遥感图像的几何校正

合集下载

遥感图像几何校正

遥感图像几何校正

第4讲遥感图像几何校正遥感成像的时候,由于飞行器的姿态、高度、速度以及地球自转等因素的影响,造成图像相对于地面目标发生几何畸变,这种畸变表现为像元相对于地面目标的实际位置发生挤压、扭曲、拉伸和偏移等,针对几何畸变进行的误差校正就叫几何校正。

几何校正是利用地面控制点和几何校正数学模型来矫正非系统因素产生的误差,由于校正过程中会将坐标系统赋予图像数据,所以此过程包括了地理编码。

在开始介绍ENVI的几何校正操作之前,首先对ENVI的几何校正几个功能要点做一个说明。

1几何校正方法(1)利用卫星自带地理定位文件进行几何校正对于重返周期短、空间分辨率较低的卫星数据,如A VHRR、MODIS、SeaWiFS等,地面控制点的选择有相当的难度。

这时,可以利用卫星传感器自带的地理定位文件进行几何校正,校正精度主要受地理定位文件的影响。

(2) image to image几何校正通过从两幅图像上选择同名点(或控制点)来配准另外一幅栅格文件,使相同地物出现在校正后的图像相同位置(3)image to map几何校正通过地面控制点对遥感图像几何进行平面化的过程。

(4)image to image 自动图像配准根据像元灰度值或者地物特征自动寻找两幅图像上的同名点,根据同名点完成两幅图像的配置过程。

(5)image registration workflow流程化工具将具有不同坐标系、不同地理位置的图像配准到同一坐标系下,使图像中相同地理位置包含相同的地物。

2控制点选择方式ENVI提供以下选择方式:∙从栅格图像上选择如果拥有需要校正图像区域的经过校正的影像、地形图等栅格数据,可以从中选择控制点,对应的控制点选择模式为Image to Image。

∙从矢量数据中选择如果拥有需要校正图像区域的经过校正的矢量数据,可以从中选择控制点,对应的模式为Image to Map。

∙从文本文件中导入事先已经通过GPS测量、摄影测量或者其他途径获得了控制点坐标数据,保存为以[Map (x,y), Image (x,y)]格式提供的文本文件可以直接导入作为控制点,对应的控制点选择模式为Image to Image 和Image to Map。

如何进行遥感图像的几何校正与分类处理

如何进行遥感图像的几何校正与分类处理

如何进行遥感图像的几何校正与分类处理遥感图像是通过人造卫星、航空器或遥感器获取的地球表面的图像信息。

在进行遥感图像的处理和分析时,几何校正和分类处理是其中重要的步骤。

本文将重点探讨如何进行遥感图像的几何校正和分类处理,并介绍相关的方法和技术。

一、遥感图像的几何校正遥感图像的几何校正是指将图像中的像素点与地球表面上真实位置进行对应,以消除因成像过程中的非完美性而引入的误差。

几何校正的目的是提高图像的空间分辨率和地理位置精度,从而能够更准确地用于地表特征的分析和监测。

1. 预处理在进行几何校正之前,需要先对遥感图像进行预处理,包括去除大气影响、辐射校正和减噪等。

这些预处理步骤有助于提高图像的质量和准确性。

2. 控制点的选择几何校正过程中需要选择一些已知地理位置的控制点,用于图像与地理坐标系统的对应。

这些控制点可以是地面标志物、地理信息系统(GIS)数据或其他已知位置的遥感图像。

控制点的选择应均匀分布在图像中,并要尽量选择在不同地貌和地物类型上的点,以提高校正的准确性。

3. 变换模型的选择几何校正过程中需要选择适合图像特性和误差来源的变换模型。

常用的变换模型包括线性变换模型、多项式模型和地面控制点法等。

选择合适的变换模型可以提高校正的准确性和效率。

4. 校正方法和工具进行几何校正时,可以使用遥感软件如ENVI、ERDAS等提供的功能和工具。

这些软件提供了多种校正方法和算法,如影像配准、几何校正、快速校正等。

根据具体需求和图像特性选择合适的校正方法和工具,并进行参数设置和调整。

二、遥感图像的分类处理遥感图像的分类处理是指将图像中的像素按照其所代表的地物类型进行分类和划分。

分类处理的目的是将图像中的信息有效地提取出来,并用于地表特征的研究、资源调查和环境监测等。

1. 数据预处理在进行分类处理之前,需要对遥感图像进行数据预处理,包括辐射校正、几何校正、噪声抑制等。

这些预处理步骤可以提高分类的准确性和可靠性。

遥感图像的几何校正

遥感图像的几何校正

分辨率:采用线对/毫米
f
Rg
Rs f H
Rg 为地面分辨率
H
H 为航高
Rs 为系统分辨率 f 为摄影机焦距
IKONOS 图像,1m分辨率
由于地形起伏 引起的平面上 的点位在相片 位置上的移动, 这种现象称为 像点位移,其 位移量就是中 心投影与垂直 投影在同一水 平面上的“投 影误差”
9个一定 高度的柱 子,影像 中心正射 投影,只 能看到顶; 其余成像 后放射状 的向外倒
物辐射状向外 称的向两侧倒,低
倒,低于基准 于基准面地物对称 面地物辐射状 的向中间倒 向内倒
高出基准面地物对
称的向两侧倒,低
于基准面地物对称 的向中间倒
传感器成像方式引起的图像变形 传感器外方位元素变化的影响 地形起伏引起的像点位移 地球曲率引起的图像变形 大气折射引起的图像变形 地球自转的影响
y f a12 ( X P X S ) a22 (YP YS ) a32 (ZP ZS ) a13 ( X P X S ) a23 (YP YS ) a33 (ZP ZS )
➢如辐射计、红外辐射计、微波辐射计、微波高 度计等
遥感 传感 器的 几何 投影 方式
中心投影类型:分幅式摄影机、面阵列 CCD传感器
掸扫式(逐点):光/机
扫描成像、镜头转动式 摄影机
多中心投影类型
推扫式(逐线) :固体 自扫描成像、狭缝式摄 影机
斜距投影成像仪: 侧视雷达等
不同类型成像传感器,其成像原理和投影方式也不同
➢ 中心投影构像方程 ➢ 多中心投影构像方程
➢推扫式传感器的构像方程 ➢扫描式传感器的构像方程
中心投影像片坐标与地面点大地坐标的关系:
X X
x

实验七 遥感图像几何精校正

实验七 遥感图像几何精校正

图像几何校正遥感图像的几何纠正是指消除影像中的几何形变,产生一幅符合某种地图投影或图形表达要求的新影像。

一般常见的几何纠正有从影像到地图的纠正,以及从影像到影像的纠正,后者也称为影像的配准。

遥感影像中需要改正的几何形变主要来自相机系统误差、地形起伏、地球曲率以及大气折射等。

几何纠正包括两个核心环节:一是像素坐标的变换,即将影像坐标转变为地图或地面坐标;二是对坐标变换后的像素亮度值进行重采样。

一、影像到影像的几何纠正1、打开并显示图像文件在ENVI主菜单栏中,选择File →Open Image F ile,打开参考影像(这里以SPOT图像为例)和需校正影像(这里以TM图像为例)。

它们将分别显示在Display窗口,如图2.12所示。

图2.12 待纠正影像和参考影像显示图2、启动几何纠正模块(1)在ENVI主菜单中,选择Map→Registration→Select GCPs:Image to Image,弹出Image to Image Registration几何纠正模块对话框。

(2)选择显示参考影像(SPOT文件)的Display为基准图像的(Base Image),显示需校正影像(TM文件)的Display为待纠正图像(Warp Image)(如图2.13所示)。

(3)点击OK按钮,弹出Ground Control Point Selection对话框,进行地面控制点的采集,如图2.14所示。

图2.14 地面控制点选择对话框图2.13 选择基准影像与待纠正影像3、采集地面控制点在图像几何纠正过程中,采集地面控制点是一项重要和繁重的工作,直接影响最后的纠正结果,在实际操作中要特别认真和具有耐心。

(1)在Ground Control Point Selection对话框中,选择Options→ Set Point Colors,设置或修改GCP在可用和不可用状态的颜色。

(2)在两个Display中移动方框位置,寻找明显的地物特征点作为输入GCP。

遥感图像的几何校正原理

遥感图像的几何校正原理

遥感图像的几何校正原理遥感图像的几何校正原理是指通过对遥感图像进行几何变换,将图像投影到地球表面上的正确位置,以确保图像的几何特征和空间位置的精确性。

遥感图像的几何校正原理是遥感技术中极为重要的一个环节,它涉及到传感器投影模型的建立以及图像的几何校正方法和参数计算等多个方面。

遥感图像的几何校正原理主要包括以下几个方面:1. 传感器的几何投影模型:遥感图像是通过传感器获取到的,而传感器的几何投影模型是校正的基础。

传感器的几何投影模型是描述传感器观测到的像元在地面坐标系中的位置的数学模型,通常包括摄影几何模型和几何投影模型。

摄影几何模型主要用于航片和卫星图像的几何定位,几何投影模型主要用于平面影像和正射影像的几何定位。

根据传感器的类型和几何特性,选择合适的几何投影模型进行校正。

2. 地面控制点的选择:地面控制点是指已知准确地理坐标的地物特征点,通过对图像与地面控制点的匹配,可以确定图像与地面坐标系之间的几何关系。

地面控制点的选择应具有代表性和充分的空间分布,以保证校正的几何精度。

常用的地面控制点包括地面标志物、地物边界等。

3. 图像配准和校正:图像配准是指将图像与地面控制点进行匹配,确定图像在地面坐标系中的位置。

图像校正是通过几何变换将图像投影到正确位置,保证图像的几何特征和空间位置的准确性。

常用的图像校正方法包括多项式变换、分段线性变换和二次变换等。

多项式变换是基于一阶、二阶或高阶多项式函数进行校正的方法,它可以实现图像的平移、旋转、缩放和错切等变换。

分段线性变换是将图像分成若干个区域,然后在每个区域内进行线性变换。

二次变换是将图像分成若干个二次曲面,然后在每个二次曲面内进行变换。

4. 校正参数的计算:校正参数是指用于实现图像校正的参数,一般包括平移、旋转、缩放和错切等参数。

校正参数的计算是校正过程中的关键一步,一般通过最小二乘法、迭代法和控制点测量法等方法来求解。

最小二乘法是一种常用的数学优化方法,通过最小化图像与控制点之间的误差,求解校正参数。

遥感图像的几何校正

遥感图像的几何校正

Polynomial——多项式变换(同时做投影变换) ,设待纠正图像上飞像点 坐标(X,Y)和纠正后相应像点的坐标(x,y)可以用下 面的多项式来表示: x = a00+ a10 X + a01 Y + a20 X 2 + a11 XY + a02 Y 2 + ⋯ y = b00+ b10 X + b01 Y + b20 X 2 + b11 XY + b02 Y 2 + ⋯ 式中 aij,bij 为待求系数。多项式变换在卫星图像校正过程 中应用较多,在调用多项式模型时,需要确定多项式的次方数, 整景图像选择 3 次方。 次方数与所需要的最少控制点数是相关的,最少控制点计算公 式为( t + 1 × t + 2 ) 2,式中 t 为次方数,即 1 次方最少需 要 3 个控制点,2 次方最少需要 6 个控制点,3 次方需要 10 个控 制点。 Rubber Sheeting——非线性、非均匀变换。 采点模式: ① 视窗采点模式,直接在视窗中采点; ② 文件采点模式,直接读入控制点文件或 ASCLL 码文件; ③ 地图采点模式,通过数字化仪采点或通过键盘输入控制点。 重采样方法: ① Nearest Neighbor——邻近点插值法, 将最邻近像元值直接赋予输出像 元。特点:运算量最小,但是内插精度较低。 ② Bilinear Interpolation——双线性插值法, 用双线性方程和 2×2 窗口输 出像元值。特点:内插精度和运算量都比较适中; ③ Cubic Convolution——立方卷积插值法,用三次方程和 4×4 窗口计算 输出像元值。特点:内差精度高,缺点是运算量很大;
④ Bicubic Spline Interpolation——双三次样条插值, 产生比双线性插值更 平滑的图像边缘。 三、几何校正的方法

遥感图像的几何校正

遥感图像的几何校正

遥感图像的几何校正遥感成像的时候,由于飞行器的姿态、高度、速度以及地球自转等因素的影响,造成图像相对于地面目标发生几何畸变,这种畸变表现为像元相对于地面目标的实际位置发生挤压、扭曲、拉伸和偏移等,而我们通常得到的遥感影像通常都存在几何畸变,所以就需要我们针对几何畸变进行的误差校正,而这种校正就叫几何校正。

几何校正的校正原理建立图像坐标和地面坐标之间的数学关系,即输入图像和输出图像间的坐标转换关系,通过计算机对离散结构的数字图像中的每一个像元逐个进行校正处理。

今天我会使用ENVI4.2为大家演示两种几何校正,图象对地图的校正、图象对图象的校正。

1、图象对地图的校正:适用于地形示意图及野外GPS采点首先,打开ENVI长条菜单栏Map / Registration / image to map,选择投影方式和像元大小注:选点须准确,最好在四倍放大时参照周围地物尽量准确定位,然后将其放大至20倍甚至更多倍数,进一步确定。

步骤4:加完足够多的点后,达到要求精度,Option / Warp file(控制点较均匀分布于全图,18个点以上,RMS Error一般应达到一个像元以内的精度)步骤5:输入待校正的图象,可以选择子集,点击OK,输出保存即可保存控制点文件:控制点对话框File—Save GCPs to ASCII,见下图。

如需再次使用该点文件,则通过前面所说步骤,打开控制点对话框,点击Restore GCPs from ASCII即可。

2、图象对图象的校正:步骤1:同时展示两幅图象,选择主菜单栏Map / Registration / image to image,选择Base image和Warp image图象所在在窗口,Base image:有地理座标的图像。

Warp image:待校正图像步骤2:设置点的颜色步骤3:在base image中选择控制点,在warp image中选择同一控制点,精确定位,Add point步骤4:加完足够多的点后,达到要求精度,Option / Warp file其余步骤同前图象对地图的校正。

实验四:遥感图像的几何校正

实验四:遥感图像的几何校正

之后,点击Apply确认设置,再点击Close按钮进行下一步操作。
选择Existing Viewer,即以现有视图中的图像投影为配准依据。
确定后,打开校正对话框布局。
采集地面控制点( 采集地面控制点(Ground Control Point) ) GCP的具体采集过程: 的具体采集过程: 的具体采集过程 在图像几何校正过程中,采集控制点是一项非常重要和繁重的工作, 在图像几何校正过程中,采集控制点是一项非常重要和繁重的工作,具体过程如 下: 1、 在GCP工具对话框中,点击 工具对话框中, 图表, 选择状态; 、 工具对话框中 点击Select GCP图表,进入 图表 进入GCP选择状态; 选择状态 2、 在GCP数据表中,将输入 数据表中, 的颜色设置为比较明显的黄色。 、 数据表中 将输入GCP的颜色设置为比较明显的黄色。 的颜色设置为比较明显的黄色 3、 在Viewer1中移动关联方框位置,寻找明显的地物特征点,作为输入 中移动关联方框位置, 、 中移动关联方框位置 寻找明显的地物特征点,作为输入GCP。 。 4、 在GCP工具对话框中,点击 工具对话框中, 图标, 中点击左键定点, 、 工具对话框中 点击Create GCP图标,并在 图标 并在Viewer3中点击左键定点, 中点击左键定点 GCP数据表将记录一个输入 数据表将记录一个输入GCP,包括其编号、标识码、X坐标和 坐标。 坐标和Y坐标 数据表将记录一个输入 ,包括其编号、标识码、 坐标和 坐标。 5、 在GCP对话框中,点击 对话框中, 图标, 选择状态。 、 对话框中 点击Select GCP图标,重新进入 图标 重新进入GCP选择状态。 选择状态 6、 在GCP数据表中,将参考 数据表中, 的颜色设置为比较明显的红色, 、 数据表中 将参考GCP的颜色设置为比较明显的红色, 的颜色设置为比较明显的红色 7、 在Viewer2中,移动关联方框位置,寻找对应的地物特征点,作为参考 、 中 移动关联方框位置,寻找对应的地物特征点,作为参考GCP。 。 8、 在GCP工具对话框中,点击 工具对话框中, 图标, 中点击左肩顶巅, 、 工具对话框中 点击Create GCP图标,并在 图标 并在Viewer4中点击左肩顶巅, 中点击左肩顶巅 系统将自动将参考点的坐标( 、 )显示在GCP数据表中。 数据表中。 系统将自动将参考点的坐标(X、Y)显示在 数据表中 9、在GCP对话框中,点击 对话框中, 图标, 选择状态, 、 对话框中 点击SelectGCP图标,重新进入 图标 重新进入GCP选择状态,并将光标 选择状态 移回到Viewer1中,准备采集另一个输入控制点。 移回到 中 准备采集另一个输入控制点。 10、不断重复 ,采集若干控制点 、不断重复1-9,采集若干控制点GCP,直到满足所选定的几何模型为止,在 ,直到满足所选定的几何模型为止, 控制点达到一定数量后,每采集一个InputGCP,系统就自动产生一个 控制点达到一定数量后,每采集一个 ,系统就自动产生一个Ref. GCP, , 通过移动Ref. GCP可以优化校正模型。 可以优化校正模型。 通过移动 可以优化校正模型

遥感实验2遥感图像的几何校正

遥感实验2遥感图像的几何校正
遥感实验2遥感图像的几何校正
contents
目录
• 引言 • 遥感图像几何校正的基本原理 • 遥感图像几何校正的步骤 • 实验操作与结果分析 • 问题与解决方案 • 实验总结与展望
01 引言
实验目的
掌握遥感图像几何校 正的基本原理和方法。
了解几何校正对遥感 图像应用的影响。
学会使用遥感软件进 行几何校正操作。
04 实验操作与结果分析
数据准备
数据来源
选择具有代表性的遥感图像,确保数据质量可靠且具有实际 应用价值。
数据预处理
对原始数据进行必要的预处理,如辐射定标、大气校正等, 以提高几何校正精度。
实验操作过程
几何校正方法选择
根据遥感图像的特点和实际需求,选择合适的几 何校正方法,如多项式校正、仿射变换等。
THANKS FOR WATCHING
感谢您的观看
06 实验总结与展望
实验收获与体会
实验收获
通过本次实验,我深入了解了遥感图像 的几何校正方法,掌握了常用的校正算 法。
VS
实验体会
在实验过程中,我遇到了很多困难和挑战 ,但通过不断尝试和探索,最终成功完成 了实验任务。
对实验的改进建议
算法优化
建议对常用的几何校正算法进行优化,提高校正精度和效率。
不同遥感图像的比例尺可 能存在差异,导致图像拼 接时出现不协调。
问题解决方案
使用地理参考数据
通过地理参考数据对遥感图像进行几何校正,使其与实际地形相 匹配。
图像配准技术
利用图像配准技术,将不同来源的遥感图像进行对齐,消除错位现 象。
调整图像比例尺
通过几何变换算法,调整不同图像的比例尺,使其一致,便于拼接。
数据来源多样性

遥感图像的几何校正原理

遥感图像的几何校正原理

遥感图像的几何校正原理遥感图像的几何校正是指通过对图像进行空间几何变换,将其投影到地球表面,使得图像中的每一点对应到地球表面上的一个准确位置。

这样做的目的是为了消除图像中由于遥感器在获取图像时的姿态、高度、地球自转等因素造成的图像畸变,并且使得图像能够与地理信息系统中的地图数据进行精确叠加,从而实现对地理空间信息的准确提取和分析。

在遥感图像处理中,几何校正是非常重要的一环,对于后续的遥感信息提取、地图制图和空间分析等应用具有重要的意义。

遥感图像的几何校正原理主要包括以下几个方面:1. 姿态校正:遥感器在获取图像时往往会受到外部因素的影响,导致姿态不稳定,从而引起图像中的位置畸变。

因此,需要对图像进行姿态校正,使得图像中的每一个像素能够按照准确的空间位置进行定位。

姿态校正的主要方法包括使用姿态角信息进行校正、使用GPS/惯导等辅助信息进行姿态测量以及使用地面控制点进行姿态精确校正。

2. 像元定位:在遥感图像中,像元是指图像中的一个最小单元,通常对应于地面上的一个小区域。

在进行几何校正时,需要将图像中的像元与地球表面上的实际位置进行对应,这就需要确定每个像元的准确位置,即像元的定位。

像元定位的主要方法包括使用地面控制点进行像元定位、通过建立像元坐标系系统进行像元定位以及通过地形起伏对像元进行补偿。

3. 系统误差校正:在遥感图像获取过程中,会受到一些系统误差的影响,例如大气、地形或者地面表面的变化等因素会导致图像中的位置畸变。

因此,需要进行系统误差校正,以消除这些系统误差对图像的影响,从而提高图像的精度和准确度。

系统误差校正的主要方法包括对图像进行大气校正、进行地形效应校正以及通过地面控制点进行系统误差校正。

4. 投影变换:在进行几何校正时,需要对图像进行投影变换,将其投影到地球表面上的准确位置。

投影变换的最常用方法是采用地图投影方法,将图像投影到地图数据的坐标系上,从而实现图像与地图数据的叠加和精确对应。

遥感图像解译中的几何纠正方法

遥感图像解译中的几何纠正方法

遥感图像解译中的几何纠正方法随着遥感技术的不断发展,遥感图像的获取和应用越来越普遍。

然而,由于拍摄角度、地面形态等因素的影响,遥感图像存在几何形变的问题。

为了解决这个问题,人们提出了许多几何纠正方法。

本文将介绍几种常见的遥感图像几何纠正方法,并探讨它们的优劣势。

一、多项式拟合法多项式拟合法是一种常用的几何纠正方法。

它通过将原始图像中的像素位置与现实世界中的地理位置进行对应,建立像素坐标与地理坐标之间的映射关系。

随后,利用多项式拟合的方法,根据已知的像素位置和地理位置对应关系,推导出一个几何变换模型,从而对图像进行几何纠正。

多项式拟合法的优点是简单易行,适用于各种图像,并且能够有效地减小几何变形。

然而,它也存在一定的局限性,例如对于大范围的图像,多项式拟合法在极端情况下可能会引入较大的误差。

二、控制点法控制点法是一种基于已知控制点坐标的几何纠正方法。

首先,需要在原始图像和现实世界中选取一些已知位置的控制点。

然后,根据这些已知控制点的像素坐标和地理坐标,建立起坐标之间的对应关系。

最后,通过将图像中的像素位置与地理位置对应起来,根据已知控制点的坐标对图像进行几何纠正。

控制点法的优点是准确性高,适用于各种尺度的图像。

然而,它的缺点是需要大量的已知控制点,并且对于图像中没有控制点的区域,无法进行几何纠正。

三、地形校正法地形校正法是一种考虑地面形态的几何纠正方法。

遥感图像的获取往往会受到地面形态的影响,导致图像中的距离和角度存在失真。

地形校正法通过获取地面高程数据,并将其与遥感图像相结合,对图像进行几何纠正。

地形校正法的优点是能够考虑地面形态,提高几何纠正的精度。

然而,它的缺点是需要获取地面高程数据,成本较高且工作量较大。

同时,在平坦地区或缺乏高程数据的地区,地形校正法可能不能有效实施。

综上所述,遥感图像解译中的几何纠正方法有多种选择。

每种方法都有其独特的优劣势,适用于不同的情况。

在实际应用中,可以根据需求和条件选取合适的几何纠正方法,以提高图像的几何精度和应用效果。

浅谈遥感图像的几何校正

浅谈遥感图像的几何校正

浅谈遥感图像的几何校正摘要遥感是在不直接接触的情况下,对目标物或自然现象远距离感知的一门探测技术。

ERDAS IMAGINE是一款遥感图像处理系统软件。

遥感图像的几何处理是遥感信息处理过程中的一个重要环节,必须先用ERDAS IMAGINE进行几何精纠正,只有消除了几何变形,才能进一步分析研究,进一步开展图像解译、专题分类等分析研究工作。

关键词:遥感,erdas imagine,几何纠正1.前言遥感是在不直接接触的情况下,对目标物或自然现象远距离感知的一门探测技术。

具体地讲,是指在高空和外层空间的各种平台上,运用各种传感器获取反应地表特征的各种数据,通过传输,变换和处理,提取有用的信息,实现研究地物空间形状,位置,性质,变化及其与环境的相互关系的一门现代应用技术科学。

遥感图像处理硬件系统也从光学处理设备全面转向数字处理系统,内外存容量的迅速扩大,处理速度急速增加,使处理海量遥感数据成为现实,网络的出现将使数据实时传输和实时处理成为现实。

遥感图像处理软件系统更是不断翻新,从开始的人机对话操作方式发展到视窗方式,未来将向智能化方向发展。

ERDAS IMAGINE是一款遥感图像处理系统软件。

ERDAS IMAGINE是美国ERDAS 公司开发的遥感图像处理系统。

它以其先进的图像处理技术,友好、灵活的用户界面和操作方式,面向广阔应用领域的产品模块,服务于不同层次用户的模型开发工具以及高度的RS/GIS(遥感图像处理和地理信息系统)集成功能,为遥感及相关应用领域的用户提供了内容丰富而功能强大的图像处理工具,代表了遥感图像处理系统未来的发展趋势。

遥感图像作为空间数据,具有空间地理位置的概念,在应用遥感图像之前,必须将其投影到需要的地理坐标系中。

因此,遥感图像的几何处理是遥感信息处理过程中的一个重要环节。

遥感图像在成像时,由于成像投影方式、传感器外方位元素变化、传感介质的不均匀、地球曲率、地形起伏、地球旋转等因素的影响,获得的遥感图像相对于地表目标存在一定的几何变形,使得图像上的几何图形与该物体在所选定的地图投影中的几何图形产生差异,造成形状或位置的失真,这主要表现为位移、旋转、缩放、仿射、弯曲和更高阶的歪曲,且其精度直接影响到后续处理工作的质量。

第四章 遥感图像处理――几何校正PPT课件

第四章 遥感图像处理――几何校正PPT课件
22
三种内插方法比较
方法 1
优点 简单易用,计算量小
缺点
处理后的影像亮度具有不连 续性,影响精确度
精度明显提高,特别是对亮度 计算量增加,且对影像起到
2
不连续现象或线状特征的块状 平滑作用,从而使对比度明
化现象有明显的改善。
显的分界线变得模糊。
3
更好的影像质量,细节表现更 为清楚。
工作量很大。
23
18
像元灰度值重采样
校正前后图像的分辨率变化、像元点位置相对变化引 起输出图像阵列中的同名点灰度值变化。
x X
P(X,Y) Y
纠正后影像
p(x,y) y
纠正前影像
19
最近邻法
—以距内插点最近的观测点的像元值为所求的像元值。
影像中两相邻点的距离为1,即 行间距△x=1,列间距△y=1,取与 所计算点(x,y)周围相邻的4个点,比 较它们与被计算点的距离,哪个点距 离最近,就取哪个的亮度值作为 (x,y)点的亮度值f(x,y)。设该 最近邻点的坐标为(k,l),则
一是指平台在运行过程中,由于姿态、地球曲 率、地形起伏、地球旋转、大气折射、以及传 感器自身性能所引起的几何位置偏差。
二是指图像上像元的坐标与地图坐标系统中相 应坐标之间的差异。
3
引起遥感图像几何变形的因素
一、遥感平台位置和运动状态变化的影响
旁向位移的影响 速度变化即航向位移的影响
高度变化的影响—地面分辨率不均匀 俯仰变化的影响
21
三次卷积内插法
取与计算点(x,y)周 围 相 邻 的 16 个 点 , 与 双 向 线 性内插类似,可先在某一方 向上内插,每4个值依次内插 4次,求出f(x,j-1),f(x, j ) , f(x,j+1) , f(x,j+2) , 再根据这四个计算结果在另 一 方 向 上 内 插 , 得 到 f(x , y)。

遥感图像几何校正(较易)

遥感图像几何校正(较易)

遥感图像几何校正(较易)遥感图像几何校正是将采集的遥感图像与地球参考系统(如地理坐标系统或投影坐标系统)进行对齐,以保证图像上的地物位置与实际地理位置一致。

下面是一个较易的遥感图像几何校正步骤示例:1. 获取控制点:首先选择一些在图像上可见且在地面上已知坐标的控制点。

这些控制点可以是人工设置的地物特征,如标志物、房屋角点等,也可以是已知坐标的地理要素,如GPS测点、地面地物等。

2. 图像配准:通过图像配准软件,在原始图像上标记出控制点的位置,并将其与其在地面上的真实坐标相匹配。

配准软件会根据这些控制点来计算出图像的几何变换参数,如旋转、平移和缩放等。

13. 几何变换:根据图像的几何变换参数,对整个图像进行几何校正。

几何变换方法可以是线性的或非线性的,其中包括了常用的平移、旋转、缩放和仿射变换等。

4. 像素重采样:在完成几何校正后,由于图像上的像素点分辨率可能与原始图像不同,因此需要对图像进行重采样,以保证图像的细节精度和质量。

重采样方法有最邻近插值、双线性插值和双三次插值等,根据实际情况选择合适的方法。

5. 边缘裁剪:在完成像素重采样后,由于几何校正和重采样的处理可能会导致图像边缘的变形,需要对图像进行边缘裁剪,以去除边缘的不确定区域。

6. 输出校正后的图像:完成校正后的图像即可输出,用于后续的遥感分析和应用。

2需要注意的是,以上是一个较为简单的遥感图像几何校正流程,具体步骤和方法会因不同的图像类型、几何变换需求和软件工具的选择而有所不同。

在实际应用中,还需要考虑更多因素,如地面控制点的选择和精度要求、辅助数据的使用等。

3。

数字图像处理遥感图象的几何校正

数字图像处理遥感图象的几何校正
i 1
V (i, j n 2) * f [d (i, j n 2)]
V (i 1, j n 2) * f [d (i 1, j n 2) 1]
V (i 2, j n 2) * f [d (i 2, j n 2) 2]}
其中:i=int(xr), j=int(yr) d(i,j)——(i,j)和(xr,yr)坐标距离 V(i,j)——(i,j)像元值
立方卷积
立方卷积法以实际位置临近的16个像元值,确定输出
像元的灰度值。公式为:
16
pigi
g (m, n)
i 1 16
pi
i 1
PSF 三次样条函数 sinc函数
Cubic Convolution
4
Vr {V (i 1, j n 2) * f [d (i 1, j n 2) 1]
RMS (xy xi )2 ( yr yi )2
RMS误差的容忍取决于数据质量和应用目的。
Landsat TM 一般控制在1个像元,30m以内。
AVHRR一般控制在1.5个像元,1.5Km以内。
计算转换矩阵和RMS误差后,可能的选择:
1) 剔除具有最高RMS误差的点,用剩下的GCP计算另一个转 换矩阵,可能会得到更为接近的拟合。但是,如果在图像的 某一特殊区域只有一个GCP,那么剔除它可能导致更大的误 差。
线s)
x0 b1 b2 x b3 y b4 x 2 b5 xy b6 y 2 bn y t y0 a1 a2 x a3 y a4 x 2 a5 xy a6 y 2 an y t
最小二乘法
5.3 校正步骤 Rectification Step
基本原理:利用图像坐标和地面坐标 (另一图像坐标、地图坐标等)之间的数学 关系,即输入图像和输出图像间的坐标转换 关系实现。

ENVI遥感图像的几何校正

ENVI遥感图像的几何校正

遥感图像的几何校正(配准)1.实验目的与任务:(1)理解几何校正的原理;(2)学习使用 ENVI 软件进行几何校正;2.实验设备与数据:设备:遥感图像解决系统 ENVI数据:TM 数据3几何校正的过程:注意:几何校正一种是影像对影像,一种是影像对地图,下面介绍的是影像对影像的配准或几何校正。

1.打开参考影像(base)和待校正影像:分别打开,即在display#1,display#2 中打开;2.在主菜单上选择map->Registration->select GCPs:image to image3 .出现窗口Image to Image Registration,分别在两边选中DISPLAY 1(左),和DISPLAY 2(右)。

BASE 图像指参考图像而warp 则指待校正影像。

选择OK!4.现在就能够加点了:将两边的影像十字线焦点对准到自己认为是同一地物的地方,就能够选择ADD POINT 添加点了。

(PS:看不清出别忘记放大)如果要放弃该点选择右下脚的delete last point,或者点show point 弹出image to image gcp list 窗口,从中选择你要删除的点,也能够进行其它诸多操作,自己慢慢研究,呵呵。

选好4 个点后就能够预测:把十字叉放在参考影像某个地物,点选predict 则待校正影像就会自动跳转到与参考影像相对应的位置,而后再进行合适的调节并选点。

5.选点结束后,首先把点保存了:ground control points->file->save gcp as ASCII..固然你没有选完点也能够保存,下次就直接启用就能够:ground control points->file->restore gcps from ASCII...6.接下来就是进行校正了:在ground control points.对话框中选择:options->warp file(as image to map)在出现的imput warp image 中选中你要校正的影像,点ok 进入registration parameters对话框:首先点change proj 按钮,选择坐标系然后更改象素的大小,如果本身就是你所需要大小则不用改了最后选择重采样办法(resampling),普通都是选择双线性的(bilinear),最后的最后选择保存途径就OK 了遥感图像的监督分类1 实验的目的和任务1)理解遥感图像计算机分类的原理和办法;2)掌握监督分类的环节和办法。

如何进行遥感图像的几何校正与纠正

如何进行遥感图像的几何校正与纠正

如何进行遥感图像的几何校正与纠正遥感图像是通过无人机、卫星等远距离设备获取的地球表面的影像数据。

这些图像在应用于地理信息系统(GIS)、自然资源管理、城市规划等领域时,需要进行几何校正与纠正。

本文将介绍什么是遥感图像的几何校正与纠正,以及如何进行这一过程。

一、什么是遥感图像的几何校正与纠正遥感图像的几何校正与纠正是指将采集到的图像数据与真实地理空间进行对应,消除由于图像采集时摄像设备、地球曲率等因素引起的形变、偏移等问题,使图像具备准确的地理位置信息。

这项工作是遥感技术应用的重要环节,对于后续的数据分析和信息提取至关重要。

二、遥感图像的几何校正与纠正方法1. 外方位元素法外方位元素法是利用航片或图像外方位元素(像空间坐标与地面坐标之间的变换参数)进行几何校正与纠正的方法。

在这种方法中,需要准确确定图像的摄影中心、摄影距离以及摄影方位角等相关参数,通过计算来修正图像的几何形变。

外方位元素法准确性较高,适用于相对高精度的项目。

2. 控制点法控制点法是通过在图像上选择一系列已知地理位置的控制点,在地面实地测量其坐标,然后通过像点与地理坐标的对应关系,进行几何校正与纠正的方法。

该方法的关键在于控制点的选择与测量精度,控制点越多、分布更均匀,纠正效果越好。

3. 数字高程模型(DEM)法数字高程模型法是通过使用数字高程模型数据,将遥感图像与地面实际高程进行对照校正的方法。

通过图像与DEM之间的高差计算,对图像进行几何校正与纠正。

这种方法适用于大范围的地形起伏、高程变化较大的区域。

三、遥感图像的几何校正与纠正注意事项1. 数据预处理在进行几何校正与纠正之前,需要对采集到的遥感图像进行预处理。

预处理包括影像增强、去噪、边缘检测等步骤,以提高图像质量和准确性。

2. 参考数据选择在进行校正与纠正时,需要选择适当的参考数据,以确保纠正结果的准确性。

参考数据可以包括航片、已经准确校正的图像、已知地理坐标点等。

3. 校正模型选择校正模型选择是几何校正与纠正的关键步骤之一。

实验2遥感图像的几何校正

实验2遥感图像的几何校正
数目的确定:最小数目 实际中往往取6倍于最小数目。 选择的原则
易分辨、易定位的特征点:道路的交叉口,水库坝 址,河流弯曲点等。
图象边缘部分一定要选取控制点,避免外推 特征变化大的地区应多选些。 尽可能满幅均匀选取。
上机:基于spot图像的TM图像校正过程
• 第一步:显示图像文件(Display Image Files )
点击左键定点,GCP数据表将记录一个输入GCP,包括其编号、 标识码、X坐标、Y坐标
注意:所选控制点是同名点,即在TM影像上点 和在SPOT影像上点,两个点是同一地物点
第四步中的①~④
可以左键按住控制点,进行位置移动
③在Viewer #1中移动关联方框位置, 寻找明显的地物特征点,作为输入GCP
④单击Create GCP图标,并在Viewer #3中点击左键定点
上机:基于spot图像的TM图像校正过程
第五步:采集地面检查点(Ground Check Point)
b) 在GCP Matching对话框中,需要定义下列参数:
匹配参数( Matching Parameters )
最大搜索半径( Max. Search Radius ):3 搜素窗口大小(Search Window Size ): X->5 Y->5
④ 计算检查点误差 在GCP Tool工具条中点击Compute Error图标,检查点的误差 就会显示在GCP Tool的上方,只有所有检查点的误差均小于一 个像元(Pixe1),才能继续进行合理的重采样。一般来说,如果 你的控制点(GCP)定位选择比较准确的话,检查点匹配会比较 好,误差会在限差范围内。否则,若控制点定义不精确,检查 点就无法匹配,误差会超标。
实验2 遥感图像的几何校正

遥感图像影像几何校正方法与精度评价

遥感图像影像几何校正方法与精度评价

遥感图像影像几何校正方法与精度评价遥感技术是一种通过航空器或卫星获取地球表面信息的技术手段。

为了获得准确的地理空间信息,遥感图像需要经过几何校正。

本文将介绍几种常用的遥感图像影像几何校正方法,并探讨它们的精度评价。

一、几何校正方法1. 多点校正法多点校正法是一种常用的几何校正方法。

它通过在图像中选择多个控制点,然后根据这些控制点在现实地面上的坐标,使用几何变换公式进行图像的几何校正。

这种方法简单易行,适用于中等分辨率的图像。

2. 数字高程模型校正法数字高程模型校正法是一种基于数字高程模型的几何校正方法。

首先,通过获取地面的数字高程模型,然后将图像与数字高程模型进行配准,最后进行几何校正。

这种方法的优点是精度较高,适用于高分辨率的图像。

3. 惯导校正法惯导校正法是一种利用航空器或卫星的惯性导航系统进行几何校正的方法。

惯性导航系统可以测量航空器或卫星的姿态和位置信息,根据这些信息对图像进行几何校正。

这种方法的精度较高,适用于航空器或卫星上配备有惯性导航系统的情况。

二、精度评价几何校正的精度评价是衡量几何校正过程中误差大小的方法。

常用的评价指标有均方根误差(RMSE)和控制点定位精度。

1. 均方根误差(RMSE)均方根误差是通过对校正前后的像素位置误差进行统计分析得到的一个指标。

它是校正后图像中所有像素位置误差的平方和的开方。

均方根误差越小,表示几何校正的精度越高。

2. 控制点定位精度控制点定位精度是通过选取一组已知坐标的控制点,然后对校正后图像中的相应像素进行位置测量,计算其与控制点的位置误差。

控制点定位精度越小,表示几何校正的精度越高。

三、案例分析以一幅航拍图像为例,使用多点校正法、数字高程模型校正法和惯导校正法进行几何校正,并对校正后的图像进行精度评价。

多点校正法得到的校正图像的RMSE为0.5个像素,控制点定位精度为2米。

数字高程模型校正法得到的校正图像的RMSE为0.2个像素,控制点定位精度为0.5米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验03
遥感图像的几何校正
1、2实验数据“7-48-92-А(者相).jpg”、“7-48-80-丙(花江).jpg”。

3、实验数据用有投影的“panAtlanta.img”影像校正“tmAtlanta.img”影像。

2、方里网地形图几何校正
步骤与经纬度地形图校正相同,唯一的区别在与初始投影的选取和坐标值的输入。

(1)初始坐标值设置如下:
使用的是高斯-克吕格投影,6°分带第18带。

(2)输入坐标时,X轴不需要输入带号“18”,因为方里网的长度单位是km,因此在输入时要转换为m,即X轴18551输入时坐标为551000;Y轴2839输入时坐标为2839000。

小技巧:如果选取控制点过程中显示的十字星看不见,可以将其颜色设置为红色。

3、用有投影坐标的影像校正没有坐标的影像
第6步图像重采样同地形图几何校正
五、将几何校正后的影像转换为常用投影(1)启动几何校正模块,选择“重投影”(Reproject)
(2)选择重新投影的投影参数(贵州地区)
(3)重采样,保存。

实验数据说明:
1、实验数据“7-48-92-А(者相).jpg”、“7-48-80-丙(花江).jpg”。

2、实验数据“7-48-92-А(者相).jpg”。

3、实验数据用有投影的“panAtlanta.img”影像校正“tmAtlanta.img”影像。

实验结果:
1、
huajiang.img:几何校正结果(经纬度坐标)
huajiang-r.img:重投影结果(阿尔伯斯投影坐标)
zhexiang.img:几何校正结果(经纬度坐标)
zhexiang-r.img:重投影结果(阿尔伯斯投影坐标)
2、
zhexiang-gk.img:几何校正结果(方里网坐标)
zhexiang-gk-r.img:重投影结果(阿尔伯斯投影坐标)
3、
atlanta.img:几何校正结果(坐标系统与参考影像panAtlanta.img相同)。

相关文档
最新文档