f x x x x x ⎧⎪-≤-⎪⎪=--<<⎨⎪⎪≥⎪⎩,所以()3f x ≥等价于133x x ≤-⎧⎨-≥⎩或11223x x ⎧-<<⎪⎨⎪-≥⎩或1233x x ⎧≥⎪⎨⎪≥⎩.解得:1x ≤-或1x ≥,所以不等式的解集为{}11x x x ≤-≥或; (Ⅱ)由(1)可知,当12x =时, ()f x 取得最小值32,所以32m =,即233a b c ++=, 由柯西不等式得2222222()(123)(23)9a b c a b c ++++≥++=, 整理得222914a b c ++≥, 当且仅当123a b c ==时, 即369,,141414a b c ===时等号成立.所以222a b c ++的最小值为914.11.已知函数()12f x x a x =+++. (Ⅰ)求1a =时,()3f x ≤的解集;(Ⅱ)若()f x 有最小值,求a 的取值范围,并写出相应的最小值. 【答案】(Ⅰ)[3,0]-; (Ⅱ)见解析. 【解析】(Ⅰ)当1a =时,232()12121231x x f x x x x x x --≤-⎧⎪=+++=-<<-⎨⎪+≥-⎩∵()3f x ≤当2x -≤时()233f x x =--≤解得32x -≤≤- 当21x -<<-时()13f x =≤恒成立当1x -≥时()233f x x =+≤解得10x -≤≤ 综上可得解集[3,0]-.(Ⅱ)(1)212()12(1)2121(1)211a x a x f x x a x a x a x a x a x -+--≤-⎧⎪=+++=-+--<<-⎨⎪+++≥-⎩当(1)0a -+>,即1a <-时,()f x 无最小值; 当(1)0a -+=,即1a =-时,()f x 有最小值1-;当(1)0a -+<且10a -≤,即11a -<≤时, min ()(1)f x f a =-= 当(1)0a -+<且10a ->,即1a >时, min ()(2)1f x f =-= 综上:当1a <-时,()f x 无最小值; 当1a =-时,()f x 有最小值1-;当11a -<≤时, min ()(1)f x f a =-= ; 当1a >时, min ()(2)1f x f =-=; 12.选修4-5:不等式选讲 已知函数()|23||1|f x x x =--+. (1)求不等式()6f x ≤的解集;(2)设集合M 满足:当且仅当x M ∈时,()|32|f x x =-,若,a b M ∈,求证:228223a b a b -++≤. 【答案】(1) {}210x x -≤≤;(2)见解析. 【解析】(1)()4,1323132,1234,2x x f x x x x x x x ⎧⎪-+<-⎪⎪=--+=-+-≤≤⎨⎪⎪->⎪⎩当1x <- 时,46x -+≤ ,得2x -≥ ,故21x -≤<-;当312x -≤≤时,326x -+≤ ,得43x ≥- ,故312x -≤<;当32x > 时,46x -≤ ,得10x ≤ ,故3102x <≤;综上,不等式()6f x ≤的解集为{}210x x -≤≤(2)由绝对值不等式的性质可知()231(23)(1)32f x x x x x x =--+≤-++=- 等价于23(1)32x x x -≤-++-,当且仅当(23)(1)0x x -+≤,即213x -≤≤时等号成立,故21,3M ⎡⎤=-⎢⎥⎣⎦所以221,133a b -≤≤-≤≤, 所以222510(1),4(1)99a b ≤-≤-≤--≤-, 即228(1)(1)3a b ---≤.13.[选修4—5:不等式选讲] 已知函数()31f x x m x m =---- (1)若1m =,求不等式()1f x <的解集.(2)对任意的x R ∈,有()(2)f x f ≤,求实数m 的取值范围. 【答案】(1)(,3)-∞;(2)1123m -≤≤ 【解析】(1)()141f x x x =---<,所以11441(4)11(4)1141x x x x x x x x x <≤≤>⎧⎧⎧⎨⎨⎨---<---<--+<⎩⎩⎩或或解之得不等式()1f x <的解集为(,3)-∞. (2)当131,2m m m +>>-时,由题得2必须在3m+1的右边或者与3m+1重合, 所以1231,3m m ≥+∴≤,所以1123m -<≤,当131,2m m m +==-时,不等式恒成立,当131,2m m m +<<-时,由题得2必须在3m+1的左边或者与3m+1重合,由题得1231,3m m ≤+≥,所以m 没有解.综上,1123m -≤≤.14.已知()21f x x x =+-. (1)证明()1f x x +≥; (2)若,,a b c +∈R ,记33311134abc a b c +++的最小值为m ,解关于x 的不等式()f x m <.【答案】(1)见证明;(2) 2433x x ⎧⎫-<<⎨⎬⎩⎭【解析】(1)()2212211f x x x x x x +=+-≥-+=.当且仅当()2x 2x 10-≤,等号成立(2)∵3331113333334444abc abc abc abc m a b c abc +++≥=+≥==,当且仅当a=b=c 等号成立由不等式()3f x <即()213f x x x =+-<.由()31,01211,02131,2x x f x x x x x x x ⎧⎪-+≤⎪⎪=+-=-<<⎨⎪⎪-≥⎪⎩得:不等式()3f x <的解集为2433x x ⎧⎫-<<⎨⎬⎩⎭.15.选修4—5:不等式选讲已知函数()11f x x mx =++-,m R ∈。

十年真题(2010)高考数学真题分类汇编专题15不等式选讲文(含解析)

十年真题(2010)高考数学真题分类汇编专题15不等式选讲文(含解析)

历年考题细目表题型年份考点试题位置解答题2019 不等式选讲2019年新课标1文科23解答题2018 综合测试题2018年新课标1文科23解答题2017 综合测试题2017年新课标1文科23解答题2016 综合测试题2016年新课标1文科24解答题2015 综合测试题2015年新课标1文科24解答题2014 综合测试题2014年新课标1文科24解答题2013 综合测试题2013年新课标1文科24解答题2012 综合测试题2012年新课标1文科24解答题2011 综合测试题2011年新课标1文科24解答题2010 综合测试题2010年新课标1文科24历年高考真题汇编十年真题(2010)高考数学真题分类汇编专题15不等式选讲文(含解析)1.【2019年新课标1文科23】已知a,b,c为正数,且满足abc=1.证明:(1)a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.【解答】证明:(1)分析法:已知a,b,c为正数,且满足abc=1.要证(1)a2+b2+c2;因为abc=1.就要证:a2+b2+c2;即证:bc+ac+ab≤a2+b2+c2;即:2bc+2ac+2ab≤2a2+2b2+2c2;2a2+2b2+2c2﹣2bc﹣2ac﹣2ab≥0(a﹣b)2+(a﹣c)2+(b﹣c)2≥0;∵a,b,c为正数,且满足abc=1.∴(a﹣b)2≥0;(a﹣c)2≥0;(b﹣c)2≥0恒成立;当且仅当:a=b=c=1时取等号.即(a﹣b)2+(a﹣c)2+(b﹣c)2≥0得证.故a2+b2+c2得证.(2)证(a+b)3+(b+c)3+(c+a)3≥24成立;即:已知a,b,c为正数,且满足abc=1.(a+b)为正数;(b+c)为正数;(c+a)为正数;(a+b)3+(b+c)3+(c+a)3≥3(a+b)•(b+c)•(c+a);当且仅当(a+b)=(b+c)=(c+a)时取等号;即:a=b=c=1时取等号;∵a,b,c为正数,且满足abc=1.(a+b)≥2;(b+c)≥2;(c+a)≥2;当且仅当a=b,b=c;c=a时取等号;即:a=b=c=1时取等号;∴(a+b)3+(b+c)3+(c+a)3≥3(a+b)•(b+c)•(c+a)≥3×8••24abc=24;当且仅当a=b=c=1时取等号;故(a+b)3+(b+c)3+(c+a)3≥24.得证.故得证.2.【2018年新课标1文科23】已知f(x)=|x+1|﹣|ax﹣1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.【解答】解:(1)当a=1时,f(x)=|x+1|﹣|x﹣1|,由f(x)>1,∴或,解得x,故不等式f(x)>1的解集为(,+∞),(2)当x∈(0,1)时不等式f(x)>x成立,∴|x+1|﹣|ax﹣1|﹣x>0,即x+1﹣|ax﹣1|﹣x>0,即|ax﹣1|<1,∴﹣1<ax﹣1<1,∴0<ax<2,∵x∈(0,1),∴a>0,∴0<x,∴a∵2,∴0<a≤2,故a的取值范围为(0,2].3.【2017年新课标1文科23】已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.【解答】解:(1)当a=1时,f(x)=﹣x2+x+4,是开口向下,对称轴为x的二次函数,g(x)=|x+1|+|x﹣1|,当x∈(1,+∞)时,令﹣x2+x+4=2x,解得x,g(x)在(1,+∞)上单调递增,f(x)在(1,+∞)上单调递减,∴此时f(x)≥g(x)的解集为(1,];当x∈[﹣1,1]时,g(x)=2,f(x)≥f(﹣1)=2.当x∈(﹣∞,﹣1)时,g(x)单调递减,f(x)单调递增,且g(﹣1)=f(﹣1)=2.综上所述,f(x)≥g(x)的解集为[﹣1,];(2)依题意得:﹣x2+ax+4≥2在[﹣1,1]恒成立,即x2﹣ax﹣2≤0在[﹣1,1]恒成立,则只需,解得﹣1≤a≤1,故a的取值范围是[﹣1,1].4.【2016年新课标1文科24】已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【解答】解:(Ⅰ)f(x),由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x时,|3x﹣2|>1,解得x>1或x,即有﹣1<x或1<x;当x时,|4﹣x|>1,解得x>5或x<3,即有x>5或x<3.综上可得,x或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).5.【2015年新课标1文科24】已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.【解答】解:(Ⅰ)当a=1时,不等式f(x)>1,即|x+1|﹣2|x﹣1|>1,即①,或②,或③.解①求得x∈∅,解②求得x<1,解③求得1≤x<2.综上可得,原不等式的解集为(,2).(Ⅱ)函数f(x)=|x+1|﹣2|x﹣a|,由此求得f(x)的图象与x轴的交点A(,0),B(2a+1,0),故f(x)的图象与x轴围成的三角形的第三个顶点C(a,a+1),由△ABC的面积大于6,可得[2a+1]•(a+1)>6,求得a>2.故要求的a的范围为(2,+∞).6.【2014年新课标1文科24】若a>0,b>0,且.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.【解答】解:(Ⅰ)∵a>0,b>0,且,∴2,∴ab≥2,当且仅当a=b时取等号.∵a3+b3 ≥224,当且仅当a=b时取等号,∴a3+b3的最小值为4.(Ⅱ)∵2a+3b≥22,当且仅当2a=3b时,取等号.而由(1)可知,2246,故不存在a,b,使得2a+3b=6成立.7.【2013年新课标1文科24】已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[,]时,f(x)≤g(x),求a的取值范围.【解答】解:(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x﹣3<0.设y=|2x﹣1|+|2x﹣2|﹣x﹣3,则y,它的图象如图所示:结合图象可得,y<0的解集为(0,2),故原不等式的解集为(0,2).(Ⅱ)设a>﹣1,且当x∈[,]时,f(x)=1+a,不等式化为1+a≤x+3,故x≥a﹣2对x∈[,]都成立.故a﹣2,解得a,故a的取值范围为(﹣1,].8.【2012年新课标1文科24】已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即,可得x≤1;,可得x∈∅;,可得x≥4.取并集可得不等式的解集为 {x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当 1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].9.【2011年新课标1文科24】设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.【解答】解:(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.由此可得x≥3或x≤﹣1.故不等式f(x)≥3x+2的解集为{x|x≥3或x≤﹣1}.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0此不等式化为不等式组或即或因为a>0,所以不等式组的解集为{x|x}由题设可得1,故a=210.【2010年新课标1文科24】设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【解答】解:(Ⅰ)由于f(x),函数y =f (x )的图象如图所示.(Ⅱ)由函数y =f (x )与函数y =ax 的图象可知,极小值在点(2,1)当且仅当a <﹣2或a 时,函数y =f (x )与函数y =ax 的图象有交点.故不等式f (x )≤ax 的解集非空时,a 的取值范围为(﹣∞,﹣2)∪[,+∞).考题分析与复习建议本专题考查的知识点为:解绝对值不等式、证明不等式、利用不等式恒成立求参数的值或范围,求含有绝对值的函数最值也是考查的热点.求解的一般方法是去掉绝对值,也可以借助数形结合求解.历年考题主要以解答题题型出现,重点考查的知识点为解绝对值不等式、证明不等式、利用不等式恒成立求参数的值或范围,求含有绝对值的函数最值也是考查的热点.预测明年本考点题目会比较稳定,备考方向以知识点解绝对值不等式、利用不等式恒成立求参数的值或范围,证明不等式为重点较佳.最新高考模拟试题 1.已知函数()22()f x x a x a R =-+-∈.(1)当2a =时,求不等式()2f x >的解集;(2)若[2,1]x ∈-时不等式()32f x x ≤-成立,求实数a 的取值范围.【答案】(1)2{|3x x <或()4cos(2)6f x x π=-;(2)空集. 【解析】 解:(1)不等式()2f x >,即2222x x -+->.可得22222x x x ≥⎧⎨-+->⎩,或122222x x x <<⎧⎨-+->⎩或12222x x x ≤⎧⎨--+>⎩, 解得23x <或2x >,所以不等式的解集为2{|2}3x x x <>或. (2)当[2,1]x ∈-时,220x -<,所以()22f x x a x =-+-,由()32f x x ≤-得1x a -≤,即11a x a -≤≤+,则1211a a -≤-⎧⎨+≥⎩,该不等式无解, 所以实数a 的取值范围是空集(或者∅).2.已知()221f x x x =-++.(1)求不等式()6f x <的解集;(2)设m 、n 、p 为正实数,且()3m n p f ++=,求证:12mn np pm ++≤.【答案】(1) ()1,3- (2)见证明【解析】(1)①2x ≥时,()24133f x x x x =-++=-,由()6f x <,∴336x -<,∴3x <,即23x ≤<,②12x -<<时,()4215f x x x x =-++=-,由()6f x <,∴56x -<,∴1x >-,即12x -<<, ③1x ≤-时,()42133f x x x x =---=-,由()6f x <,∴336x -<,∴1x >-,可知无解, 综上,不等式()6f x <的解集为()1,3-;(2)∵()221f x x x =-++,∴()36f =,∴()36m n p f ++==,且,,m n p 为正实数∴()222222236m n p m n p mn mp np ++=+++++=,∵222m n mn +≥,222m p mp +≥,222n p np +≥,∴222m n p mn mp np ++≥++,∴()()2222222363m n p m n p mn mp np mn mp np ++=+++++=≥++又,,m n p 为正实数,∴可以解得12mn np pm ++≤.3.[选修4—5:不等式选讲]已知函数()|||2|(0)f x x m x m m =--+>.(1)当1m =,求不等式()1f x ≥的解集;(2)对于任意实数,x t ,不等式()21f x t t <++-恒成立,求实数m 的取值范围.【答案】(1)113x x ⎧⎫-≤≤-⎨⎬⎩⎭;(2)()0,2【解析】(1)当1m =时,()1f x ≥为:1211x x --+≥当1x ≥时,不等式为:1211x x ---≥,解得:3x ≤-,无解 当112x -≤<时,不等式为:1211x x -+--≥,解得:13x ≤-,此时1123x -≤≤- 当12x <-时,不等式为:1211x x -+++≥,解得:1x -≥,此时112x -≤<- 综上所述,不等式的解集为113x x ⎧⎫-≤≤-⎨⎬⎩⎭(2)对于任意实数x ,t ,不等式()21f x t t <++-恒成立等价于()()max min |2||1|f x t t <++- 因为|2||1||(2)(1)|3t t t t ++-≥+--=,当且仅当(2)(1)0t t +-≤时等号成立所以()min |2||1|3t t ++-= 因为0m >时,()2f x x m x m =--+=2,23,22,m x m x m x x m x m x m ⎧+<-⎪⎪⎪--≤≤⎨⎪-->⎪⎪⎩,函数()f x 单调递增区间为(,)2m -∞-,单调递减区间为(,)2m -+∞ ∴当2m x =-时,()max 322m m f x f ⎛⎫=-= ⎪⎝⎭ 332m ∴<,又0m >,解得:02m << ∴实数m 的取值范围()0,24.选修4-5不等式选讲已知关于x 的不等式20x m x -+≤的解集为{|2}x x ≤-,其中0m >.(1)求m 的值;(2)若正数a ,b ,c 满足a b c m ++=,求证:2222b c a a b c++≥. 【答案】(1)2m =(2)见证明【解析】(1)由题意知:20x m x -+≤即20x m x m x ≥⎧⎨-+≤⎩或20x m m x x ≤⎧⎨-+≤⎩化简得:3x m m x ≥⎧⎪⎨≤⎪⎩或x m x m ≤⎧⎨≤-⎩ 0m > ∴不等式组的解集为{}x x m ≤-2m ∴-=-,解得:2m =(2)由(1)可知,2a b c ++= 由基本不等式有:22b a b a +≥,22c b c b+≥,22a c a c +≥ 三式相加可得:222222b c a a b c b c a a b c+++++≥++ 222b c a a b c a b c ∴++≥++,即:2222b c a a b c++≥ 5.选修4-5:不等式选讲已知函数()13f x x x a =+++(1)当1a =-时,解不等式()2f x ≥;(2)若存在0x 满足00()211f x x ++<,求实数a 的取值范围.【答案】(1) 1|02x x x ⎧⎫≤≥⎨⎬⎩⎭或 (2) 24a << 【解析】(1)当1a =-时,()|1||31|f x x x =++-, 当13x ≥时,不等式等价于1312x x ++-≥,解得12x ≥,12x ∴≥; 当113x -<<时,不等式等价于1312x x +-+≥,解得0x ≤,10x ∴-<≤; 当1x ≤-时,不等式等价于1312x x ---+≥,解得12x ≤-,1x -∴≤. 综上所述,原不等式的解集为1|02x x x ⎧⎫≤≥⎨⎬⎩⎭或. (2)由()00211f x x ++<,得003131x x a +++<, 而()()000000313333333|3|x x a x x a x x a a +++=+++≥+-+=-,(当且仅当()()003330x x a ++≤时等号成立)由题可知min (()2|1|)1f x x ++<,即31a -<,解得实数a 的取值范围是24a <<.6.已知函数()|2|f x ax =-.(Ⅰ)当4a =时,求不等式()|42|8f x x ++≥的解集;(Ⅱ)若[2,4]x ∈时,不等式()|3|3f x x x +-≤+成立,求a 的取值范围.【答案】(I )(,1][1,)-∞-+∞;(II )[1,2]-【解析】(I )当4a =时,原不等式即|42||42|8x x -++≥,即|21||21|4x x -++≥. 当12x ≥时,21214x x -++≥,解得1x ≥,∴1x ≥;当1122x -≤≤时,12214x x -++≥,无解; 当12x ≤-时,12214x x ---≥,解得1x ≤-,∴1x ≤-; 综上,原不等式的解集为(,1][1,)-∞-+∞(II )由()|3|3f x x x +-≤+得|2||3|3ax x x -+-≤+(*)当[2,3]x ∈时,(*)等价于|2|33|2|2ax x x ax x -+-≤+⇔-≤ 即22a x -≤,所以2222a x x -+≤≤+恒成立,所以813a -≤≤ 当(3,4]x ∈时,(*)等价于|2|33|2|6ax x x ax -+-≤+⇔-≤即48ax -≤≤,所以48a x x-≤≤恒成立,所以12a -≤≤ 综上,a 的取值范围是[1,2]-7.已知函数()21f x x x a =-++,()2g x x =+.(1)当1a =-时,求不等式()()f x g x <的解集;(2)设12a >-,且当1,2x a ⎡⎫∈-⎪⎢⎣⎭,()()f x g x ≤,求a 的取值范围. 【答案】(1)()0,2;(2)11,23⎛⎤-⎥⎝⎦ 【解析】(1)当1a =-时,不等式()()f x g x <化为:21120x x x -+---< 当12x ≤时,不等式化为12120x x x -+---<,解得:102x <≤ 当112x <≤时,不等式化为21120x x x -+---<,解得:112x <≤ 当1x >时,不等式化为21120x x x -+---<,解得:12x <<综上,原不等式的解集为()0,2(2)由12a x -≤<,得221a x -≤<,21210a x --≤-< 又102x a a ≤+<+则()()211f x x x a x a =--++=-++∴不等式()()f x g x ≤化为:12x a x -++≤+得21a x ≤+对1,2x a ⎡⎫∈-⎪⎢⎣⎭都成立 21a a ∴≤-+,解得:13a ≤ 又12a >-,故a 的取值范围是11,23⎛⎤- ⎥⎝⎦8.已知函数()|2|f x x =-.(Ⅰ)求不等式()|1|f x x x <++的解集;(Ⅱ)若函数5log [(3)()3]y f x f x a =++-的定义域为R ,求实数a 的取值范围.【答案】(I )1,3⎛⎫+∞ ⎪⎝⎭(II )(,1)-∞【解析】解:(I )由已知不等式()|1|f x x x <++,得|2||1|x x x -<++,当2x ≥时,不等式为21x x x -<++,解得3x >-,所以2x ≥;当12x -<<时,不等式为21x x x -<++,解得13x >,所以123x <<; 当1x ≤-时,不等式为21x x x -<--,解得3x >,此时无解. 综上:不等式的解集为1,3⎛⎫+∞ ⎪⎝⎭.(II )若5log [(3)()3]y f x f x a =++-的定义域为R ,则(3)()30f x f x a ++->恒成立.∵,当且仅当[1,2]x ∈-时取等号.∴330a ->,即1a <.所以实数a 的取值范围是(,1)-∞.9.已知函数()123f x x x =-+-.(Ⅰ)解关于x 的不等式()4f x ≤;(Ⅱ)若()20f x m m -->恒成立,求实数m 的取值范围.【答案】(Ⅰ)111,3⎡⎤⎢⎥⎣⎦;(Ⅱ)()2,1-. 【解析】解:(I )当1x ≤时,不等式为:()1234x x -+-≤,解得1x ≥,故1x =.当13x <<时,不等式为:()1234x x -+-≤,解得1x ≥,故13x <<1<x <3,当3x ≥时,不等式为:()1234x x -+-≤,解得113x ≤,故1133x ≤≤. 综上,不等式()4f x ≤的解集为111,3⎡⎤⎢⎥⎣⎦. (II )由()20f x m m -->恒成立可得()2m m f x +<恒成立.又()37,35,1337,1x x f x x x x x -≥⎧⎪=-+<<⎨⎪-+≤⎩,故()f x 在(],1-∞上单调递减,在()1,3上单调递减,在[)3,+∞上单调递增, ∴()f x 的最小值为()32f =.∴22m m +<,解得21m -<<.即m 的最值范围是()2,1-.10.已知函数()211f x x x =-++.(Ⅰ)解不等式()3f x ≥;(Ⅱ)记函数()f x 的最小值为m ,若,,a b c 均为正实数,且232a b c m ++=,求222a b c ++的最小值.【答案】(Ⅰ){}11x x x ≤-≥或;(Ⅱ)914. 【解析】 (Ⅰ)由题意, 3,11()2,1213,2x x f x x x x x ⎧⎪-≤-⎪⎪=--<<⎨⎪⎪≥⎪⎩, 所以()3f x ≥等价于133x x ≤-⎧⎨-≥⎩或11223x x ⎧-<<⎪⎨⎪-≥⎩或1233x x ⎧≥⎪⎨⎪≥⎩.解得:1x ≤-或1x ≥,所以不等式的解集为{}11x x x ≤-≥或;(Ⅱ)由(1)可知,当12x =时, ()f x 取得最小值32, 所以32m =,即233a b c ++=, 由柯西不等式得2222222()(123)(23)9a b c a b c ++++≥++=, 整理得222914a b c ++≥, 当且仅当123a b c ==时, 即369,,141414a b c ===时等号成立. 所以222a b c ++的最小值为914. 11.已知函数()12f x x a x =+++.(Ⅰ)求1a =时,()3f x ≤的解集;(Ⅱ)若()f x 有最小值,求a 的取值范围,并写出相应的最小值.【答案】(Ⅰ)[3,0]-;(Ⅱ)见解析.【解析】(Ⅰ)当1a =时,232()12121231x x f x x x x x x --≤-⎧⎪=+++=-<<-⎨⎪+≥-⎩∵()3f x ≤当2x -≤时()233f x x =--≤解得32x -≤≤-当21x -<<-时()13f x =≤恒成立当1x -≥时()233f x x =+≤解得10x -≤≤综上可得解集[3,0]-. (Ⅱ)(1)212()12(1)2121(1)211a x a x f x x a x a x a x a x a x -+--≤-⎧⎪=+++=-+--<<-⎨⎪+++≥-⎩当(1)0a -+>,即1a <-时,()f x 无最小值;当(1)0a -+=,即1a =-时,()f x 有最小值1-;当(1)0a -+<且10a -≤,即11a -<≤时, min ()(1)f x f a =-=当(1)0a -+<且10a ->,即1a >时, min ()(2)1f x f =-=综上:当1a <-时,()f x 无最小值;当1a =-时,()f x 有最小值1-;当11a -<≤时, min ()(1)f x f a =-= ;当1a >时, min ()(2)1f x f =-=;12.选修4-5:不等式选讲已知函数()|23||1|f x x x =--+.(1)求不等式()6f x ≤的解集;(2)设集合M 满足:当且仅当x M ∈时,()|32|f x x =-,若,a b M ∈,求证:228223a b a b -++≤. 【答案】(1) {}210x x -≤≤;(2)见解析.【解析】 (1)()4,1323132,1234,2x x f x x x x x x x ⎧⎪-+<-⎪⎪=--+=-+-≤≤⎨⎪⎪->⎪⎩当1x <- 时,46x -+≤ ,得2x -≥ ,故21x -≤<-; 当312x -≤≤时,326x -+≤ ,得43x ≥- ,故312x -≤<; 当32x > 时,46x -≤ ,得10x ≤ ,故3102x <≤; 综上,不等式()6f x ≤的解集为{}210x x -≤≤(2)由绝对值不等式的性质可知()231(23)(1)32f x x x x x x =--+≤-++=- 等价于23(1)32x x x -≤-++-,当且仅当(23)(1)0x x -+≤,即213x -≤≤ 时等号成立,故21,3M ⎡⎤=-⎢⎥⎣⎦所以221,133a b -≤≤-≤≤, 所以222510(1),4(1)99a b ≤-≤-≤--≤-, 即228(1)(1)3a b ---≤. 13.[选修4—5:不等式选讲]已知函数()31f x x m x m =----(1)若1m =,求不等式()1f x <的解集.(2)对任意的x R ∈,有()(2)f x f ≤,求实数m 的取值范围.【答案】(1)(,3)-∞;(2)1123m -≤≤ 【解析】(1)()141f x x x =---<, 所以11441(4)11(4)1141x x x x x x x x x <≤≤>⎧⎧⎧⎨⎨⎨---<---<--+<⎩⎩⎩或或 解之得不等式()1f x <的解集为(,3)-∞.(2) 当131,2m m m +>>-时,由题得2必须在3m+1的右边或者与3m+1重合, 所以1231,3m m ≥+∴≤,所以1123m -<≤, 当131,2m m m +==-时,不等式恒成立, 当131,2m m m +<<-时,由题得2必须在3m+1的左边或者与3m+1重合, 由题得1231,3m m ≤+≥,所以m 没有解. 综上,1123m -≤≤. 14.已知()21f x x x =+-.(1)证明()1f x x +≥;(2)若,,a b c +∈R ,记33311134abc a b c +++的最小值为m ,解关于x 的不等式()f x m <.【答案】(1)见证明;(2) 2433x x ⎧⎫-<<⎨⎬⎩⎭ 【解析】 (1)()2212211f x x x x x x +=+-≥-+=.当且仅当()2x 2x 10-≤,等号成立(2)∵333333311131333333234444abc abc abc abc m a b c a b c abc abc +++≥+=+≥⋅==,当且仅当a=b=c 等号成立由不等式()3f x <即()213f x x x =+-<.由()31,01211,02131,2x x f x x x x x x x ⎧⎪-+≤⎪⎪=+-=-<<⎨⎪⎪-≥⎪⎩得:不等式()3f x <的解集为2433x x ⎧⎫-<<⎨⎬⎩⎭. 15.选修4—5:不等式选讲已知函数()11f x x mx =++-,m R ∈。

绝对经典2010年全国各省高考数学试题经典完整分类汇编

绝对经典2010年全国各省高考数学试题经典完整分类汇编

绝对经典2010年全国各省高考数学试题经典完整分类汇编2010年全国各省高考数学试题经典完整分类汇编——集合与逻辑(2010上海文数)16.“”是“”成立的[答]()(A)充分不必要条件.(B)必要不充分条件.(C)充分条件.(D)既不充分也不必要条件.解析:,所以充分;但反之不成立,如(2010湖南文数)2.下列命题中的假命题是A.B.C.D.【答案】C【解析】对于C选项x=1时,,故选C(2010浙江理数)(1)设P={x︱x<4},Q={x︱<4},则(A)(B)(C)(D),可知B正确,本题主要考察了集合的基本运算,属容易题(2010陕西文数)6.“a>0”是“>0”的 [A](A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件解析:本题考查充要条件的判断,a>0”是“>0”的充分不必要条件(2010陕西文数)1.集合A={x-1≤x≤2},B={xx<1},则A∩B= [D](A){xx<1} (B){x-1≤x≤2}(C){x-1≤x≤1} (D){x-1≤x<1}{x-1≤x≤2}{xx<1}{x-1≤x<1},,则(A)(B)(C)(D)解析:选D.在集合中,去掉,剩下的元素构成(2010辽宁理数)(11)已知a>0,则x0满足关于x的方程ax=6的充要条件是(A)(B)(C)(D)【答案】C【命题立意】本题考查了二次函数的性质、全称量词与充要条件知识,考查了学生构造二次函数解决问题的能力。

【解析】由于a>0,令函数,此时函数对应的开口向上,当x=时,取得最小值,而x0满足关于x的方程ax=b,那么x0==,ymin=,那么对于任意的x∈R,都有≥=(2010辽宁理数)1.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3},B∩A={9},则A=(A){1,3}(B){3,7,9}(C){3,5,9}(D){3,9}【答案】D【命题立意】本题考查了集合之间的关系、集合的交集、补集的运算,考查了同学们借助于Venn图解决集合问题的能力。

不等式高考真题(含答案)

不等式高考真题(含答案)

【2010课标卷】设函数f(x)=241x -+(Ⅰ)画出函数(x)的图像;(Ⅱ)若不等式f(x)≤的解集非空,求a 的取值范围.【答案】【2011课标卷】设函数()3f x x a x =-+,其中0a >。

(Ⅰ)当1a =时,求不等式()32f x x ≥+的解集(Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤- ,求a 的值。

解:(Ⅰ)当1a =时,()32f x x ≥+可化为|1|2x -≥。

由此可得 3x ≥或1x ≤-。

故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-。

( Ⅱ) 由()0f x ≤得: 30x a x -+≤此不等式化为不等式组30x a x a x ≥⎧⎨-+≤⎩或30x a a x x ≤⎧⎨-+≤⎩ 即 4x a a x ≥⎧⎪⎨≤⎪⎩或2x a a a ≤⎧⎪⎨≤-⎪⎩ 因为0a >,所以不等式组的解集为{}|2ax x ≤- 由题设可得2a-= 1-,故2a =【2012课标卷】 已知函数()2f x x a x =++-(1)当3a =-时,求不等式()3f x ≥的解集;(2)若()4f x x ≤-的解集包含[1,2],求a 的取值范围。

【解析】(1)当3a =-时,()3323f x x x ≥⇔-+-≥2323x x x ≤⎧⇔⎨-+-≥⎩或23323x x x <<⎧⇔⎨-+-≥⎩或3323x x x ≥⎧⇔⎨-+-≥⎩ 1x ⇔≤或4x ≥(2)原命题()4f x x ⇔≤-在[1,2]上恒成立24x a x x ⇔++-≤-在[1,2]上恒成立22x a x ⇔--≤≤-在[1,2]上恒成立30a ⇔-≤≤【2013课标Ⅰ卷】已知函数()f x |21||2|x x a -++()g x 3x +.(Ⅰ)当a =2时,求不等式()f x <()g x 的解集;(Ⅱ)设a >-1,且当x ∈[2a -,12)时,()f x ≤()g x ,求a 的取值范围. 【解析】当a 2时,不等式()f x <()g x 化为|21||22|30x x x -+---<,设函数y =|21||22|3x x x -+---,y =15, 212, 1236, 1x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩, 其图像如图所示,从图像可知,当且仅当(0,2)x ∈时,y <0∴原不等式解集是{|02}x x <<.(Ⅱ)当x ∈[2a -,12)时,()f x =1a +,不等式()f x ≤()g x 化为13a x +≤+, ∴2x a ≥-对x ∈[2a -,12)都成立,故2a -≥2a -,即a ≤43, ∴a 的取值范围为(-1,43].【2013课标Ⅱ卷】设a b c 、、均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ac ++≤;(Ⅱ)2221a b c b c a ++≥【2014课标Ⅰ卷】若0,0a b >>,且11ab a b +=. (Ⅰ) 求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.【解析】:(Ⅰ) 由112ab a b ab=+≥,得2ab ≥,且当2a b ==时等号成立, 故3333342a b a b +≥=,且当2a b ==时等号成立,∴33a b +的最小值为42. (Ⅱ)由62326a b ab =+≥,得32ab ≤,又由(Ⅰ)知2ab ≥,二者矛盾, 所以不存在,a b ,使得236a b +=成立.【2014课标Ⅱ卷】设函数()f x =1(0)x x a a a++-> (Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.【2015课标Ⅰ卷】已知函数()12,0f x x x a a =+--> .(I )当1a = 时求不等式()1f x > 的解集;()若()f x 图像与x 轴围成的三角形面积大于6,求a 的取值范围.(Ⅱ)由题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩,所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为21(,0)3a A -,(21,0)B a +,(,+1)C a a ,所以△的面积为22(1)3a +. 由题设得22(1)3a +>6,解得2a >.所以a 的取值范围为(2,+∞). 【2015课标Ⅱ卷】设,,,abcd 均为正数,且a b c d +=+,证明:(Ⅰ)若ab cd >a b c d >a b c d >是a b c d -<-的充要条件.【解析】(Ⅰ)因为2)2a b a b ab =++,2(2c d c d cd =++,由题设a b c d +=+,ab cd >,得22(a b c d >a b c d >.(Ⅱ)(ⅰ)若a b c d -<-,则22()()a b c d -<-.即22()4()4a b ab c d cd +-<+-.因为a b c d +=+,所以ab cd >a b c d >+ a b c d >+22()a b c d +>.即2a b ab ++>2c d cd ++a b c d +=+,所以ab cd >.于是22()()4a b a b ab -=+-2()4c d cd <+-2()c d =-.因此a b c d -<-.a b c d >是a b c d -<-的充要条件.。

2010年高考数学试题(新课程卷)分类解析(六)——不等式

2010年高考数学试题(新课程卷)分类解析(六)——不等式

2010年高考数学试题(新课程卷)分类解析(六)——不等式王连笑
【期刊名称】《《中国数学教育(高中版)》》
【年(卷),期】2010(000)007
【摘要】2010年新课程试卷中对不等式的考查的主要命题特点很少是对不等式内容的单独命题,很多题目都是以考查某个主干知识(例如函数、数列、圆锥曲线、导数等)为主.在考查过程中,以不等式为工具处理求定义域、取值范围、单调区间、最大值或最小值等不等关系,因此对不等式的命题是以对不等式知识和技能的考查与以不等式为工具的考查两种形式出现的.通过对本专题考查的知识点进行分类统计分析。

对典型试题与新题给出解法与点评,并在此基础上提出了2011年的数学高考复习建议.
【总页数】8页(P43-50)
【作者】王连笑
【作者单位】天津市实验中学
【正文语种】中文
【相关文献】
1.2010年高考数学试题(新课程卷)分类解析(一)——集合与常用逻辑用语 [J], 韩际清; 田明泉; 刘红升
2.2010年高考数学试题(新课程卷)分类解析(一)——集合与常用逻辑用语[J], 韩际清; 田明泉; 刘红升
3.2010年高考数学试题(新课程卷)分类解析(二)——函数与导数 [J], 蔡芙

4.2010年高考数学试题(新课程卷)分类解析(二)——函教与导数 [J], 蔡芙蓉
5.2010年高考数学试题(新课程卷)分类解析(六)--不等式 [J], 王连笑
因版权原因,仅展示原文概要,查看原文内容请购买。

2010年高考数学试题分类汇编--集合与逻辑

2010年高考数学试题分类汇编--集合与逻辑

2010年高考数学试题分类汇编一一集合与逻辑(2010上海文数)16. “ x =2k 二• 一 k • Z ”是“ tanx =1 ” 成立的 4 [答]((A ) 充分不必要条件 .(B )必要不充分条件.(C ) 充分条件.(D )既不充分也不必要条件.解析:tan(2k)4 兀’5兀 -tan1,所以充分;但反之不成立,如tan14 4(2010湖南文数)2.下列命题中的假命题是【命题意图】本题若查逻辑语言与指数函教、二泱函数、对数函数、正切函数的值哑,属容 易题.(2010 浙江理数)(1)设 P= {x | x<4} ,Q= { x | x 2 <4},贝y (A ) p Q (B ) Q P(C ) P^C RQ( D )Q±C RP解析:Q2v x v 2},可知B 正确,本题主要考察了集合的基本运算,属容易题(2010 陕西文数)6•“ a > 0” 是“ a > 0”的[A](A)充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件解析:本题考查充要条件的判断丁 a > On |a > 0, a > 0羊a > 0,几a >0”是“ a > 0”的充分不必要条件(2010 陕西文数)1.集合 A ={x — K X W 2}, B={ x x v 1},则 A n B =[D](A){ x x v 1} ( B ) {x — 1< x w 2}(C) { x — 1w x w 1}(D) { x — 1w x v 1}解析:本题考查集合的基本运算A. -X R,lg x = 0----3C. -x^R,x 0 【答案】C【解析】对于C 选项x = 1时, B. x 三 R,tan x=1xD. -x R,22由交集定义得{X —1 w x w 2} n{ x X V 1} ={x —K X V 1}(2010辽宁文数) (1)已知集合 U ・〕1,3,5,7,9?, A ・〕1,5,7?,则 C U A = (A )「1,3: (B ) 13,7,9? (C ) 13,5,9?( D )「3,9:解析:选D.在集合U 中,去掉1,5,7,剩下的元素构成 Cj A.(2010辽宁理数)(11)已知a>0,则x o 满足关于x 的方程ax=6的充要条件是1 2 1 2(B) T x R,— ax -bx a x 0 -bx 0 2 21 2 「 12,(D) - x R, - ax - bx ax^ - bx 0 2 2—a(x-—)2 -——,此时函数对应的开口向上, 2 a 2a(2010 辽宁理数)1.已知 A , B 均为集合 U={1,3,5,7,9}的子集,且 A n B={3}, eu B n A={9},则A=(A ) {1,3} (B){3,7,9}(C){3,5,9}(D){3,9}【答案】D【命题立意】本题考查了集合之间的关系、集合 的交集、补集的运算,考查了同学们借助于 Venn图解决集合问题的能力。

十年高考真题分类汇编(2010-2019) 数学 专题19 不等式选讲 (含答案)

十年高考真题分类汇编(2010-2019)  数学 专题19 不等式选讲 (含答案)

十年高考真题分类汇编(2010—2019)数学专题19不等式选讲1.(2019·全国1·理T23文T23)[选修4—5:不等式选讲]已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.2.(2019·全国2·理T23文T23)[选修4—5:不等式选讲]已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.3.(2019·全国3·理T23文T23)[选修4—5:不等式选讲]设x,y,z∈R,且x+y+z=1.(1)求(x-1)2+(y+1)2+(z+1)2的最小值;(2)若(x-2)2+(y-1)2+(z-a)2≥13成立,证明:a≤-3或a≥-1.4.(2018·全国1·文T23理T23)[选修4—5:不等式选讲]已知f(x)=|x+1|-|ax-1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.5.(2018·全国2·文理23)[选修4—5:不等式选讲]设函数f(x)=5-|x+a|-|x-2|.(1)当a=1时,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范围.6.(2018·全国3·文理23)[选修4—5:不等式选讲]设函数f(x)=|2x+1|+|x-1|.(1)画出y=f(x)的图像;(2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.7.(2017·全国1·理T23文T23)已知函数f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a 的取值范围. 8.(2017·全国3·理T23文T23)已知函数f(x)=|x+1|-|x-2|. (1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x 2-x+m 的解集非空,求m 的取值范围. 9.(2017·全国2·理T23文T23)已知a>0,b>0,a 3+b 3=2.证明: (1)(a+b)(a 5+b 5)≥4; (2)a+b ≤2.10.(2016·全国1·理T24文T24)已知函数f(x)=|x+1|-|2x-3|. (1)在题图中画出y=f(x)的图象; (2)求不等式|f(x)|>1的解集.11.(2016·全国3·理T24文T24)已知函数f(x)=|2x-a|+a. (1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x-1|.当x ∈R 时,f(x)+g(x)≥3,求a 的取值范围.12.(2016·全国2·理T24文T24)已知函数f(x)=|x -12|+|x +12|,M 为不等式f(x)<2的解集. (1)求M;(2)证明:当a,b ∈M 时,|a+b|<|1+ab|.13.(2015·全国1·理T24文T24)已知函数f(x)=|x+1|-2|x-a|,a>0. (1)当a=1时,求不等式f(x)>1的解集;(2)若f(x)的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 14.(2015·全国2·理T24文T24)设a,b,c,d 均为正数,且a+b=c+d,证明: (1)若ab>cd,则√a +√b >√c +√d ;(2)√a +√b >√c +√d 是|a-b|<|c-d|的充要条件. 15.(2015·湖南·理T16文T16)设a>0,b>0,且a+b=1a +1b , 证明:(1)a+b≥2;(2)a2+a<2与b2+b<2不可能同时成立.16.(2014·全国1·理T24文T24)若a>0,b>0,且1a +1b=√ab.(1)求a3+b3的最小值;(2)是否存在a,b,使得2a+3b=6?并说明理由.17.(2014·全国2·理T24文T24)设函数f(x)=|x+1a|+|x-a|(a>0).(1)证明:f(x)≥2;(2)若f(3)<5,求a的取值范围.18.(2014·辽宁·理T24文T24)设函数f(x)=2|x-1|+x-1,g(x)=16x2-8x+1.记f(x)≤1的解集为M,g(x)≤4的解集为N.(1)求M;(2)当x∈M∩N时,证明:x2f(x)+x[f(x)]2≤14.19.(2013·全国1·理T24文T24)已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈[-a2,12)时,f(x)≤g(x),求a的取值范围.20.(2013·全国2·理T24文T24)设a,b,c均为正数,且a+b+c=1,证明: (1)ab+bc+ac≤1;(2)a 2b +b2c+c2a≥1.21.(2012·全国·理T24文T24)已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.22.(2011·全国·理T24文T24)设函数f(x)=|x-a|+3x,其中a>0.(1)当a=1时,求不等式f(x)≥3x+2的解集;(2)若不等式f(x)≤0的解集为{x|x≤-1},求a的值.23.(2010·全国·理T24文T24)设函数f(x)=|2x-4|+1.(1)画出函数y=f(x)的图象;(2)若不等式f(x)≤ax的解集非空,求a的取值范围.十年高考真题分类汇编(2010—2019)数学专题19不等式选讲1.(2019·全国1·理T23文T23)[选修4—5:不等式选讲]已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.【解析】(1)因为a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,又abc=1,故有a2+b2+c2≥ab+bc+ca=ab+bc+caabc =1a+1b+1c.所以1+1+1≤a2+b2+c2.(2)因为a,b,c为正数且abc=1,故有(a+b)3+(b+c)3+(c+a)3≥3√(a+b)3(b+c)3(a+c)33=3(a+b)(b+c)(a+c)≥3×(2√ab)×(2√bc)×(2√ac)=24.所以(a+b)3+(b+c)3+(c+a)3≥24.2.(2019·全国2·理T23文T23)[选修4—5:不等式选讲] 已知f(x)=|x-a|x+|x-2|(x-a).(1)当a=1时,求不等式f(x)<0的解集;(2)若x∈(-∞,1)时,f(x)<0,求a的取值范围.【解析】(1)当a=1时,f(x)=|x-1|x+|x-2|(x-1).当x<1时,f(x)=-2(x-1)2<0;当x≥1时,f(x)≥0.所以,不等式f(x)<0的解集为(-∞,1).(2)因为f(a)=0,所以a≥1.当a≥1,x∈(-∞,1)时,f(x)=(a-x)x+(2-x)(x-a)=2(a-x)(x-1)<0. 所以,a 的取值范围是[1,+∞).3.(2019·全国3·理T23文T23)[选修4—5:不等式选讲] 设x,y,z ∈R,且x+y+z=1.(1)求(x-1)2+(y+1)2+(z+1)2的最小值;(2)若(x-2)2+(y-1)2+(z-a)2≥13成立,证明:a≤-3或a≥-1. 【解析】(1)解由于[(x-1)+(y+1)+(z+1)]2=(x-1)2+(y+1)2+(z+1)2+2[(x-1)(y+1)+(y+1)(z+1)+(z+1)(x-1)] ≤3[(x-1)2+(y+1)2+(z+1)2], 故由已知得(x-1)2+(y+1)2+(z+1)2≥43, 当且仅当x=53,y=-13,z=-13时等号成立. 所以(x-1)2+(y+1)2+(z+1)2的最小值为43. (2)证明由于[(x-2)+(y-1)+(z-a)]2=(x-2)2+(y-1)2+(z-a)2+2[(x-2)(y-1)+(y-1)(z-a)+(z-a)(x-2)] ≤3[(x-2)2+(y-1)2+(z-a)2], 故由已知得(x-2)2+(y-1)2+(z-a)2≥(2+a )23,当且仅当x=4-a 3,y=1-a 3,z=2a -23时等号成立. 因此(x-2)2+(y-1)2+(z-a)2的最小值为(2+a )23.由题设知(2+a )23≥13,解得a≤-3或a≥-1.4.(2018·全国1·文T23理T23)[选修4—5:不等式选讲]已知f(x)=|x+1|-|ax-1|. (1)当a=1时,求不等式f(x)>1的解集;(2)若x ∈(0,1)时不等式f(x)>x 成立,求a 的取值范围. 【解析】(1)当a=1时,f(x)=|x+1|-|x-1|, 即f(x)={-2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f(x)>1的解集为{x |x >12}.(2)当x ∈(0,1)时|x+1|-|ax-1|>x 成立等价于当x ∈(0,1)时|ax-1|<1成立.若a ≤0,则当x ∈(0,1)时|ax-1|≥1;若a>0,|ax-1|<1的解集为0<x<2a ,所以2a ≥1,故0<a≤2. 综上,a 的取值范围为(0,2].5.(2018·全国2·文理23)[选修4—5:不等式选讲]设函数f(x)=5-|x+a|-|x-2|. (1)当a=1时,求不等式f(x)≥0的解集; (2)若f(x)≤1,求a 的取值范围. 【解析】(1)当a=1时, f(x)={2x +4,x ≤-1,2,-1<x ≤2,-2x +6,x >2.可得f(x)≥0的解集为{x|-2≤x ≤3}. (2)f(x)≤1等价于|x+a|+|x-2|≥4.而|x+a|+|x-2|≥|a+2|,且当x=2时等号成立.故f(x)≤1等价于|a+2|≥4. 由|a+2|≥4可得a ≤-6或a ≥2.所以a 的取值范围是(-∞,-6]∪[2,+∞). 6.(2018·全国3·文理23)[选修4—5:不等式选讲]设函数f(x)=|2x+1|+|x-1|. (1)画出y=f(x)的图像;(2)当x ∈[0,+∞)时,f(x)≤ax+b,求a+b 的最小值.【解析】(1)f(x)={-3x ,x <-12,x +2,-12≤x <1,3x ,x ≥1.(2)由(1)知,y=f(x)的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a ≥3且b ≥2时,f(x)≤ax+b 在[0,+∞)成立,因此a+b 的最小值为5.7.(2017·全国1·理T23文T23)已知函数f(x)=-x 2+ax+4,g(x)=|x+1|+|x-1|. (1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a 的取值范围.【解析】(1)当a=1时,不等式f(x)≥g(x)等价于x 2-x+|x+1|+|x-1|-4≤0.① 当x<-1时,①式化为x 2-3x-4≤0,无解;当-1≤x ≤1时,①式化为x 2-x-2≤0,从而-1≤x ≤1; 当x>1时,①式化为x 2+x-4≤0,从而1<x≤-1+√172. 所以f(x)≥g(x)的解集为{x |-1≤x ≤-1+√172}. (2)当x ∈[-1,1]时,g(x)=2.所以f(x)≥g(x)的解集包含[-1,1],等价于当x ∈[-1,1]时f(x)≥2.又f(x)在[-1,1]的最小值必为f(-1)与f(1)之一,所以f(-1)≥2且f(1)≥2,得-1≤a ≤1. 所以a 的取值范围为[-1,1].8.(2017·全国3·理T23文T23)已知函数f(x)=|x+1|-|x-2|. (1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x 2-x+m 的解集非空,求m 的取值范围. 【解析】(1)f(x)={-3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x<-1时,f(x)≥1无解;当-1≤x ≤2时,由f(x)≥1得,2x-1≥1,解得1≤x ≤2;当x>2时,由f(x)≥1解得x>2.所以f(x)≥1的解集为{x|x ≥1}. (2)由f(x)≥x 2-x+m 得m ≤|x+1|-|x-2|-x 2+x. 而|x+1|-|x-2|-x 2+x ≤|x|+1+|x|-2-x 2+|x| =-(|x |-3)2+5≤5,且当x=32时,|x+1|-|x-2|-x 2+x=54.故m 的取值范围为(-∞,54]. 9.(2017·全国2·理T23文T23)已知a>0,b>0,a 3+b 3=2.证明: (1)(a+b)(a 5+b 5)≥4;(2)a+b ≤2.【解析】(1)(a+b)(a 5+b 5)=a 6+ab 5+a 5b+b 6=(a 3+b 3)2-2a 3b 3+ab(a 4+b 4) =4+ab(a 2-b 2)2≥4.(2)因为(a+b)3=a 3+3a 2b+3ab 2+b 3=2+3ab(a+b)≤2+3(a+b )2(a+b)=2+3(a+b )34,所以(a+b)3≤8,因此a+b≤2.10.(2016·全国1·理T24文T24)已知函数f(x)=|x+1|-|2x-3|. (1)在题图中画出y=f(x)的图象; (2)求不等式|f(x)|>1的解集.【解析】(1)f(x)={x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,y=f(x)的图象如图所示.(2)由f(x)的表达式及图象,当f(x)=1时, 可得x=1或x=3;当f(x)=-1时,可得x=13或x=5, 故f(x)>1的解集为{x|1<x<3}; f(x)<-1的解集为{x |x <13或x >5}. 所以|f(x)|>1的解集为 {x |x <1或1<x <3或x >5}.11.(2016·全国3·理T24文T24)已知函数f(x)=|2x-a|+a. (1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x-1|.当x ∈R 时,f(x)+g(x)≥3,求a 的取值范围. 【解析】(1)当a=2时,f(x)=|2x-2|+2. 解不等式|2x-2|+2≤6得-1≤x ≤3. 因此f(x)≤6的解集为{x|-1≤x ≤3}. (2)当x ∈R 时,f(x)+g(x)=|2x-a|+a+|1-2x| ≥|2x-a+1-2x|+a=|1-a|+a,当x=12时等号成立,所以当x ∈R 时,f(x)+g(x)≥3等价于|1-a|+a ≥3.① (分类讨论)当a ≤1时,①等价于1-a+a ≥3,无解. 当a>1时,①等价于a-1+a ≥3,解得a ≥2. 所以a 的取值范围是[2,+∞).12.(2016·全国2·理T24文T24)已知函数f(x)=|x -12|+|x +12|,M 为不等式f(x)<2的解集. (1)求M;(2)证明:当a,b ∈M 时,|a+b|<|1+ab|. 【解析】(1)f(x)={-2x ,x ≤-12,1,-1<x <1,2x ,x ≥12.当x≤-1时,由f(x)<2得-2x<2,解得x>-1; 当-12<x<12时,f(x)<2;当x≥12时,由f(x)<2得2x<2,解得x<1. 所以f(x)<2的解集M={x|-1<x<1}. (2)由(1)知,当a,b ∈M 时,-1<a<1,-1<b<1, 从而(a+b)2-(1+ab)2=a 2+b 2-a 2b 2-1 =(a 2-1)(1-b 2)<0. 因此|a+b|<|1+ab|.13.(2015·全国1·理T24文T24)已知函数f(x)=|x+1|-2|x-a|,a>0. (1)当a=1时,求不等式f(x)>1的解集;(2)若f(x)的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 【解析】(1)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0. 当x ≤-1时,不等式化为x-4>0,无解; 当-1<x<1时,不等式化为3x-2>0,解得23<x<1; 当x≥1时,不等式化为-x+2>0,解得1≤x<2. 所以f(x)>1的解集为{x |23<x <2}. (2)由题设可得f(x)={x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f(x)的图象与x 轴围成的三角形的三个顶点分别为A (2a -13,0),B(2a+1,0),C(a,a+1),△ABC 的面积为23(a+1)2.由题设得23(a+1)2>6,故a>2.所以a 的取值范围为(2,+∞). 14.(2015·全国2·理T24文T24)设a,b,c,d 均为正数,且a+b=c+d,证明: (1)若ab>cd,则√a +√b >√c +√d ;(2)√a +√b >√c +√d 是|a-b|<|c-d|的充要条件.【解析】证明(1)因为(√a +√b )2=a+b+2√ab ,(√c +√d )2=c+d+2√cd , 由题设a+b=c+d,ab>cd 得(√a +√b )2>(√c +√d )2. 因此√a +√b >√c +√d .(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd. 因为a+b=c+d,所以ab>cd.由(1)得√a +√b >√c +√d . ②若√a +√b >√c +√d ,则(√a +√b )2>(√c +√d )2, 即a+b+2√ab >c+d+2√cd . 因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2. 因此|a-b|<|c-d|.综上,√a +√b >√c +√d 是|a-b|<|c-d|的充要条件. 15.(2015·湖南·理T16文T16)设a>0,b>0,且a+b=1a +1b , 证明: (1)a+b ≥2;(2)a 2+a<2与b 2+b<2不可能同时成立.【解析】证明由a+b=1a +1b =a+b ab ,a>0,b>0,得ab=1.(1)由基本不等式及ab=1,有a+b≥2√ab =2,即a+b ≥2.(2)假设a 2+a<2与b 2+b<2同时成立,则由a 2+a<2及a>0得0<a<1;同理,0<b<1,从而ab<1,这与ab=1矛盾.故a 2+a<2与b 2+b<2不可能同时成立.16.(2014·全国1·理T24文T24)若a>0,b>0,且1a +1b =√ab .(1)求a 3+b 3的最小值;(2)是否存在a,b,使得2a+3b=6?并说明理由.【解析】(1)由√ab =1a +1b ≥√ab ,得ab≥2,且当a=b=√2时等号成立.故a 3+b 3≥2√a 3b 3≥4√2,且当a=b=√2时等号成立.所以a 3+b 3的最小值为4√2.(2)由(1)知,2a+3b≥2√6√ab ≥4√3. 由于4√3>6,从而不存在a,b,使得2a+3b=6.17.(2014·全国2·理T24文T24)设函数f(x)=|x +1a |+|x-a|(a>0).(1)证明:f(x)≥2;(2)若f(3)<5,求a 的取值范围.【解析】(1)证明由a>0,有f(x)=|x +1|+|x-a|≥|x +1-(x -a )|=1+a≥2.所以f(x)≥2.(2)解f(3)=|3+1a |+|3-a|.当a>3时,f(3)=a+1a ,由f(3)<5,得3<a<5+√21.当0<a≤3时,f(3)=6-a+1a ,由f(3)<5,得1+√52<a≤3.综上,a 的取值范围是(1+√52,5+√212). 18.(2014·辽宁·理T24文T24)设函数f(x)=2|x-1|+x-1,g(x)=16x 2-8x+1.记f(x)≤1的解集为M,g(x)≤4的解集为N.(1)求M;(2)当x ∈M ∩N 时,证明:x 2f(x)+x[f(x)]2≤14.【解析】(1)解f(x)={3x -3,x ∈[1,+∞),1-x ,x ∈(-∞,1),当x≥1时,由f(x)=3x-3≤1得x≤43,故1≤x≤43;当x<1时,由f(x)=1-x≤1得x≥0,故0≤x<1.所以f(x)≤1的解集为M={x |0≤x ≤43}.(2)证明由g(x)=16x 2-8x+1≤4,得16(x -14)2≤4,解得-1≤x≤3.因此N={x |-14≤x ≤34}.故M ∩N={x |0≤x ≤34}.当x ∈M ∩N 时,f(x)=1-x,于是x 2f(x)+x ·[f(x)]2=xf(x)[x+f(x)]=x ·f(x)=x(1-x)=14−(x -12)2≤14.19.(2013·全国1·理T24文T24)已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x ∈[-a 2,12)时,f(x)≤g(x),求a 的取值范围.【解析】(1)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0.设函数y=|2x-1|+|2x-2|-x-3,则y={-5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1.其图象如图所示.从图象可知,当且仅当x ∈(0,2)时,y<0.所以原不等式的解集是{x|0<x<2}.(2)当x ∈[-a 2,12)时,f(x)=1+a,不等式f(x)≤g(x)化为1+a≤x+3.所以x≥a -2对x ∈[-a 2,12)都成立.故-a 2≥a -2,即a≤43.从而a 的取值范围是(-1,43].20.(2013·全国2·理T24文T24)设a,b,c 均为正数,且a+b+c=1,证明:(1)ab+bc+ac≤1;(2)a 2b +b 2c +c 2a ≥1.【解析】证明(1)由a 2+b 2≥2ab,b 2+c 2≥2bc,c 2+a 2≥2ca,得a 2+b 2+c 2≥ab+bc+ca.由题设得(a+b+c)2=1,即a 2+b 2+c 2+2ab+2bc+2ca=1.所以3(ab+bc+ca)≤1,即ab+bc+ca≤13.(2)因为a 2b +b≥2a,b2c +c≥2b,c 2a +a≥2c,故a 2b +b 2c +c 2a +(a+b+c)≥2(a+b+c),即a 2b +b2c +c 2a ≥a+b+c .所以a 2b +b2c +c 2a ≥1.21.(2012·全国·理T24文T24)已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含[1,2],求a 的取值范围.【解析】(1)当a=-3时,f(x)={-2x +5,x ≤2,1,2<x <3,2x -5,x ≥3.当x ≤2时,由f(x)≥3,得-2x+5≥3,解得x ≤1;当2<x<3时,f(x)≥3无解;当x ≥3时,由f(x)≥3,得2x-5≥3,解得x ≥4;所以f(x)≥3的解集为{x|x ≤1}∪{x|x ≥4}.(2)f(x)≤|x-4|⇔|x-4|-|x-2|≥|x+a|.当x ∈[1,2]时,|x-4|-|x-2|≥|x+a|⇔4-x-(2-x)≥|x+a|⇔-2-a ≤x ≤2-a. 由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0.故满足条件的a 的取值范围为[-3,0].22.(2011·全国·理T24文T24)设函数f(x)=|x-a|+3x,其中a>0.(1)当a=1时,求不等式f(x)≥3x+2的解集;(2)若不等式f(x)≤0的解集为{x|x ≤-1},求a 的值.【解析】(1)当a=1时,f(x)≥3x+2可化为|x-1|≥2.由此可得x ≥3或x ≤-1.故不等式f(x)≥3x+2的解集为{x|x ≥3或x ≤-1}.(2)由f(x)≤0得|x-a|+3x ≤0.此不等式化为不等式组{x ≥a ,x -a +3x ≤0或{x ≤a ,a -x +3x ≤0,即{x ≥a ,x ≤a 4或{x ≤a ,x ≤-a 2.因为a>0,所以不等式组的解集为{x |x ≤-a 2}.由题设可得-a 2=-1,故a=2.23.(2010·全国·理T24文T24)设函数f(x)=|2x-4|+1.(1)画出函数y=f(x)的图象;(2)若不等式f(x)≤ax 的解集非空,求a 的取值范围.【解析】(1)由于f(x)={-2x +5,x <2,2x -3,x ≥2,则函数y=f(x)的图象如图所示.(2)(图象应用)由函数y=f(x)与函数y=ax 的图象可知,当且仅当a≥12或a<-2时,函数y=f(x)与函数y=ax 的图象有交点.故不等式f(x)≤ax 的解集非空时,a 的取值范围为(-∞,-2)∪[12,+∞).。

十年真题(2010_2019)高考数学真题分类汇编专题17不等式选讲(理)(含解析)

十年真题(2010_2019)高考数学真题分类汇编专题17不等式选讲(理)(含解析)

专题17不等式选讲历年考题细目表题型年份考点试题位置解答题2019 不等式选讲2019年新课标1理科23解答题2018 综合测试题2018年新课标1理科23解答题2017 综合测试题2017年新课标1理科23解答题2016 综合测试题2016年新课标1理科24解答题2014 综合测试题2014年新课标1理科24解答题2013 综合测试题2013年新课标1理科24解答题2012 综合测试题2012年新课标1理科24解答题2011 综合测试题2011年新课标1理科24解答题2010 综合测试题2010年新课标1理科24历年高考真题汇编1.【2019年新课标1理科23】已知a,b,c为正数,且满足abc=1.证明:(1)a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.【解答】证明:(1)分析法:已知a,b,c为正数,且满足abc=1.要证(1)a2+b2+c2;因为abc=1.就要证:a2+b2+c2;即证:bc+ac+ab≤a2+b2+c2;即:2bc+2ac+2ab≤2a2+2b2+2c2;2a2+2b2+2c2﹣2bc﹣2ac﹣2ab≥0(a﹣b)2+(a﹣c)2+(b﹣c)2≥0;∵a,b,c为正数,且满足abc=1.∴(a﹣b)2≥0;(a﹣c)2≥0;(b﹣c)2≥0恒成立;当且仅当:a=b=c=1时取等号.即(a﹣b)2+(a﹣c)2+(b﹣c)2≥0得证.故a2+b2+c2得证.(2)证(a+b)3+(b+c)3+(c+a)3≥24成立;即:已知a,b,c为正数,且满足abc=1.(a+b)为正数;(b+c)为正数;(c+a)为正数;(a+b)3+(b+c)3+(c+a)3≥3(a+b)•(b+c)•(c+a);当且仅当(a+b)=(b+c)=(c+a)时取等号;即:a=b=c=1时取等号;∵a,b,c为正数,且满足abc=1.(a+b)≥2;(b+c)≥2;(c+a)≥2;当且仅当a=b,b=c;c=a时取等号;即:a=b=c=1时取等号;∴(a+b)3+(b+c)3+(c+a)3≥3(a+b)•(b+c)•(c+a)≥3×8••24abc=24;当且仅当a=b=c=1时取等号;故(a+b)3+(b+c)3+(c+a)3≥24.得证.故得证.2.【2018年新课标1理科23】已知f(x)=|x+1|﹣|ax﹣1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.【解答】解:(1)当a=1时,f(x)=|x+1|﹣|x﹣1|,由f(x)>1,∴或,解得x,故不等式f(x)>1的解集为(,+∞),(2)当x∈(0,1)时不等式f(x)>x成立,∴|x+1|﹣|ax﹣1|﹣x>0,即x+1﹣|ax﹣1|﹣x>0,即|ax﹣1|<1,∴﹣1<ax﹣1<1,∴0<ax<2,∵x∈(0,1),∴a>0,∴0<x,∴a∵2,∴0<a≤2,故a的取值范围为(0,2].3.【2017年新课标1理科23】已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.【解答】解:(1)当a=1时,f(x)=﹣x2+x+4,是开口向下,对称轴为x的二次函数,g(x)=|x+1|+|x﹣1|,当x∈(1,+∞)时,令﹣x2+x+4=2x,解得x,g(x)在(1,+∞)上单调递增,f(x)在(1,+∞)上单调递减,∴此时f(x)≥g(x)的解集为(1,];当x∈[﹣1,1]时,g(x)=2,f(x)≥f(﹣1)=2.当x∈(﹣∞,﹣1)时,g(x)单调递减,f(x)单调递增,且g(﹣1)=f(﹣1)=2.综上所述,f(x)≥g(x)的解集为[﹣1,];(2)依题意得:﹣x2+ax+4≥2在[﹣1,1]恒成立,即x2﹣ax﹣2≤0在[﹣1,1]恒成立,则只需,解得﹣1≤a≤1,故a的取值范围是[﹣1,1].4.【2016年新课标1理科24】已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【解答】解:(Ⅰ)f(x),由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x时,|3x﹣2|>1,解得x>1或x,即有﹣1<x或1<x;当x时,|4﹣x|>1,解得x>5或x<3,即有x>5或x<3.综上可得,x或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).5.【2014年新课标1理科24】若a>0,b>0,且.(Ⅰ)求a3+b3的最小值;(Ⅱ)是否存在a,b,使得2a+3b=6?并说明理由.【解答】解:(Ⅰ)∵a>0,b>0,且,∴2,∴ab≥2,当且仅当a=b时取等号.∵a3+b3 ≥224,当且仅当a=b时取等号,∴a3+b3的最小值为4.(Ⅱ)∵2a+3b≥22,当且仅当2a=3b时,取等号.而由(1)可知,2246,故不存在a,b,使得2a+3b=6成立.6.【2013年新课标1理科24】已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)的解集;(Ⅱ)设a>﹣1,且当x∈[,]时,f(x)≤g(x),求a的取值范围.【解答】解:(Ⅰ)当a=﹣2时,求不等式f(x)<g(x)化为|2x﹣1|+|2x﹣2|﹣x﹣3<0.设y=|2x﹣1|+|2x﹣2|﹣x﹣3,则y,它的图象如图所示:结合图象可得,y<0的解集为(0,2),故原不等式的解集为(0,2).(Ⅱ)设a>﹣1,且当x∈[,]时,f(x)=1+a,不等式化为1+a≤x+3,故x≥a﹣2对x∈[,]都成立.故a﹣2,解得a,故a的取值范围为(﹣1,].7.【2012年新课标1理科24】已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即,可得x≤1;,可得x∈∅;,可得x≥4.取并集可得不等式的解集为 {x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当 1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].8.【2011年新课标1理科24】设函数f(x)=|x﹣a|+3x,其中a>0.(Ⅰ)当a=1时,求不等式f(x)≥3x+2的解集(Ⅱ)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.【解答】解:(Ⅰ)当a=1时,f(x)≥3x+2可化为|x﹣1|≥2.由此可得x≥3或x≤﹣1.故不等式f(x)≥3x+2的解集为{x|x≥3或x≤﹣1}.(Ⅱ)由f(x)≤0得|x﹣a|+3x≤0此不等式化为不等式组或即或因为a>0,所以不等式组的解集为{x|x}由题设可得1,故a=29.【2010年新课标1理科24】设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f (x )≤ax 的解集非空,求a 的取值范围. 【解答】解:(Ⅰ)由于f (x ),函数y =f (x )的图象如图所示.(Ⅱ)由函数y =f (x )与函数y =ax 的图象可知,极小值在点(2,1)当且仅当a <﹣2或a 时,函数y =f (x )与函数y =ax 的图象有交点.故不等式f (x )≤ax 的解集非空时,a 的取值范围为(﹣∞,﹣2)∪[,+∞).考题分析与复习建议本专题考查的知识点为:解绝对值不等式、证明不等式、利用不等式恒成立求参数的值或范围,求含有绝对值的函数最值也是考查的热点.求解的一般方法是去掉绝对值,也可以借助数形结合求解.历年考题主要以解答题题型出现,重点考查的知识点为解绝对值不等式、证明不等式、利用不等式恒成立求参数的值或范围,求含有绝对值的函数最值也是考查的热点.预测明年本考点题目会比较稳定,备考方向以知识点解绝对值不等式、利用不等式恒成立求参数的值或范围,证明不等式为重点较佳.最新高考模拟试题1.已知函数()22()f x x a x a R =-+-∈. (1)当2a =时,求不等式()2f x >的解集;(2)若[2,1]x ∈-时不等式()32f x x ≤-成立,求实数a 的取值范围. 【答案】(1)2{|3x x <或()4cos(2)6f x x π=-;(2)空集. 【解析】解:(1)不等式()2f x >,即2222x x -+->.可得22222x x x ≥⎧⎨-+->⎩,或122222x x x <<⎧⎨-+->⎩或12222x x x ≤⎧⎨--+>⎩,解得23x <或2x >,所以不等式的解集为2{|2}3x x x <>或.(2)当[2,1]x ∈-时,220x -<,所以()22f x x a x =-+-, 由()32f x x ≤-得1x a -≤,即11a x a -≤≤+,则1211a a -≤-⎧⎨+≥⎩,该不等式无解,所以实数a 的取值范围是空集(或者∅). 2.已知()221f x x x =-++. (1)求不等式()6f x <的解集;(2)设m 、n 、p 为正实数,且()3m n p f ++=,求证:12mn np pm ++≤. 【答案】(1) ()1,3- (2)见证明 【解析】(1)①2x ≥时,()24133f x x x x =-++=-, 由()6f x <,∴336x -<,∴3x <,即23x ≤<,②12x -<<时,()4215f x x x x =-++=-,由()6f x <,∴56x -<,∴1x >-,即12x -<<, ③1x ≤-时,()42133f x x x x =---=-,由()6f x <,∴336x -<,∴1x >-,可知无解, 综上,不等式()6f x <的解集为()1,3-; (2)∵()221f x x x =-++,∴()36f =,∴()36m n p f ++==,且,,m n p 为正实数∴()222222236m n p m n p mn mp np ++=+++++=, ∵222m n mn +≥,222m p mp +≥,222n p np +≥, ∴222m n p mn mp np ++≥++,∴()()2222222363m n p m n p mn mp np mn mp np ++=+++++=≥++ 又,,m n p 为正实数,∴可以解得12mn np pm ++≤. 3.[选修4—5:不等式选讲]已知函数()|||2|(0)f x x m x m m =--+>. (1)当1m =,求不等式()1f x ≥的解集;(2)对于任意实数,x t ,不等式()21f x t t <++-恒成立,求实数m 的取值范围. 【答案】(1)113x x ⎧⎫-≤≤-⎨⎬⎩⎭;(2)()0,2 【解析】(1)当1m =时,()1f x ≥为:1211x x --+≥当1x ≥时,不等式为:1211x x ---≥,解得:3x ≤-,无解当112x -≤<时,不等式为:1211x x -+--≥,解得:13x ≤-,此时1123x -≤≤- 当12x <-时,不等式为:1211x x -+++≥,解得:1x -≥,此时112x -≤<-综上所述,不等式的解集为113x x ⎧⎫-≤≤-⎨⎬⎩⎭(2)对于任意实数x ,t ,不等式()21f x t t <++-恒成立等价于()()max min |2||1|f x t t <++- 因为|2||1||(2)(1)|3t t t t ++-≥+--=,当且仅当(2)(1)0t t +-≤时等号成立 所以()min |2||1|3t t ++-=因为0m >时,()2f x x m x m =--+=2,23,22,m x m x m x x m x m x m ⎧+<-⎪⎪⎪--≤≤⎨⎪-->⎪⎪⎩,函数()f x 单调递增区间为(,)2m -∞-,单调递减区间为(,)2m-+∞ ∴当2m x =-时,()max 322m mf x f ⎛⎫=-= ⎪⎝⎭332m∴<,又0m >,解得:02m << ∴实数m 的取值范围()0,24.选修4-5不等式选讲已知关于x 的不等式20x m x -+≤的解集为{|2}x x ≤-,其中0m >. (1)求m 的值;(2)若正数a ,b ,c 满足a b c m ++=,求证:2222b c aa b c++≥.【答案】(1)2m =(2)见证明 【解析】(1)由题意知:20x m x -+≤即20x m x m x ≥⎧⎨-+≤⎩或20x mm x x ≤⎧⎨-+≤⎩化简得:3x mm x ≥⎧⎪⎨≤⎪⎩或x m x m ≤⎧⎨≤-⎩ 0m >Q ∴不等式组的解集为{}x x m ≤- 2m ∴-=-,解得:2m =(2)由(1)可知,2a b c ++=由基本不等式有:22b a b a +≥,22c b c b+≥,22a c a c +≥三式相加可得:222222b c a a b c b c a a b c +++++≥++222b c a a b c a b c ∴++≥++,即:2222b c a a b c++≥ 5.选修4-5:不等式选讲 已知函数()13f x x x a =+++ (1)当1a =-时,解不等式()2f x ≥;(2)若存在0x 满足00()211f x x ++<,求实数a 的取值范围. 【答案】(1) 1|02x x x ⎧⎫≤≥⎨⎬⎩⎭或 (2) 24a << 【解析】(1)当1a =-时,()|1||31|f x x x =++-,当13x ≥时,不等式等价于1312x x ++-≥,解得12x ≥,12x ∴≥; 当113x -<<时,不等式等价于1312x x +-+≥,解得0x ≤,10x ∴-<≤;当1x ≤-时,不等式等价于1312x x ---+≥,解得12x ≤-,1x -∴≤.综上所述,原不等式的解集为1|02x x x ⎧⎫≤≥⎨⎬⎩⎭或. (2)由()00211f x x ++<,得003131x x a +++<,而()()000000313333333|3|x x a x x a x x a a +++=+++≥+-+=-, (当且仅当()()003330x x a ++≤时等号成立) 由题可知min (()2|1|)1f x x ++<,即31a -<, 解得实数a 的取值范围是24a <<. 6.已知函数()|2|f x ax =-.(Ⅰ)当4a =时,求不等式()|42|8f x x ++≥的解集;(Ⅱ)若[2,4]x ∈时,不等式()|3|3f x x x +-≤+成立,求a 的取值范围.【答案】(I )(,1][1,)-∞-+∞U ;(II )[1,2]- 【解析】(I )当4a =时,原不等式即|42||42|8x x -++≥,即|21||21|4x x -++≥.当12x ≥时,21214x x -++≥,解得1x ≥,∴1x ≥; 当1122x -≤≤时,12214x x -++≥,无解;当12x ≤-时,12214x x ---≥,解得1x ≤-,∴1x ≤-;综上,原不等式的解集为(,1][1,)-∞-+∞U(II )由()|3|3f x x x +-≤+得|2||3|3ax x x -+-≤+(*) 当[2,3]x ∈时,(*)等价于|2|33|2|2ax x x ax x -+-≤+⇔-≤即22a x -≤,所以2222a x x -+≤≤+恒成立,所以813a -≤≤ 当(3,4]x ∈时,(*)等价于|2|33|2|6ax x x ax -+-≤+⇔-≤ 即48ax -≤≤,所以48a x x-≤≤恒成立,所以12a -≤≤ 综上,a 的取值范围是[1,2]-7.已知函数()21f x x x a =-++,()2g x x =+. (1)当1a =-时,求不等式()()f x g x <的解集;(2)设12a >-,且当1,2x a ⎡⎫∈-⎪⎢⎣⎭,()()f x g x ≤,求a 的取值范围.【答案】(1)()0,2;(2)11,23⎛⎤- ⎥⎝⎦ 【解析】(1)当1a =-时,不等式()()f x g x <化为:21120x x x -+---<当12x ≤时,不等式化为12120x x x -+---<,解得:102x <≤当112x <≤时,不等式化为21120x x x -+---<,解得:112x <≤当1x >时,不等式化为21120x x x -+---<,解得:12x << 综上,原不等式的解集为()0,2 (2)由12a x -≤<,得221a x -≤<,21210a x --≤-< 又102x a a ≤+<+ 则()()211f x x x a x a =--++=-++∴不等式()()f x g x ≤化为:12x a x -++≤+得21a x ≤+对1,2x a ⎡⎫∈-⎪⎢⎣⎭都成立 21a a ∴≤-+,解得:13a ≤又12a >-,故a 的取值范围是11,23⎛⎤- ⎥⎝⎦8.已知函数()|2|f x x =-.(Ⅰ)求不等式()|1|f x x x <++的解集;(Ⅱ)若函数5log [(3)()3]y f x f x a =++-的定义域为R ,求实数a 的取值范围.【答案】(I )1,3⎛⎫+∞ ⎪⎝⎭(II )(,1)-∞【解析】解:(I )由已知不等式()|1|f x x x <++,得|2||1|x x x -<++, 当2x ≥时,不等式为21x x x -<++,解得3x >-,所以2x ≥; 当12x -<<时,不等式为21x x x -<++,解得13x >,所以123x <<; 当1x ≤-时,不等式为21x x x -<--,解得3x >,此时无解. 综上:不等式的解集为1,3⎛⎫+∞ ⎪⎝⎭.(II )若5log [(3)()3]y f x f x a =++-的定义域为R ,则(3)()30f x f x a ++->恒成立. ∵|1||2|3|12|333x x a x x a a ++--≥+-+-=-,当且仅当[1,2]x ∈-时取等号. ∴330a ->,即1a <.所以实数a 的取值范围是(,1)-∞. 9.已知函数()123f x x x =-+-. (Ⅰ)解关于x 的不等式()4f x ≤;(Ⅱ)若()20f x m m -->恒成立,求实数m 的取值范围.【答案】(Ⅰ)111,3⎡⎤⎢⎥⎣⎦;(Ⅱ)()2,1-.【解析】解:(I )当1x ≤时,不等式为:()1234x x -+-≤,解得1x ≥,故1x =. 当13x <<时,不等式为:()1234x x -+-≤,解得1x ≥,故13x <<1<x <3, 当3x ≥时,不等式为:()1234x x -+-≤,解得113x ≤,故1133x ≤≤. 综上,不等式()4f x ≤的解集为111,3⎡⎤⎢⎥⎣⎦.(II )由()20f x m m -->恒成立可得()2m m f x +<恒成立.又()37,35,1337,1x x f x x x x x -≥⎧⎪=-+<<⎨⎪-+≤⎩,故()f x 在(],1-∞上单调递减,在()1,3上单调递减,在[)3,+∞上单调递增,∴()f x 的最小值为()32f =. ∴22m m +<,解得21m -<<. 即m 的最值范围是()2,1-.10.已知函数()211f x x x =-++. (Ⅰ)解不等式()3f x ≥;(Ⅱ)记函数()f x 的最小值为m ,若,,a b c 均为正实数,且232a b c m ++=,求222a b c ++的最小值. 【答案】(Ⅰ){}11x x x ≤-≥或;(Ⅱ)914. 【解析】(Ⅰ)由题意, 3,11()2,1213,2x x f x x x x x ⎧⎪-≤-⎪⎪=--<<⎨⎪⎪≥⎪⎩,所以()3f x ≥等价于133x x ≤-⎧⎨-≥⎩或11223x x ⎧-<<⎪⎨⎪-≥⎩或1233x x ⎧≥⎪⎨⎪≥⎩.解得:1x ≤-或1x ≥,所以不等式的解集为{}11x x x ≤-≥或; (Ⅱ)由(1)可知,当12x =时, ()f x 取得最小值32,所以32m =,即233a b c ++=, 由柯西不等式得2222222()(123)(23)9a b c a b c ++++≥++=, 整理得222914a b c ++≥, 当且仅当123a b c ==时, 即369,,141414a b c ===时等号成立.所以222a b c ++的最小值为914.11.已知函数()12f x x a x =+++. (Ⅰ)求1a =时,()3f x ≤的解集;(Ⅱ)若()f x 有最小值,求a 的取值范围,并写出相应的最小值. 【答案】(Ⅰ)[3,0]-; (Ⅱ)见解析. 【解析】(Ⅰ)当1a =时,232()12121231x x f x x x x x x --≤-⎧⎪=+++=-<<-⎨⎪+≥-⎩∵()3f x ≤当2x -≤时()233f x x =--≤解得32x -≤≤-当21x -<<-时()13f x =≤恒成立当1x -≥时()233f x x =+≤解得10x -≤≤ 综上可得解集[3,0]-.(Ⅱ)(1)212()12(1)2121(1)211a x a x f x x a x a x a x a x a x -+--≤-⎧⎪=+++=-+--<<-⎨⎪+++≥-⎩当(1)0a -+>,即1a <-时,()f x 无最小值; 当(1)0a -+=,即1a =-时,()f x 有最小值1-;当(1)0a -+<且10a -≤,即11a -<≤时, min ()(1)f x f a =-= 当(1)0a -+<且10a ->,即1a >时, min ()(2)1f x f =-= 综上:当1a <-时,()f x 无最小值; 当1a =-时,()f x 有最小值1-;当11a -<≤时, min ()(1)f x f a =-= ; 当1a >时, min ()(2)1f x f =-=; 12.选修4-5:不等式选讲 已知函数()|23||1|f x x x =--+. (1)求不等式()6f x ≤的解集;(2)设集合M 满足:当且仅当x M ∈时,()|32|f x x =-,若,a b M ∈,求证:228223a b a b -++≤. 【答案】(1) {}210x x -≤≤;(2)见解析. 【解析】(1)()4,1323132,1234,2x x f x x x x x x x ⎧⎪-+<-⎪⎪=--+=-+-≤≤⎨⎪⎪->⎪⎩当1x <- 时,46x -+≤ ,得2x -≥ ,故21x -≤<-; 当312x -≤≤时,326x -+≤ ,得43x ≥- ,故312x -≤<;当32x >时,46x -≤ ,得10x ≤ ,故3102x <≤; 综上,不等式()6f x ≤的解集为{}210x x -≤≤(2)由绝对值不等式的性质可知()231(23)(1)32f x x x x x x =--+≤-++=- 等价于23(1)32x x x -≤-++-,当且仅当(23)(1)0x x -+≤,即213x -≤≤时等号成立,故21,3M ⎡⎤=-⎢⎥⎣⎦所以221,133a b -≤≤-≤≤, 所以222510(1),4(1)99a b ≤-≤-≤--≤-, 即228(1)(1)3a b ---≤.13.[选修4—5:不等式选讲] 已知函数()31f x x m x m =---- (1)若1m =,求不等式()1f x <的解集.(2)对任意的x R ∈,有()(2)f x f ≤,求实数m 的取值范围. 【答案】(1)(,3)-∞;(2)1123m -≤≤ 【解析】(1)()141f x x x =---<,所以11441(4)11(4)1141x x x x x x x x x <≤≤>⎧⎧⎧⎨⎨⎨---<---<--+<⎩⎩⎩或或解之得不等式()1f x <的解集为(,3)-∞. (2)当131,2m m m +>>-时,由题得2必须在3m+1的右边或者与3m+1重合, 所以1231,3m m ≥+∴≤,所以1123m -<≤,当131,2m m m +==-时,不等式恒成立,当131,2m m m +<<-时,由题得2必须在3m+1的左边或者与3m+1重合,由题得1231,3m m ≤+≥,所以m 没有解.综上,1123m -≤≤. 14.已知()21f x x x =+-. (1)证明()1f x x +≥; (2)若,,a b c +∈R ,记33311134abc a b c +++的最小值为m ,解关于x 的不等式()f x m <. 【答案】(1)见证明;(2) 2433x x ⎧⎫-<<⎨⎬⎩⎭【解析】(1)()2212211f x x x x x x +=+-≥-+=.当且仅当()2x 2x 10-≤,等号成立(2)∵333333311131333333234444abc abc abc abc m a b c a b c abc abc +++≥+=+≥⋅==,当且仅当a=b=c 等号成立由不等式()3f x <即()213f x x x =+-<.由()31,01211,02131,2x x f x x x x x x x ⎧⎪-+≤⎪⎪=+-=-<<⎨⎪⎪-≥⎪⎩得:不等式()3f x <的解集为2433x x ⎧⎫-<<⎨⎬⎩⎭.15.选修4—5:不等式选讲已知函数()11f x x mx =++-,m R ∈。

2010年高考数学试题分类汇编——不等式

2010年高考数学试题分类汇编——不等式

2010年高考数学试题分类汇编——不等式一、选择题1、(2010某某文数)15.满足线性约束条件23,23,0,0x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z x y =+的最大值是( )(A )1. (B )32. (C )2. (D )3. 解析:当直线z x y =+过点B(1,1)时,z 最大值为22、(2010某某理数)(7)若实数x ,y 满足不等式组330,230,10,x y x y x my +-≥⎧⎪--≤⎨⎪-+≥⎩且x y +的最大值为9,则实数m =(A )2-(B )1- (C )1 (D )2解析:将最大值转化为y 轴上的截距,将m 等价为斜率的倒数,数形结合可知答案选C ,本题主要考察了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题3、(2010全国卷2理数)(5)不等式2601x x x --->的解集为 (A ){}2,3x x x -<或> (B ){}213x x x -<,或<< (C ) {}213x x x -<<,或> (D ){}2113x x x -<<,或<< 【答案】C【命题意图】本试题主要考察分式不等式与高次不等式的解法.【解析】利用数轴穿根法解得-2<x <1或x >3,故选C4、(2010全国卷2文数)(5)若变量x,y 满足约束条件1325x y x x y ≥-⎧⎪≥⎨⎪+≤⎩则z=2x+y 的最大值为(A )1 (B)2 (C)3 (D)4 【解析】C :本题考查了线性规划的知识。

∵ 作出可行域,作出目标函数线,可得直线与y x = 与325x y +=的交点为最优解点,∴即为(1,1),当1,1x y ==时max 3z =5、(2010全国卷2文数)(2)不等式32x x -+<0的解集为 (A ){}23x x -<< (B ){}2x x <- (C ){}23x x x <->或 (D ){}3x x > 【解析】A :本题考查了不等式的解法∵32x x -<+,∴23x -<<,故选A6、(2010某某理数)3.不等式 22x x xx -->的解集是( ) A.(02), B.(0)-∞, C.(2)+∞, D.(0)∞⋃+∞(-,0), 【答案】 A【解析】考查绝对值不等式的化简.绝对值大于本身,值为负数.20x x-<,解得A 。

十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):不等式

十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):不等式

A.-15 B.-9
C.1 D.9
3x + 2y-6 ≤ 0,
8.(2017·全国 3·文 T5)设 x,y 满足约束条件 x ≥ 0,
则 z=x-y 的取值范围是( )
y ≥ 0,
A.[-3,0] B.[-3,2]
C.[0,2] D.[0,3] x + 3y ≤ 3,
9.(2017·全国 1·文 T7)设 x,y 满足约束条件 x-y ≥ 1, 则 z=x+y 的最大值为( ) y ≥ 0,
A.对任意实数 a,(2,1)∈A
B.对任意实数 a,(2,1)∉A
C.当且仅当 a<0 时,(2,1)∉A
D.当且仅当 a≤ 时,(2,1)∉A
1
2x + 3y-3 ≤ 0,
7.(2017·全国 2·理 T5 文 T7)设 x,y 满足约束条件 2x-3y + 3 ≥ 0,则 z=2x+y 的最小值是( ) y + 3 ≥ 0,
十年(2010—2019)数学高考真题分类汇编
不等式
1.(2019·全国 1·理 T4 文 T4)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之
√5-1 √5-1
比是 2 ( 2 ≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽
√5-1
喉的长度与咽喉至肚脐的长度之比也是 2 .若某人满足上述两个黄金分割比例,且腿长为 105 cm,头顶至脖
A.√2 B.2 C.2√2 D.4
x + y-2 ≤ 0, 19.(2015·重庆·文 T10)若不等式组 x + 2y-2 ≥ 0,表示的平面区域为三角形,且其面积等于43,则 m 的值为

(整理)全国各地高考数学真题分章节分类汇编之不等式

(整理)全国各地高考数学真题分章节分类汇编之不等式

2010年全国各地高考数学真题分章节分类汇编之不等式一、填空题:1.(2010年高考陕西卷理科15)(不等式选做题)不等式的解集为.【答案】【解析】(方法一)当时,∵原不等式即为,这显然不可能,∴不适合.当时,∵原不等式即为,又,∴适合.当时,∵原不等式即为,这显然恒成立,∴适合.故综上知,不等式的解集为,即.(方法二)设函数,则∵∴作函数的图象,如图所示,并作直线与之交于点.又令,则,即点的横坐标为.故结合图形知,不等式的解集为.二、解答题:1.(2010年高考福建卷理科21)(本小题满分7分)选修4-5:不等式选讲已知函数。

(Ⅰ)若不等式的解集为,求实数的值;(Ⅱ)在(Ⅰ)的条件下,若对一切实数x恒成立,求实数m的取值范围。

【命题意图】本小题主要考查绝对值的意义、绝对值不等式等基础知识,考查运算求解能力。

【解析】(Ⅰ)由得,解得,又已知不等式的解集为,所以,解得。

(Ⅱ)当时,,设,于是=,所以当时,;当时,;当时,。

2.(2010年高考江苏卷试题21)选修4-5:不等式选讲(本小题满分10分)设a、b是非负实数,求证:。

[解析] 本题主要考查证明不等式的基本方法,考查推理论证的能力。

满分10分。

(方法一)证明:因为实数a、b≥0,所以上式≥0。

即有。

(方法二)证明:由a、b是非负实数,作差得当时,,从而,得;当时,,从而,得;所以。

3. (2010年全国高考宁夏卷24)(本小题满分10分)选修4-5,不等式选讲设函数(Ⅰ)画出函数的图像(Ⅱ)若不等式≤的解集非空,求a的取值范围。

(24)解:(Ⅰ)由于则函数的图像如图所示。

(Ⅱ)由函数与函数的图像可知,当且仅当或时,函数与函数的图像有交点。

故不等式的解集非空时,的取值范围为。

4.(2010年高考辽宁卷理科24)(本小题满分10分)选修4-5:不等式选讲已知均为正数,证明:,并确定为何值时,等号成立。

15【数学】2010年高考数学计算试题分类汇编——不等式

15【数学】2010年高考数学计算试题分类汇编——不等式

2010 年高考数学试题分类汇编——不等式(2010广东理数)19. (本小题满分12 分)某营养师要为某个少儿预约午饭和晚饭。

已知一个单位的午饭含12 个单位的碳水化合物6 个单位蛋白质和 6 个单位的维生素C;一个单位的晚饭含8 个单位的碳水化合物, 6 个单位的蛋白质和10 个单位的维生素 C. 此外,该少儿这两餐需要的营养中起码含64 个单位的碳水化合物,42 个单位的蛋白质和54 个单位的维生素 C.假如一个单位的午饭、晚饭的花费分别是 2.5 元和 4 元,那么要知足上述的营养要求,而且花销最少,应该为该少儿分别预约多少个单位的午饭和晚饭?解:设该少儿分别预定x, y 个单位的午饭和晚饭,共花销 z元,则 z 2.5x 4 y 。

可行域为12 x+8 y ≥ 646 x+6 y ≥ 426 x+10 y ≥ 54x≥ 0, x∈ Ny≥ 0, y ∈ N即3 x+2 y ≥ 16x+ y ≥ 73 x+5 y ≥ 27x≥ 0, x∈ Ny≥ 0, y ∈ N作出可行域如下图:经试验发现,当x=4,y=3时,花销最少,为z 2.5 x 4 y=2.5× 4+4× 3=22元.(2010 广东文数) 19. (此题满分12 分)某营养师要求为某个少儿预定午饭和晚饭. 已知一个单位的午饭含12 个单位的碳水化合物,6 个单位的蛋白质和 6 个单位的维生素C;一个单位的晚饭含8 个单位的碳水化合物, 6 个单位的蛋白质和10 个单位的维生素 C. 此外,该少儿这两餐需要的营状中起码含64 个单位的碳水化合物和42 个单位的蛋白质和54 个单位的维生素 C.假如一个单位的午饭、晚饭的花费分别是 2.5 元和 4 元,那么要知足上述的营养要求,而且花销最少,应该为该少儿分别预定多少个单位的午饭和晚饭?解:设为该少儿分别预定 x 个单位的午饭和y个单位的晚饭,设花费为F,则F 2.5x 4 y ,由题意知:12 x 8y 646x 6 y 426x 10 y 54x 0, y0画出可行域:变换目标函数: y 5 x F842ab(2010 湖北理数) 15.设 a>0,b>0,称为 a,b 的调解均匀数。

十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):不等式

十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):不等式

A.-15 B.-9
C.1 D.9
3x + 2y-6 ≤ 0,
8.(2017·全国 3·文 T5)设 x,y 满足约束条件 x ≥ 0,
则 z=x-y 的取值范围是( )
y ≥ 0,
A.[-3,0] B.[-3,2]
C.[0,2] D.[0,3] x + 3y ≤ 3,
9.(2017·全国 1·文 T7)设 x,y 满足约束条件 x-y ≥ 1, 则 z=x+y 的最大值为( ) y ≥ 0,
A.-7 B.-6
C.-5 D.-3
x ≥ 1,
x + y ≤ 3,
35.(2013·全国 2·理 T9)已知 a>0,x,y 满足约束条件
若 z=2x+y 的最小值为 1,则 a=( )
y ≥ a(x-3).
1
1
A.4
B.2
C.1
D.2
36.(2013·湖北·文 T9)某旅行社租用 A,B 两种型号的客车安排 900 名客人旅行,A,B 两种车辆的载客量分
x-3y + 3 ≥ 0,
A.8 B.7 C.2 D.1
2
2
33.(2013·重庆·文 T7)关于 x 的不等式 x -2ax-8a <0(a>0)的解集为(x1,x2),且 x2-x1=15,则 a=( )
5
7
15
15
A.2
B.2
C. 4
D. 2
x-y + 1 ≥ 0,
34.(2013·全国 2·文 T3)设 x,y 满足约束条件 x + y-1 ≥ 0,则 z=2x-3y 的最小值是( ) x ≤ 3,
十年(2010—2019)数学高考真题分类汇编

2010年高考数学不等式测试(含详解)

2010年高考数学不等式测试(含详解)

2010年高考数学不等式测试(含详解)2、已知集合{1,1}M =-,11{|22,}4x N x x Z -=<<∈则M N = ( )(A) {1,1}- (B) {1}-(C) {1} (D) {1,0}-3、设a ,b 是两个实数,且a ≠b ,①22(3)2611a a a +>++;②)1(222--≥+b a b a ;③3322a b a b ab +>+;④2>+a b b a 。

上述4个式子中恒成立的有 ( ) (A )1个 (B )2个 (C )3个 (D )4个4、对于实数a b 、,“()0b b a -≤”是“1ab≥”成立的( )(A) 充分不必要条件 (B) 必要不充分条件(C) 充要条件 (D) 既不充分又不必要条件5、若关于x 的不等式4)1(42+≤+k x k 的解集是M ,则对任意实数k ,总有 ( )A .2∈M ,0∉MB .2∉M ,0∉MC .2∉M ,0∈MD .2∈M ,0∈M6、函数y =)3(2log x x -的定义域是( )(A ){x ∣0<x <3} (B ){x ∣x<0或x >3} (C ){x ∣x ≤0或x≥3} (D ){x ∣0≤x ≤3} 7、已知则且,2,0,0=+≥≥b a b a ( ) (A)21≤ab (B) 21≥ab (C) 322≤+b a(D) 222≥+b a8、若不等式f (x )=2ax x c -->0的解集{}|21x x -<<,则函数y =f (-x )的图象为( )9.若直线)0,(022>=+-b a by ax 始终平分圆014222=+-++y x y x 的周长,则ba11+的最小值是( )A .4B .2C .41 D .2110、若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a += 扫过A 中的那部分区域的面积为 ( )A .34B .1C .74D .511、若直线1x y ab+=通过点(cos sin )M αα,,则( )A .221a b +≤B .221a b +≥C .22111ab+≤ D .22111ab+≥12、已知函数:c bx x x f ++=2)(,其中:40,40≤≤≤≤c b ,记函数)(x f 满足条件:⎩⎨⎧≤-≤3)1(12)2(f f 的事件为A ,则事件A 发生的概率为( ) (A )165 (B )83 (C )85 (D )87二、填空题13、集合{}2|430A x x x =-+<,{}|(2)(4)0B x x x =--<,则A B = . 14、已知,,x y z R +∈,230x y z -+=,则2yxz的最小值 .15、设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x ,则目标函数y x z +=5的最大值为___16、若不等式142x x a +--≥0在[1,2]上恒成立,则a 的取值范围为 .三、解答题17、记关于x 的不等式01x a x -<+的解集为P ,不等式11x -≤的解集为Q .(I )若3a =,求P ;(II )若Q P ⊆,求正数a 的取值范围.18、如图,某单位用木料制作如图所示的框架,框架的下部是边长分别为,x y (单位:米)的矩形,上部是斜边长为x 的等腰直角三角形,要求框架围成的总面积为8平方米. (Ⅰ)求,x y 的关系式,并求x 的取值范围; (Ⅱ)问,x y 分别为多少时用料最省?x19、某物流公司购买了一块长30AM =米,宽20AN =米的矩形地块A M P N ,规划建设占地如图中矩形ABC D 的仓库,其余地方为道路和停车场,要求顶点C 在地块对角线M N 上,B 、D 分别在边AM 、A N 上,假设AB 长度为x 米.(1)要使仓库占地ABC D 的面积不少于144平方米,AB 长度应在什么范围内?(2)若规划建设的仓库是高度与AB 长度相同的长方体形建筑,问AB 长度为多少时仓库的库容最大?(墙体及楼板所占空间忽略不计)20、某化工企业2007年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.(1)求该企业使用该设备x 年的年平均污水处理费用y (万元);(2)问为使该企业的年平均污水处理费用最低,该企业几年后需要重新更换新的污水 处理设备?21、命题:p 实数x 满足22430x ax a -+<,其中0a <,命题:q 实数x 满足260x x --≤或2280x x +->,且p ⌝是q ⌝的必要不充分条件,求a 的取值范围.22、某建筑的金属支架如图所示,根据要求AB 至少长2.8m ,C 为AB 的中点,B 到D 的距离比C D 的长小0.5m ,60BCD ∠=,已知建筑支架的材料每米的价格一定,问怎样设计,A B C D 的长,可使建造这个支架的成本最低?参考答案(祥解)一、选择题BACD 地面1 2 3 4 5 6 7 8 9 10 11 12 BCABDADBACDC解:由11224x -<<,得211222x --<<,即,-2<x -1<1,即-1<x <2,又x ∈Z ,所以x 为0,1,即N ={0,1},故可选(C )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2010福建)(7分)(3)选修4—5:不等式选讲
已知函数f(x)=|x-a|.
①若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
②在①的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.答案:法一:①由f(x)≤3,得|x-a|≤3,解得a-3≤x≤a+3.
又已知不等式f(x)≤3的解集为{x|-1≤x≤5},
所以
31,
35,
a
a
=


+=

--
解得a=2.
②当a=2时,f(x)=|x-2|. 设g(x)=f(x)+f(x+5),
于是g(x)=|x-2|+|x+3|=
21,3, 5,32, 21, 2.
x x
x
x x
<


≤≤

⎪+>

---

所以当x<-3时,g(x)>5;当-3≤x≤2时,g(x)=5;当x>2时,g(x)>5.
综上可得,g(x)的最小值为5.
从而,若f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,
则m的取值范围为(-∞,5].
法二:①同解法一.
②当a=2时,f(x)=|x-2|,
设g(x)=f(x)+f(x+5).
由|x-2|+|x+3|≥|(x-2)-(x+3)|=5(当且仅当-3≤x≤2时等号成立)得,g(x)的最小值为5.
从而,若f(x)+f(x+5)≥m,即g(x)≥m对一切实数x恒成立,则m的取值范围为(-∞,5].
(2010湖北)15.(理)设a>0,b>0,称2ab
a b
+
为a,b的调和平均数.如图,C为线
段AB上的点,且AC=a,CB=b,O为AB中点,以AB为直径作半圆.过点C作AB的垂线交半圆于D.连结OD,AD,BD.过点C作OD的垂线,垂足为E.则图中线段OD的长度是a,b的算术平均数,线段______的长度是a,b的几何平均数,线段______的长度是a,b的调和平均数.
答案:CD DE
解析:∵△ACD∽△DCB,
∴AC
CD

CD
CB
,CD
∵Rt△ECD∽Rt△COD,
∴DE=
2
CD
OD

2
ab
a b
+

2ab
a b
+
.
(2010江西)3.(理)不等式|2x x
->2x x -的解集是( ) A .(0,2) B .(-∞,0)
C .(2,+∞)
D .(-∞,0)∪(0,+∞)
答案:A 2x x
->2x x -,∴2x x -<0.∴0<x <2. (2010全国卷新课标)24.(10分)选修4-5:不等式选讲
设函数f(x)=|2x -4|+1.
(1)画出函数y =f(x)的图像;
(2)若不等式f(x)≤ax 的解集非空,求a 的取值范围.
答案: (1)由于f (x )=⎧⎨≥⎩-2x+5,x<2,2x -3,x 2,
则函数y =f (x )的图像如图所示.
(2)由函数y =f (x )与函数y =ax 的图像可知,当且仅当a ≥12
或a <-2时,函数y =f (x )与函数y =ax 的图像有交点.故不等式f (x )≤ax 的解集非空时,a 的取值范围为(-∞,-
2)∪[12
,+∞). (2010山东)14.(理)若对任意x >0,
231x x x ++≤a 恒成立,则a 的取值范围是________. 答案: [15
,+∞) 解析:法一:当x >0时,211313x x x x x
=++++ ∵x +1x
≥2(当且仅当x =1时取等号)
∴x+1
x
+3≥5

1
1
3
x
x
++

1
5
∴a≥1 5 .
法二:原式 ax2+(3a-1)x+a≥0对任意x>0恒成立.显然a≤0时不恒成立.
当a>0时,Δ≤0或
31
2
a
a
a

<


⎪>



,得a≥
1
5
.
(2010陕西)15.A.(不等式选做题)不等式|x+3|-|x-2|≥3的解集为__________.
答案:{x|x≥1}B.16
9
C.(-1,1),(1,1)
解析:A.x≥2时,|x+3|-|x-2|=5,
-3≤x<2时,|x+3|-|x-2|=2x+1≥3 x≥1,x<-3时,|x+3|-|x-2|=-5,
因此综上有|x+3|-|x-2|≥3的解集为{x|x≥1}.
(210四川)12.(理)设a>b>c>0,则2a2+1
ab

1
()
a a b
-
-10ac+25c2的最小值
是( )
A.2 B.4
C.
.5
答案:B 因为a>b>c>0,2a2+1
ab

1
()
a a b
-
-10ac+25c2=a2+
()
a b b
ab a b
-+
-
+(a-
5c)2=a2+
1
()
b a b
-
+(a-5c)2≥a2+
2
1
2
b a b
+-
⎛⎫

⎝⎭
+(a-5c)2=a2+
2
4
a
+(a-5c)2≥4+
(a-5c)2≥4.当且仅当a
2b=5c时取等号.
(2010浙江)23.(10分) (1)设正实数a,b,c,满足abc≥1.求
222
222 a b c
a b b c c a
++
+++
的最小值;
(2)已知m∈R,解关于x的不等式:1-x≤|x-m|≤1+x.
答案:解:(1)因为(
222
222
a b c
a b b c c a
++
+++
)[(a+2b)+(b+2c)+(c+2a)]≥(a+b。

相关文档
最新文档