继电保护原理

合集下载

继电保护工作原理

继电保护工作原理

继电保护工作原理
继电保护工作原理是指通过继电器将电力系统各部件的状态信息传递给保护设备,实现对电力系统的保护。

其工作原理主要包括以下几个方面:
1. 电流保护:电流保护主要是通过测量电路中的电流来判断是否存在过载、短路等故障。

当电流超过设定值时,继电器会被动作,将信号发送给保护设备,从而切断故障电路。

2. 过电压保护:过电压保护是通过对系统中电压进行监测和测量,当电压超过设定值时,继电器会动作,将信号传递给保护设备,以避免电气设备受到损坏。

3. 低电压保护:低电压保护基本原理与过电压保护相似,但是保护对象是电压过低的情况。

当电压低于设定值时,继电器会触发保护动作,以避免设备在电压过低情况下无法正常工作。

4. 频率保护:频率保护用于监测电力系统的频率,当频率偏离正常范围时,继电器会动作,将信号传递给保护设备,以防止电力系统发生频率过高或过低的故障。

5. 距离保护:距离保护是用于判定系统中发生故障的位置,以便精确地切除故障区域。

它通过测量故障点电流和电压的相位差来判断故障的距离,从而实现保护动作。

6. 差动保护:差动保护是一种用于保护输电线路和变压器的重要方式。

它基于物理定律,通过比较输入和输出电流的差值,
来判定是否存在异常情况,如短路、接地等故障。

综上所述,继电保护工作原理是通过测量和比较电力系统中各种参数(电流、电压、频率等)的数值,判断系统是否存在故障,并通过继电器将信号传递给保护设备,实现对电力系统的自动保护。

继电保护的工作原理及应用

继电保护的工作原理及应用

继电保护的工作原理及应用一、引言继电保护是电力系统中一项重要的技术手段,其主要作用是监测和保护电力设备,以确保电力系统的安全运行。

本文将介绍继电保护的工作原理及其在电力系统中的应用。

二、继电保护的工作原理继电保护的工作原理主要基于电力设备的电流、电压、频率等参数的监测和判断。

当这些参数超过设定的阈值或发生异常变化时,继电保护将发出信号,触发相应的保护动作。

下面列举了继电保护的几种常见工作原理:•过流保护:监测电流,当电流超过设定值时,保护动作触发,切断电源,以保护电力设备。

•差动保护:通过对电流进行比较,检测电流差异,当差异超过预设阈值时,触发保护动作。

•零序保护:监测电力系统的零序电流,一般用于检测接地故障。

•距离保护:测量故障点与保护装置之间的距离,判断故障类型,并触发相应的保护动作。

•欠频保护:监测电力系统频率,当频率低于设定值时,触发保护动作。

三、继电保护的应用继电保护广泛应用于电力系统的各个环节,下面列举了几个常见的应用场景:1.变电站继电保护:变电站是电力系统中的重要环节,继电保护系统在变电站中起着至关重要的作用。

它能够检测变电站中的各个电力设备,如变压器、断路器等是否正常运行,一旦检测到异常情况,能够及时发出警报并切断电源,防止事故的发生。

2.输电线路继电保护:继电保护系统在输电线路中也起到非常重要的作用。

它能够监测电流和电压的变化,检测并定位线路故障,如短路、断线等。

及时触发保护动作,使故障区间与其余正常区间隔离,确保电力系统的稳定和安全运行。

3.发电机继电保护:发电机是电力系统的核心组件之一,对于发电机的保护尤为重要。

继电保护系统能够监测发电机的电流、电压、频率、温度等参数,一旦检测到故障,能够及时切断电源,防止进一步损坏发电机。

4.用电继电保护:继电保护系统在用电过程中也有重要应用。

它能够监测用户侧的电流和电压,当电流超过额定值时,能够切断电源,防止过载引起的事故。

同时,继电保护系统还能够检测电力系统的电能质量,如电压波动、谐波等,保证用户用电的稳定和可靠。

(完整)继电保护原理及四性

(完整)继电保护原理及四性

继电保护原理及四性一、继电保护的原理继电保护主要是利用电力系统中元件发生短路或异常情况时的电气量(电流、电压、功率、频率等)的变化构成继电保护动作的原理,还有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高。

大多数情况下,不管反应哪种物理量,继电保护装置都包括测量部分(和定值调整部分)、逻辑部分、执行部分。

(一)电力系统运行中的参数(如电流、电压、功率因数角)在正常运行和故障情况时是有明显区别的。

继电保护装置就是利用这些参数的变化,在反映、检测的基础上来判断电力系统故障的性质和范围,进而作出相应的反应和处理(如发出警告信号或令断路器跳闸等)。

(二)继电保护装置的原理分析1、取样单元它将被保护的电力系统运行中的物理量(参数)经过电气隔离并转换为继电保护装置中比较鉴别单元可以接受的信号,由一台或几台传感器如电流、电压互感器组成.2、比较鉴别单元包括给定单元,由取样单元来的信号与给定信号比较,以便下一级处理单元发出何种信号。

(正常状态、异常状态或故障状态)比较鉴别单元可由4只电流继电器组成,二只为速断保护,另二只为过电流保护。

电流继电器的整定值即为给定单元,电流继电器的电流线圈则接收取样单元(电流互感器)来的电流信号,当电流信号达到电流整定值时,电流继电器动作,通过其接点向下一级处理单元发出使断路器最终掉闸的信号;若电流信号小于整定值,则电流继电器不动作,传向下级单元的信号也不动作。

鉴别比较信号“速断”、“过电流”的信息传送到下一单元处理。

3、处理单元接受比较鉴别单元来的信号,按比较鉴别单元的要求进行处理,根据比较环节输出量的大小、性质、组合方式出现的先后顺序,来确定保护装置是否应该动作;由时间继电器、中间继电器等构成。

电流保护:速断—--中间继电器动作,过电流,时间继电器动作.4、执行单元故障的处理通过执行单元来实施。

执行单元一般分两类:一类是声、光信号继电器;(如电笛、电铃、闪光信号灯等)另一类为断路器的操作机构的分闸线圈,使断路器分闸。

继电保护及原理归纳

继电保护及原理归纳

继电保护及原理归纳继电保护是电力系统中非常重要的一项技术措施,它能够对电力系统中的故障进行快速、准确的检测和保护。

本文将对继电保护的基本原理以及常见的继电保护设备进行归纳和总结。

一、继电保护的基本原理继电保护是通过监测电力系统中的电流、电压、频率等参数来判断系统是否存在故障,并采取适当的措施消除或减小故障对系统的影响。

继电保护的基本原理可以归纳为以下几点:1. 故障检测:继电保护通过监测电力系统中的参数变化,如电流的突变、电压的异常等来判断系统是否存在故障。

2. 故障定位:一旦继电保护检测到故障,它会通过测量电流、电压等参数的变化来确定故障的位置,以便采取相应的补救措施。

3. 故障切除:当系统发生故障时,继电保护会及时切断故障点与电力系统其他部分的连接,以防止故障扩大,并保护系统的稳定运行。

4. 信息传递:继电保护可以通过传递故障信息给操作人员,使其能够及时了解系统发生的故障情况,以便采取相应的补救措施。

二、常见的继电保护设备1. 过流保护装置:过流保护装置主要用于对电力系统中的过电流故障进行检测和保护。

它通过监测电流的大小和变化来判断系统是否存在过电流故障,并及时采取保护措施。

2. 跳闸保护装置:跳闸保护装置是一种常见的继电保护装置,它可以在系统发生故障时迅速切断电路,以防止故障进一步扩大。

跳闸保护装置能够根据系统的工作状态和故障类型自动进行判别,保证系统的安全运行。

3. 差动保护装置:差动保护装置主要用于对电力系统中的差动故障进行保护。

它通过比较电流的大小和方向来判断系统是否存在差动故障,并及时切除故障点,保护系统的正常运行。

4. 低压保护装置:低压保护装置主要用于对电力系统中的低电压故障进行保护。

它可以监测系统电压的变化,一旦系统电压低于设定值,就会及时采取相应的措施,以保证系统的正常运行。

5. 过频保护装置:过频保护装置用于对电力系统中的过频故障进行保护。

它可以检测电力系统中频率的变化,一旦频率超过设定值,就会自动切断电路,以避免故障的进一步发展。

电力系统继电保护的原理

电力系统继电保护的原理

电力系统继电保护的原理
电力系统继电保护的原理是基于监测电力系统中的电流、电压等参数,一旦这些参数超过了设定的阈值,继电保护设备就会发出信号,触发断路器等设备进行动作,以保护电力系统的安全稳定运行。

继电保护设备通常由电流互感器和电压互感器等传感器、测量单元、比较单元、逻辑单元以及执行单元等组成。

其中,电流互感器和电压互感器负责将电力系统中的电流和电压信号转化为测量信号,传送给测量单元进行处理。

测量单元将测量信号转化为数字信号,并与事先设定的保护阈值进行比较。

比较单元负责对比测量信号和阈值的大小关系,当测量信号超过设定阈值时,比较单元会发出触发信号。

逻辑单元接收触发信号,并根据预设的保护逻辑进行判断,决定是否需要进行保护动作。

最后,执行单元接收逻辑单元的指令,通过操纵断路器等设备进行相应的动作。

继电保护设备的阈值设置是根据电力系统的运行要求和设备的额定参数进行调整的。

不同的电力设备,如发电机、变压器、线路等,具有不同的保护要求,因此需要针对性地设置保护阈值。

阈值的设置需要综合考虑设备的稳定工作范围、起动过电流、过负荷电流等因素,并根据实际情况进行适当调整。

继电保护系统的关键在于快速、准确地检测电力系统中的异常情况,并及时采取相应的保护措施。

通过使用互感器转化电路参数为可测量的信号,再经过测量、比较和逻辑判断等步骤,
能够快速、有效地实现对电力系统的保护。

这种原理能够大大提高电力系统的可靠性和安全性,确保电力系统的正常运行。

继电保护 原理

继电保护 原理

继电保护原理
继电保护是电力系统中常用的一种保护装置,其工作原理是通过检测电流、电压等参数的变化,确定电力系统是否出现故障,并根据预设的动作规则进行相应的动作。

继电保护装置通常由继电器、电流互感器、电压互感器、逻辑单元等组成。

当电力系统中出现故障时,故障点会产生电流或电压异常。

继电保护装置中的传感器(如电流互感器、电压互感器)会感知到这些异常信号,并传递给继电器。

继电器是继电保护装置的核心部件,它根据预设的动作规则判断故障的类型、位置和严重程度,并输出相应的动作信号。

继电器可以根据需求进行定时、定值等调整,以满足不同的保护需求。

逻辑单元是继电保护装置中的重要组成部分,它通过逻辑运算和判断,实现对电力系统的保护。

逻辑单元可以根据不同的保护要求进行编程,以实现各种功能,如过流保护、短路保护、零序保护等。

继电保护装置的工作原理基于电路中的“电流不分支”和“电压
共享”原理。

当电力系统中出现故障时,电流或电压的异常信
号在故障点处产生,并通过电路的“电流不分支”原理传递到继电保护装置。

继电保护装置根据接收到的异常信号进行判断和动作,并将电力系统从故障状态中切除,以保证系统的正常运行和设备的安全。

总而言之,继电保护是一种通过检测电力系统中的电流、电压等参数变化,对系统进行保护的装置。

它的工作原理是基于对电流、电压异常信号的检测和判断,并根据预设的动作规则进行相应的动作,以保证电力系统的正常运行和设备的安全。

电力系统继电保护原理

电力系统继电保护原理

§2-2 电网相间短路的方向性电流保护 一、方向性问题的提出(以双侧电源电网为例)
E1单独供电:由保护1、3、5起线路保护作用 E2单独供电:由保护6.4、2起线路保护作用 E1、E2同时供电:(以B母线两侧保护2,3为例 ) 假设: ┌ 电流I段保护: IIdz.3>IIdz.2
└ 电流III段保护: tIII >tIII 32 d1点短路时(要求: 2动作,3不动),虽然此时可能满足选择性(3 不误动); 但若出现d2点短路,则: 2误动 → 非选择性动作。
若Klm不满足要求,可继续延伸保护范围使得: IIIdz.1= KkII·IIIdz.2 (与下条线路的电流II段保护配合)
同时进一步提高时限: tII1=tII2+ t≈2 t (保证重叠区内故障的动作选择性)
四、定时限过流保护
(电流III段,主要作为后备保护,对灵敏性要求高) 1.动作电流的整定原则
运行参数: I、U、Z∠φ 反应I↑→过电流保护 反应U↓→低电压保护
反应Z↓→低阻抗保护( 距离保护)
二、反应电气元件内部故障与外部故障(及正常运行)时两端 所测电流相位和功率方向的差别而构成的原理(双端测量原 理, 也称差动式原理)
以A-B线路为例:
规定电流正方向:保护处母线→被保护线路规定电压正
• 不完全星形接线两继电器方式时继电器的动作 电流
• 动作时间 : • 灵敏度校验: • 系统最小运行方式下,本线路末端发生两相短
路 (最不利情况下,动作最不灵敏)
满足要求
3.线路AB的保护A的I I I 段保护
• 求动作电流 • 躲过本线路最大负荷电:
• 不完全星形接线两继电器方式时继电器的动作 电流
(2) 动作电流整定

继电保护的原理及应用

继电保护的原理及应用

继电保护的原理及应用1. 什么是继电保护?继电保护是一种在电力系统中用来检测故障信号、判断故障类型和位置、并采取相应措施以保护电力设备和系统安全运行的技术手段。

继电保护系统主要由测量、判断、动作三个部分组成,它能及时准确地对电力系统的故障进行检测,保障电力系统的安全运行。

2. 继电保护的原理继电保护的原理主要基于电力系统的运行特点和故障模式,通过检测电流、电压、频率等参数的变化情况来判断电力系统是否存在故障。

继电保护的原理一般包括以下几个方面:•电流保护原理:通过检测电流的变化情况来判断电力系统是否存在过载、短路等故障。

常见的电流保护装置包括电流互感器、电流继电器等。

•电压保护原理:通过检测电压的变化情况来判断电力系统是否存在欠压、过压等故障。

常见的电压保护装置包括电压互感器、电压继电器等。

•频率保护原理:通过检测电力系统的频率变化情况来判断电力系统是否存在频率异常故障。

常见的频率保护装置包括频率继电器等。

•差动保护原理:通过比较电流、电压等参数的差异来判断电力系统是否存在故障,并采取相应动作。

差动保护主要用于保护高压线路和重要设备。

3. 继电保护的应用继电保护广泛应用于电力系统的各个环节,以保障电力设备和系统的安全运行。

以下列举了继电保护在电力系统中的主要应用:•发电机保护:发电机是电力系统的核心设备,对其进行继电保护可以有效预防过载、短路等故障,保障电力系统的稳定运行。

•变压器保护:变压器是电力系统中的重要传输设备,对其进行继电保护可以防止过电流、过热等故障,保护变压器的正常运行。

•线路保护:电力线路是电力系统的传输通道,对线路进行继电保护可以防止过载、短路等故障,确保电能在各个终端之间的正常传输。

•母线保护:电力系统的母线是电能分配的关键节点,对母线进行继电保护可以防止过电流、短路等故障,保障电力系统的正常运行。

•电动机保护:电动机是电力系统中的重要负载设备,对电动机进行继电保护可以防止过载、过热等故障,延长电机的使用寿命。

继电保护原理及四性

继电保护原理及四性

继电保护原理及四性一、继电保护的原理继电保护主要是利用电力系统中元件发生短路或异常情况时的电气量(电流、电压、功率、频率等)的变化构成继电保护动作的原理,还有其他的物理量,如变压器油箱内故障时伴随产生的大量瓦斯和油流速度的增大或油压强度的增高。

大多数情况下,不管反应哪种物理量,继电保护装置都包括测量部分(和定值调整部分)、逻辑部分、执行部分。

(一)电力系统运行中的参数(如电流、电压、功率因数角)在正常运行和故障情况时是有明显区别的。

继电保护装置就是利用这些参数的变化,在反映、检测的基础上来判断电力系统故障的性质和范围,进而作出相应的反应和处理(如发出警告信号或令断路器跳闸等)。

(二)继电保护装置的原理分析1、取样单元它将被保护的电力系统运行中的物理量(参数)经过电气隔离并转换为继电保护装置中比较鉴别单元可以接受的信号,由一台或几台传感器如电流、电压互感器组成。

2、比较鉴别单元包括给定单元,由取样单元来的信号与给定信号比较,以便下一级处理单元发出何种信号。

(正常状态、异常状态或故障状态)比较鉴别单元可由4只电流继电器组成,二只为速断保护,另二只为过电流保护。

电流继电器的整定值即为给定单元,电流继电器的电流线圈则接收取样单元(电流互感器)来的电流信号,当电流信号达到电流整定值时,电流继电器动作,通过其接点向下一级处理单元发出使断路器最终掉闸的信号;若电流信号小于整定值,则电流继电器不动作,传向下级单元的信号也不动作。

鉴别比较信号“速断”、“过电流”的信息传送到下一单元处理。

3、处理单元接受比较鉴别单元来的信号,按比较鉴别单元的要求进行处理,根据比较环节输出量的大小、性质、组合方式出现的先后顺序,来确定保护装置是否应该动作;由时间继电器、中间继电器等构成。

电流保护:速断---中间继电器动作,过电流,时间继电器动作。

4、执行单元故障的处理通过执行单元来实施。

执行单元一般分两类:一类是声、光信号继电器;(如电笛、电铃、闪光信号灯等)另一类为断路器的操作机构的分闸线圈,使断路器分闸。

继电保护的四个基本原理

继电保护的四个基本原理

继电保护的四个基本原理继电保护是电力系统中非常重要的一项安全保护措施,它能够在电力系统发生故障时快速、准确地检测和切除故障部分,从而保护电力设备和电力系统的安全运行。

继电保护的实现依赖于一些基本原理,本文将介绍继电保护的四个基本原理。

一、电流保护原理电流保护是继电保护中最常见的一种保护方式。

它基于电流的大小和方向来判断电力系统中是否存在故障。

当电流超过设定值时,继电器就会触发动作,进而切除故障部分。

电流保护的实现主要依赖于电流互感器和继电器。

电流互感器将高电压线路中的电流转换成与之成比例的低电流,并通过继电器进行监测和切除故障。

二、电压保护原理电压保护是继电保护中另一种常见的保护方式。

它主要用于检测电力系统中的电压异常情况,如过高或过低的电压。

电压保护的实现需要使用电压互感器和继电器。

电压互感器将高电压线路中的电压转换成与之成比例的低电压,并通过继电器进行监测和切除故障。

三、差动保护原理差动保护是一种以比较电流差值来判断电力系统中是否存在故障的保护方式。

它主要应用于变压器、发电机等设备的保护。

差动保护的实现主要依赖于电流互感器和继电器。

电流互感器将设备输入和输出侧的电流转换成与之成比例的低电流,继电器通过比较两侧电流的差值来判断是否存在故障,并触发动作切除故障。

四、过电流保护原理过电流保护是一种以电流超过额定值来判断电力系统中是否存在故障的保护方式。

它主要用于保护电力系统中的配电线路和设备。

过电流保护的实现主要依赖于电流互感器和继电器。

电流互感器将高电压线路中的电流转换成与之成比例的低电流,并通过继电器进行监测和切除故障。

继电保护的四个基本原理分别是电流保护、电压保护、差动保护和过电流保护。

这些原理在电力系统中起到了至关重要的作用,保护了电力设备和电力系统的安全运行。

通过合理配置和使用继电保护装置,能够及时检测和切除故障,有效避免了电力系统事故的发生,保障了电力系统的可靠供电。

继电保护原理

继电保护原理

继电保护原理
继电保护是一种常用的电气保护装置,其原理是利用电流、电压和其他参数的变化来监测电力系统中的故障,并通过控制继电器的动作来实现系统的保护。

继电保护的基本原理是利用电流或电压信号的变化来触发继电器的动作。

在正常情况下,电力系统中的电流和电压是稳定的,继电器处于闭合状态。

但是,当电力系统中发生故障时,例如短路或过载,电流或电压会发生异常变化,这时继电器将接收到异常信号,并触发动作。

继电保护系统通常由传感器、测量装置、继电器和触发器等组成。

传感器用于检测电流、电压和其他参数的变化,并将其转化为电信号。

测量装置负责测量和记录这些电信号的数值。

继电器是一个电磁开关装置,当接收到来自传感器或测量装置的异常信号时,会触发电磁线圈的动作,使开关状态发生变化。

触发器负责控制继电器的触发条件和动作时间。

继电保护的作用是保护电力系统中的各种设备和线路免受过电流、过电压、短路、地故障等故障的损害。

通过及时检测并断开故障点附近的电力传输,继电保护可以防止故障扩大,减少事故发生的可能性,并保护设备和人员的安全。

继电保护在电力系统中起着至关重要的作用,它不仅能够实现故障检测和保护,还可以提供监测和记录故障信息的功能,为电力系统的运行和维护提供重要依据。

同时,随着电力系统的
不断发展,继电保护的技术也在不断创新和改进,使其能够适应各种新型设备和复杂的故障情况,确保电力系统的稳定运行。

继电保护基本原理

继电保护基本原理

继电保护基本原理
继电保护基本原理是电力系统中一种常用的保护方法,它主要通过测量电路中的电流、电压等参数,并根据一定的逻辑关系和判据来判断电力系统是否存在故障或异常情况,并采取相应的措施,保护电力系统的安全运行。

继电保护的基本原理包括以下几个方面:
1. 电流与电压测量:继电保护通常通过电流互感器和电压互感器来测量电路中的电流和电压。

电流互感器将高电流变换为与之成比例的低电流,电压互感器则将高电压变换为与之成比例的低电压。

测量出的电流和电压信号将作为继电保护的输入信号。

2. 选择性:继电保护需要根据故障类型和位置来选择相应的保护元件,以实现快速、准确地判断故障位置和类型。

为了实现选择性保护,继电保护系统通常会设置多个保护回路,并通过元件的参数设置、电流电压比较等方式来实现选择性。

3. 逻辑判断:继电保护通过对测量得到的电流、电压信号进行逻辑判断,确定电力系统是否存在故障或异常情况。

常见的判断逻辑包括过流保护、距离保护、差动保护等。

例如,过流保护会比较电流信号与设定的额定电流值,当电流超过额定值时,保护动作,切断故障电路。

4. 装置操作:当继电保护判断存在故障时,它会采取相应的操作来保护电力系统。

常见的操作包括触发离合器、断路器等开
关设备,以切断故障电路。

此外,继电保护还可以向监控系统发送警报信号,以便及时采取措施修复故障。

继电保护基本原理的核心是通过测量和判断电路参数,实现对电力系统故障的快速、准确保护。

它在电力系统中起着重要的作用,可以有效地防止故障扩大、保护设备的安全运行。

电力系统继电保护原理及动作解析

电力系统继电保护原理及动作解析

电力系统继电保护原理及动作解析电力系统是现代工业生产和人们生活中不可或缺的基础设施之一。

而继电保护作为电力系统中的重要组成部分,起着检测和保护电力设备的作用。

本文将从继电保护的原理和动作解析两个方面进行阐述,以便读者更好地理解和掌握这一关键技术。

一、继电保护的原理继电保护的原理是基于电力系统中的电流、电压等物理量的变化来实现的。

当电力设备发生故障或异常时,电流、电压等物理量会发生变化,继电保护系统通过对这些变化进行监测和判断,及时采取相应的保护措施,以防止故障进一步扩大,保护电力设备的安全运行。

二、继电保护的动作解析继电保护的动作解析是指继电保护系统对电力系统中的故障或异常进行检测和判断,并根据判断结果采取相应的保护动作。

继电保护的动作解析可以分为两个阶段:故障检测和动作执行。

1. 故障检测:继电保护系统通过监测电力系统中的电流、电压等物理量的变化,检测是否存在故障或异常。

当监测到电流、电压等物理量超过设定的阈值或与设定的规律不符时,继电保护系统就会判断存在故障或异常。

2. 动作执行:一旦继电保护系统检测到故障或异常,就会执行相应的保护动作。

这些保护动作可以是切断电路、投入备用电源、改变电力系统的运行方式等。

通过执行这些保护动作,继电保护系统能够防止故障扩大,保护电力设备的安全运行。

继电保护的动作解析是一个复杂的过程,需要继电保护设备具备高度的灵敏性和可靠性。

同时,继电保护的动作解析还需要考虑电力系统的稳定性和可靠性等因素,以确保继电保护系统的正确运行。

继电保护的原理和动作解析是电力系统中非常重要的技术。

它通过对电流、电压等物理量的监测和判断,及时采取保护措施,保护电力设备的安全运行。

继电保护的动作解析是一个复杂而关键的过程,需要继电保护设备具备高度的可靠性和灵敏性。

只有通过科学合理的继电保护原理和动作解析,才能确保电力系统的安全稳定运行。

继电保护的动作原理

继电保护的动作原理

继电保护的动作原理继电保护是电力系统中非常重要的一部分,它的作用是在电力系统发生故障时及时切断故障电路,保护电力系统的安全运行。

那么继电保护的动作原理是什么呢?本文将从以下几个方面进行阐述。

一、继电保护的作用正如前文所述,继电保护的作用是及时切断故障电路,保护电力系统的安全运行。

在电力系统运行过程中,由于各种原因会产生各种故障,如短路、地故障等,这些故障如果不得到及时处理,会给电力系统带来严重后果,如电力设备的损坏、人身伤亡等。

继电保护的作用就是及时检测故障并进行处理。

二、继电保护的动作原理继电保护的动作原理可以分成三个部分:检测、判断和动作。

1. 检测继电保护系统通过安装在电力系统中的传感器检测电力系统的电流、电压等参数。

这些传感器可以是电流互感器、电压互感器、压力传感器等。

当电力系统中发生短路、断路等故障时,电流、电压等参数就会出现异常,并被传感器检测到。

2. 判断继电保护系统通过对检测到的电流、电压等参数进行判断,确定故障的类型和位置。

判断故障类型有欠压保护、过电流保护、过电压保护等。

通过判断故障位置可以确定故障的故障母线、故障支路等。

3. 动作继电保护系统根据故障类型和位置的判断结果,向电力系统中的断路器发出动作信号。

断路器接收到动作信号后,切断故障电路,保护电力系统的安全运行。

三、继电保护的分类根据继电保护系统的作用对象不同,可以将继电保护分成主保护和备用保护。

主保护负责检测和保护系统的主要元件,如主变压器、主电缆等,备用保护一般是作为主保护的补充措施,负责对主保护失效或故障时进行保护。

总之,继电保护的动作原理可以分成检测、判断和动作三个部分。

通过检测电力系统中的电流、电压等参数,判断故障类型和位置,向断路器发出动作信号,最终切断故障电路,保护电力系统的安全运行。

在实际应用中,根据保护对象的不同可以有不同的分类方式,如主保护和备用保护。

继电保护的基本原理

继电保护的基本原理

继电保护的基本原理
继电保护的基本原理
继电保护是一种防止电气设备损坏、避免操作者人身伤亡和电气设备事故发生的技术手段,它将电力系统的安全运行和正常运行与扰动、紊乱、发生故障和熔断的现象相区分开来,它主要通过发出警告或采取必要的行动来防止电气设备的损坏和事故的发生。

继电保护的基本原理是根据电气设备的运行条件,设置相应的继电器及其他装置,以便在危险状态发生时迅速切断电路,以保护设备免受损坏,并将事故限制在最小范围内。

继电保护从发出警告的意义上分为警告继电保护和限制继电保护两大类:
(1)警告继电保护是一种警示和报警功能,当受保护的设备出现运行指标超出规定范围时,及时发出警告信号通知操作人员,以防范可能发生的事故。

(2)限制继电保护是一种技术防范功能,当受保护设备出现故障时,继电器能够迅速响应,自动断开设备的主回路,以阻止事故的发生。

最后,继电保护的最终目的是确保电力系统的安全运行,保证其有效运行和可靠运行。

- 1 -。

继电保护的工作原理

继电保护的工作原理

继电保护的工作原理
继电保护的工作原理是通过监测电气设备或电路参数的变化,当出现异常情况时,通过继电器的动作来切断或改变电路的工作状态,以保护电气设备和电路的安全运行。

继电保护主要有以下几个步骤:
1. 检测:继电保护系统会监测电气设备或电路的电压、电流、频率、温度等关键参数。

可以通过传感器、电流互感器、电压互感器等设备来获取这些参数信号。

2. 比较:继电保护系统将实际测量的参数值与设定的保护值进行比较。

当参数值超过或低于设定的门槛值时,即认为出现了异常情况。

3. 判定:一旦检测到异常情况,继电保护系统会根据设定的保护逻辑进行判定,确定是否需要采取保护措施。

这些保护逻辑可以由逻辑电路、微处理器或其他专用电子器件实现。

4. 动作:当继电保护系统判定需要采取保护措施时,会触发相应的继电器动作。

继电器是一种电磁吸合开关,当继电器动作时,会切断或改变电路的工作状态,以避免损坏设备和电路。

5. 反馈:继电保护系统通常会提供反馈信号,通知操作人员保护系统的状态和保护动作是否已经完成。

操作人员可以根据反馈信息来进行故障诊断和维护操作。

总的来说,继电保护通过监测、比较、判定、动作和反馈等步骤,实现对电气设备和电路的保护,以确保其安全可靠运行。

继电保护的原理及应用动画

继电保护的原理及应用动画

继电保护的原理及应用动画一、继电保护的基本原理继电保护是电力系统运行中非常重要的一部分,它能够对电力系统中的故障进行检测、定位并采取相应的措施,以保证电力系统的安全运行。

继电保护的基本原理如下:1.故障检测:继电器通过检测电力系统中各个部分的电流、电压等参数,判断是否存在故障。

一般来说,当电流或电压超过设定的安全阈值时,会触发继电保护系统。

2.故障定位:一旦检测到故障,继电保护系统需要准确地定位故障的位置,以便快速采取措施。

这一步通常是通过测量电流和电压在电力系统中的传输时间来实现的。

3.故障隔离:确定故障位置后,继电保护系统会将故障部分与正常部分隔离,以避免故障扩大影响整个电力系统的安全运行。

4.保护控制:一旦故障隔离完成,继电保护系统会通过控制开关等装置,对故障部分进行控制操作,使故障得到修复或绕过。

二、继电保护的应用动画以下是继电保护的原理及应用动画演示,通过动画的方式直观地展示继电保护系统的运行过程。

1.故障检测阶段在这个动画中,可以看到继电保护系统实时监测电力系统中的电流和电压参数。

当电流或电压超过设定的安全阈值时,动画中的继电保护系统会触发报警并标出发生故障的位置。

2.故障定位阶段一旦发生故障,动画中的继电保护系统会测量电流和电压在电力系统中的传输时间。

通过计算传输时间,系统可以精确地定位故障的位置,并在动画中以箭头的形式标出。

3.故障隔离阶段故障定位完成后,动画中的继电保护系统会自动控制开关等装置,将故障部分与正常部分进行隔离。

在动画中,可以看到原先连接故障部分的线路被隔离开,并且继电保护系统会给出相应的提示。

4.保护控制阶段经过故障隔离操作后,动画中的继电保护系统会进一步进行保护控制。

例如,如果故障是因为某个设备损坏,系统可以关闭该设备并启用备用设备,以确保电力系统的正常运行。

通过这些动画,人们可以直观地了解继电保护的原理和应用过程,更好地理解电力系统的安全运行机制。

三、总结继电保护是电力系统中不可或缺的一部分,它可以通过检测、定位、隔离和控制的方式,保证电力系统的安全运行。

继电保护的基本原理和继电保护装置的组成

继电保护的基本原理和继电保护装置的组成

继电保护的基本原理和继电保护装置的组成继电保护是电力系统中重要的安全保障措施之一,用于保护电力设备和电力系统免受故障和过电流的损害。

本文将介绍继电保护的基本原理以及继电保护装置的组成。

一、继电保护的基本原理继电保护的基本原理是依靠电力系统中的电流、电压等参数的异常变化来判断设备是否发生故障,并对故障设备进行隔离和保护。

其基本原理包括故障检测、信号传输、故障判断和动作执行等环节。

1. 故障检测:继电保护装置通过检测电力系统中的电流、电压等参数,以确定是否存在设备异常。

常见的故障包括过电流、过电压、短路、接地故障等。

2. 信号传输:一旦检测到异常信号,继电保护装置会将信号传输给中央控制室或操作人员,以便进一步判断和采取相应的措施。

3. 故障判断:中央控制室或操作人员会根据接收到的异常信号进行故障判断,通过比对设备的工作状态和理论模型,确定具体的故障类型和位置。

4. 动作执行:一旦故障类型和位置确定,继电保护装置将发送信号给断路器或其他隔离设备,使其迅速切断故障电路,并保护其他设备免受影响。

二、继电保护装置的组成继电保护装置是实现继电保护原理的关键设备,其主要组成包括输入电路、测量元件、比较元件、判别元件和动作元件。

1. 输入电路:输入电路是继电保护装置的基础,充当了信息采集的作用。

输入电路包括电流互感器、电压互感器等,用于采集电力系统中的电流、电压等参数,并将信号传递给后续的测量元件。

2. 测量元件:测量元件是用来对输入电路中采集的信号进行精确的测量和转换。

常见的测量元件包括电流变压器、电压变压器等,能够将采集到的电流、电压等参数转换为标准的模拟量或数字量信号。

3. 比较元件:比较元件用于将测量得到的参数与事先设定的保护参数进行比较。

当测量参数超过或低于设定的保护参数范围时,比较元件会发出警报信号,通知判别元件进行下一步判断。

4. 判别元件:判别元件负责对比较元件发出的信号进行进一步的判断和分析,以确定是否存在故障。

继电保护及原理归纳

继电保护及原理归纳

主要的继电保护及原理一、线路主保护纵联保护纵联保护:利用某种通信通道将输电线路两端的保护装置纵向连接起来,将各端的电气量传送到对端,将各端的电气量进行比较,一判断故障在本线路范围内还是范围之外,从而决定是否切断被保护线路;任何纵联保护总是依靠通道传送的某种信号来判断故障的位置是否在被保护线路内,信号按期性质可分为三类:闭锁信号、允许信号、跳闸信号;闭锁信号:收不到这种信号是保护动作跳闸的必要条件;允许信号:收到这种信号是保护动作跳闸的必要条件;跳闸信号:收到这种信号是保护动作与跳闸的充要条件;按输电线路两端所用的保护原理分,可分为:纵联差动保护、纵联距离保护、纵联方向保护;通道类型:一、导引线通道;二、载波高频通道;三、微波通道;四、光纤通道;1)纵联差动保护纵联差动保护:原理是根据基尔霍夫定律,即流向一个节点的电流之和等于零; 差动保护存在的问题:一、对于输电线路1、电容电流:电容电流从线路内部流出,因此对于长线路的空载或轻载线路容易误动;解决办法:提高启动电流值牺牲灵敏度;加短延时牺牲快速性;必要是进行电容电流补偿;注:穿越性电流就是在保护区外发生短路时,流入保护区内的故障电流;穿越电流不会引起保护误动;2、TA断线,造成保护误动解决办法:使差动保护要发跳闸命令必须满足如下条件:本侧起动原件起动;本侧差动继电器动作;收到对侧“差动动作”的允许信号;保护向对侧发允许信号条件:保护起动;差流元件动作3、弱电侧电流纵差保护存在问题变压器不接地系统的弱电侧在轻载或空载时电流几乎没有变化解决办法:除两侧电流差突变量起动元件、零序电流起动元件和不对应起动元件外,加装一个低压差流起动元件;4、高阻接地是保护灵敏度不够在线路一侧发生高阻接地短路时,远离故障点的一侧各个起动元件可能都不启动,造成两侧差动保护都不能切除故障;解决办法:由零序差动继电器,通过低比率制动系数的稳态相差元件选相,构成零序1 段差动继电器,经延时动作;注:比率制动差动即一个和电流差动,一个差电流制动,两者综合考虑,差电流越大,才能动作;5、采样不同步解决办法:改进技术6、死区故障解决办法:远跳线路M、N侧;将M侧母线保护动作的接点接在电流差动保护装置的“远跳”端子上,保护装置发现该端子的输入接点闭合后立即向N侧发“远跳”信号;N侧接收到该信号后再经也可不经起动元件动作作为就地判据发三相跳闸命令并闭锁重合闸;注:3/2接线方式中母线保护动作是不允许发“远跳”信号的,而是母线保护起动失灵保护,失灵保护动作后起动“远跳”跳对侧断路器;二、对于主变在空载投入变压器、或者是外部故障切除电压恢复时,变压器电流表指针会有很剧烈的摆动,然后再返回正常的空载电流值,这个冲击电流就是所谓的励磁涌流;它有以下几个特点:1、涌流含有数值很大的高次谐波分量主要是二次和三次谐波,主要是二次谐波,因此,励磁涌流的变化为尖顶波,并且有明显的间断角;2、励磁涌流的衰减常数与的饱和程度有关,饱和越深,电抗越小,衰减越快;因此,在开始瞬间衰减很快,以后逐渐减慢;3、一般情况下,变压器容量越大,衰减的持续时间越长,但总的趋势是涌流的衰减速度往往比短路电流衰减慢一些;4、励磁涌流的数值很大,最大可达额定电流的6~8倍;当整定一台断路器控制一台变压器时,其速断可按变压器励磁电流来整定;根据这些特点,可以提出相应的解决办法;比如采用带有饱和变流器的差动继电器构成差动保护;利用二次谐波制动原理构成差动保护;2)纵联方向保护纵联方向保护是在规定正方向的情况下,通过比较故障分量电压和和电流在模拟阻抗上产生的电压之间的相位,正方向故障时,其功率方向为正,如上面公式所示;这是在假定各个阻抗的阻抗角相等的理想情况下的出来的,而在考虑各种因素的影响时,工频突变量的方向元件在正方向故障时功率方向为正的判据为270°,90°,即左半区域内,可以理解为阻抗部分的电阻值一定为负值,即所谓的电阻应该是变小的;反之,就容易得出另一个判据,反方向时判据为90°,-90°;纵联方向保护的原理决定它有以下几个特点:1、不受负荷状态的影响;2、不受故障点过渡电阻的影响;3、故障分量的电压、电流间的橡胶与系统电阻决定,方向明确;4、可消除电压死区;5、不受系统振荡影响;3)纵联距离保护纵联距离保护和纵联方向保护类似,只是将方向元件改成了距离元件;距离保护通过比较短路点与保护安装处的线路阻抗Zm和整定阻抗Zset,有以下三种情形:1、Zm<Zset,说明在保护区内,保护动作;2、Zm>Zset,说明在保护区外,保护不动作;3、Zm在Zset的反方向,说明为反方向故障,保护不动作;从它的保护原理,即通过比较两者的阻抗值可知,在考虑一定的裕量,以及发生高阻接地是要保证灵敏性的要求下,距离保护不能保护线路的全长,一般来说,距离1段能保护线路全长的80%;距离II段保护全长及下一线路的一部分;距离III段保护下一线路全全长,作为下一线路的远后备;纵联距离保护归根于距离保护的一段,即距离I段;纵联距离保护很少受系统运行方式、网络结构和负荷变化的影响;但它受系统振荡的影响、在串补电容线路上整定困难;距离保护还可以兼做本线路和相邻线路的后备保护用;二、重合闸电力系统的运行经验表明,架空线路故障大都是“瞬时性”故障,这些故障发生时,继电保护动作开关断开,电弧很快自然熄灭,这时故障点的绝缘强度重新恢复,此时,合上断路器能够恢复正常供电;重合闸的优点明显:首先能提高供电的可靠性,尤其是单回路线路;同事,也能提高电力系统并列运行的稳定性;对断路器机构本身或继电保护的误动作引起的误跳闸也能进行纠正补救;重合闸的缺点在于:当重合于永久性故障时,电力系统又受到了一次故障的冲击,有可能降低并列运行的稳定性;同时,它要求断路器在短时内连续两次切断短路电流,对短路器的灭弧能力要求高;重合闸不应动作的情况:1由值班人员手动或操作遥控装置将断路器断开;2手动合闸;重合闸起动方式有位置不对应起动偷跳和保护户跳闸起动;重合闸的单重、三重和综重1、单相重合闸是指:线路上发生单相接地故障的时候,保护动作只跳开故障相的断路器并单相重合闸;2、2、三重是指:不管线路上单相接地故障还是相间短路故障,都跳开三相,再三相重合闸;3、3、综合重合闸是指:当发生单相接地故障时采用单相重合闸方式,当发生相间短路时采用三相重合闸方式;一般来说,对于110kV及以下线路,采用单重方式;对于220kV及以上线路,采用多重方式;对于孤立线路,没有形成环网等特殊情况采用综重,各种方式的采用是综合考虑线间距离而导致的故障类型的可能性、供电的可靠性以及对系统的冲击来考虑的;重合闸的动作时间一方面,为了缩短电源断开时间,希望动作时限越短越好;另一方面,重合闸前要保证灭弧使介质绝缘强度恢复,这包括两点内容:一为断路器机构灭弧室;二为故障点的电弧熄灭;综合来看,重合闸的时间又不能太短,一般来说为,,;检无压和检同期检无压:在合开关前,先检测开关线路侧是否有电压,确定无电压后,再合开关;检同期“在和开关前,先检测开关两端是否满足同期条件电压和相位都相同,再合开关;两侧跳闸后,线路无压,这时投无压侧先将开关合上,另一侧检同期后再合闸;如果两侧均投检同期,由于线路无压,母线侧有压,两侧开关均不满足同期条件,将无法操作;如果一侧投检无压,另一侧投检同期,那么,检无压一侧,在断路器由于某种原因误碰或保护误动时而跳闸,对侧并未动作,此时线路有压,不能重合;因此,两侧均应装有检无压和检同期,但是,一侧投检无压和检同期后,另一侧只能够检同期,否则出现同时检无压重合闸导致非同期合闸,此时,在检同期继电器触点回路中要串接检无压的触点;两侧重合闸的配合问题重合闸是,一般在系统侧投检无压,靠近电厂侧投检同期,是为了防止重合于永久性故障时,再一次对发电机组造成冲击;同样的考虑还有500kV线路3/2接线方式的采用边开关先合,因为开关重合于永久性故障并且开关此时不能跳开时,系统的停电范围影响停一条母线,还是相邻的一条线路,因为对于500kV线路来说,线路在一般情况下比母线更重要;需要说明的是,对于单重方式,就不存在检同期,因为两相仍处于合闸状态;三、断路器保护断路器保护的功能配置:1、失灵保护对于3/2接线,断路器分为边断路器和中断路器,两者失灵时所跳的断路器有所不同,前者是跳中断路器和所连母线上所有边断路器;后者是跳两个边断路器,并且发远跳跳开线路对侧的与线路相连的断路器;一般来说,220kV及以下的失灵配置母差保护来完成,而500kV3/2接线时,则由断路器保护完成失灵失灵保护的动作条件故障相失灵:按相对应的线路保护跳闸接点和失灵过流高定值都动作后,先经可整定的失灵跳本开关时间延时定值发三相跳闸命令跳本断路器,再经可整定的失灵跳相邻开关延时定值发失灵保护动作跳相邻断路器;非故障相失灵的实现:由三相跳闸输入接点保持失灵过流高定值动作元件,并且失灵过流低定值动作元件连续动作,此时输出的动作逻辑先经可整定的失灵跳本开关时间延时定值发三相跳闸命令跳本断路器,再经可整定的失灵跳相邻开关延时定值发失灵保护动作跳相邻断路器;发变三跳起动失灵回路的实现:由发、变三跳起动的失灵保护可分别经低功率因素、负序过流和零序过流三个辅助判据开放;三个辅助判据均可由整定控制字投退;输出的动作逻辑先经可整定的失灵跳本开关时间延时定值发三相跳闸命令跳本断路器,再经可整定的失灵跳相邻开关延时定值发失灵保护动作跳相邻断路器;500kV开关失灵:开关的失灵保护是在开关保护里实现的,线路保护的分相跳闸命令来自操作箱的三相跳闸命令TJR开入至开关保护开关保护内部逻辑判断--过流判据失灵高定值0.6A,失灵低定值0;4A,满足失灵条件时经第一时限跳本开关,跳相邻开关即SLJ触点闭合;对于边开关来说,两个SLJ触点跳相邻中开关;两个SLJ触点起动母差失灵;另有四个SLJ触点开入至发信装置起动发信远跳;三跳接点可以分为三种:TJQ 三跳启动重合闸、启动失灵——目前基本没有什么用单重;TJR 三跳不启重合闸、启动失灵——母线保护、电抗器、失灵保护、远跳等的出口;TJF三跳不启重合闸、不启失灵——非电量出口不一致、本体等 ,三相不一致、瓦斯TJQ为三跳继电器,不闭锁重合闸,在一些三跳三重的场合TJQ动作还是允许重合的;如果此时去启动远跳回路肯定是不合适;TJR为永跳继电器,闭锁重合闸,往往母差保护及一些需闭锁重合闸的动作通过它来出口;TJR一但动作,肯定不能重合,用它来启动远跳回路;220kV开关失灵:1°线路开关失灵线路开关的失灵保护由线路保护、开关保护、失灵保护共同实现的,线路保护的分相跳闸命令来自操作三相跳闸命令TJR和TJQ与开关辅助保护过流判据失灵电流定值串联,开入至失灵保护屏,经失灵出口短延时跳母联/分段,失灵长延时跳该母线上所连接的所有开关;2°母联/分段开关失灵母联/分段开关的失灵保护由母差保护实现的,来自操作的三相跳闸命令TJR 开入母差保护屏,有母差保护经过流判据母联失灵电流定值实现失灵保护,满足失灵条件时经延时跳两条母线上的所有开关;3°变中开关失灵变中开关失灵有主变保护屏起动,借助失灵屏跳主变三侧;经内部逻辑判断后,开入之失灵屏的变中失灵中;同时主变保护屏的跳中压侧开关的命令开入至失灵屏解除复压闭锁;两者条件同时满足,使得保护元件和闭锁元件触电同时动作,从而实现联跳主变三侧;2、自动重合闸前面已有提及3、三相不一致保护定义:断路器只有一相或两相跳开,三相跳位开入不一致,非全相状态此时系统中有零序/负序分量,它的控制字为“不一致经零序开放投”“不一致经负序开放投”,闭锁重合闸,不启动失灵TJF;4、充电保护充电保护由按相构成的两段两时限相过流和一段零序过流组成;充电保护动作后,起动失灵保护;仅在线路变压器充电时投入,充电正常后立即退出;5、死区保护死区保护是为开关CT间故障时,开关跳开并不能切除故障,此时,为减小这种故障对系统的影响而设置的比失灵保护动作更快的保护;动作逻辑为:当装置收到跳闸信号和TWJ信号,且死去过流元件动作仍不返回,受死区保护投入控制经整定延时起动死区保护,出口回路与失灵一致;动作延时更小1°CT和开关之间2°死区保护与失灵保护公用出口3°动作时间比失灵保护动作快动作条件:三相跳闸接点;三相跳位;死区电流动作;死区延时对于3/2接线,6、跟跳单相跟跳:收到线路保护来的A/B/C单相跳闸信号,并且相应的高定值电流元件动作,瞬时分相跳闸;两相跳闸联跳三相,收到而且仅收到线路保护来的两相跳闸信号,并且任一相的高定值电流元件动作,经15MS延时联跳三相;三相跟跳:收到三相跳闸信号,并且任一相的高定值电流元件动作,瞬时三相跳闸出口;四、主变保护1瓦斯保护反应于油箱内部所产生的气体或油流而动作,它可防御变压器油箱各种短路故障和油面的降低,切具有很高的灵敏度;瓦斯保护有重轻之分,一般重瓦斯保护动作于跳开格策开关,轻瓦斯保护动作于信号;2纵联差动保护和电流保护用于防御变压器绕组和引出线的各种相间短路故障、绕组的匝间短路故障不能反映绕组很少的匝间短路故障以及中性点直接接地系统侧绕组和引出线的单相接地短路;纵差保护存在的问题:1°变比不同、分接头位置不同以及电流互感器的励磁特性不同,均会引起偏差,一般可以通过增设平衡绕组或改变微机保护的算法来补偿;2°励磁涌流,正常时,由于励磁电流很小,影响可不及,但在空载或者外部故障切除后电压恢复时,会有很大的励磁涌流,并且这种电流只流过电压器绕组的其中一侧,将会引起很大的差流,引起误跳闸,可以通过二次谐波量和间断角等识别励磁涌流;3反映外部相间短路故障的后备保护对于外部相间短路引起的变压器过电流,同时作为变压器瓦斯保护、纵联差动保护的后备保护,可采用的保护有过电流保护、低电压起动的过电流保护、复合电压起动的过电流保护、负序电流及单相式低电压起动的过电流保护以及阻抗保护等;4反应外部接地短路故障的后备保护对中性点直接接地电力网中,有外部接地短路引起过电流时,如变压器中性点接地运行应装设零序电流保护;零序电流保护可由两段组成,每段可各带两个时限,并均以较短的时限动作于缩小故障影响范围,或动作于本侧断路器,以较长的实现动作于断开变压器各侧断路器;5过负荷保护过负荷延时动作于信号,无人站必要时可动作于自动减负荷或跳闸;6过励磁保护大型变压器需装设过励磁保护,由于变压器铁心中的磁通密度B与电压/频率比U/f成正比,因此当电压升高和频率降低时会引起变压器过励磁,铁耗增加、发热,严重时甚至引起绝缘损坏;7其他非电量保护本体和有载调压部分的油温保护、压力释放保护、风冷保护、过载闭锁有载调压保护;五、母线保护断路器套管及母线绝缘子闪络、母线PT故障、运行人员的误碰误操作均会引起母线短路故障;母线故障的保护方法:根据电压等级的不同,对于35kV及以下母线,一般利用母线相连元件的保护装置来切除故障比如过电流保护,即不单独设置母线保护;而对于110kV及以上的母线,涉及到的负荷相对更大,这是为保证供电的可靠性,应该有选择性地切除任一组母线上的故障,并且另一段无故障母线仍能继续运行,这是就配置专用的母线保护;母线保护是以CT为分界点的,这也是因为母线保护按差动原理构成有关;因为差动保护能满足速动性和选择性的要求;母线差动原则:1°区外故障时,母线所连支路中流入和流出的电流相等;2°区内故障时,所有的电流几乎流向短路故障点,此时,流入和流出的电流不相等;3°从相位上来看,区外故障时,至少有一条支路的电流相位和其他支路相反;而区内故障时,由于电流都流向故障点,此时电流都是同相位的;完全差动和不完全差动:不完全差动需,1躲开外部短路时产生的不平衡电流;2躲开母线连接元件中,最大负荷支路的最大负荷电流,以防止电流二次回路断线时误动;母线不完全差动保护只需将连接于母线的各有电源元件上的电流互感器,接入差动回路,在无电源元件上的电流互感器不接入差动回路;因此在无电源元件上发生故障,它将动作;电流互感器不接入差动回路的无电源元件是电抗器或变压器;双母线接线方式的大差和小差双母线固定连接方式的完全电流差动保护:由三组差动保护组成,1M小差动,2M 小差动,1M、2M大差动;有大差之后,在母线运行方式发生变化时,由于小差通过大差闭锁来动作开关,可以有效闭锁区外故障时差动保护误动作;同样,在运行方式发生变化时,对于区内故障,会由大差继电器首先动作于母联开关,然后,小差I 、II继电器均有故障电流时会跳开两条母线;此种情况下会扩大停电范围;母联电流相位比较式差动保护:第一部分,进线和出线电流总电流继电器KA;第二部分,总差流,母联断路器电流和相位比较继电器KP;正常或区外故障时,KA不启动,不会误动;区内故障时,由KA判断区内故障,由KP判断故障母线;这种方式的缺点在于单母线运行时,需配置另一套单母线运行保护;举例说明母差动作:1、如果变电站A中母差保护动作母线故障,开关1跳开,对侧的开关2会跳开吗如果跳开的话,是不是通过变电站A母差保护操作箱中TJR发的远跳命令呢2、如果变电站A中母差保护动作母线故障,开关1拒跳,对侧的开关2会跳开;以前的培训说的是,母差保护动作,开关拒动会停信闭锁式保护,使开关2跳开;我在想,如果母差保护动作就会启动操作箱中TJR发远跳命令的话,就用不着停信使开关2跳开了;准确的说是母差保护跳令发送至操作箱的TJR继电器,TJR除跳闸,启动失灵外,同时给保护的"远跳开入"回路发一个开入,保护接到"远跳开入"开入量后,就向对侧保护发远跳命令,使对侧断路器跳闸;所以说根本的东西在于保护是否接到"远跳开入",如果接到了,就会向对侧保护发远跳命令;如果接线正确,不论开关是否拒跳,都会有:母差跳闸=>启动TJR=>保护收到远跳开入=>对侧断路器跳闸是否经启动控制要视控制字而定;TJQ为三跳继电器,不闭锁重合闸,在一些三跳三重的场合TJQ动作还是允许重合的;如果此时去启动远跳回路肯定是不合适;TJR为永跳继电器,闭锁重合闸,往往母差保护及一些需闭锁重合闸的动作通过它来出口;TJR一但动作,肯定不能重合,用它来启动远跳回路;本侧母差都动作了说明是母线故障,本侧开关跳开,现在如果线路保护是光纤纵差保护,母差保护动作启动TJR,TJR一副接点去启动远跳让对侧结合控制字是否需经本侧启动控制直接跳闸或者是远传结合本侧就地判据出口跳闸,本侧开关已经跳开,为了更快的隔离故障让对侧也跳闸也不会有什么负荷损失,像以前母差保护动作停信是针对闭锁式高频保护,CT与开关之间的故障,本侧母差保护动作跳开本侧开关,由于高频保护未能来得及动作,在本侧开关跳开后,故障点的电流由对侧流过来,对于本侧保护来说是反方向故障,保护会发信闭锁对侧的高频保护使得高频保护不能跳闸,由于对侧的距离一段只能保护线路全长的80%,只能由距离二段切除故障,距离二段时间较长会使故障扩大,所以必须让本侧母差保护动作让本侧保护停信好让对侧高频保护动作快速切除故障;母差动作和失灵动作的不同母差保护跳各种元件都是瞬时的,因为其判据简单且母线故障对系统稳定性影响极大;对于失灵保护而言,回路及判据相对复杂且一旦动作停电范围大,因此动作相对保守;这也是为什么失灵动作跳其它断路器要有延时的目的之一,尤其是现在保护双套配置的情况下,我们完全有理由在出现断路器失灵起动量保护动作接点+电流判别元件寄希望于其它保护动作切除故障 ;因此,衡量了误动以及延时动作两者的危害后,延时跳开其它断路器是可以接受的;同时考虑到切除母联断路器一般情况下并不影响供电,因此母联断路器的切除时间可以更短些;但是因为判断断路器失灵不得不考虑保护动作时间和断路器动作时间以及整定计算上要考虑的时间最小级差的问题,因此跳开母联断路器也是要有短延时的,只不过这个时间可以比跳开其它断路器的时间更短些;相关补充1、对称分量法对称分量法method of symmetrical components电工中分析对称系统不对称运行状态的一种基本方法;广泛应用于三相交流系统参数对称、运行工况不对称的电气量计算;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
QF TV YR QF KS
去 信 号
KA TA
I﹥
KW
P﹥
KT
图4-3方向过流保护原理接线图
中国电力出版社
第一节 方向电流保护的工作原理
在双侧电源线路上,并不是所有过流保护装置中都需要装 设功率方向元件,只有在仅靠时限不能满足动作选择性时, 才需要装设功率方向元件。 无时限电流速断保护在原理上用于双侧电源 线路时,其动作电流要按同时躲过线路首端和 末端短路的最大短路电流,才能保证动作的选 择性。但是,由于线路两侧电源的容量和系统 阻抗不同,当在线路发生短路时,两侧电源供 给的短路电流大小并不相同,甚至数值相差很 大,这时安装在小电源一侧的电流速断保护范 围就不能满足灵敏度的要求,甚至可能没有保 护范围。
以母线电压 U r 为参考相量,电压高于地时为正,电 流 I r1 以母线流向线路为正。 I r1 滞后 当保护正方向(K1)短路时:电流 I r1为正, U r 相角 r1 。 • r1 = k1 (0°< <90°)。 r1 • 短路功率 PK1=Ur1Ir1cos r1>0; r 2 k 2 180 • 当保护反方向K2点发生短路时, (0°< <90°,180°< r 2 <270°)。 k2 • 短路功率PK2=UrIr2cos r 2 <0。
I2
W1 W2 C2
C1
KP
图4-8直接比较式比较回路接线图
中国电力出版社
1、直接比较式比较回路
I1W1 I 2W2 ( IW )op UA UB 0.9W1 0.9W2 ( IW )op ZA ZB
(4-9)
ZA:工作回路阻抗;ZB:制动回路阻抗; 0.9:有效值转换为平均值的 系数。 当ZA=ZB且(IW)OP≈0时,继电器动作条件为
t1
t2
t3
t5
t4
t6
图4-2双侧电源电网线路方向过流保护时限特性
中国电力出版社
双侧电源电网线路方向过流保护时 限特性
G1 ~ 1QF 1 WL1 k2 2QF 2 3QF WL2 3 k1 4QF 4 5QF 5 WL3 6QF 6 G2 ~
△t
t1 t2
△t
t3 t4
△t
△t
t5
t
t6
• 图4-2 双侧电源电网线路方向过流保护的时限特性
中国电力出版社
判断方向的实质
K2
K1
U res
k1
I K1
图4-4 功率方向继电器工作原理说明图
r1 k1
I k2
r 2 180 k1
图4-5 正反故障时电压、电流相量图
中国电力出版社
在保护装置动作的正方向和反方向发生短路时, 功率方向继电器测量的功率方向相反。
中国电力出版社
第一节 方向电流保护的工作原理
图4-1单侧电源环网
中国电力出版社
第一节方向电流保护的工作原理
P1 0
P2
K1
0, P3 0P 4
0 P5 0
P6
0
规定:短路功率的方向从母线指向线路 为正方向。 K1点短路时,保护1、2、4、6为正方 向;保护3和5反方向,不应起动。
中国电力出版社
电流保护方向性问题 的提出
中国电力出版社
第二节 功率方向继电器
一、功率方向继电器工作原理 功率方向继电器的任务是测量送入继电器 的电压Ur和电流Ir之间的相位,以判别正、 反向故障。 目前使用的功率方向继电器为感应型、整 流型和晶体型。整流型继电器灵敏性好, 无电压死区、调试方便及动作速度快等 。 功率方向继电器有感应型、整流型和半导 体型,按相位比较或幅值比较原理构成。
U C KU U r UD KI Ir

动作条件可以表示为:
UC 90 arg 90 (4 5) UD
中国电力出版社
二、相位比较原理与幅值比 较原理的关系
• 功率方向继电器的幅值比较的两个电气量 UA和UB,可以通过UC和UD经过线性变换得 到: U U U
线 敏 灵
I r最

Ur
φr = φk
φm
Ur
Ir1
α
中国电力出版社
考虑继电器内角a的动作方程
• 在实际应用中,为适应判别各种正方向短路故障时,功率 方向继电器的测量功率最大,具有最好的灵敏性,继电器 中应有可以调整的内角α,这时功率方向继电器的动作方 程为: —(90°+α)≤arg 或 —90°≤arg
• 当电流相量Ir垂直于动作特性时,功率方向继电器的动作最 灵敏,这一位置称为最大灵敏线,最大灵敏线与电压Ur之间 m =-α,因为这时Ir超前Ur,所 夹角 m 称为最大灵敏角, m 是负角度。 以, • 功率方向继电器可以直接比较电气量Ur和Ir之间的相位,也 可以间接比较电气量Ur和Ir的线性函数 Uc和 UD之间相角来 构成。。
中国电力出版社
第一节 方向电流保护的工作原理
一、为什么在电流保护中装设方向性元件?(必要性) 在双侧电源电网或单侧电源环形网中:
1、对于I段保护,这时为了使保护在区外故障时不误动,其整 定值不仅要躲过本线路末端短路时流经保护的最大短路电流, 而且要躲过保护反方向故障时流经本保护的最大短路电流。 2、对于II段保护,这时不仅要下相邻下一线的第I段配合,而且 还要与其在同一母线下的各条出线的第I段相配合。 3、对于III段保护,这时仅靠时限的配合已无法获得选择性。 上述问题的产生,皆因双侧电源电网和环形电网中,在保护安 装处反方向短路时,有可能使保护动作的缘故。 于是,为了解决上述问题,我们提出在原有的电流保护基础上, 加装一个能判断故障方向的元件即功率方向继电器。
中国电力出版社

功率方向继电器的工作原理:实质就是判断母线电压 和流入线路的电流之间的相位角。动作方程可表示为:
继电器动作 的临界情况 是一条与相 量 Ur 相垂直的 直线,通 常称为功 率方向继 电器的动 作特性。
Ur 90 arg 90 (4 1) Ir
Ir2
动作区
φr2=180°+ φk 非动作区
K2
K1
t2
t3 , t4
t5
可见,一般电流保护不能满足保护选择性要求。因此,要采 用方向电流保护来解决这个问题。
中国电力出版社
第一节 方向电流保护的工作原理
P2
P3
方向过流保护是在过流保护基础上加装方向元件的 保护。在一般过流保护2和3上各加一个方向元件 (功率方向继电器),它只有当短路功率由母线流 向线路时,才允许保护动作,这样就解决了过流保 护的选择性问题
中国电力出版社
第一节 方向电流保护的工作原理
图4-1两侧电源辐射形电网 如图4-1所示,当在K1点发生短路时,要求保护3、4动作,断 开3、4两个断路器;如在K2点发生短路,要求保护1、2动作, 断开1、2两个断路器。 对K1点短路,为实现选择性要求:t3 t2 , t4 t5 对K2点短路,为实现选择性要求:
中国电力出版社
功率方向继电器工作原理
判断方向的实质 方向元件(功率方向继电器)之所以能判别正、 反向故障是因为正、反向故障时,保护安装处的 母线残压与被保护线路上的电流之间的相位关系 不同。方向元件正是根据这种不同来识别正、反 向故障的。
中国电力出版社
功率方向继电器
功率方向继电器的任务是测量送入继电器 的电压Ur和电流Ir之间的相位,以判别正、 反向故障。 目前使用的功率方向继电器为感应型、整 流型和晶体型。整流型继电器灵敏性好, 无电压死区、调试方便及动作速度快等优 点。


电气量间变换关系:
U A KU U r K I I r U B KU U r K I I r

1 U C (U A U B ) 2 1 U D (U A U B ) 2
本章基本要求
1、掌握在双侧电源网络中继电保护动作带有方向性 的必要性,以及可以省略方向元件的条件。 2、掌握方向元件(功率方向继电器)的工作原理, 构造及动作特性。通过型功率方向继电器的研 究,初步弄清反应两个电气量的继电器的基本 构成原理—基于两个电气量相位比较的原理和 基于两个电气量幅值比较的原理及其互换性。 通过对整流型功率方向继电器研究,弄清中间电压 变换器和电抗变换器的作用、构造及作原理。 3、掌握用于相间短路的功率方向继电器的典型接线 方式—90°接线及其工作分析。 4、了解对方向性电流保护的评价。
第一节 方向电流保护的工作原理
• WL1上K2点短路时,只有保护1、2、4和6 能启动,其中按动作方向时限最短的保护1 和2动作,跳开断路器1和2,将故障线路 WL1切除,保护4和6便返回,同样保证了 动作的选择性。
K2
WL1
I K1
中国电力出版社
IK 2
第一节 方向电流保护的工作原理
• 方向过流保护装置由三个主要元件组成,启动元 件(电流继电器),功率方向元件(功率方向继 电器)和时限元件(时间继电器)。工作原理是 方向元件KW和启动元件KA构成与门,二者同时 动作才能启动时间继电器KT。
A
UC
A
A
UC
UC UD
90
U A UCU D U B U C U D

UD

UB
UB
UD
UB

90

90
中国电力出版社
二、相位比较原理与幅值比较原 理的关系
UB • 若以为 U A 动作量, 为制动量。则当UC与UD相位 差θ=90°时,U A= U B ,动作量等于制动量 ,动作的 临界状态;当θ<90°时, U A > U B 动作量大于 制动量,继电器处于动作状态;当θ>90°时, < UA U B ,动作量小于制动量,继电器不动作。
相关文档
最新文档