江苏省南通市海门中学2020-2021学年高三上学期阶段检测(二)数学试题-无答案
江苏省海门市2020学年度第一学期高三数学期中考试卷
江苏省海门市2020学年度第一学期高三数学期中考试卷(11.21)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量(3,4)a =r ,(8,6)b =-r,则向量a r 与b rA .互相平行B .互相垂直C .夹角为030 D .夹角为060 2.已知24sin 225α=-,,04πα⎛⎫∈- ⎪⎝⎭,则sin cos αα+等于 A .75-B .15-C .15D .753.已知a b c >>,0a b c ++=,当01x <<时,代数式2ax bx c ++的值是A .正数B .负数C .0D .介于1-与0之间 4.“神六飞天,举国欢庆”,据科学计算,运载“神州”六号飞船的“长征”二号系列火箭在点火1分钟通过的路程为2km ,以后每分钟通过的路程比前一分钟增加2km ,在达到离地面240km 的高度时,火箭与飞船分离,则这一过程大约需要的时间是A .10分钟B .13分钟C .15分钟D .20分钟 5.条件p :“直线l 在y 轴上的截距是在x 轴上的截距的两倍”;条件q :“直线l 的斜率为2-”,则p 是q 的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .非充分也非必要条件6.设函数25(1)()1(1)x x f x x x ⎧-≥⎪=⎨+<⎪⎩,则不等式()1f x ≥的解集为A .(][],21,2-∞-UB .()(),20,2-∞-UC .(][],20,2-∞-UD .[][)2,02,-+∞U7.若实数x 、y 、z 满足2221x y z ++=,则xy yz zx ++的取值范围是A .[]1,1-B .11,2⎡⎤-⎢⎥⎣⎦C .11,22⎡⎤-⎢⎥⎣⎦D .1,12⎡⎤-⎢⎥⎣⎦8.已知()y f x =是定义域为R 的单调函数,且12x x ≠,1λ≠-,121x x λαλ+=+,211x x λβλ+=+,若12()()()()f x f x f f αβ-<-,则 A .0λ< B .0λ= C .01λ<< D . 1λ>9.图像12xy ⎛⎫= ⎪⎝⎭与函数24xy =-的图像关于A .直线1x =对称B .点(1,0)对称C .直线2x =对称D .点(2,0)对称10.直线l 与圆221x y +=l 与两坐标轴围成的三角形的面积等于 A .32 B .12 C .1或3 D .12或32第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分,把答案填在题中横线上.11.ABC ∆的三个内角分别为A 、B 、C ,若tan A 和tan B 是关于x 的方程210x ax a +++=的两实根,则C ∠= .12.在ABC ∆中,O 为中线AM 上一个动点,若2AM =,则()OA OB OC ⋅+u u u r u u u r u u u r的最小值是 .13.已知实数x 、y 满足约束条件10201x ay x y x --≥⎧⎪+≥⎨⎪≤⎩()a R ∈,目标函数3z x y =+只有当1x y =⎧⎨=⎩时取得最大值,则a 的取值范围是 . 14.要得到cos(2)4y x π=-的图像,且使平移的距离最短,则需将sin 2y x =的图像即可得到.15.假设实数1234,,,a a a a 是一个等差数列,且满足113a <<及34a =.若定义2n an b =,给出下列命题:①1234,,,b b b b 是一个等比数列;②12b b <;③24b >;④432b >;⑤24256b b ⨯=.其中正确的命题序号为 .16.已知函数2()44f x x =--,若0m n <<,且()()f m f n =,则mn 的取值范围为 .三、解答题:本大题共5小题,共70分。
南通市海门中学、泗阳中学2021-2022学年高三上学期第二次诊断测试数学试题及答案
1 2
1,
2
,B
错误;
由集合 A,B,可知 C、D 错误.
故选:A.
r
r
2. 已知向量 a (cos ,sin ) , b (sin, cos ) ,则 a b ( )
A. 1
B. 2
C. 2
D. 2 2
【答案】B
【解析】
【分析】求出 a b 的坐标,由模的坐标表示计算.
【详解】由已 知
其中 M 为绝对星等, m 为目视星等, d 为距离(单位:光年).现在地球某处测得牛郎星
目视星等为 0.77,绝对星等为 2.19;织女星目视星等为 0.03,绝对星等为 0.5,且牛郎星和
织女星与地球连线的夹角大约为 34°,则牛郎星与织女星之间的距离约为( )(参考数
据:100.906 8.054 ,100.716 5.199 , cos 34 0.8 )
(2)求证:函数 f (x) 存在两个零点(记为 x1, x2 ),且 x1x2 1 .
22. 已知函数 f (x) ex 1 x . x
(1)求函数 f x 的单调区间;
(2)若对 x 0 , f (x) ax2 1 成立,求实数 a 的取值范围.
6/24
高三诊断考试试题及答案解析
2022 届高三第二次诊断测试
A. BB1 // 平面 ACD1
B. B1D 平面 ACD1
C. 顶点 B1 到平面 ACD1 的距离为 4 3 3
D. 过顶点 A 可作 2 条不同直线与直线 AC , AD1 所成的角均为 60°
12.
已知函数
f
x 的定义域 (1,1) ,且
f
(1 ) 1,若 2
f (x)
2020年12月江苏省南通市四校联盟2021届高三上学期第二次调研联考数学试题及答案
绝密★启用前 江苏省南通市四校联盟 2021届高三毕业班上学期第二次调研联考数学试题2020年12月一.单选题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案填涂在答题卡相应的位置上)1. 已知集合A ={a |a 2-4a <5},B ={a |a <2}正确的是 ( )A .-1,2∈AB . 15∉BC .B ⊆AD .A ∪B ={a |-5<a <4}2. 若a >0,b >0,则“a +b ≤4”是“ab ≤4”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3. 已知f (x )=⎩⎪⎨⎪⎧c os πx x ≤1f (x -1)+1 x >1 则f (43)+f (-43)的值为 ( ) A .12 B .- 12 C .-1 D .14. 已知函数f (x )=⎩⎪⎨⎪⎧a x x >1(4-a 2)x +2 x ≤1 是R 上的单调递增函数,则实数a 的取值范围是 ( )A .(1,+∞)B .[4,8)C .(4,8)D .(1,8)5. 根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N 最接近的是(参考数据:lg 3≈0.48) ( )A .1033B .1053C .1073D .10936. 已知函数f (x )的图象如图所示,则f (x )的解析式可以是 ( )A .f (x )=ln|x |xB .f (x )=e x xC .f (x )=1x 2-1D .f (x )=x -1x 7. 已知函数f (x )=x +2+k ,若存在区间[a ,b ][-2,+∞)使得函数f (x )在区间[a ,b ]上的值域为[a +2,b +2],则实数k 的取值范围为( )A .( -1,+∞)B .(-14,0]C . (-14,+∞)D . ( -1,0]8. 已知函数f (x )= ⎩⎪⎨⎪⎧-x 2+2x x ≤0ln(x +1) x>0 ,若| f (x )|≥kx ,则k 的取值范围是( ) A . (-∞,0] B . (-∞,1] C .[-2,1] D . [-2,0]二.多选题(本大题共4小题,每小题5分,共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案填涂在答题卡相应的位置上)9. 给出下列命题:A .∃a ∈R,ln(a 2+1)<0;B .∀a >2,a 2>2a ;C .∀α,β∈R,sin(α-β)=sin α-sin β;D .a >b 是2a >2b 的充要条件.其中假.命题为 ( ) 10. 对于函数f (x )=x1+|x |,下列判断正确的是( )A . f (-x +1)+ f (x -1)=0B . 当m ∈(0,1)时,方程f (x )=m 有唯一实数解C . 函数f (x )的值域为(-∞, ∞)D . ∀x 1≠x 2,f (x 1)-f (x 2)x 1-x 2>0。
江苏省南通市海门区2021至2022学年高三上学期学业质量监测数学试卷 差答案
2021~2022学年度第一学期期末质量调研高三数学一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x |x 2-4<0},B ={0,1,2,3},则A ∩B =A .{0}B .{0,1}C .{1,2}D .{0,1,2} 2.若复平面内点(1,-2)对应的复数为z ,则z +1z --i=A .45+25B .2iC .-2iD .23.已知菱形ABCD 的对角线AC =2,点P 在另一对角线BD 上,则→AP ·→AC 的值为A .-2B .2C .1D .4 4.已知a =log 328,b =π0.02,c =sin1,则a ,b ,c 的大小关系是A .c <b <aB .c <a <bC .a <b <cD .a <c <b 5.已知函数f (x )=x 2-a e x有三个零点,则实数a 的取值范围是A .(0,4e 2)B .[0,4e 2)C .[0,4e2] D .(0,4e )6.已知正四棱锥P -ABCD 的底面边长为22,侧棱P A 与底面ABCD 所成的角为45°,顶点P ,A ,B ,C ,D 在球O 的球面上,则球O 的体积是A .16πB .323πC .8πD .823π7.现实世界中的很多随机变量遵循正态分布.例如反复测量某一个物理量,其测量误差X 通常被认为服从正态分布.若某物理量做n 次测量,最后结果的误差,X n ~N (0,2n ),则为使|X n |≥14的概率控制在0.0456以下,至少要测量的次数为A .32B .64C .128D .256【附】随机变量X ~N (μ,σ2),则P (μ-σ<X <μ+σ)=0.6826,P (μ-2σ<X <μ+2σ)=0.9544,P (u -3σ<X <μ+3σ)=0.9974.8.已知抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,点A ,B 在抛物线C 上,且满足AF ⊥BF .设线段AB 的中点到1的距离为d ,则ABd的最小值为A .322B . 3C .22D .2二、多选题:本大题共4小题,每小题5分,共计20分。
江苏省南通市2020-2021学年高三上学期期中数学试题及答案解析
江苏省南通市2020-2021学年度第一学期期中考试数学试题考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分.4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分)1.若集合A ={0,1,2},B ={x |x 2-3x ≤0},则A ∩B 为()A .{1,2}B .{0,1,2}C .{0,1,2,3}D .{x |0≤x ≤3}2.已知复数z 满足(2-i)z =1+2i(i 为虚数单位),则z 的虚部为()A .1B .-1C .0D .i3.已知定义域为R 的奇函数f (x ),当x >0时,满足f (x )=23log (72),0,23(3),,2x x f x x ⎧--<⎪⎪⎨⎪->⎪⎩ 则f (1)+f (2)+f (3)+…+f (2020)等于()A .log 25B .2log 5-C .2-D .04.两正数a ,b 的等差中项为52,等比中项为,且a >b ,则双曲线22221x y a b-=的离心率e 为()A.13 B.53C.3D.35.设函数11()sin ||222f x x x πθθθ⎛⎫⎛⎫⎛⎫=+-+<⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的图象关于原点对称,则θ的值为()A .6π- B.6πC .3π- D.3π6.过抛物线y 2=4x 的焦点作两条互相垂直的弦AB ,CD ,则四边形ACBD 面积的最小值为()A .8B .16C .32D .647.已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n +2S n -1=n ,则S 2019的值为()A .1008B .1009C .1010D .10118.设点P 为函数f (x )=12x 2+2ax 与g (x )=3a 2ln x +b (a >0)的图象的公共点,以P 为切点可作直线与两曲线都相切,则实数b 的最大值为()A.232e 3 B.233e 2 C.322e 3 D.323e 2二、多项选择题(本大题共4小题,每小题5分,共20分.全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知0<b <a <1,c >1,则下列各式中不成立的是()A .a b <b a B .c b >c aC .log a c >log b cD .b log c a >a log c b10.下列四个命题中正确的是()A .函数y =a x (a >0且a ≠1)与函数y =log a a x (a >0且a ≠1)的定义域相同B .函数y y =3x 的值域相同C .函数y =|x +1|与函数y =2x +1在区间[0,+∞)上都是增函数D .1lg 1x y x+=-是奇函数11.设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题中正确的是()A .若m ∥l ,且m ⊥α,则l ⊥αB .若m ∥l ,且m ∥α,则l ∥αC .若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥nD .若α∩β=m ,β∩γ=l ,γ∩α=n ,且n ∥β,则l ∥m12.把函数sin 3y x π⎛⎫=+ ⎪⎝⎭的图象上各点的横坐标缩短为原来的12(纵坐标不变),再将图象向右平移4π个单位长度得到函数g (x )的图象,则下列说法不正确的是()A .g (x )在,66ππ⎛⎫- ⎪⎝⎭上单调递增B .g (x )的图象关于,06π⎛⎫⎪⎝⎭对称C .g (x )的最小正周期为4πD .g (x )的图象关于y 轴对称第Ⅱ卷(非选择题共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.若A ,B 互为对立事件,其概率分别为P (A )=1y,P (B )=4x ,且x >0,y >0,则x +y 的最小值为________.14.已知正方形ABCD 的边长为2,P 为平面ABCD 内一点,则()()PA PB PC PD +⋅+ 的最小值为________.15.将数列{a n }中的所有项排成如下数阵:其中每一行项数是上一行项数的2倍,且从第二行起每一行均构成公比为2的等比数列.a 1a 2,a 3a 4,a 5,a 6,a 7a 8,a 9,a 10,a 11,a 12,a 13,a 14,a 15……记数阵中的第1列a 1,a 2,a 4,…构成的数列为{b n },T n 为数列{b n }的前n 项和,T n =5n 2+3n ,则b n =________,a 1025=________.(本题第一空2分,第二空3分)16.已知函数f (x )=|ln |,0e,2ln ,e,x x x x <≤⎧⎨->⎩若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c 的取值范围是________.四、解答题(本大题共6小题,共70分)17.(10分)已知等差数列{a n }的首项为a 1,公差为d (a 1∈Z ,d ∈Z ),前n 项的和为S n ,且S 7=49,24<S 5<26.(1)求数列{a n }的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项的和为T n ,求T n .18.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b cos A+3a =c .(1)求cos B ;(2)如图,D为△ABC外一点,若在平面四边形ABCD中,D=2B,且AD=1,CD=3,BC=6,求AB的长.19.(12分)如图,四棱锥S-ABCD2倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角P-AC-S的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SC∶SE的值;若不存在,试说明理由.20.(12分)在全国第五个“扶贫日”到来之前,某省开展“精准扶贫,携手同行”的主题活动,某贫困县调查基层干部走访贫困户数量.A镇有基层干部60人,B镇有基层干部60人,C镇有基层干部80人,每人都走访了若干贫困户,按照分层抽样,从A,B,C三镇共选40名基层干部,统计他们走访贫困户的数量,并将走访数量分成5组,[5,15),[15,25),[25,35),[35,45),[45,55],绘制成如图所示的频率分布直方图.(1)求这40人中有多少人来自C镇,并估计A,B,C三镇的基层干部平均每人走访多少贫困户;(同一组中的数据用该组区间的中点值作代表)(2)如果把走访贫困户达到或超过25户视为工作出色,以频率估计概率,从A,B,C三镇的所有基层干部中随机选取3人,记这3人中工作出色的人数为X,求X的概率分布及均值.21.(12分)设椭圆22221x ya b+=(a>b>0)的离心率e=12,椭圆上的点到左焦点F1的距离的最大值为3.(1)求椭圆C的方程;(2)求椭圆C的外切矩形ABCD的面积S的取值范围.22.(12分)已知函数f(x)=e x-ax-a(其中e为自然对数的底数).(1)讨论函数f(x)的单调性;(2)若对任意x∈(0,2],不等式f(x)>x-a恒成立,求实数a的取值范围;(3)设n∈N*,证明:123ee1 n n nn nn n n n⎛⎫⎛⎫⎛⎫⎛⎫+++⋯+<⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭.答案精析1.B2.A3.B4.D5.D6.C 7.C [当n ≥2时,a n +2S n -1=n ,①故a n +1+2S n =n +1,②由②-①得,a n +1-a n +2(S n -S n -1)=1,即a n +1+a n =1(n ≥2),所以S 2019=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2018+a 2019)=1010.]8.B [设P (x 0,y 0),由于点P 为切点,则1022032ln 02x ax a x b +=+,又点P 的切线相同,则f ′(x 0)=g ′(x 0),即x 0+2a =23a x ,即(x 0+3a )(x 0-a )=0,又a >0,x 0>0,∴x 0=a ,于是,b =52a 2-3a 2ln a (a >0),设h (x )=52x 2-3x 2ln x (x >0),则h ′(x )=2x (1-3ln x )(x >0),所以h (x )在(0,13e )上单调递增,在(13e ,+∞)上单调递减,b 的最大值为12333e e 2h ⎛⎫= ⎪⎝⎭.9.ABC [由于0<b <a <1,c >1,根据指数函数与幂函数的图象与性质有a b >a a >b a ,故选项A 错误;根据指数函数的图象与性质有c b <c a ,故选项B 错误;根据对数函数的图象与性质有log a c <log b c ,故选项C 错误;因为a b >b a ,c >1,则log c a b >log c b a ,即b log c a >a log c b ,故选项D 正确.]10.ACD [A 项,函数y =a x (a >0且a ≠1),y =log a a x (a >0且a ≠1)的定义域都是R ,故A 正确;B 项,函数y值域为[0,+∞),函数y =3x 的值域为(0,+∞),故B 错误;C ,当x ∈[0,+∞)时,函数y =|x +1|=x +1是增函数,函数y =2x +1是增函数,故C 正确;D 项,lg 11x y x+=-的定义域是(-1,1),令()1lg 1x f x x +=-,1111()lg lg lg ()111x x x f x f x x x x --++⎛⎫-===-=- ⎪+--⎝⎭,故函数1lg1x y x +=-是奇函数,故D 正确.]11.AD [A 正确,B 中直线l 可能平行于α也可能在α内,故B 错;C 中直线l ,m ,n 可能平行也可能相交于一点,故C 错;D 正确.]12.BCD [把函数sin 3y x π⎛⎫=+ ⎪⎝⎭的图象上各点的横坐标缩短为原来的12得到sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,再将图象向右平移4π个单位长度得到函数()sin 2sin 2436g x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦的图象.若,66x ππ⎛⎫∈- ⎪⎝⎭,则2,626x πππ⎛⎫-∈- ⎪⎝⎭,∴()g x ,66ππ⎛⎫-⎪⎝⎭上单调递增,故A 正确;由1062g π⎛⎫=≠ ⎪⎝⎭知,g (x )的图象不关于点,06π⎛⎫⎪⎝⎭对称,故B 错误;g (x )的最小正周期为π,故C 错误;∵1(0)12g =-≠±,∴g (x )的图象不关于y 轴对称,故D 错误.]13.9解析由事件A ,B 互为对立事件,其概率分别P (A )=1y,P (B )=4x ,且x >0,y >0,所以P (A )+P (B )=1y +4x=1,所以144()5y x x y x y y x x y ⎛⎫+=++=++⎪⎝⎭524y x 9x y ≥+⋅=,当且仅当x =6,y =3时取等号,所以x +y 的最小值为9.14.-4解析由题意,以A 为坐标原点,AB 方向为x 轴,AD 方向为y 轴,建立平面直角坐标系,因为正方形ABCD 的边长为2,所以可得A (0,0),B (2,0),C (2,2),D (0,2),设P (x ,y ),则PA =(-x ,-y ),PB =(2-x ,-y ),PC =(2-x,2-y ),PD =(-x,2-y ),所以PA +PB =(2-2x ,-2y ),PC +PD =(2-2x,4-2y ),因此(PA +PB )·(PC +PD )=4(1-x )2-4y (2-y )=4(x -1)2+4(y -1)2-4≥-4,当且仅当x =y =1时,取得最小值-4.15.10n -2216解析T n 为数列{b n }的前n 项的和,T n =5n 2+3n ,b n =T n -T n -1=(5n 2+3n )-[5(n -1)2+3(n -1)]=10n -2(n ≥2),验证n =1时,b 1=T 1=8也符合,故b n =10n -2,a 1024=b 11=108,a 1025=2a 1024=216.16.212e ,e 2e ⎛⎫++ ⎪⎝⎭解析画出函数f (x )=|ln |,0e 2ln ,e x x x x <≤⎧⎨->⎩的图象(如图所示).不妨令a <b <c ,则由已知和图象,得0<a <1<b <e<c <e 2,且-ln a =ln b =2-ln c ,则ab =1,bc =e 2,则a +b +c =221e 1e b b bb b +++=+,令21e ()g x x x+=+,因为221e ()10g x x+'=-<在x ∈(1,e)时恒成立,所以g (x )在(1,e)上单调递减,所以2211e 2e 2e eb b ++<+<+.17.解(1)由题意得1176749,25424526,2a d a d ⨯⎧+=⎪⎪⎨⨯⎪<+<⎪⎩∵a 1∈Z ,d ∈Z ,解得11,2,a d =⎧⎨=⎩∴a n =a 1+(n -1)d =2n -1(n ∈N *).(2)∵111111(21)(21)22121n n a a n n n n +⎛⎫==- ⎪⋅-+-+⎝⎭,∴1111111112335572121n T n n ⎛⎫=-+-+-++- ⎪-+⎝⎭ 21n n =+.18.解(1)在△ABC 中,由正弦定理得sin B cos A +33sin A =sin C ,又C =π-(A +B ),所以sin B cos A +3sin A =sin (A +B ),故sin B cos A +33sin A =sin A cos B +cos A sin B ,所以sin A cos B =33sin A ,又A ∈(0,π),所以sin A ≠0,故cos B =33.(2)因为D =2B ,所以cos D =2cos 2B -1=13-,又在△ACD 中,AD =1,CD =3,所以由余弦定理可得AC 2=AD 2+CD 2-2AD ·CD ·cos D =1+9-2×3×13⎛⎫- ⎪⎝⎭=12,所以AC =,在△ABC 中,BC ,AC =cos B =3,所以由余弦定理可得AC 2=AB 2+BC 2-2AB ·BC cos B ,即12=AB 2+6-2·AB ×33,化简得AB 2-AB -6=0,解得AB =.故AB 的长为19.(1)证明连结BD 交AC 于O ,连结SO ,由题意得,SO ⊥AC .在正方形ABCD 中,AC ⊥BD ,又SO ∩BD =O ,SO ,BD ⊂平面SBD ,6所以AC ⊥平面SBD ,所以AC ⊥SD .(2)解由题意知SO ⊥平面ABCD .以O 为坐标原点,OB ,OC ,OS 分别为x 轴、y 轴、z 轴正方向,建立空间直角坐标系O -xyz如图所示.设底面边长为a ,则高SO =62a .则S 0,0,2a ⎛⎫ ⎪ ⎪⎝⎭,D ,0,02a ⎛⎫- ⎪ ⎪⎝⎭,C 0,,02a ⎛⎫ ⎪ ⎪⎝⎭,B ,0,02a ⎛⎫ ⎪ ⎪⎝⎭,又SD ⊥平面PAC ,则平面PAC 的一个法向量26,0,22DS a a ⎛⎫= ⎪ ⎪⎝⎭ ,平面SAC 的一个法向量2,0,02OD a ⎛⎫=- ⎪ ⎪⎝⎭ ,则1cos ,2||||DS OD DS OD DS OD ⋅==- ,又二面角P -AC -S 为锐二面角,则二面角P -AC -S 为60°.(3)解在棱SC 上存在一点E 使BE ∥平面PAC .由(2)知DS 是平面PAC 的一个法向量,且,0,22DS a ⎛⎫= ⎪ ⎪⎝⎭,0,,22CS a a ⎛⎫=- ⎪ ⎪⎝⎭,22,,022BC a ⎛⎫=- ⎪ ⎪⎝⎭ .设CE tCS = ,t ∈[0,1],则BE =BC +CE =BC +tCS =226,(1),222a a t at ⎛⎫-- ⎪ ⎪⎝⎭,又BE ∥平面PAC ,所以BE ·DS =0,解得t =13.即当SC ∶SE =3∶2时,BE ⊥DS ,而BE 不在平面PAC 内,故BE ∥平面PAC .所以侧棱SC 上存在点E ,当SC ∶CE =3∶2时,有BE ∥平面PAC .20.解(1)因为A ,B ,C 三镇分别有基层干部60人,60人,80人,共200人,利用分层抽样的方法选40人,则C 镇应选取80×40200=16(人),所以这40人中有16人来自C 镇,因为x =10×0.15+20×0.25+30×0.3+40×0.2+50×0.1=28.5,所以三镇基层干部平均每人走访贫困户28.5户.(2)由直方图得,从三镇的所有基层干部中随机选出1人,其工作出色的概率为35,显然X 可取0,1,2,3,且X ~B 33,5⎛⎫⎪⎝⎭,则28(0)35125P X ⎛⎫=== ⎪⎝⎭,12133236(1)55125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,21233254(2)C 55125P X ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,3327(3)5125P X ⎛⎫=== ⎪⎝⎭,所以X 的概率分布为X0123P 8125361255412527125所以均值E (X )=0×8125+1×36125+2×54125+3×27125=95.21.解(1)由题设条件可得c a =12,a +c =3,解得a =2,c =1.∴b 2=a 2-c 2=3,所以椭圆C 的方程为22143x y +=.(2)当矩形ABCD 的一组对边所在直线的斜率不存在时,得矩形ABCD 的面积S=,当矩形ABCD 四边所在直线的斜率都存在时,不防设AB ,CD 所在直线的斜率为k ,则BC ,AD 所在直线的斜率为1k-,设直线AB 的方程为y =kx +m ,与椭圆联立22,1,43y kx m x y =+⎧⎪⎨+=⎪⎩可得(4k 2+3)x 2+8kmx +4m 2-12=0,由Δ=(8km )2-4(4k 2+3)(4m 2-12)=0,得m 2=4k 2+3,显然直线CD 的直线方程为y =kx -m ,直线AB ,CD间的距离1d ===同理可求得BC ,AD间的距离为2d ==所以四边形ABCD 的面积为S ABCD =d 1d 2==14=≤.(当且仅当k =±1时等号成立),又SABCD >=综上可得外切矩形面积的取值范围是[14].22.(1)解因为f (x )=e x -ax -a ,所以f ′(x )=e x -a ,①当a ≤0时,f ′(x )>0,函数f (x )在区间R 上单调递增;②当a >0时,令f ′(x )>0,x >ln a ,令f ′(x )<0,x <ln a ,所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增.(2)解因为对任意的x ∈(0,2],不等式f (x )>x -a 恒成立,即不等式(a +1)x <e x 恒成立.即当x ∈(0,2]时,a <e x x -1恒成立.令g (x )=e xx -1(x ∈(0,2]),则g ′(x )=22(1)e x x -.令g ′(x )>0,1<x ≤2,g ′(x )<0,,0<x <1,所以g (x )在(0,1)上单调递减,在(1,2]上单调递增.∴x =1时,g (x )取最小值e -1.所以实数a 的取值范围是(-∞,e -1).(3)证明在(1)中,令a =1可知对任意实数x 都有e x -x -1≥0,即x +1≤e x (当且仅当x =0时等号成立).令x +1=k n(k =1,2,3,…,n ),则k n <1e k n -,即e e e k k n n k n n -⎛⎫<= ⎪⎝⎭,故()()123e e 11231e e e e e e (e 1)e (e 1)n n n n n n n n n n n n n -⎛⎫⎛⎫⎛⎫⎛⎫++++<++++=< ⎪ ⎪ ⎪ --⎝⎭⎝⎭⎝⎭⎝⎭ .。
精品解析:江苏省南通市海门市包场高级中学2020-2021学年高三上学期10月检测数学试题(解析版)
江苏省包场高级中学2021届高三第二次阶段检测数学试卷一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填涂在答题卡相应位置上.1. 已知复数z 满足()12i z i +=,其中i 为虚数单位,则复数z 的模为( )A.B. 2C. 1D.【答案】D 【解析】 【分析】根据复数的乘除运算可得1z i =+,再利用复数模的运算即可求解.【详解】由()()()()21211111i i i z i i i i i i -===-=+++-, 所以z ==故选:D【点睛】本题考查了复数的乘除运算、复数模的求法,考查了基本运算求解能力,属于基础题. 2. 已知集合(){}ln 2A x y x ==-,{}2,xB y y x A ==∈,则AB =( )A. (),2-∞B. (),4-∞C. ()0,2D. ()0,4【答案】C 【解析】 【分析】化简集合,A B ,再进行交集运算; 【详解】(){}{}ln 22A x y x x x ==-=<,{}{}{}2,0404x B y y x A y y x x ==∈=<<=<<, ∴()0,2A B =,故选:C.【点睛】本题考查交集的运算,考查运算求解能力,属于基础题.3. 已知角α的终边经过点(1,3),则222cos sin cos 2ααα-=( ).A. 178-B.78C. 78±D. 3【答案】B 【解析】【分析】本题首先可以根据角α的终边经过点(1,3)得出tan 3α=,然后将222cos sin cos 2ααα-化简为222tan 1tan αα--,最后代入tan 3α=即可得出结果.【详解】因为角α的终边经过点(1,3), 所以tan 3α=,则2222222cos sin 2cos sin cos 2cos sin ααααααα--=- 22222tan 2371tan 138αα--===--, 故选:B.【点睛】本题考查根据角的终边求三角函数值以及二倍角公式,考查公式22cos 2cos sin =-ααα以及sin tan cos,考查计算能力,是简单题.4. 天文学中为了衡量天体的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus ,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,天体就越亮;星等的数值越大,天体就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森(M.R.Pogson )又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述,两颗星的星等与亮度满足12 2.5m m -=(21lg lg E E -),其中星等为i m 的星的亮度为i E (1i =,2).已知“心宿二”的星等是1.00,“天津四”的星等是1.25,“心宿二”的亮度是“天津四”的r 倍,则r 的近似值为(当x 较小时,2101 2.3 2.7x x x ≈++)( ) A. 1.23B. 1.26C. 1.51D. 1.57【答案】B 【解析】【分析】根据题意列出方程,结合对数式与指数式的互化以及对数运算性质即可求解. 【详解】设“心宿二”的星等为1m ,“天津四”的星等为2m , “心宿二”和“天津四”的亮度分别为1E ,2E ,1 1.00m =,2 1.25m =,12E rE =,所以()211 1.25 2.5lg lg E E -=-, 所以121lg10E E =, 所以1110211101 2.3 2.7 1.25710100E r E ==≈+⨯+⨯=, 所以与r 最接近的是1.26, 故选:B.5.设函数11()sin()cos()()222f x x x πθθθ=++<的图像关于原点对称,则θ的值为( )A. 6π-B.6π C. 3π-D.3π 【答案】D 【解析】【分析】先由辅助角公式整理函数解析式,再由函数()f x 关于原点对称,即可求出结果. 【详解】因为()111sin 2sin 2223f x x x x πθθθ⎛⎫⎛⎫⎛⎫=+-+=+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又函数()f x 关于原点对称,所以()3k k Z πθπ-=∈,即()3k k Z πθπ=+∈,因为2πθ<,所以3πθ=.故选D【点睛】本题主要考查三角函数的性质,熟记性质即可得出结果,属于基础题型.6. 我国古代数学家刘徽于公元263年在《九章算术注》中提出“割圆术”:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”.即通过圆内接正多边形细割圆,并使正多边形的面积无限接近圆的面积,进而来求得较为精确的圆周率.如果用圆的内接正n 边形逼近圆,算得圆周率的近似值记为n π,那么用圆的内接正边形逼近圆,算得圆周率的近似值2n π可以表示为( )A. π180cosnn︒ B. π360cosnn ︒ C. π180sinnn ︒ D. π90sinnn︒ 【答案】A 【解析】【分析】由三角函数的倍角公式及三角形的面积公式计算可得. 【详解】解:由题意有22360sin2n n R R nπ︒=, 所以2360sinnn nπ=︒, 又222360sin2n nR R nπ︒=, 所以22180sin 360180sin cos n n n n n nπππ︒==︒︒, 故选:A .7. 已知函数()(x xf x e e e -=-为自然数对数的底数),若0.50.7a -=,0.5log 0.7b =,0.7log 5c =,则( )A. ()()()f b f a f c <<B. ()()()f c f b f a <<C. ()()()f c f a f b <<D. ()()()f a f b f c <<【答案】D 【解析】【分析】判断函数()f x 的单调性,比较a ,b ,c 大小关系,利用单调性求出. 【详解】解:0.70.50.5log 5log 5log 0.71c b =<<=<0.50.71a -=>,故a b c >>, 而()xx f x ee -=-显然为减函数,所以()()()f a f b f c <<,故选:D .8. 设点P 为函数21()22f x x ax =+与2()3ln (0)g x a x b a =+>的图像的公共点,以P 为切点可作直线与两曲线都相切,则实数b 的最大值为( )A. 2323eB. 2332eC. 3223eD. 3232e【答案】B 【解析】【分析】先设()00,P x y ,由以P 为切点可作直线与两曲线都相切,可得两函数在点P 处切线斜率相同,再由导数的方法即可求解.【详解】设()00,P x y ,由于点P 为切点,则22000123ln 2x ax a x b +=+, 又点P 的切线相同,则()()00f x g x ='',即20032a x a x +=,即()()0030x a x a +-=,又0a >,00x >,∴0x a =,于是,2253ln (0)2b a a a a =->,设()2253ln (0)2h x x x x x =->, 则()()213ln (0)h x x x x =>'-,所以()h x 在130,e ⎛⎫⎪⎝⎭单调递增,在13,e ⎛⎫+∞ ⎪⎝⎭单调递减,b 的最大值为123332h e e ⎛⎫= ⎪⎝⎭,故选B. 【点睛】本题主要考查导数在函数中的应用,以及导数的几何意义,一般需要对函数求导,用导数的方法研究其单调性等,属于常考题型.二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,请把答案填涂在答题卡相应位置上.全部选对得5分,部分选对得3分,不选或有错选的得0分.9. 已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示,下列说法正确的是( )A. 函数()y f x =的图象关于点π,06⎛⎫-⎪⎝⎭对称 B. 函数()y f x =的图象关于直线5π12x =-对称 C. 函数()y f x =在2ππ,36⎡⎤--⎢⎥⎣⎦单调递减 D. 该图象向右平移π6个单位可得2sin 2y x =的图象 【答案】ABD 【解析】 【分析】根据函数的图象,可求出()f x 的解析式,进而对选项逐个分析,可得出答案. 【详解】由函数的图象可得2A =,周期ππ4π312T ⎛⎫=-=⎪⎝⎭,所以2π2π2πT ω===,当π12x =时,函数取得最大值,即ππ2sin 221212f ϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,所以ππ22π122k ϕ⨯+=+()k ∈Z ,则π2π3k ϕ=+,又π2ϕ<,得π3ϕ=,故函数()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭.对于A ,当π6x =-时,πππ2sin 22sin 00663f ⎛⎫⎛⎫-=-⨯+== ⎪ ⎪⎝⎭⎝⎭,即点π,06⎛⎫- ⎪⎝⎭是函数()f x 的一个对称中心,故A 正确;对于B ,当5π12x =-时,5π5πππ2sin 22sin 2121232f ⎛⎫⎛⎫⎛⎫-=-⨯+=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即直线5π12x =-是函数()f x 的一条对称轴,故B 正确;对于C ,令ππ3π+2π2+2π232k x k ≤+≤()k ∈Z ,解得π7π+π+π1212k x k ≤≤,则函数()f x 的单调递减区间为π7π+π,+π1212k k ⎡⎤⎢⎥⎣⎦()k ∈Z ,故C 错误;对于D ,将()f x 的图象向右平移π6个单位后,得到ππ2sin 222sin 263y x x ⎛⎫=-⨯+=⎪⎝⎭的图象,即D 正确. 故选:ABD.【点睛】本题考查根据图象求三角函数解析式以及三角函数性质,考查推理能力与计算求解能力,属中档题.10. 若ABC 内接于以O 为圆心,1为半径的圆,且3450++=OA OB OC ,则下列结论不正确的是( ) A. 2BOC π∠=B. 2AOB π∠=C. 45OB CA ⋅=- D. 15OC AB ⋅=-【答案】AC 【解析】 【分析】可由3450OA OB OC ++=得3(45)OA OB OC =-+,两边平方,再根据||||||1OA OB OC ===,可算出OB OC 的值,同理可算出,OA OB OA OC 的值,则问题可迎刃而解.【详解】解:由已知得:||||||1OA OB OC ===, 因为3450OA OB OC ++=,所以3(45)OA OB OC =-+, 两边平方得2229162540OA OB OC OB OC =++, 解得405OB OC =-≠,故A 错误;同理可得:·0OAOB =,35OA OC =-.故OA OB ⊥,故90AOB ∠=︒,故B 正确;4()5OB CA OB OA OC OB OA OB OC =-=-=,故C 错误; 1()5OC AB OC OB OA OC OB OC OA =-=-=-,故D 正确.故选:AC .【点睛】本题考查数量积的运算和数量积在研究几何性质中的应用.属于中档题.11. 已知正实数x ,y 满足21211log log 22x yx y ⎛⎫⎛⎫+<- ⎪ ⎪⎝⎭⎝⎭,则下列结论正确的是( )A.11x y< B. 33x y <C. ()ln 10y x -+>D. 122x y-<【答案】BC 【解析】 【分析】把不等式变形为2211log log 22x y x y ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,然后确定函数21()log 2xf x x ⎛⎫=- ⎪⎝⎭的单调性后可得0x y <<,然后再根据不等式性质,对数函数、指数函数的性质判断.【详解】原不等式可变形为2211log log 22xyx y ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,设21()log 2xf x x ⎛⎫=- ⎪⎝⎭,则()()f x f y <, 又2log y x =是增函数,12xy ⎛⎫= ⎪⎝⎭是减函数,∴21()log 2xf x x ⎛⎫=- ⎪⎝⎭是增函数,∴x y <.即0x y <<.则11x y>,A 错;33x y <,B 正确;11y x -+>,ln(1)0y x -+>,C 正确; 0x y -<,0221x y-<=,不能得出122x y-<,例如1x =,32y =,则121222x y--==>,D 错. 故选:BC .【点睛】本题考查函数的单调性,考查不等式的性质,对数函数、指数函数的性质,解题关键是由已知不等式变形后,引入单调函数()f x ,得出,x y 的大小关系.12. 关于函数()e cos xf x a x =-,()π,πx ∈-下列说法正确是( )A. 当1a =时,()f x 在0x =处的切线方程为y x =B. 若函数()f x 在()π,π-上恰有一个极值,则0a =C. 对任意0a >,()0f x ≥恒成立D. 当1a =时,()f x 在()π,π-上恰有2个零点 【答案】ABD 【解析】 【分析】直接逐一验证选项,利用导数的几何意义求切线方程,即可判断A 选项;利用分离参数法,构造新函数和利用导数研究函数的单调性和极值、最值,即可判断BC 选项;通过构造新函数,转化为两函数的交点个数来解决零点个数问题,即可判断D 选项.【详解】解:对于A ,当1a =时,()e cos xf x x =-,()π,πx ∈-,所以()00e cos00f =-=,故切点为(0,0),则()e sin xf x x '=+,所以()00e sin01f '=+=,故切线斜率为1,所以()f x 在0x =处的切线方程为:()010y x -=⨯-,即y x =,故A 正确; 对于B ,()e cos xf x a x =-,()π,πx ∈-,则()e sin xf x a x '=+,若函数()f x 在()π,π-上恰有一个极值,即()0f x '=在()π,π-上恰有一个解, 令()0f x '=,即e sin 0x a x +=在()π,π-上恰有一个解,则sin xxa e-=在()π,π-上恰有一个解, 即y a =与()sin xxg x e -=的图象在()π,π-上恰有一个交点,()sin cos xx xg x e-'=,()π,πx ∈-, 令()0g x '=,解得:134x π=-,24x π=, 当3,,44x ππππ⎛⎫⎛⎫∈--⎪ ⎪⎝⎭⎝⎭时,()0g x '>,当3,44x ππ⎛⎫∈-⎪⎝⎭时,()0g x '<, ()g x ∴在3,4ππ⎛⎫--⎪⎝⎭上单调递增,在443,ππ⎛⎫- ⎪⎝⎭上单调递减,在,4ππ⎛⎫ ⎪⎝⎭上单调递增,所以极大值为3423204g e ππ-⎛⎫-=> ⎪⎝⎭,极小值为42204g e ππ-⎛⎫=< ⎪⎝⎭, 而()()()0,0,00g g g ππ-===, 作出()sinxg x e -=,()π,πx ∈-的大致图象,如下:由图可知,当0a =时,y a =与()sinxg x e -=的图象在()π,π-上恰有一个交点, 即函数()f x 在()π,π-上恰有一个极值,则0a =,故B 正确; 对于C ,要使得()0f x ≥恒成立,即在()π,πx ∈-上,()e cos 0xf x a x =-≥恒成立,即在()π,πx ∈-上,cos x xa e ≥恒成立,即maxcos x x a e ⎛⎫≥ ⎪⎝⎭,设()cos x x h x e =,()π,πx ∈-,则()sin cos xx xh x e--'=,()π,πx ∈-, 令()0h x '=,解得:14x π=-,234x π=, 当3,,44x ππππ⎛⎫⎛⎫∈--⎪ ⎪⎝⎭⎝⎭时,()0h x '>,当3,44x ππ⎛⎫∈- ⎪⎝⎭时,()0h x '<,()h x ∴在,4ππ⎛⎫-- ⎪⎝⎭上单调递增,在3,44ππ⎛⎫-⎪⎝⎭上单调递减,在3,4ππ⎛⎫ ⎪⎝⎭上单调递增,所以极大值为42204h e ππ-⎛⎫-=> ⎪⎝⎭,()()11,h h e e ππππ--==,所以()cos x xh x e =在()π,πx ∈-上的最大值为42204h e ππ-⎛⎫-=> ⎪⎝⎭, 所以422a e π-≥时,在()π,πx ∈-上,()e cos 0xf x a x =-≥恒成立,即当422a e π-≥时,()0f x ≥才恒成立,所以对任意0a >,()0f x ≥不恒成立,故C 不正确;对于D ,当1a =时,()e cos xf x x =-,()π,πx ∈-,令()0f x =,则()e cos 0xf x x =-=,即e cos x x =,作出函数xy e =和cos y x =的图象,可知在()π,πx ∈-内,两个图象恰有两个交点,则()f x 在()π,π-上恰有2个零点,故D 正确.故选:ABD.【点睛】本题考查函数和导数的综合应用,考查利用导数的几何意义求切线方程,考查分离参数法的应用和构造新函数,以及利用导数研究函数的单调性、极值最值、零点等,考查化简运算能力和数形结合思想.三、填空题:本大题共4小题,每小题5分,共20分.请把答案填写在答题卡相应位置上.13. 已知向量a ,b 满足||a m =,||1b =,a 与b 的夹角为150︒,()a b b +⊥,则m =________.【解析】【分析】由()a b b +⊥,可得()0a b b +⋅=,进而可求出m .【详解】由题意,cos150a b a b ︒⋅=⋅=, 因为()a b b +⊥,所以()0a b b +⋅=,则2(310)a b a b b b m +⋅==⋅+-+=,解得3m =.故答案为:3. 【点睛】本题考查平面向量的数量积,注意()a b b +⊥()0a b b ⇔+⋅=,考查学生的计算求解能力,属于基础题.14. 已知函数()3xx1f x =x 2x+e -e-,其中e 是自然数对数的底数,若()()2f a-1+f 2a 0≤,则实数a 的取值范围是_________. 【答案】1[1,]2- 【解析】【详解】因为31()2e ()exx f x x x f x -=-++-=-,所以函数()f x 是奇函数,因为22()32e e 320x x f 'x x x -=-++≥-+≥,所以数()f x 在R 上单调递增, 又2(1)(2)0f a f a -+≤,即2(2)(1)f a f a ≤-,所以221a a ≤-,即2210a a +-≤, 解得112a -≤≤,故实数a 的取值范围为1[1,]2-.点睛:解函数不等式时,首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数()f x 的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在函数()f x 的定义域内.15. 设函数()sin 3f x x πω⎛⎫=+ ⎪⎝⎭,其中0>ω.若函数()f x 在0,2π上恰有2个零点,则ω的取值范围是________. 【答案】54,63⎡⎫⎪⎢⎣⎭【解析】 【分析】当0f x时,()3k x k Z ππωω=-+∈,当0x >时,123x πω=,253x πω=,383x πω=,则523823ππωππω⎧≤⎪⎪⎨⎪>⎪⎩,进而求解即可【详解】由题,()sin 3f x x πω⎛⎫=+⎪⎝⎭取零点时,3x k πωπ+=()k Z ∈ ,即()3k x k Z ππωω=-+∈,则当0x >时,123x πω=,253x πω=,383x πω=,所以满足523823ππωππω⎧≤⎪⎪⎨⎪>⎪⎩,解得54,63ω⎡⎫∈⎪⎢⎣⎭ 故答案为:54,63⎡⎫⎪⎢⎣⎭【点睛】本题考查已知零点求参数问题,考查运算能力16. 在ABC 中,()sin sin sin A B C B -=-,则cos A =__________;点D 是BC 上靠近点B 的一个三等分点,记sin sin ABDλBAD∠=∠,则当λ取最大值时,tan ACD ∠=__________.【答案】 (1). 12(2). 2+【解析】 【分析】根据题意,由三角恒等变换将原式化简,即可求出1cos 2A =;设BD x =,BAD θ∠=,πθ0,3,则2DC x =,sin sin B t =θ,根据正弦定理,得到AD x =λ,sin sin23Cπλθ,求出cos cos 3B ⎛⎫=+ ⎪⎝⎭πλθ,得到222222sin cos sin cos 13B B ⎛⎫+=++= ⎪⎝⎭πλθλθ,表示出2221sin cos 3=⎛⎫++ ⎪⎝⎭λπθθ,求出最值,即可得出结果.【详解】因为()sin sin sin A B C B -=-,所以()sin sin sin B C A B =--, 即()()sin sin sin 2cos sin B A B A B A B =+--=, 又因为sin 0B ≠,所以1cos 2A =; 设BD x =,BAD θ∠=,πθ0,3, 则2DC x =,sin sin B =λθ, 由正弦定理可得AD x =λ,sin sin sin23AD DACCDCπθλ,又313sin sincos sin cos sin 222223C B B BB λθπ,由sin sin 2223B ⎛⎫+=- ⎪⎝⎭λλπθθ,得cos cos 3B ⎛⎫=+ ⎪⎝⎭πλθ. 因为222222sin cos sin cos 13B B ⎛⎫+=++=⎪⎝⎭πλθλθ, 所以222122sin cos 1cos 21cos 233==⎛⎫⎛⎫++-+++ ⎪⎪⎝⎭⎝⎭λππθθθθ2226=⎛⎫-- ⎪⎝⎭πθ, 因为πθ0,3,所以2,662πππθ⎛⎫-∈- ⎪⎝⎭,所以当206πθ-=时,λ1,此时)sin 1B ==, 所以4B π=,tan tan 234ACD ⎛⎫∠=--= ⎪⎝⎭πππ 答案为:12;2+【点睛】本题主要考查由三角恒等变换求函数值,考查三角函数的性质,考查正弦定理的应用,属于常考题型.四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤.17. 已知0,2πα⎛⎫∈ ⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭,且()()8cos cos 13αβαβ--+=,126tan 25tan 2ββ+=.(1)求cos2α的值; (2)求()tan αβ-的值. 【答案】(1)725-;(2)3356. 【解析】 【分析】(1)由126tan25tan2ββ+=切化弦,利用同角公式和二倍角的正弦公式化简可得sin β,由()()8cos cos 13αβαβ--+=利用两角和与差的余弦公式变形可得sin α再根据二倍角的余弦公式可求得结果;(2)利用同角公式求出tan α、tan β,再根据两角差的正切公式可求得结果.【详解】(1)∵126tan 25tan 2ββ+=,∴sin cos26225cos sin 22ββββ+=, ∴22sin cos 26225sin cos 22ββββ+=,∴12615sin 2β=,∴5sin 13β=,∵()()8cos cos 13αβαβ--+=, ∴8cos cos sin sin cos cos sin sin 13αβαβαβαβ+-+=, ∴4sin sin 13αβ=, ∴4sin 5α=, ∴2327cos 212sin 12525αα=-=-=-. (2)由(1)得4sin 5α,5sin 13β=,又∵,0,2παβ⎛⎫∈ ⎪⎝⎭,∴3cos 5α===,12cos 13β===, ∴sin 4tan cos 3ααα==,sin 5tan cos 12βββ==, ∴()45tan tan 33312tan 451tan tan 561312αβαβαβ---===++⨯. 18. 已知a ,b ,c 分别为ABC 内角A ,B ,C 的对边,若ABC 同时满足下列四个条件中的三个:①cos B =;②2cos 22cos12A A +=;③a =④b =. (1)满足有解三角形的序号组合有哪些?(2)在(1)所有组合中任选一组,并求对应ABC 的面积. 【答案】(1)①③④或②③④;(2)答案见解析 【解析】 【分析】 (1)由①可得2ππ3B <<,由②2cos 22cos 12A A +=,结合二倍角公式,可求得1cos 2A =,即π3A =,易知①②不能同时成立,进而可得满足题意的组合为①③④或②③④;(2)若选择①③④,先求出sin B ,进而由余弦定理2222cos b a c ac B =+-,建立关系式,可求出c ,再利用1sin 2ABC S ac B =△,可求出答案; 若选②③④,由余弦定理2222cos a b c bc A =+-,建立关系式,可求出c ,进而由1sin 2ABCS bc A =,可求出答案.【详解】(1)由①cos B =,可得2ππ3B <<; 由②2cos 22cos12AA +=,可得22cos cos 10A A +-=, 解得cos 1A =-(舍)或1cos 2A =,由()0,πA ∈,可得π3A =.所以①②不能同时成立,故满足有解三角形的序号组合有①③④或②③④.(2)若选择①③④,则sin B ===,由余弦定理2222cos b a c ac B =+-,即286c =++,整理得2420c c +-=,解得2c =或2c =(舍去),所以)11sin 222ABC S ac B ===△若选择②③④,由②得π3A =,由余弦定理2222cos a b c bc A =+-,即268c =+-,解得c =所以11sin 22ABC S bc A ==⨯=△ 【点睛】本题考查解三角形,考查三角函数的性质,考查学生的推理能力与计算能力,属于中档题. 19. 在平面直角坐标系xOy 中,已知向量()()1,0,0,2a b ==,设向量()11cos ,x a b y ka b sin θθ=+-=-+,其中0πθ<<. (1)若4k =,π6θ=,求x y ⋅的值; (2)若//x y ,求实数k 的最大值,并求取最大值时θ的值.【答案】(1)4-(2); 【解析】 【分析】【详解】试题分析:(1)向量数量积问题可以先求向量的坐标,再利用坐标运算;或者先符号运算进行化简,再代入坐标;(2)由向量共线得到k 与θ的关系式,用θ表示出k ,再利用导数求该函数的最大值,为了便于运算,可以求1k的最小值; 试题解析:(1)(方法1)当4k =,π6θ=时,()123x =-,,y =(44-,), 则x y ⋅=()1(4)234443⨯-+-⨯=-. .(2)依题意,()122cos x θ=-,,,因为//x y 所以2(22cos )sin k θθ=--, 整理得,()1sin cos 1kθθ=-,令()()sin cos 1f θθθ=-, 则()()cos cos 1sin (sin )f θθθθθ=-+-'22cos cos 1θθ=--()()2cos 1cos 1θθ=+-. 令()0f θ'=,得1cos 2θ=-或cos 1θ=,又0πθ<<,故2π3θ=. 列表:θ2π0?3⎛⎫ ⎪⎝⎭,2π32π π3⎛⎫⎪⎝⎭,()f θ'-+()f θ↘极小值334-↗故当2π3θ=时,min ()f θ=334-,此时实数k 取最大值39-. 考点:1.向量数量积的坐标公式;2.向量共线的坐标公式;3利用导数求函数的最值; 20.如图(1),有一块形状为等腰直角三角形的薄板,腰AC 的长为a 米(a 为常数),现在斜边AB 上选一点D ,将△ACD 沿CD 折起,翻扣在地面上,做成一个遮阳棚,如图(2). 设△BCD 的面积为S ,点A 到直线CD 的距离为d. 实践证明,遮阳效果y 与S 、d 的乘积Sd 成正比,比例系数为k (k 为常数,且k>0).(1)设∠ACD=,试将S 表示为的函数;(2)当点D 在何处时,遮阳效果最佳(即y 取得最大值)?【答案】(1)S ,090θ︒<<︒;(2)D 在AB 的中点时,遮阳效果最佳.【解析】 【分析】【详解】试题分析:(1)关键是求出CD 的长,在BCD ∆中,BC a =,45,45B CDB θ∠=︒∠=+︒,由正弦定理可得CD ,由此可得S 与θ的关系式S,;(2)sin d a θ=,因此有,这个最值的求法用换元法,设sin cos t θθ+=,(1,2]t ∈,21sin cos 2t θθ-=,y就变为t 的函数,再由函数的单调性可得最值.试题解析:(1)△BCD 中,∴,∴∴,(2)10分令,则,∴在区间上单调递增,∴当时y 取得最大值,此时,即D 在AB 的中点时,遮阳效果最佳.考点:应用题,正弦定理,换元法,同角间的三角函数关系,函数的最值.21. 设函数()cos xf x e x =,()g x 为()f x 的导函数.(1)求()f x 的单调区间; (2)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭. 【答案】(1)()f x 的单调递增区间为,23244k k ππππ⎡⎤-+⎢⎥⎣⎦,()f x 的单调递减区间为52,2()44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)证明见解析. 【解析】【分析】(1)求出原函数的导函数,可得当(24x k ππ∈+,52)()4k k Z ππ+∈时,()0f x '<,()f x 单调递减;当3(24x k ππ∈-,2)()4k k Z ππ+∈时,()0f x '>,()f x 单调递增; (2)记()()()()2h x f x g x x π=+-,依题意及(Ⅰ),得到()e (cos sin )xg x x x =-,由()0h x '<,得()h x 在区间[4π,]2π上单调递减,有()()()022h x h f ππ==,从而得到当[4x π∈,]2π时,()()()02f x g x x π+-;【详解】(1)由题意得()(cos sin )xe x xf x =-',因此当52,2()44x k k k Z ππππ⎛⎫∈++∈ ⎪⎝⎭时, 有sin cos x x >,得()0f x '<,则()f x 单调递减; 当32,2()44x k k k Z ππππ⎛⎫∈-+∈ ⎪⎝⎭时,有sin cos x x <,得()0f x '>,则()f x 单调递增.所以()f x 的单调递增区间为,23244k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z ,()f x 的单调递减区间为52,2()44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. (2)记()()()2h x f x g x x π⎛⎫=+- ⎪⎝⎭,由题意及(1)可知有()e (cos sin )x g x x x =-, 从而()2e sin x g x x '=-,当,42x ππ⎛⎫∈ ⎪⎝⎭时,()0g x '<, 故()()()()()(1)022h x f x g x x g x g x x ππ⎛⎫⎛⎫''''=+-+⨯-=-< ⎪ ⎪⎝⎭⎝⎭, 因此()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭. 所以当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+- ⎪⎝⎭. 【点睛】本题主要考查导数的运算,不等式的证明、运用导数研究函数的性质等基础知识和方法,考查函数思想和化归与转化思想,考查抽象概括能力、综合分析问题与解决问题的能力,属难题.22. 已知函数()()ln =-+x f x xe a x x ,0x >,若()f x 在0x x =处取得极小值.(1)求实数a 的取值范围;(2)若()00f x >,求证:()03002f x x x >-. 【答案】(1)()0,∞+;(2)证明见解析.【解析】【分析】(1)求得()()()1x x xe a f x x+-'=,对实数a 的取值进行分类讨论,利用导数分析函数()y f x =在区间()0,∞+上的单调性,结合已知条件可得出实数a 的取值范围;(2)由极值点的定义可得出00x x e a =,由()00f x >可得出001x <<,构造函数()ln 1p x x x =-+可得出00ln 1x x <+,构造函数()1x q x e x =--可得出001x e x >+,进而可得出()()200021f x x x >-,即可证得结论成立.【详解】(1)依题意,()()ln =-+xf x xe a x x ,0x >, ()()()1111x x x f x x e a xe a x x +⎛⎫'=+-+=⋅- ⎪⎝⎭. ①当0a ≤时,则()0f x '>,函数()y f x =在()0,∞+上单调递增,函数()y f x =无极小值, 所以0a ≤不符题意;②若0a >,令()x g x xe a =-,0x >,()()10xg x x e '=+>, 故函数()y g x =在()0,∞+上单调递增,又()00g a =-<,()()10a g a a e =->, 据零点存在性定理可知,存在()00,x a ∈,使得()00g x =,()00f x '=,且当00x x <<时,()0g x <,()0f x '<,函数()y f x =在()00,x 上单调递减;当0x x >时,()0g x >,()0f x '>,函数()y f x =在()0,x +∞上单调递增.所以()f x 在0x x =处取得极小值,所以0a >符合题意.综上所述,实数a 的取值范围是()0,∞+;(2)由(1)可知,当0a >时,存在()00,x a ∈,使得()00g x =,即00x x e a =.又()00f x >,即()0000ln 0x x e a x x -+>,所以()00001ln 0xx e x x -->. 因为00x >,00x e >,所以001ln 0x x -->,即00ln 10x x +-<.令()ln 1h x x x =+-,0x >,()110h x x'=+>, 故函数()y h x =在()0,∞+上单调递增,又()10h =,据()00h x <,可得001x <<.令()ln 1p x x x =-+,01x <<,()110p x x'=->, 故函数()y p x =在()0,1上单调递增,所以()()10p x p <=,故ln 1x x <-,其中01x <<.令()1x q x e x =--,01x <<,()10xq x e '=->. 故函数()y q x =在()0,1上单调递增,所以()()00q x q >=,故1x e x >+,其中01x <<.所以()()()()()0200000000001ln 11121x f x x e x x x x x x x x =-->+---=-⎡⎤⎣⎦, 结合001x <<,可得()03002f x x x >-. 【点睛】本题考查利用函数存在极值点求参数的取值范围,同时也考查了利用导数证明函数不等式,考查推理能力与计算能力,属于中等题.。
海门区高三数学试卷及答案
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数$f(x) = ax^2 + bx + c$的图象开口向上,且顶点坐标为$(1, -2)$,则下列选项中正确的是()。
A. $a > 0, b > 0, c < 0$B. $a > 0, b < 0, c > 0$C. $a < 0, b > 0, c < 0$D. $a < 0, b < 0, c > 0$2. 设复数$z = a + bi$(其中$a, b \in \mathbb{R}$),若$|z - 1| = |z +1|$,则实数$a$的值为()。
A. 0B. 1C. -1D. 23. 下列不等式中正确的是()。
A. $\sqrt{3} > \sqrt{2} + \sqrt{1}$B. $\sqrt{2} > \sqrt{3} + \sqrt{1}$C. $\sqrt{3} < \sqrt{2} + \sqrt{1}$D. $\sqrt{2} < \sqrt{3} + \sqrt{1}$4. 函数$y = \log_2(x + 1)$的图象上存在一点$P$,使得$P$到直线$y = 2x$的距离等于1,则点$P$的坐标是()。
A. $(1, 1)$B. $(0, 1)$C. $(2, 2)$D. $(1, 2)$5. 若$ \frac{1}{\sin \alpha} + \frac{1}{\cos \alpha} = 2$,则$\sin\alpha \cos \alpha$的值为()。
A. $\frac{1}{2}$B. $\frac{1}{4}$C. $\frac{3}{4}$D. $\frac{1}{3}$6. 已知等差数列$\{a_n\}$的前$n$项和为$S_n$,若$S_5 = 15$,$S_9 = 45$,则数列的公差$d$为()。
2020-2021学年江苏省南通中学高三(上)期中考试数学(理科)试题Word版含解析
2020-2021学年江苏省南通中学高三(上)期中考试数学(理科)试题一、填空题:本大题共14小题,每小题5分,共计70分.1.(5分)已知集合A={2,3,4},B={a+2,a},若A∩B=B,则∁A B= .2.(5分)“∃x∈R,x2﹣x+1≤0”的否定是.3.(5分)函数y=的定义域为.4.(5分)若角α的终边经过点P(a,2a)(a<0),则cosα= .5.(5分)设S n是等比数列{a n}的前n项的和,若a3+2a6=0,则的值是.6.(5分)如图,在正方形ABCD中,点E是DC的中点,点F是BC的一个三等分点,那么= (用和表示)7.(5分)已知命题p:|x﹣a|<4,命题q:(x﹣1)(2﹣x)>0,若p是q的必要不充分条件,则实数a 的取值范围是.8.(5分)已知直线x﹣y+1=0与曲线y=lnx﹣a相切,则a的值为.9.(5分)在△ABC中,已知BC=1,B=,△ABC的面积为,则AC的长为.10.(5分)已知函数是奇函数,若函数f(x)在区间[﹣1,a﹣2]上单调递增,则实数a的取值范围是.11.(5分)函数y=2sin(2x﹣)与y轴最近的对称轴方程是.12.(5分)如图,点O为△ABC的重心,且OA⊥OB,AB=4,则的值为13.(5分)已知S n为数列{a n}的前n项和,a1=1,2S n=(n+1)a n,若关于正整数n的不等式a n2﹣ta n≤2t2的解集中的整数解有两个,则正实数T的取值范围为.14.(5分)已知函数f(x)=函数g(x)=2﹣f(x),若函数y=f(x)﹣g(x)恰有4个零点,则实数a的取值范围是.二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知向量=(sin(x+φ),1),=(1,cos(x+φ))(ω>0,0<φ<),记函数f(x)=(+)•(﹣).若函数y=f(x)的周期为4,且经过点M(1,).(1)求ω的值;(2)当﹣1≤x≤1时,求函数f(x)的最值.16.(14分)设公差不为零的等差数列{a n}的前5项的和为55,且a2,﹣9成等比数列.(1)求数列{a n}的通项公式.(2)设数列b n=,求证:数列{b n}的前n项和S n<.17.(14分)如图,在△ABC中,角A,B,C的对边分别为a,b,c,a=b(sinC+cosC).(Ⅰ)求∠ABC;(Ⅱ)若∠A=,D为△ABC外一点,DB=2,DC=1,求四边形ABDC面积的最大值.18.(16分)如图,某城市有一块半径为40m的半圆形绿化区域(以O为圆心,AB为直径),现对其进行改建,在AB的延长线上取点D,OD=80m,在半圆上选定一点C,改建后绿化区域由扇形区域AOC和三角形区域COD组成,其面积为Scm2.设∠AOC=xrad.(1)写出S关于x的函数关系式S(x),并指出x的取值范围;(2)试问∠AOC多大时,改建后的绿化区域面积S取得最大值.19.(16分)已知函数(a>0).(Ⅰ)当a=1时,求函数f(x)在点(2,f(2))处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范围.20.(16分)已知数列{a n}的前n项和为S n,且S n+a n=4,n∈N*(1)求数列{a n}的通项公式;(2)已知c n=2n+3(n∈N*),记d n=c n+log C a n(C>0,C≠1),是否存在这样的常数C,使得数列{d n}是常数列,若存在,求出C的值;若不存在,请说明理由.(3)若数列{b n},对于任意的正整数n,均有成立,求证:数列{b n}是等差数列.三、解答题(共4小题,满分40分)21.(10分)设矩阵A=的逆矩阵为A﹣1,矩阵B满足AB=,求 A﹣1,B.22.(10分)设矩阵A=,求矩阵A的逆矩阵的特征值及对应的特征向量.23.(10分)已知曲线C的极坐标方程为ρ=2cosθ,直线l的极坐标方程为ρsin(θ+)=m.若直线l与曲线C有且只有一个公共点,求实数m的值.24.(10分)在平面直角坐标系xOy中,已知曲线C:(θ为参数,θ∈R),直线l:(t为参数,t∈R),求曲线C上的动点P到直线l的距离的最小值.2020-2021学年江苏省南通中学高三(上)期中考试数学(理科)试题参考答案一、填空题:本大题共14小题,每小题5分,共计70分.1.(5分)已知集合A={2,3,4},B={a+2,a},若A∩B=B,则∁A B= {3} .【分析】根据题意,由A∩B=B分析可得B⊆A,结合集合A、B,分析可得a=2,即可得B={2,4},由集合补集的定义,计算可得答案、【解答】解:根据题意,若A∩B=B,则必有B⊆A,而集合A={2,3,4},B={a+2,a},分析可得a=2,即B={2,4},则∁A B={3},故答案为:{3}.【点评】本题考查集合之间包含关系的运用,关键是由A∩B=B分析得到B是A的子集.2.(5分)“∃x∈R,x2﹣x+1≤0”的否定是∀x∈R,x2﹣x+1>0 .【分析】根据特称命题的否定规则:将量词改为任意,结论否定,即可得到其否定.【解答】解:将量词改为任意,结论否定,可得命题“∃x∈R,x2﹣x+1≤0”的否定是:“∀x∈R,x2﹣x+1>0”故答案为:“∀x∈R,x2﹣x+1>0”【点评】本题考查特称命题的否定,解题的关键是掌握特称命题的否定规则,属基础题.3.(5分)函数y=的定义域为(0,1] .【分析】根据对数函数的性质以及二次根式的性质求出函数的定义域即可.【解答】解:由题意得:log0.2x≥0,解得:0<x≤1,故函数的定义域是(0,1],故答案为:(0,1].【点评】本题考查了求函数的定义域问题,考查二次根式以及对数函数的性质,是一道基础题.4.(5分)若角α的终边经过点P(a,2a)(a<0),则cosα= .【分析】由条件利用任意角的三角函数的定义,求得cosα的值,【解答】解:由于a<0,角α的终边经过点P(a,2a),则x=a,y=2a,r=|OP|=﹣a,∴cosα==.故答案为:.【点评】本题主要考查任意角的三角函数的定义,属于基础题.5.(5分)设S n是等比数列{a n}的前n项的和,若a3+2a6=0,则的值是 2 .【分析】由已知利用等比数列的通项公式可求q3,然后利用等比数列的求和公式化简==,代入即可求解.【解答】解:∵a3+2a6=0,∴=﹣,即q3=﹣,∴====2.故答案是:2.【点评】本题主要考查了等比数列的通项公式及求和公式的简单应用,属于基础试题.6.(5分)如图,在正方形ABCD中,点E是DC的中点,点F是BC的一个三等分点,那么=(用和表示)【分析】根据条件即可得出,这样代入即可用表示出.【解答】解:根据条件:==.故答案为:.【点评】考查三等分点的概念,向量数乘的几何意义,相等向量和相反向量的概念,以及向量加法的几何意义.7.(5分)已知命题p:|x﹣a|<4,命题q:(x﹣1)(2﹣x)>0,若p是q的必要不充分条件,则实数a 的取值范围是[﹣2,5] .【分析】分别求出关于p,q的不等式,根据充分必要条件的定义,求出a的范围即可.【解答】解:由|x﹣a|<4,解得:a﹣4<x<a+4,得p:a﹣4<x<a+4;由(x﹣1)(2﹣x)>0,解得:1<x<2,故q:1<x<2,若p是q的必要不充分条件,即(1,2)⊆(a﹣4,a+4),故,解得:a∈[﹣2,5],故答案为:[﹣2,5].【点评】本题考查了充分必要条件,考查集合的包含关系,是一道基础题.8.(5分)已知直线x﹣y+1=0与曲线y=lnx﹣a相切,则a的值为﹣2 .【分析】先设出切点坐标,根据导数的几何意义求出在切点处的导数,从而求出切点横坐标,再根据切点既在曲线y=lnx﹣a的图象上又在直线x﹣y+1=0上,即可求出a的值.【解答】解:设切点坐标为(m,n)y'|x=m==1解得,m=1切点(1,n)在直线x﹣y+1=0上∴n=2,而切点(1,2)又在曲线y=lnx﹣a上∴a=﹣2故答案为﹣2.【点评】本题主要考查了利用导数研究曲线上某点切线方程,考查运算求解能力,考查数形结合思想、化归与转化思想,属于基础题.9.(5分)在△ABC中,已知BC=1,B=,△ABC的面积为,则AC的长为.【分析】有三角形的面积公式先求|AB|,再由余弦定理求AC的长.【解答】解:因为S△ABC===,∴|AB|=4,由余弦定理得:|AC|===.故答案为:.【点评】本题主要考查余弦定理和三角形的面积公式,属于基础题.10.(5分)已知函数是奇函数,若函数f(x)在区间[﹣1,a﹣2]上单调递增,则实数a的取值范围是(1,3] .【分析】根据函数f(x)是奇函数,求出m,然后根据函数表达式,求出函数的单调递增区间,即可求a 的取值范围.【解答】解:∵函数f(x)是奇函数,∴当x>0时,﹣x<0,满足f(﹣x)=﹣f(x),即x2﹣mx=﹣(﹣x2+2x)=﹣x2﹣2x,解得m=2.∴f(x)=,作出函数f(x)的图象,由图象可知函数f(x)在[﹣1,1]上单调递增.若函数f(x)在区间[﹣1,a﹣2]上单调递增,则﹣1<a﹣2≤1,即1<a≤3.故答案为:(1,3].【点评】本题主要考查函数奇偶性的应用,以及函数单调性的判断,利用数形结合是解决本题的关键.11.(5分)函数y=2sin(2x﹣)与y轴最近的对称轴方程是x=﹣.【分析】由条件利用正弦函数的图象的对称性,得出结论.【解答】解:对于函数y=2sin(2x﹣),令(k∈Z )时,,因此,当k=﹣1 时,得到,故直线x=﹣是与y轴最近的对称轴,故答案为:x=﹣.【点评】本题主要考查正弦函数的图象的对称性,属于基础题.12.(5分)如图,点O为△ABC的重心,且OA⊥OB,AB=4,则的值为32【分析】以AB的中点M为坐标原点,AB所在直线为x轴建系,设出C的坐标(x,y),由已知可得x2+y2=36,把用含有x的代数式表示,展开数量积得答案.【解答】解:如图,以AB的中点M为坐标原点,AB所在直线为x轴建系,则A(﹣2,0),B(2,0),设C(x,y),∵O为为△ABC的重心,∴O(),,,∵OA⊥OB,∴,化简得:x2+y2=36.∵,∴=x2+y2﹣4=32.故答案为:32.【点评】本题考查平面向量的数量积运算,考查了数学转化思想方法和数形结合的解题思想方法,是中档题.13.(5分)已知S n为数列{a n}的前n项和,a1=1,2S n=(n+1)a n,若关于正整数n的不等式a n2﹣ta n≤2t2的解集中的整数解有两个,则正实数T的取值范围为[1,).【分析】由2S n=(n+1)a n,n≥2时,2S n﹣1=na n﹣1,则2a n=2(S n﹣S n﹣1),整理得:=,则=═…===1,可得:a n=n.不等式a n2﹣ta n≤2t2,化为:(n﹣2t)(n+t)≤0,t>0,0<n≤2t,关于正整数n的不等式a n2﹣ta n≤2t2的解集中的整数解有两个,即可得出正实数t的取值范围.【解答】解:∵a1=1,2S n=(n+1)a n,∴n≥2时,2S n﹣1=na n﹣1,∴2a n=2(S n﹣S n﹣1)=(n+1)a n﹣na n﹣1,整理得:=,∴=═…===1,∴a n=n.不等式a n2﹣ta n≤2t2,化为:(n﹣2t)(n+t)≤0,t>0,∴0<n≤2t,关于正整数n的不等式a n2﹣ta n≤2t2的解集中的整数解有两个,可知n=1,2.∴1≤t<,故答案为:[1,).【点评】本题考查数列的递推关系、不等式的性质的应用,考查了推理能力与计算能力,属于中档题.14.(5分)已知函数f(x)=函数g(x)=2﹣f(x),若函数y=f(x)﹣g(x)恰有4个零点,则实数a的取值范围是(2,3] .【分析】根据函数g(x)和f(x)的关系,将y=f(x)﹣g(x)=0转化为f(x)=1,利用数形结合进行求解即可.【解答】解:由题意当y=f(x)﹣g(x)=2[f(x)﹣1]=0 时,即方程f(x)=1 有4个解.又由函数y=a﹣|x+1|与函数y=(x﹣a)2的大致形状可知,直线y=1 与函数f(x)=的左右两支曲线都有两个交点,当x≤1时,函数f(x)的最大值为a,则a>1,同时在[﹣1,1]上f(x)=a﹣|x+1|的最小值为f(1)=a﹣2,当a>1时,在(1,a]上f(1)=(1﹣a)2,要使y=f(x)﹣g(x)恰有4个零点,则满足,即,解得2<a≤3.故答案为:(2,3]【点评】本题主要考查函数与方程的应用,利用条件转化为f(x)=1,利用数形结合以及绝对值函数以及一元二次函数的性质进行求解即可.二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知向量=(sin(x+φ),1),=(1,cos(x+φ))(ω>0,0<φ<),记函数f(x)=(+)•(﹣).若函数y=f(x)的周期为4,且经过点M(1,).(1)求ω的值;(2)当﹣1≤x≤1时,求函数f(x)的最值.【分析】(1)由数量积的坐标运算化简得到函数解析式,结合周期公式求得ω的值;(2)由(1)及函数图象经过点M(1,)求得函数具体解析式,在由x的范围求得相位的范围,则函数f(x)的最值可求.【解答】解:(1)f(x)=(+)•(﹣)===﹣cos(ωx+2φ).由题意得:周期,故;(2)∵图象过点M(1,),∴﹣cos(2φ)=,即sin2φ=,而0<φ<,故2φ=,则f(x)=﹣cos().当﹣1≤x≤1时,,∴.∴当x=﹣时,f(x)min=﹣1,当x=1时,.【点评】本题考查平面向量的数量积运算,考查同角三角函数基本关系式的应用,考查y=Asin(ωx+φ)型函数的图象和性质,是中档题.16.(14分)设公差不为零的等差数列{a n}的前5项的和为55,且a2,﹣9成等比数列.(1)求数列{a n}的通项公式.(2)设数列b n=,求证:数列{b n}的前n项和S n<.【分析】(1)设等差数列的首项为a1,公差为d,运用等比数列的中项的性质和等差数列的通项公式和求和公式,解方程可得首项和公差,即可得到所求通项公式;(2)求得b n=(﹣),运用裂项相消求和和不等式的性质,即可得证.【解答】解:(1)设等差数列的首项为a1,公差为d,由题意可得,即有或(舍去),故数列{a n}的通项公式为a n=7+2(n﹣1)即a n=2n+5;(2)证明:由(1)a n=2n+5,得,则=.故原不等式成立.【点评】本题考查等差数列的通项公式和求和公式的运用,同时考查等比数列的中项的性质,数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.17.(14分)如图,在△ABC中,角A,B,C的对边分别为a,b,c,a=b(sinC+cosC).(Ⅰ)求∠ABC;(Ⅱ)若∠A=,D为△ABC外一点,DB=2,DC=1,求四边形ABDC面积的最大值.【分析】(Ⅰ)利用正弦定理,三角函数恒等变换的应用化简已知可得cosBsinC=sinBsinC,结合sinC≠0,可求tanB=1,结合范围B∈(0,π),即可求得B的值.(Ⅱ)由已知利用余弦定理可得BC2=12+22﹣2×1×2×cosD=5﹣4cosD,由已知及(Ⅰ)可知,利用三角形面积公式可求S△ABC,S△BDC,从而可求,根据正弦函数的性质即可得解四边形ABDC面积的最大值.【解答】(本题满分为12分)解:(Ⅰ)在△ABC中,∵a=b(sinC+cosC),∴sinA=sinB(sinC+cosC),…(1分)∴sin(π﹣B﹣C)=sinB(sinC+cosC),∴sin(B+C)=sinB(sinC+cosC),…(2分)∴sinBcosC+cosBsinC=sinBsinC+sinBcosC,…(3分)∴cosBsinC=sinBsinC,又∵C∈(0,π),故sinC≠0,…(4分)∴cosB=sinB,即tanB=1.…(5分)又∵B∈(0,π),∴.…(6分)(Ⅱ)在△BCD中,DB=2,DC=1,∴BC2=12+22﹣2×1×2×cosD=5﹣4cosD.…(7分)又,由(Ⅰ)可知,∴△ABC为等腰直角三角形,…(8分)∴,…(9分)又∵,…(10分)∴.…(11分)∴当时,四边形ABDC的面积有最大值,最大值为.…(12分)【点评】本题主要考查了正弦定理、余弦定理、三角形面积公式及三角恒等变换等基础知识的应用,考查了运算求解能力,考查了化归与转化思想、函数与方程思想,属于中档题.18.(16分)如图,某城市有一块半径为40m的半圆形绿化区域(以O为圆心,AB为直径),现对其进行改建,在AB的延长线上取点D,OD=80m,在半圆上选定一点C,改建后绿化区域由扇形区域AOC和三角形区域COD组成,其面积为Scm2.设∠AOC=xrad.(1)写出S关于x的函数关系式S(x),并指出x的取值范围;(2)试问∠AOC多大时,改建后的绿化区域面积S取得最大值.【分析】(1)求出扇形区域AOC、三角形区域COD的面积,即可求出S关于x的函数关系式S(x),并指出x的取值范围;(2)求导数,确定函数的单调性,即可得出结论.【解答】解:(1)由题意,S=+=800x+1600sinx(0≤x≤π);(2)S′=800+1600cosx,∴0≤x≤,S′>0,x>,S′<0,∴x=,S取得最大值+800m2.【点评】本题考查利用数学知识解决实际问题,考查导数知识的运用,属于中档题.19.(16分)已知函数(a>0).(Ⅰ)当a=1时,求函数f(x)在点(2,f(2))处的切线方程;(Ⅱ)求函数f(x)的单调区间;(Ⅲ)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范围.【分析】(Ⅰ)求出函数的导数,计算f(2),f′(2)的值,代入切线方程即可;(Ⅱ)求出函数的导数,通过讨论a的范围,确定函数的单调性即可;(Ⅲ)问题等价于在[1,+∞)上恒成立,令,根据函数的单调性求出a的范围即可.【解答】解:(Ⅰ)当 a=1时,,…(2分),…(3分)所以,函数f(x)在点(2,f(2))处的切线方程为即:5x﹣4y﹣4=0…(4分)(Ⅱ)函数的定义域为:{x|x≠0}…(1分)…(2分)当0<a≤2时,f′(x)≥0恒成立,所以,f(x)在(﹣∞,0)和(0,+∞)上单调递增当a>2时,令f′(x)=0,即:ax2+2﹣a=0,,f′(x)>0,x>x2或x<x1;f′(x)<0,x1<x<0或0<x<x2,所以,f(x)单调递增区间为,单调减区间为.…(4分)(Ⅲ)因为f(x)≥2lnx在[1,+∞)上恒成立,则.令g′(x)=0,则…(2分)若,即a=1时,g′(x)≥0,函数g(x)在[1,+∞)上单调递增,又g(1)=0,所以,f(x)≥2lnx在[1,+∞)上恒成立;…(3分)若,即a<1时,当时,g′(x)>0,g(x)单调递增;当时,g′(x)<0,g(x)单调递减所以,g(x)在[1,+∞)上的最小值为,因为g(1)=0,所以不合题意.…(4分),即a>1时,当时,g′(x)>0,g(x)单调递增,当时,g′(x)<0,g(x)单调递减,所以,g(x)在[1,+∞)上的最小值为g(1)又因为g(1)=0,所以f(x)≥2lnx恒成立综上知,a的取值范围是[1,+∞).…(5分)【点评】本题考查了曲线的切线方程问题,考查函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道综合题.20.(16分)已知数列{a n}的前n项和为S n,且S n+a n=4,n∈N*(1)求数列{a n}的通项公式;(2)已知c n=2n+3(n∈N*),记d n=c n+log C a n(C>0,C≠1),是否存在这样的常数C,使得数列{d n}是常数列,若存在,求出C的值;若不存在,请说明理由.(3)若数列{b n},对于任意的正整数n,均有成立,求证:数列{b n}是等差数列.【分析】(1)利用“当n=1时,a1=S1;当n≥2时,a n=S n﹣S n﹣1”即可得出;(2)d n=c n+log C a n=2n+3+log C22﹣n=(2﹣log C2)n+3+2log C2,假设存在这样的常数C,使得数列{d n}是常数列,则2﹣log C2=0,解得C即可;(3)由于对于任意的正整数n,均有b1a n+b2a n﹣1+b3a n﹣2+…+b n a1=()n﹣成立(*),b1a n+1+b2a n+…+b n a2+b n+1a1=()n+1﹣.(*)两边同乘以可得:b1a n+1+b2a n+…+b n a2=()n+1﹣.两式相减可得可得b n+1=,即b n=,(n≥3).n=1,2也成立,即可证明.【解答】解:(1)∵S n+a n=4,n∈N*.∴当n≥2时,S n﹣1+a n﹣1=4,∴a n+a n﹣a n﹣1=0,即a n=a n﹣1.当n=1时,2a1=4,解得a1=2.∴数列{a n}是等比数列,a n=2•()n﹣1=22﹣n.(2)d n=c n+log C a n=2n+3+log C22﹣n=2n+3+(2﹣n)log C2=(2﹣log C2)n+3+2log C2,假设存在这样的常数C,使得数列{d n}是常数列,则2﹣log C2=0,解得C=.∴存在这样的常数C=,使得数列{d n}是常数列,d n=3+2=7.(3)证明:∵对于任意的正整数n,均有b1a n+b2a n﹣1+b3a n﹣2+…+b n a1=()n﹣成立(*),∴b1a n+1+b2a n+…+b n a2+b n+1a1=()n+1﹣.①(*)两边同乘以可得:b1a n+1+b2a n+…+b n a2=()n+1﹣.②.①﹣②可得b n+1a1=﹣=,∴b n+1=,∴b n=,(n≥3).又2b1=﹣,解得b1=﹣.b1a2+b2a1=﹣,∴﹣×1+b2×2=﹣,解得b2=﹣.当n=1,2时,b n=,也适合.∴b n=,(n∈N*)是等差数列.【点评】本题考查a n=,将给的和项混合式转化为项与项之间或和与和之间的关系式,然后再求通项或和的公式是一种常考模式,注意灵活地运用“错位相减法”的解题策略.三、解答题(共4小题,满分40分)21.(10分)设矩阵A=的逆矩阵为A﹣1,矩阵B满足AB=,求 A﹣1,B.【分析】由逆矩阵的公式A﹣1=×A*,求得其伴随矩阵和|A|,即可求得 A﹣1,由AB=×=,列二元一次方程组,求得a和b的值,即可求得矩阵B.【解答】解:|A|=ad﹣bc=﹣7+6=﹣1,A﹣1=×A*=,∴A﹣1=,设B=AB=×=,,解得:,∴B=.【点评】本题考查逆变换与逆矩阵,矩阵与矩阵的乘法的意义,考查学生的计算能力,属于基础题.22.(10分)设矩阵A=,求矩阵A的逆矩阵的特征值及对应的特征向量.【分析】由矩阵A,求得丨A丨及A*,A﹣1=×A*,求得A﹣1,由特征多项式f(λ)=0,求得矩阵的特征值,代入求得特征向量.【解答】解:丨A丨==1﹣4=﹣3,A*=,A的逆矩阵为A﹣1=×A*=,则特征多项式为f(λ)=(λ+)2﹣=λ2+λ﹣,令f(λ)=0,解得:λ1=﹣1,λ2=,设特征向量为,则=﹣,可知特征值λ1=﹣1,对应的一个特征向量为,同理可得特征值λ2=,对应的一个特征向量为.…(10分)【点评】本题考查求矩阵特征值及特征向量,考查逆矩阵的求法,考查计算能力,属于中档题.23.(10分)已知曲线C的极坐标方程为ρ=2cosθ,直线l的极坐标方程为ρsin(θ+)=m.若直线l与曲线C有且只有一个公共点,求实数m的值.【分析】由曲线C的极坐标方程为ρ=2cosθ,转化成化为直角坐标方程为x2+y2=2x,转化成标准方程,即可求得圆心与半径,将直线l的方程转化成标准方程:x+y﹣2m,由题意可知:=1,求得m=﹣或m=.【解答】解:曲线C的极坐标方程为ρ=2cosθ,化为直角坐标方程为x2+y2=2x.即(x﹣1)2+y2=1,表示以(1,0)为圆心,1为半径的圆.…3分直线l的极坐标方程是ρ in(θ+)=m,即ρcosθ+ρsinθ=m,化为直角坐标方程为x+y﹣2m=0.…6分由直线l与曲线C有且只一个公共点,∴=1,解得m=﹣或m=.∴所求实数m的值为﹣或.…10分.【点评】本题考圆的参数方程转化成标准方程,直线的极坐标转化成直角坐标,直线与圆的位置关系,考查点到直线的距离公式,考查计算能力,属于中档题.24.(10分)在平面直角坐标系xOy中,已知曲线C:(θ为参数,θ∈R),直线l:(t为参数,t∈R),求曲线C上的动点P到直线l的距离的最小值.【分析】根据已知中直线的参数方程,消参求出直线的一般式方程,代入点到直线距离公式,结合三角函数的图象和性质,可得曲线C上的动点P到直线l的距离的最小值.【解答】解:将直线l的参数方程(t为参数,t∈R),化为普通方程为x﹣y﹣6=0.因为点P在曲线C:(θ为参数)上,所以设P(4cosθ,3sinθ).点P到直线l的距离d==,其中tanφ=,φ是锐角.所以当cos(θ+φ)=1时,d min=.所以点P到直线l的距离的最小值为.…10分.【点评】本题考查的知识点是直线与椭圆的位置关系,参数方程与普通方程的互化,三角函数的最值,难度中档.。
江苏省南通市2020-2021学年度高三年级第一学期期初调研数学试题(解析版)
江苏省南通市2021届高三上学期开学考试数学试题2020.9一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上)1.记全集U =R ,集合A ={}216x x ≥,集合B ={}22x x ≥,则U (A)B =A .[4,+∞)B .(1,4]C .[1,4)D .(1,4)2.已知5log 2a =,7log 2b =,20.5a c -=,则a ,b ,c 的大小关系为 A .b <a <c B .a <b <c C .c <b <a D .c <a <b3.若3cos()5αβ+=,5sin()413πβ-=,α,β∈(0,2π),则cos()4πα+= A .3365- B .3365 C .5665 D .1665-4.我国即将进入双航母时代,航母编队的要求是每艘航母配2~3艘驱逐舰,1~2艘核潜艇.船厂现有5艘驱逐舰和3艘核潜艇全部用来组建航母编队,则不同的组建方法种数为 A .30 B .60 C .90 D .1205.函数()2sin()f x x ωϕ=+(ω>0,ϕ<π)的部分图像如图所示,且()f x 的图像过A(2π,1),B(2π,﹣1)两点,为了得到()2sin g x x ω=的图像,只需将()f x 的图像 A .向右平移56π B .向左平移56π C .向左平移512π D .向右平移512π第5题 第6题6.《易经》是中国传统文化中的精髓,上图是易轻八卦图(含乾、坤、舞、震、坎、离、良、兑八卦),每一卦由三根线组成( -表示一根阳线,--表示一根阴线),从八卦中任取一卦,这一卦的三根线中恰有2根阳线和1根阴线的概率为A .18B .14 C .38 D .12 7.设F 1,F 2分别为双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点,过F 1的直线l 与圆O :222x y a +=相切,l 与C 的渐近线在第一象限内的交点是P ,若PF 2⊥x 轴,则双曲线的离心率等于AB .2 C..48.对于函数()y f x =,若存在区间[a ,b],当x ∈[a ,b]时的值域为[ka ,kb](k >0),则称()y f x =为k 倍值函数.若()e 2x f x x =+是k 倍值函数,则实数k 的取值范围是A .(e +1,+∞)B .(e +2,+∞)C .(1e e +,+∞)D .(2e e+,+∞)二、 多项选择题(本大题共4小题,每小题5分, 共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上) 9.下列说法正确的是A .将一组数据中的每个数据都乘以同一个非零常数a 后,方差也变为原来的a 倍B .设有一个回归方程y =3﹣5x ,变量x 增加1个单位时,y 平均减少5个单位C .线性相关系数r 越大,两个变量的线性相关性越强;反之,线性相关性越弱D .在某项测量中,测量结果ξ服从正态分布N(1,2σ)(σ>0),则P(ξ>1)=0.5 10.已知抛物线C :22y px =过点P(1,1),则下列结论正确的是A .点P 到抛物线焦点的距离为32B .过点P 作过抛物线焦点的直线交抛物线于点Q ,则△OPQ 的面积为532C .过点P 与抛物线相切的直线方程为x ﹣2y +1=0D .过P 作两条斜率互为相反数的直线交抛物线于点M ,N ,则直线MN 的斜率为定值 11.在△ABC 中,已知bcosC +ccosB =2b ,且111tan A tan B sin C+=,则 A .a ,b ,c 成等比数列B .sinA :sinB :sinC =2:1C .若a =4,则S △ABCD .A ,B ,C 成等差数列12.已知函数()ln f x x x =,若120x x <<,则下列选项正确的是A .1212()()0f x f x x x -<-B .1122()()x f x x f x +<+C .2112()()x f x x f x <D .当211ex x >>时,11222112()()()()x f x x f x x f x x f x +>+ 三、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.高二某班共有60名学生,其中女生有20名,三好学生占全班人数的16,而且三好学生中女生占一半.现在从该班任选一名同学参加某一座谈会.则在已知没有选上女生的条件下,选上的是三好学生的概率为 .14.曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为 .15.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是 . 16.椭圆与双曲线有相同的焦点F 1(﹣c ,0),F 2(c ,0),椭圆的一个短轴端点为B ,直线F 1B 与双曲线的一条渐近线平行.若椭圆与双曲线的离心率分别为1e ,2e ,则12e e = ;且22123e e +的最小值为 .四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知函数2()cos 2sin 1f x x x x =+-.(1)求函数()f x 的单调递增区间;(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若(A)2f =,C =4π,c =2,求△ABC 的面积. 18.(本小题满分12分)2020年寒假是特殊的寒假,因为疫情全体学生只能在家进行网上在线学习,为了研究学生在网上学习的情况,某学校在网上随机抽取120名学生对线上教育进行调查,其中男生与女生的人数之比为11:13,其中男生30人对于线上教育满意,女生中有15名表示对线上教育不满意.(1; (2)从被调查中对线上教育满意的学生中,利用分层抽样抽取8名学生,再在8名学生中抽取3名学生,作学习经验介绍,其中抽取男生的个数为ξ.求出ξ的分布列及期望值.附公式及表:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.19.(本小题满分12分)已知椭圆C 的中心在原点,其焦点与双曲线22221x y -=的焦点重合,点P(0)在椭圆C 上,动直线l :y =kx +m 交椭圆于不同两点A ,B ,且OA OB 0⋅=(O 为坐标原点).(1)求椭圆的方程;(2)讨论7m 2﹣12k 2是否为定值;若是,求出该定值;若不是,请说明理由. 20.(本小题满分12分)已知函数2()f x x bx c =++,且()0f x ≤的解集为[﹣1,2]. (1)求函数()f x 的解析式;(2)解关于x 的不等式()2(1)mf x x m >--(m ≥0);(3)设()31()2f x x g x +-=,若对于任意的1x ,2x ∈[﹣2,1]都有12()()g x g x M -≤,求M 的最小值. 21.(本小题满分12分)已知221()(ln )x f x a x x x -=-+. (1)讨论()f x 的单调性;(2)当a =1时,证明3()()2f x f x '>+对于任意的x ∈[1,2]成立. 22.(本小题满分12分)已知点P 是抛物线C 1:24y x =的准线上任意一点,过点P 作抛物线的两条切线PA 、PB ,其中A 、B 为切点.(1)证明:直线AB 过定点,并求出定点的坐标;(2)若直线AB 交椭圆C 2:22143x y +=于C 、D 两点,S 1,S 2分别是△PAB ,△PCD 的面积,求12S S 的最小值.江苏省南通市2021届高三上学期开学考试数学试题2020.9一、单项选择题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案添涂在答题卡相应位置上)1.记全集U =R ,集合A ={}216x x ≥,集合B ={}22x x ≥,则U (A)B =A .[4,+∞)B .(1,4]C .[1,4)D .(1,4)答案:C解析:∵集合A ={}{}21644x x x x x ≥=≥≤-或,∴{}UA 44x x =-<<,又∵B ={}{}221x x x x ≥=≥,∴U (A)B =[1,4),故选C .2.已知5log 2a =,7log 2b =,20.5a c -=,则a ,b ,c 的大小关系为 A .b <a <c B .a <b <c C .c <b <a D .c <a <b 答案:A解析:∵555log 2log 1<=,∴1a <,∴210.50.52a -->=,∴2c >, 又57log 2log 2>,a b >,∴b <a <c ,故选A .3.若3cos()5αβ+=,5sin()413πβ-=,α,β∈(0,2π),则cos()4πα+= A .3365- B .3365 C .5665 D .1665-答案:C解析:∵α,β∈(0,2π),∴αβ+∈(0,π),4πβ-∈(4π-,4π),∴4sin()5αβ+=,12cos()413πβ-=,∴cos()cos[()()]cos()cos()sin()444πππααββαββαβ+=+--=+-++3124556sin()451351365πβ-=⨯+⨯=,故选C .4.我国即将进入双航母时代,航母编队的要求是每艘航母配2~3艘驱逐舰,1~2艘核潜艇.船厂现有5艘驱逐舰和3艘核潜艇全部用来组建航母编队,则不同的组建方法种数为 A .30 B .60 C .90 D .120 答案:B解析:有两种情况,①一艘航母配2搜驱逐舰和1搜核潜艇,另一艘航母配3搜驱逐舰和2搜核潜艇,②一艘航母配2搜驱逐舰和2搜核潜艇,另一艘航母配3搜驱逐舰和1搜核潜艇,2122535360C C C C +=,故选B .5.函数()2sin()f x x ωϕ=+(ω>0,ϕ<π)的部分图像如图所示,且()f x 的图像过A(2π,1),B(π,﹣1)两点,为了得到()2sin g x x ω=的图像,只需将()f x 的图像A .向右平移56πB .向左平移56πC .向左平移512πD .向右平移512π 答案:C解析:由题意知22T π=,T π=,∴ω=2,2226k ππϕπ⨯+=+,526k ϕππ=-+, ∵ϕ<π,∴56ϕπ=-,∴55()2sin(2)2sin 2()612f x x x ππ=-=-,故选C .6.《易经》是中国传统文化中的精髓,上图是易轻八卦图(含乾、坤、舞、震、坎、离、良、兑八卦),每一卦由三根线组成( -表示一根阳线,--表示一根阴线),从八卦中任取一卦,这一卦的三根线中恰有2根阳线和1根阴线的概率为A .18 B .14 C .38 D .12答案:C解析:P =38,故选C .7.设F 1,F 2分别为双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点,过F 1的直线l 与圆O :222x y a +=相切,l 与C 的渐近线在第一象限内的交点是P ,若PF 2⊥x 轴,则双曲线的离心率等于AB .2 C..4 答案:A解析:12tan P F F 2bc aa b c∠==,222b a =,223c a =,e =A .8.对于函数()y f x =,若存在区间[a ,b],当x ∈[a ,b]时的值域为[ka ,kb](k >0),则称()y f x =为k 倍值函数.若()e 2x f x x =+是k 倍值函数,则实数k 的取值范围是A .(e +1,+∞)B .(e +2,+∞)C .(1e e +,+∞)D .(2e e+,+∞)答案:B解析:()e 2xf x x =+是单调增函数,故e 2e 2ab a kab kb⎧+=⎪⎨+=⎪⎩,故a ,b 是方程e 2x x kx +=的两个根,令()e (2)x g x k x =+-,()e (2)x g x k '=+-,当k >2,x =ln(2)k -时,()g x 有最小值为(ln(2))2(2)ln(2)0g k k k k -=----<,解得k >e +2,故选B .二、 多项选择题(本大题共4小题,每小题5分, 共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案添涂在答题卡相应位置上) 9.下列说法正确的是A .将一组数据中的每个数据都乘以同一个非零常数a 后,方差也变为原来的a 倍B .设有一个回归方程y =3﹣5x ,变量x 增加1个单位时,y 平均减少5个单位C .线性相关系数r 越大,两个变量的线性相关性越强;反之,线性相关性越弱D .在某项测量中,测量结果ξ服从正态分布N(1,2σ)(σ>0),则P(ξ>1)=0.5 答案:BD解析:选项A ,方差变为原来的a 2倍,故A 错误;线性相关系数r 的绝对值越大,两个变量的线性相关性越强;线性相关系数r 的绝对值越接近0,线性相关性越弱,由此可见C 错误,故选BD .10.已知抛物线C :22y px =过点P(1,1),则下列结论正确的是A .点P 到抛物线焦点的距离为32B .过点P 作过抛物线焦点的直线交抛物线于点Q ,则△OPQ 的面积为532C .过点P 与抛物线相切的直线方程为x ﹣2y +1=0D .过P 作两条斜率互为相反数的直线交抛物线于点M ,N ,则直线MN 的斜率为定值 答案:BCD解析:∵抛物线C :22y px =过点P(1,1),∴12p =,∴2y x =,故该抛物线焦点坐标为(14,0),准线方程为x =14-,故点P 到抛物线焦点的距离为54,故A 错误;△OPQ 的面积215442sin 3225p S θ===⨯,故B 正确;设过点P 的直线方程为1y kx k =+-,与抛物线联立并化简得210ky y k -+-=,14(1)0k k --=,解得k =12,故过点P 与抛物线相切的直线方程为x ﹣2y +1=0,C 正确;设PM 的斜率为k ,则PN 的斜率为﹣k ,求得M(22(1)k k -,1k k -),N(22(1)k k+,1k k +-),求得MN 的斜率为12-,D 正确,故选BCD . 11.在△ABC 中,已知bcosC +ccosB =2b ,且111tan A tan B sin C+=,则 A .a ,b ,c 成等比数列B .sinA :sinB :sinC =2:1C .若a =4,则S △ABCD .A ,B ,C 成等差数列答案:BC 解析:由111tan A tan B sin C +=得,cos cos 1sin sin sin A B A B C+=,2sin sin sin A B C =,故ab =c 2,故a ,c ,b 成等比数列,故A 错误;∵bcosC +ccosB =2b ,∴a =2b ,又ab =c 2,∴c=b ,∴a :b :c =2:1,∴sinA :sinB :sinC =2:1B 正确;cosC =222412322214a b c ab +-+-==⨯⨯,sinC=,∴S =11sin 422a b C ⨯⨯=⨯⨯2=,故C 正确;cosB=22228a c b ac +-==,故B ≠60°,故D 错误,故选BC . 12.已知函数()ln f x x x =,若120x x <<,则下列选项正确的是A .1212()()0f x f x x x -<- B .1122()()x f x x f x +<+ C .2112()()x f x x f x < D .当211ex x >>时,11222112()()()()x f x x f x x f x x f x +>+ 答案:CD解析:首先注意到函数()ln f x x x =,在(0,1e )单调递减,在(1e,+∞)单调递增,故A 错误,112221121112()()()()()[()()]0x f x x f x x f x x f x x x f x f x +>+⇒-->,故D 正确;令()()ln g x f x x x x x =+=+,不是单调函数,故B 错误;令()()ln f x h x x x==,是单调增函数,故C 正确,故选CD .三、填空题(本大题共4小题, 每小题5分,共计20分.请把答案填写在答题卡相应位置上)13.高二某班共有60名学生,其中女生有20名,三好学生占全班人数的16,而且三好学生中女生占一半.现在从该班任选一名同学参加某一座谈会.则在已知没有选上女生的条件下,选上的是三好学生的概率为 . 答案:18解析:P =51408=.14.曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为 . 答案:2y x =解析:ln 1y x x =++,11y x'=+,设切点横坐标为0x ,001121x x +=⇒=,所以切点(1,2),故切线方程为22(1)y x -=-,即2y x =.15.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是 . 答案:(﹣2,6)解析:点P 与点F 重合时,AP AB ⋅有最小值为﹣2,当点P 与点C 重合时,AP AB ⋅有最大值为6,故AP AB ⋅的取值范围是(﹣2,6).16.椭圆与双曲线有相同的焦点F 1(﹣c ,0),F 2(c ,0),椭圆的一个短轴端点为B ,直线F 1B 与双曲线的一条渐近线平行.若椭圆与双曲线的离心率分别为1e ,2e ,则12e e = ;且22123e e +的最小值为 .答案:1;解析:设椭圆方程为2222111x y a b +=,双曲线方程为2222221x y a b -=,则由直线F 1B 与双曲线的一条渐近线平行,得222222212121222222222211b b b b a c c a e c a c a c a e --=⇒=⇒=⇒=,∴12e e =1;所以2212123e e e +≥=21223e e ⎧=⎪⎨⎪=⎩取等号.四、解答题(本大题共6小题,共计70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知函数2()cos 2sin 1f x x x x =+-.(1)求函数()f x 的单调递增区间;(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若(A)2f =,C =4π,c =2,求△ABC 的面积.解:(1)∵()221f x sin x =+-=﹣cos2x=2sin (2x 6π-), 令2kπ2π-≤2x 6π-≤2kπ2π+,k ∈Z ,解得kπ6π-≤x≤kπ3π+,k ∈Z ,∴函数f (x )的单调递增区间为:[kπ6π-,kπ3π+],k ∈Z .(2)∵f (A )=2sin (2A 6π-)=2, ∴sin (2A 6π-)=1, ∵A ∈(0,π),2A 6π-∈(6π-,116π),∴2A 62ππ-=,解得A 3π=,∵C 4π=,c =2,∴由正弦定理sin a b sinA B =,可得2sin sin 12c B b sinC ππ⎛⎫⨯+ ⎪⋅===+ ∴S △ABC 12=absinC 12=(1322+⨯=. 18.(本小题满分12分)2020年寒假是特殊的寒假,因为疫情全体学生只能在家进行网上在线学习,为了研究学生在网上学习的情况,某学校在网上随机抽取120名学生对线上教育进行调查,其中男生与女生的人数之比为11:13,其中男生30人对于线上教育满意,女生中有15名表示对线上教育不满意.(1; (2)从被调查中对线上教育满意的学生中,利用分层抽样抽取8名学生,再在8名学生中抽取3名学生,作学习经验介绍,其中抽取男生的个数为ξ.求出ξ的分布列及期望值.附公式及表:22()n ad bc K -=,其中n a b c d =+++.解:(1)因为男生人数为:120551113⨯=+,所以女生人数为1205565-=,于是可完成22⨯列联表,如下: 根据列联表中的数据,得到K 的观测值2120(30152550)960 6.713 6.63555658040143k ⨯⨯-⨯==≈>⨯⨯⨯,所以有99%的把握认为对“线上教育是否满意与性别有关”(2)由(1)可知男生抽3人,女生抽5人,依题可知ξ的可能取值为0,1,2,3,并且ξ服从超几何分布,()()335380,1,2,3k kC C P k k C ξ-===,即 3215533388515(0),(1)2828C C C P P C C ξξ======, 1235333388151(2),(3)5656C C C P P C C ξξ======. 可得分布列为可得1519()0123282856568E ξ=⨯+⨯+⨯+⨯=.19.(本小题满分12分)已知椭圆C 的中心在原点,其焦点与双曲线22221x y -=的焦点重合,点P(0)在椭圆C 上,动直线l :y =kx +m 交椭圆于不同两点A ,B ,且OA OB 0⋅=(O 为坐标原点).(1)求椭圆的方程;(2)讨论7m 2﹣12k 2是否为定值;若是,求出该定值;若不是,请说明理由. 解:(1)因为双曲线22221x y-=的焦点为()1,0,所以在椭圆C 中1c =,设椭圆C 的方程为()2222110y x a a a +=>-, 由点(P 在椭圆C 上得2311a =-,解得242a a =⇒=,则b == 所以椭圆C 的方程为22143x y +=(2)22712m k -为定值,理由如下:设()()1122,,,A x y B x y ,由0OA OB ⋅=可知12120x x y y +=,联立方程组()222223484120143y kx mk x mkx m x y =+⎧⎪⇒+++-=⎨+=⎪⎩, 由()()2222644344120m k k m ∆=-+->得2234m k <+,21212228412,3434km m x x x x k k -+=-=++,① 由12120x x y y +=及y kx m =+得()()12120x x kx m kx m +++=,整理得()()22121210k x x km x x m ++++=,将①式代入上式可得()222224128103434m kmk km m k k-+⋅-⋅+=++, 同时乘以234k +可化简得()()222222214128340k m k m m m k +--++=,所以22712=12m k -,即22712m k -为定值. 20.(本小题满分12分)已知函数2()f x x bx c =++,且()0f x ≤的解集为[﹣1,2]. (1)求函数()f x 的解析式;(2)解关于x 的不等式()2(1)mf x x m >--(m ≥0);(3)设()31()2f x x g x +-=,若对于任意的1x ,2x ∈[﹣2,1]都有12()()g x g x M -≤,求M 的最小值. 解:(1)因为()0f x ≤的解集为[1,2]-,所以20x bx c ++=的根为1-,2, 所以1b -=,2c =-,即1b =-,2c =-;所以2()2f x x x =--;(2)()2(1)mf x x m >--,化简有2(2)2(1)m x x x m -->--,整理(2)(1)0mx x -->, 所以当0m =时,不等式的解集为(,1)-∞, 当02m <<时,不等式的解集为2(,1),m ⎛⎫-∞+∞ ⎪⎝⎭, 当2m =时,不等式的解集为(,1)(1,)-∞+∞,当2m >时,不等式的解集为()2(,)1,m-∞+∞,(3)因为[2,1]x ∈-时2()3123f x x x x +-=+-,根据二次函数的图像性质,有2()3123[4,0]f x x x x +-=+-∈-,则有2()3123()22f x x x xg x +-+-==,所以,1(),116g x ⎡⎤∈⎢⎥⎣⎦, 因为对于任意的12,[2,1]x x ∈-都有12|()()|g x g x M -≤, 即求12|()()|Max g x g x M -≤,转化为()()Max Min g x g x M -≤, 而()(1)1Max g x g ==,1()(1)16Min g x g =-=,所以, 此时可得1516M ≥, 所以M 的最小值为1516.21.(本小题满分12分)已知221()(ln )x f x a x x x -=-+. (1)讨论()f x 的单调性;(2)当a =1时,证明3()()2f x f x '>+对于任意的x ∈[1,2]成立. 解:(1)的定义域为;223322(2)(1)'()a ax x f x a x x x x--=--+=. 当,时,'()0f x >,单调递增;(1,),'()0x f x ∈+∞<时,单调递减.当时,3(1)22'()()()a x f x x x x a a-=+-. ① ,,当或x ∈时,'()0f x >,单调递增;当x ∈时,'()0f x <,单调递减;② 时,,在x ∈内,'()0f x ≥,单调递增;③ 时,,当或x ∈时,'()0f x >,单调递增;当x ∈时,'()0f x <,单调递减.综上所述, 当时,函数在内单调递增,在内单调递减; 当时,在内单调递增,在内单调递减,在内单调递增; 当时,在内单调递增; 当,在内单调递增,在内单调递减,在内单调递增.(2)由(Ⅰ)知,时,22321122()'()ln (1)x f x f x x x x x x x --=-+---+23312ln 1x x x x x =-++--,,令,.则()'()()()f x f x g x h x -=+, 由1'()0x g x x-=≥可得,当且仅当时取得等号.又24326'()x x h x x --+=,设,则在x ∈单调递减,因为, 所以在上存在使得时,时,,所以函数()h x 在上单调递增;在上单调递减, 由于,因此,当且仅当取得等号, 所以3()'()(1)(2)2f x f xgh ->+=, 即3()'()2f x f x >+对于任意的恒成立22.(本小题满分12分)已知点P 是抛物线C 1:24y x =的准线上任意一点,过点P 作抛物线的两条切线PA 、PB ,其中A 、B 为切点.(1)证明:直线AB 过定点,并求出定点的坐标;(2)若直线AB 交椭圆C 2:22143x y +=于C 、D 两点,S 1,S 2分别是△PAB ,△PCD 的面积,求12S S 的最小值.解:(1)证明:设点()11,A x y 、()22,B x y , 则以A 为切点的切线方程为()1112y y x x y -=-,即()112y y x x =+, 同理以B 为切点的切线方程为()222y y x x =+,两条切线均过点()1,P t -,()()11222121ty x ty x ⎧=-+⎪∴⎨=-+⎪⎩,即1122220220x ty x ty --=⎧⎨--=⎩,所以,点A 、B 的坐标满足直线220x ty --=的方程, 所以,直线AB 的方程为220x ty --=,在直线AB 的方程中,令0y =,可得1x =,所以,直线AB 过定点()1,0;(2)设点P 到直线AB 的距离为d ,则1212PABPCDd AB AB S S CD d CD ⋅==⋅△△. 由题意可知,直线AB 不与x 轴重合,可设直线AB 的方程为1x my =+,设()33,C x y 、()44,D x y ,由241y x x my ⎧=⎨=+⎩,得2440y my --=,()21610m ∆=+>恒成立,由韦达定理得124y y m +=,124y y =-,由弦长公式可得()21241AB y y m =-==+由221431x y x my ⎧+=⎪⎨⎪=+⎩,得()2234690m y my ++-=,()()22236363414410m m m ∆=++=+>恒成立.由韦达定理得342634m y y m +=-+,342934y y m =-+,由弦长公式得()234212134m CD y m +=-==+.()()2222241344433312134PAB PCD m AB S m m S CD m m ++∴====+≥++△△,当且仅当0m =时,等号成立.因此,12S S 的最小值为43.。
2020-2021学年江苏省南通市海门市高三(上)期末数学试卷 (解析版)
2020-2021学年江苏省南通市海门市高三(上)期末数学试卷一、单项选择题(共8小题).1.已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<m},A∩B=A,则实数m的取值范围为()A.(2,+∞)B.(﹣1,2)C.[2,+∞)D.(﹣1,2]2.已知复数Z=(1+2i)(2﹣i)(其中i为虚数单位),则复数Z的共轭复数在复平面内对应的点为()A.(3,4)B.(3,﹣4)C.(4,3)D.(4,﹣3)3.“m2<n2”是“lnm<lnn”()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件4.为防控需要,南通市某医院呼吸科准备从5名男医生和3名女医生中选派3人前往3个隔离点进行核酸检测采样工作,则选派的三人中少有1名女医生的概率为()A.B.C.D.5.若的二次式展开式中x7项的系数为15,则n=()A.5B.6C.7D.86.已知向量,满足||=2,=(1,1),=﹣2,则cos<,>=()A.B.C.D.7.已知函数f(x)=x2e ax+1﹣ax,若曲线y=f(x)在点(1,f(1))处的切线与直线y=2x平行,则a=()A.﹣2B.﹣2或﹣1C.﹣1或2D.﹣18.已知实数a,b,c∈R,满足,则a,b,c大小关系为()A.a>b>c B.a>c>b C.b>c>a D.b>a>c二、多项选择题(共4小题).9.某同学在研究函数时,给出下面几个结论中正确的是()A.f(x)的图象关于点(﹣1,1)对称B.f(x)是单调函数C.f(x)的值域为(﹣1,1)D.函数g(x)=f(x)﹣x有且只有一个零点10.某地区机械厂为倡导“大国工匠精神”,提高对机器零件质量的品质要求,对现有产品进行抽检,由抽检结果可知,该厂机器零件的质量指标值Z服从正态分布N(200,224),则()(附:≈14.97,若Z~N(μ,σ2),则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544)A.P(185.03<Z<200)=0.6826B.P(200≤Z<229.94)=0.4772C.P(185.03<Z<229.94)=0.9544D.任取10000件机器零件,其质量指标值位于区间(185.03,229.94)内的件数约为8185件11.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<),其图象相邻两条对称轴之间的距离为,且直线x=﹣是其中一条对称轴,则下列结论正确的是()A.函数f(x)的最小正周期为B.函数f(x)在区间[﹣,]上单调递增C.点(﹣,0)是函数f(x)图象的一个对称中心D.将函数f(x)图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,再把得到的图象向左平移个单位长度,可得到g(x)=sin2x的图象12.已知正数a,b满足,则()A.最小值为2B.ab的最小值为4C.a+4b的最小值为8D.4a+b的最小值为8三、填空题(共4小题).13.若数列{a n}满足:a n+a n+1=2n+1,a1=1,则a2021=.14.已知f(x)是定义在R上的奇函数,满足f(1﹣x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(2021)=.15.设椭圆与双曲线的公共焦点为F1,F2,将C1,C2的离心率记为e1,e2,点A是C1,C2在第一象限的公共点,若点A关于C2的一条渐近线的对称点为F1,则=.16.我国古代数学名著《九章算数》中,将底面是直角三角形的直三棱柱(侧棱垂直于底面的三棱柱)称之为“堑堵”.如图,三棱柱ABC﹣A1B1C1为一个“堑堵”,底面△ABC 是以AB为斜边的直角三角形,且AB=5,AC=3,点P在棱BB1上,且PC⊥PC1,当△APC1的面积取最小值时,三棱锥P﹣ABC的外接球的表面积为.四、解答题(共6小题).17.已知数列{a n}满足++…+=.(1)求数列{a n}的通项公式;(2)设数列{}的前n项和为T n,求T n.18.在平面四边形ABCD中,已知AB=2,AD=3,∠ADB=2∠ABD,∠BCD=.(1)求BD;(2)求△BCD周长的最大值.19.如图,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=AD=a,E是AD 的中点,O是AC与BE的交点.将△ABE沿BE折起到如图2中△A1BE的位置,得到四棱锥A1﹣BCDE.(Ⅰ)证明:CD⊥平面A1OC;(Ⅱ)当平面A1BE⊥平面BCDE时,四棱锥A1﹣BCDE的体积为36,求a的值.20.甲、乙两人组成“虎队”代表班级参加学校体育节的篮球投篮比赛活动,每轮活动由甲、乙两人各投篮一次,在一轮活动中,如果两人都投中,则“虎队”得3分;如果只有一个人投中,则“虎队”得1分;如果两人都没投中,则“虎队”得0分.已知甲每轮投中的概率是,乙每轮投中的概率是;每轮活动中甲、乙投中与否互不影响.各轮结果亦互不影响.(1)假设“虎队”参加两轮活动,求:“虎队”至少投中3个的概率;(2)①设“虎队”两轮得分之和为X,求X的分布列;②设“虎队”n轮得分之和为X n,求X n的期望值.(参考公式E(X+Y)=EX+EY)21.已知函数.(1)讨论f(x)的单调性;(2)若对任意x∈[0,+∞),f(x)≥﹣sin x恒成立,求a的取值范围.22.已知抛物线P:y2=2px(p>0),焦点为F,M为P上任一点,l为过M点的切线.(1)若l的方程为,求抛物线方程;(2)求证:FM与l的夹角等于l与x轴的夹角.参考答案一、单项选择题(共8小题).1.已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<m},A∩B=A,则实数m的取值范围为()A.(2,+∞)B.(﹣1,2)C.[2,+∞)D.(﹣1,2]解:A={x|﹣1<x<2};∵A∩B=A;∴A⊆B;∴m≥2;∴m的取值范围为[2,+∞).故选:C.2.已知复数Z=(1+2i)(2﹣i)(其中i为虚数单位),则复数Z的共轭复数在复平面内对应的点为()A.(3,4)B.(3,﹣4)C.(4,3)D.(4,﹣3)解:∵Z=(1+2i)(2﹣i)=2﹣i+4i﹣2i2=4+3i,∴,则复数Z的共轭复数在复平面内对应的点为(4,﹣3),故选:D.3.“m2<n2”是“lnm<lnn”()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件解:lnm<lnn,则0<m<n,故m2<n2,反之,m2<n2,得|m|<|n|,推不出lnm<lnn,故“m2<n2”是“lnm<lnn”的必要不充分条件.故选:B.4.为防控需要,南通市某医院呼吸科准备从5名男医生和3名女医生中选派3人前往3个隔离点进行核酸检测采样工作,则选派的三人中少有1名女医生的概率为()A.B.C.D.解:南通市某医院呼吸科准备从5名男医生和3名女医生中选派3人前往3个隔离点进行核酸检测采样工作,基本事件总数n==56,选派的三人中少有1名女医生包含的基本事件个数m==46,∴选派的三人中少有1名女医生的概率为P===.故选:A.5.若的二次式展开式中x7项的系数为15,则n=()A.5B.6C.7D.8解:中,T r+1==,∵二次式展开式中x7项的系数为15,由2n﹣3r=7,得n=,∴=15,解得r=1,∴n==5.故选:A.6.已知向量,满足||=2,=(1,1),=﹣2,则cos<,>=()A.B.C.D.【分析】通过向量的数量积的运算法则,化简求解即可.解:cos<,>====.故选:C.7.已知函数f(x)=x2e ax+1﹣ax,若曲线y=f(x)在点(1,f(1))处的切线与直线y=2x平行,则a=()A.﹣2B.﹣2或﹣1C.﹣1或2D.﹣1【分析】求出原函数的导函数,得到函数在x=1处的导数,再由导数值等于2列式求得a值.解:∵f(x)=x2e ax+1﹣ax,∴f′(x)=2xe ax+1+ax2e ax+1﹣a,∵曲线y=f(x)在点(1,f(1))处的切线与直线y=2x平行,∴f′(1)=2e a+1+ae a+1﹣a=2,即(2+a)e a+1=2+a,∴2+a=0,即a=﹣2.故选:A.8.已知实数a,b,c∈R,满足,则a,b,c大小关系为()A.a>b>c B.a>c>b C.b>c>a D.b>a>c【分析】由已知可得a>0,c<0,利用lna<a,可得,构造函数h(x)=,即可比较a,b大小.解:因为,则a>0,c<0,对于函数f(x)=x﹣lnx,(x>0),f′(x)=1﹣,可得f(x)在(0,1)递减,在(1,+∞)递增,∴f(x)≥(1)=1>0,∴lna<a,即,∴,令函数h(x)=,h′(x)=,可得h(x)的图像如下:∴a<b,综上:a>b>c,故选:D.二、多项选择题:(本题共4小题,每小题5分,共20分.在每个小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.)9.某同学在研究函数时,给出下面几个结论中正确的是()A.f(x)的图象关于点(﹣1,1)对称B.f(x)是单调函数C.f(x)的值域为(﹣1,1)D.函数g(x)=f(x)﹣x有且只有一个零点【分析】容易看出f(x)是奇函数,从而得出f(x)的图象关于(0,0)对称,从而判断选项A错误;容易判断f(x)是R上的增函数,从而判断选项B正确,并可求出f(x)的值域,并判断选项C正确;可得出g(x)=x(﹣1)=0时,x=0,从而判断选项D正确.解:对于A:f(x)的定义域为R,f(﹣x)=﹣f(x),∴f(x)为R上的奇函数,∴f(x)的图象关于原点对称,从而判断选项A错误;对于B:x>0时,f(x)=是增函数;x<0时,f(x)=是增函数,∴f(x)在R上是增函数,∴若x1≠x2,则f(x1)≠f(x2),选项B正确;对于C:x>0,x趋向正无穷时,可得出f(x)趋向1;x<0,x趋向负无穷时,f(x)趋向﹣1,从而得出f(x)的值域为(﹣1,1),选项C正确;对于D:g(x)=f(x)﹣x=x(﹣1)=0时,x=0,从而得出g(x)只有一个零点,选项D正确.故选:BCD.10.某地区机械厂为倡导“大国工匠精神”,提高对机器零件质量的品质要求,对现有产品进行抽检,由抽检结果可知,该厂机器零件的质量指标值Z服从正态分布N(200,224),则()(附:≈14.97,若Z~N(μ,σ2),则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544)A.P(185.03<Z<200)=0.6826B.P(200≤Z<229.94)=0.4772C.P(185.03<Z<229.94)=0.9544D.任取10000件机器零件,其质量指标值位于区间(185.03,229.94)内的件数约为8185件【分析】根据该厂机器零件的质量指标值Z服从正态分布N(200,224),可得μ=200,σ=,结合由正态分布函数的对称性即可求出所求.解:因为N(200,224),所以μ=200,σ=≈14.97,故μ+σ=214.97,μ+2σ=229.94,μ﹣σ=185.03,μ﹣2σ=170.06,故P(170.06<Z<229.94)=0.9544,P(185.03<Z<214.97)=0.6826,由正态分布函数的对称性可知A选项应为P(185.03<Z<200)=0.3413,故A错;P(200≤Z<229.94)=0.4772,故B正确;P(185.03<Z<229.94)=P(185.03<Z<200)+P(200<Z<229.94)=0.3413+0.4772=0.8185,故C错;由C可知任取10000件机器零件,其质量指标值位于区间(185.03,229.94)内的件数约为10000×0.8185=8185件,故D正确.故选:BD.11.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<),其图象相邻两条对称轴之间的距离为,且直线x=﹣是其中一条对称轴,则下列结论正确的是()A.函数f(x)的最小正周期为B.函数f(x)在区间[﹣,]上单调递增C.点(﹣,0)是函数f(x)图象的一个对称中心D.将函数f(x)图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,再把得到的图象向左平移个单位长度,可得到g(x)=sin2x的图象【分析】由周期求出ω,由图象的对称性求出φ的值,可得f(x)的解析式,再利用正弦函数的图象和性质,得出结论.解:∵函数f(x)=sin(ωx+φ)(ω>0,|φ|<),其图象相邻两条对称轴之间的距离为•=,∴ω=4,f(x)=sin(4x+φ).∵直线x=﹣是其中一条对称轴,∴4×(﹣)+φ=kπ+,k∈Z,∴φ=﹣,f(x)=sin(4x﹣).故函数f(x)的最小正周期为=,故A正确;当x∈[﹣,],4x﹣∈[﹣,],函数f(x)没有单调性,故B错误;令x=﹣,求得f(x)=0,可得点(﹣,0)是函数f(x)图象的一个对称中心,故C正确;将函数f(x)图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,可得y=sin(2x ﹣)的图象;再把得到的图象向左平移个单位长度,可得到g(x)=sin(2x+)的图象,故D 错误,故选:AC.12.已知正数a,b满足,则()A.最小值为2B.ab的最小值为4C.a+4b的最小值为8D.4a+b的最小值为8【分析】利用基本不等式的性质分别进行求解即可.解:∵≥2=,即≥4,即ab≥4,当且仅当=,即b=4a时取等号,则ab的最小值为4,故B正确,设t=ab,则t≥4,则=t+在[4,+∞)上为增函数,则最小值为4+=,故A错误,a+4b≥2≥2=8,第一个等号当a=4b时取等号,第二个等号在b=4a时取等号,在两个等号不能同时取得,则a+4b>8,故C错误,4a+b≥2≥2=8,第一个等号当4a=b时取等号,第二个等号在b=4a时取等号,在两个等号能同时取得,则a+4b≥8成立,即4a+b的最小值是8,故D正确,故选:BD.三、填空题:(本大题共4小题,每小题5分,共20分.把答案填在答题卡的相应位置.)13.若数列{a n}满足:a n+a n+1=2n+1,a1=1,则a2021=2021.【分析】利用题中的恒等式,分别取n=1,2,3,…,通过列举找到数列的规律,利用规律求解即可.解:因为a n+a n+1=2n+1,a1=1,所以当n=1时,a1+a2=3,解得a2=2,当n=2时,a2+a3=5,解得a3=3,当n=3时,a3+a4=7,解得a3=4,…以此类推,可得a n=n,故a2021=2021.故答案为:2021.14.已知f(x)是定义在R上的奇函数,满足f(1﹣x)=f(1+x).若f(1)=2,则f(1)+f(2)+f(3)+…+f(2021)=2.【分析】利用恒等式以及奇函数的定义可以求出f(x)的周期为4,再利用恒等式可得f (1)+f(3)=0,f(2)+f(4)=0,即f(1)+f(2)+f(3)+f(4)=0,将所求的式子利用周期进行求解即可得到答案.解:因为足f(1﹣x)=f(1+x),所以有f(﹣x)=f(2+x),又f(x)为R上的奇函数,所以f(﹣x)=﹣f(x),则有f(x+2)=﹣f(x),即f(x+4)=f(x),所以函数f(x)是周期为4的周期函数,因为f(x+2)=﹣f(x),所以f(1)+f(3)=0,f(2)+f(4)=0,故在一个周期内f(1)+f(2)+f(3)+f(4)=0,所以f(1)+f(2)+f(3)+…+f(2021)=505×[f(1)+f(2)+f(3)+f(4)]+f(1)=2.故答案为:2.15.设椭圆与双曲线的公共焦点为F1,F2,将C1,C2的离心率记为e1,e2,点A是C1,C2在第一象限的公共点,若点A关于C2的一条渐近线的对称点为F1,则=4.【分析】由椭圆和双曲线的定义可求得|AF1|和|AF2|,设直线AF1与渐近线y=﹣x相交于点B,连接AF2,可推出AF2⊥AF1,再结合勾股定理,即可得解.解:由椭圆的定义知,|AF1|+|AF2|=2a,由双曲线的定义知,|AF1|﹣|AF2|=2m,∴|AF1|=a+m,|AF2|=a﹣m,设直线AF1与渐近线y=﹣x相交于点B,则OB垂直平分线段AF1,连接AF2,∵O为线段F1F2的中点,∴AF2∥OB,∴AF2⊥AF1,∴,即(a+m)2+(a﹣m)2=4c2,化简得,a2+m2=2c2,∴=2,即=2,∴=2×2=4.故答案为:4.16.我国古代数学名著《九章算数》中,将底面是直角三角形的直三棱柱(侧棱垂直于底面的三棱柱)称之为“堑堵”.如图,三棱柱ABC﹣A1B1C1为一个“堑堵”,底面△ABC 是以AB为斜边的直角三角形,且AB=5,AC=3,点P在棱BB1上,且PC⊥PC1,当△APC1的面积取最小值时,三棱锥P﹣ABC的外接球的表面积为45π.【分析】由已知证明AP⊥PC1,设BB1=z,BP=t,则B1P=z﹣t,求得AP,PC1,AC1,由AP⊥PC1,得z=t+,可得,写出三角形APC1的面积,利用基本不等式求最值,得到对应的AP,设三棱锥P﹣ABC的外接球的半径为R,由图可知,线段AP为外接球的直径,得到外接球的半径,代入球的表面积公式得结论.解:由堑堵的定义可知,△ABC为直角三角形,故BC==4,由已知可得,平面BB1C1C⊥平面ABC,且平面BB1C1C∩平面ABC=BC,而AC⊥BC,∴AC⊥平面BB1C1C,而PC1⊂平面BB1C1C,∴AC⊥PC1,又PC⊥PC1,AC∩PC=C,AC,PC⊂平面APC,∴PC1⊥平面APC,于是AP⊥PC1,设BB1=z,BP=t,则B1P=z﹣t,∴AP=,=,,由AP⊥PC1,得9+z2=25+t2+16+(z﹣t)2,整理得z=t+,∴,则AP•PC1==2≥2=18,当且仅当,即t=2时,△APC1的面积取得最小值为18,此时AP=,设三棱锥P﹣ABC的外接球的半径为R,由图可知,线段AP为外接球的直径,故所求外接球的表面积S=4π×=45π.故答案为:45π.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{a n}满足++…+=.(1)求数列{a n}的通项公式;(2)设数列{}的前n项和为T n,求T n.【分析】本题第(1)题先令b n=,设数列{b n}的前n项和为S n,则S n=,再利用公式b n=即可计算出数列{b n}的通项公式,再计算出数列{a n}的通项公式;第(2)题先根据第(1)题的结果计算出数列{}的通项公式,然后对通项公式进行转化,再运用裂项相消法计算出前n项和T n.解:(1)由题意,令b n=,设数列{b n}的前n项和为S n,则S n=.当n=1时,b1=S1=,当n≥2时,b n=S n﹣S n﹣1=,∴数列{b n}是常数列,即b n=,故a n=,n∈N*.(2)由(1)知,,∴T n=++…+=(﹣)+(﹣)+…+[﹣]=[﹣+﹣+…+﹣]=[﹣]=[﹣]=﹣=.18.在平面四边形ABCD中,已知AB=2,AD=3,∠ADB=2∠ABD,∠BCD=.(1)求BD;(2)求△BCD周长的最大值.【分析】(1)在△ABD中,由正弦定理可求出cos∠ABD=,再利用余弦定理即可求出BD;(2)在△BCD中,∠BCD=,由余弦定理可得(BC+CD)2=BD2+3BC×CD,再利用基本不等式得(BC+CD)2≤4BD2,结合BD的值即可求出△BCD周长的最大值.解:(1)在△ABD中,由正弦定理得:==2cos∠ABD,∴cos∠ABD=,∴cos∠ABD===,即:BD2﹣8BD+15=0,解得:BD=3或5,当BD=3时,BD=AD=3,∴∠ABD=∠BAD,∠ADB=2∠ABD=2∠BAD,∴∠ABD=∠BAD=45°,∠ADB=90°,△ABD为等腰直角三角形,不符合题意,舍去,∴BD=5;(2)在△BCD中,∠BCD=,由余弦定理得:cos∠BCD==,∴BC2+CD2﹣BD2=BC×CD,∴(BC+CD)2=BD2+3BC×CD,由基本不等式得:,∴(BC+CD)2≤,∴,∴(BC+CD)2≤4BD2,∵BD=5,∴BC+CD≤10,即5<BC+CD≤10,所以10<BC+CD+BD≤15.所以△BCD周长的最大值为:15.19.如图,在直角梯形ABCD中,AD∥BC,∠BAD=,AB=BC=AD=a,E是AD 的中点,O是AC与BE的交点.将△ABE沿BE折起到如图2中△A1BE的位置,得到四棱锥A1﹣BCDE.(Ⅰ)证明:CD⊥平面A1OC;(Ⅱ)当平面A1BE⊥平面BCDE时,四棱锥A1﹣BCDE的体积为36,求a的值.【分析】(I)运用E是AD的中点,判断得出BE⊥AC,BE⊥面A1OC,考虑CD∥DE,即可判断CD⊥面A1OC.(II)运用好折叠之前,之后的图形得出A1O是四棱锥A1﹣BCDE的高,平行四边形BCDE的面积S=BC•AB=a2,运用体积公式求解即可得出a的值.解:(I)在图1中,因为AB=BC==a,E是AD的中点,∠BAD=,所以BE⊥AC,即在图2中,BE⊥A1O,BE⊥OC,从而BE⊥面A1OC,由CD∥BE,所以CD⊥面A1OC,(II)即A1O是四棱锥A1﹣BCDE的高,根据图1得出A1O=AB=a,∴平行四边形BCDE的面积S=BC•AB=a2,V==a=a3,由V=a3=36,得出a=6.20.甲、乙两人组成“虎队”代表班级参加学校体育节的篮球投篮比赛活动,每轮活动由甲、乙两人各投篮一次,在一轮活动中,如果两人都投中,则“虎队”得3分;如果只有一个人投中,则“虎队”得1分;如果两人都没投中,则“虎队”得0分.已知甲每轮投中的概率是,乙每轮投中的概率是;每轮活动中甲、乙投中与否互不影响.各轮结果亦互不影响.(1)假设“虎队”参加两轮活动,求:“虎队”至少投中3个的概率;(2)①设“虎队”两轮得分之和为X,求X的分布列;②设“虎队”n轮得分之和为X n,求X n的期望值.(参考公式E(X+Y)=EX+EY)【分析】(1)设甲、乙在第n轮投中分别记作事件A n,B n,“虎队”至少投中3个记作事件C,则P(C)=P()+P()+P()+P(A1A2B1B2),由此能求出结果.(2)①“虎队”两轮得分之和X的可能取值为:0,1,2,3,4,6,分别求出相应的概率,由此能求出X的分布列.②X1有可能取为0,1,3,分别求出相应的概率,求出EX1,再由X n的期望值EX n=nEX1,能求出结果.解:(1)设甲、乙在第n轮投中分别记作事件A n,B n,“虎队”至少投中3个记作事件C,则P(C)=P()+P()+P()+P(A1A2B1B2)=+=.(2)①“虎队”两轮得分之和X的可能取值为:0,1,2,3,4,6,则P(X=0)==,P(X=1)=2×[]=,P(X=2)=+++=,P(X=3)==,P(X=4)=2×[+]=,P(X=6)==.故X的分布列如下图所示:X012346P②X1有可能取为0,1,3,P(X1=0)=(1﹣)(1﹣)=,P(X1=1)==,P(X1=3)==,∴EX1==,设“虎队”n轮得分之和为X n,则X n的期望值EX n=nEX1=.21.已知函数.(1)讨论f(x)的单调性;(2)若对任意x∈[0,+∞),f(x)≥﹣sin x恒成立,求a的取值范围.【分析】(1)求出导函数,分a≤0和a>0两种情况,然后再利用导函数的正负研究函数的单调性即可;(2)构造,由条件得到F(x)在[0,+∞)上单调递增,故F'(0)≥0,求出a≤1,再通过a≤1证明F(x)≥0在[0,+∞)上恒成立,从而得到a的取值范围.解:(1)函数,故,当a≤0时,f′(x)≥0,故f(x)在R上单调递增,当a>0时,令,当时,f'(x)>0,所以f(x)单调递增,当时,f'(x)<0,所以f(x)单调递减,当时,f'(x)>0,故f(x)单调递增;(2)对任意x∈[0,+∞),f(x)≥﹣sin x恒成立,即在[0,+∞)上恒成立,令,又F(x)≥F(0),所以F(x)在[0,+∞)上单调递增,由F'(x)=,所以F'(0)≥0,即1﹣a≥0,所以a≤1(必要性),下证充分性,当a≤1时,,令,则,令,则h′(x)=x﹣sin x≥0,故h(x)在[0,+∞)上单调递增,∴h(x)≥h(0)=0,所以g′(x)≥0,故g(x)在[0,+∞)上单调递增,∴g(x)≥g(0)=0,所以F(x)≥0在[0,+∞)上恒成立,符合题意.综上所述,实数a的取值范围为(﹣∞,1].22.已知抛物线P:y2=2px(p>0),焦点为F,M为P上任一点,l为过M点的切线.(1)若l的方程为,求抛物线方程;(2)求证:FM与l的夹角等于l与x轴的夹角.【分析】(1)根据题意可以直接设出抛物线的切线方程,进而可以直接解出;(2)利用直线的倾斜角和斜率的关系,可以直接证明.解:(1)设M(x0,y0),故切线l的方程为y0y=2p⋅,即px﹣y0y+px0=0,故l的方程为x﹣2y+2=0时,,∴x0=2,y0=2,p=1,抛物线方程为y2=2x.(2)证明:当l不垂直于x轴时,设l与x轴的夹角为θ,∴|FM与l夹角设为α,k PM=,∴|∴tanθ=tanα,θ=α.。
海门中学2020届高三第二次教学质量调研数学试卷
海门中学2021届高三第二次教学质量调研数学试卷一、填空题:每题5分 ,共70分.请把答案直接填写在答题纸相应位置上......... 1.集合}3,2,0,1{,02|-=⎭⎬⎫⎩⎨⎧>-=B x x x A ,那么=B A ▲ . 2.复数z 满足i z i =+)43( (i 为虚数单位 ) ,那么=||z ▲ .3.函数x x x x f ln )23()(2++=的零点的集合为 ▲ .4.假设31tan ),2,0(,=∈απβα ,21)tan(=+βα ,那么=+βα2 ▲ . 5.将函数)32sin(π+=x y 图像上的点),12(t P π- ,向右平移)0(>k k 个单位长度得到点'P ,假设'P 在函数x y 2sin =的图像上 ,那么k 的最|小值为 ▲ .6.函数⎩⎨⎧<++-≥+=0),cos(0,sin )(22x x x x x x x f α是奇函数 ,那么=αcos ▲ . 7.假设双曲线),(132222R n m nm y n m x ∈=--+的焦距为 4 ,那么实数n 的取值范围为 _____▲ .8.假设实数y x ,满足⎪⎩⎪⎨⎧≤≥-+≤+-40301y y x y x ,那么y x -2)21(的最|大值为 ▲ . 9.设n S 是公差不为零的等差数列}{n a 的前n 项和 ,假设25242322a a a a +=+ ,且279=S ,那么数列}{n a 的通项公式=n a ▲ .10.圆:C 0422=-+x y x 及点)2,1(),0,1(B A - ,直线l 平行于AB ,与圆C 相交于N M ,两点 ,AB MN =假设直线l 与直线AB 在圆心C 的同侧 ,那么直线l 的方程为 ____▲ .11.假设0,0>>b a ,且直线06=-+by ax 与直线052)3(=+--y x b 垂直 ,那么b a 2131+的最|小值为 ▲ . 12.设R m ∈ ,假设过点),2(m 存在三条直线与曲线x x y 33-=相切 ,那么实数m 的取值范围是 ▲ .13.在ABC ∆中 ,2=AB ,060=∠A ,点D 满足2= ,且337=AD ,那么=• ▲ .14.在ABC ∆中 ,2tan 2tan 2tan 222C B A ++的最|小值为 ▲ . 二、解答题:本大题共6小题 ,共计90分.请在答题纸指定区域.......内作答 ,解答时应写出必要的文字说明、证明过程或演算步骤.15. (此题总分值14分 )在ABC ∆中 ,c b a ,,分别是角C B A ,,所对的边 ,假设b c A 23)3sin(=+π (1 )求角B 的大小;(2 )假设2,32==c b ,求ABC ∆的面积 .16. (此题总分值14分 )函数x x x f -+=22)((1 )求不等式417)(>x f 的解集; (2 )假设函数)()()2()(R m x mf x f x g ∈-=的最|小值为11- ,求实数m 的值 .17. (此题总分值14分 )如图 ,有一块矩形空地ABCD ,km AB 2= ,km BC 4= ,现规划在该空地四边形AEFG 建一个商业区 ,其中顶点G F E A ,,,为商业区四个入口 ,且入口F 在边BC 上 (不包含顶点 ) ,入口G E ,分别在边AD AB ,上 ,EF AE = ,GF AG = ,矩形内其余区域均为绿化区 .(1 )设tkm BF = ,以点A 为坐标原点 ,直线AB 为x 轴 ,建立直角坐标系 ,如下图 . ①求直线GE 的方程②求t 的取值范围 .(2 )设商业区域的面积为1S ,绿化区域的面积为2S ,问入口F 如何选址 ,即t 为何值时 ,可使得该商业区域的环境舒适度指数12S S 最|大 ?18. (此题总分值16分 )在平面直角坐标系xoy 中 ,设),(00y x D 为椭圆:C 12222=+by a x )0(>>b a 上的点 ,直线x k y l x k y l 2211:,:==与圆D :)0()()(22020>=-+-r r y y x x 均相切. (1 )假设椭圆C 的两条准线间的距离为8 ,焦距为2 .①求椭圆C 的方程;②假设26=r ,且21l l ⊥ ,求圆D 的方程.(2 )假设椭圆C 的离心率为23 ,b r 552= ,求||21k k -的最|小值.19. (此题总分值16分 )数列{}n a 中 ,λλλ,),12(3,1*11N n n a a a n n ∈-+=-=+为常数 .(1) 设,n a b n n λ+=求证:数列{}n b 为等比数列;(2) 求数列{}n a 的前n 项的和n S ;(3) 假设3S 为数列{}n S 的最|小项 ,求实数λ的取值范围 .20. (此题总分值16分 )设R a ∈ ,函数e e x e ex x f (],,0(,)(2∈=为自然对数的底数 ) ,a x ax x g --=ln 2)( ,(1) 求实数)(x f 的值域;(2) 假设的最小值;成立,求实数使a x g x 0)(],21,0(≤∈∃(3) 假设对于]00)()(],,0(00e x f x g x e x ,在(的方程关于=-∈∀总有两个不等实根 ,求实数a 的取值范围 .。
2020届江苏省南通市海门中学高三上学期10月教学质量检测数学试题
2020届江苏省南通市海门中学高三上学期10月第一次教学质量检测数学试题一、填空题1.函数()1sin 2f x x =-的最小正周期为______. 【答案】π;【解析】直接利用正弦型函数的周期公式计算可得; 【详解】解:因为()1sin 2f x x =-所以()1sin 2f x x =-的最小正周期22T ππ==, 故答案为:π 【点睛】本题考查正弦型函数的最小正周期的计算,属于基础题. 2.已知集合{}0,1,2,3,4A =,{}3log 1B x x =≤,则A B =______.【答案】{}1,2,3;【解析】首先求出集合B ,再根据交集的定义计算可得; 【详解】解:因为{}3log 1B x x =≤, 所以{}03B x x =<≤, 又因为{}0,1,2,3,4A = 所以{}1,2,3AB =,故答案为:{}1,2,3 【点睛】本题考查交集的运算,属于基础题.3.在ABC ∆中,若60A =︒,2AC =,BC =sin B 的值为______.【答案】7;【解析】根据正弦定理计算可得; 【详解】解:因为60A =︒,2AC =,BC =由正弦定理可得sin sin a b A B =即2sin 60sin B ︒=,解得sin 7B =故答案为:7【点睛】本题考查正弦定理解三角形,属于基础题.4.已知集合{}1A x x =<.若“x A ∈”是“不等式421a x a -<<-成立”的充分条件,则实数a 的最大值为______. 【答案】3;【解析】首先求出集合A ,再根据充分关系,得到不等式组21141a a -≥⎧⎨-≤-⎩,解得参数的取值范围,即可得解; 【详解】解:因为{}1A x x =<,所以{}|11A x x =-<<,又因为“x A ∈”是“不等式421a x a -<<-成立”的充分条件, 所以21141a a -≥⎧⎨-≤-⎩,解得13a ≤≤故a 的最大值为3 故答案为:3 【点睛】本题考查根据充分条件求参数的取值范围,属于基础题.5.函数()f x =_____________________【答案】3(,1]4【解析】试题分析:根据题意,由于函数()f x =x 的取值范围满足4x-3>1,4x-31≤ ,故可知所求的定义域为3(,1]4。
江苏省南通市2020-2021学年高三上学期9月月考模拟测试数学试题(wd无答案)
江苏省南通市2020-2021学年高三上学期9月月考模拟测试数学试题一、单选题(★★) 1. 是成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(★★) 2. =()A.﹣1B.﹣i C.1D.i(★★) 3. 设为的边的延长线上一点,,则()A.B.C.D.(★★★) 4. 直线与圆心为,半径为的圆相交于,两点,另一直线与圆交于,两点,则四边形面积的最大值为()A.B.C.D.(★★★) 5. 一个正三棱锥(底面积是正三角形,顶点在底面上的射影为底面三角形的中心)的四个顶点都在半径为的球面上,球心在三棱锥的底面所在平面上,则该正三棱锥的体积是()A.B.C.D.(★★) 6. 当动点在正方体的棱上运动时,异面直线与所成角的取值范围()A.B.C.D.(★★★) 7. 已知椭圆的左,右焦点分别为,,过作垂直轴的直线交椭圆于两点,点在轴上方.若,的内切圆的面积为,则直线的方程是()A.B.C.D.(★★★) 8. 已知,,若对,,使得成立,则的取值范围是()A.B.C.D.二、多选题(★★★) 9. 函数的定义域为 R,且与都为奇函数,则()A.为奇函数B.为周期函数C.为奇函数D.为偶函数(★★) 10. 设是等差数列,是其前项的和,且,,则下列结论正确的是()A.B.C.D.与均为的最大值(★★) 11. 已知双曲线过点且渐近线为,则下列结论正确的是()B.的离心率为A.的方程为C.曲线经过的一个焦点D.直线与有两个公共点(★★★) 12. 声音是由物体振动产生的声波,其中包含着正弦函数.纯音的数学模型是函数,我们听到的声音是由纯音合成的,称之为复合音.若一个复合音的数学模型是函数,则下列结论正确的是()A.是的一个周期B.在上有个零点C.的最大值为D.在上是增函数三、填空题(★★★) 13. 若把椅子摆成一排,人随机就座,则有且仅有两人相邻的坐法有______种(用数字填空).(★★) 14. 在的展开式中,含的系数为______.(★★★★) 15. 的内角,,的对边分别为,,,且,的面积为,,则的最大值为__________.(★★★★) 16. 已知,若方程有2个不同的实根,则实数的取值范围是_____(结果用区间表示).四、解答题(★★★) 17. 在中,.(1)求;(2)若,求的周长.(★★★) 18. 已知正项等比数列满足,.(1)求数列的通项公式;(2)记,求数列的前项和.(★★★) 19. 某机器生产商,对一次性购买两台机器的客户推出两种超过质保期后两年内的延保维修方案:方案一:交纳延保金元,在延保的两年内可免费维修次,超过次每次收取维修费元;方案二:交纳延保金元,在延保的两年内可免费维修次,超过次每次收取维修费元.某工厂准备一次性购买两台这种机器,现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了台这种机器超过质保期后延保两年内维修的次数,统计得下表:维修次数0123机器台数20104030以上台机器维修次数的频率代替一台机器维修次数发生的概率,记表示这两台机器超过质保期后延保两年内共需维修的次数.求的分布列;以所需延保金与维修费用之和的期望值为决策依据,该工厂选择哪种延保方案更合算?(★★★) 20. 如图所示,在四面体中,,平面平面,,且.(1)证明:平面;(2)设为棱的中点,当四面体的体积取得最大值时,求二面角的余弦值.(★★★★) 21. 已知椭圆的左、右顶点分别为,,点在椭圆上运动,若面积的最大值为,椭圆的离心率为.(1)求椭圆的标准方程;(2)过点作圆:,的两条切线,分别与椭圆交于两点,(异于点),当变化时,直线是否恒过某定点?若是,求出该定点坐标,若不是,请说明理由.(★★★★) 22. 已知函数.(1)求证:;(2)用表示中的最大值,记,讨论函数零点的个数.。
江苏省南通市海门中学2020-2021学年高三上学期阶段检测(二)数学试题
海门中学2020-2021年度第一学期阶段检测高三数学试题一、单项选择题:(本题共7小题,每小题5分,共35分,)1.设集合{}2|log 2M x x =<,集合1|82xN x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则( )A.M N =∅B.M N ⊆C.{|34}MN x x =-<<D.N M ⊆2.已知复数1z i=-,则z =( )A.1D.23.设x R ∈,则“38x >”是“2x >”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件4.柏拉图多面体,是指严格对称,结构等价的正多面体.由于太完美,因此数量很少,只有正四、六、八、十二、二十面体五种.如果用边数不同的正多边形来构造接近圆球、比较完美的多面体,那么数量会多一些,用两种或两种以上的正多边形构建的凸多面体虽不是正多面体但有些类似,这样的多面体叫做半正多面体.古希腊数学家物理学家阿基米德对这些正多面体进行研究并发现了13种半正多面体(后人称为“阿基米德多面体”).现在正四面体上将四个角各截去一角,形成最简单的阿基米德家族种的一个,又名截角四面体.设原正四面体的棱长为6,则所得的截角四面体的表面积为( )A. B. C. D.5.现代健康生活的理念,每天锻炼1小时,健康工作50年,幸福生活一辈子.我国每所学校都会采取一系列措施加强学生的体育运动.在某校举行的秋季运动会中,来自同一队的甲乙丙丁四位同学参加了4100⨯米接力赛,则甲乙互不接棒的概率为( ) A.16B.13C.12D.236.已知正方形ABCD 的内切圆的半径为1,点M 是圆上的一动点,则MA MB ⋅的取值范围是( ) A.[]1,0-B.[]1,3-C.[]0,3D.[]1,4-7.“白日依山尽,黄河入海流,欲穷千里目,更上一层楼”,古诗《登鹳雀楼》是一首登高的名作,诗人王之涣描绘了一幅美妙的山水画,从此也令鹳雀楼名声大作,世人也能领略鹳雀楼之美.鹳雀楼有三层,前对中条山,下临黄河,传说有鹳雀在此停留.下面是复建的鹳雀楼的示意图,游客(视为一质点)从地面D 点看楼顶点A 的仰角为30°,沿直线前进79米到达E 点此时看点C 的仰角为45°,若2BC AC =,则鹳雀楼的高AB 约为( ) 1.73≈)A.65米B.74米C.83米D.92米二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.8.已知双曲线222212x y k k-=,对于k R ∀∈且0k ≠,则下列四个选项中因k 改变而变化的是( )A.焦距B.离心率C.顶点坐标D.渐近线方程9.已知函数1()sin 233f x x π⎛⎫=+ ⎪⎝⎭,则下列说法中正确的是( ) A.()f x 的最小正周期为πB.()f x 在7,1212ππ⎡⎤⎢⎥⎣⎦上单调递增 C.5,06π⎛⎫⎪⎝⎭是()f x 的一个对称中心 D.当0,6x π⎡⎤∈⎢⎥⎣⎦时,()f x 的最大值为1 10.设x ,(0,)y ∈+∞,S x y =+,P xy =,以下四个命题中正确的是( ) A.若1P =,则S 有最小值2 B.若2S P =,则S 有最小值4 C.若21S P P=+,则2S 有最小值2 D.若3S P +=,则P 有最大值111.如图,棱长为1的正方体1111ABCD A B C D -中,P 为线段1A B 上的动点(不含端点),则下列说法中正确的是( )A.平面11A D P ⊥平面1A APB.多面体1CDPD 的体积为定值C.1APD △恒为锐角三角形D.直线1D P 与BC 所成的角可能为6π三、填空题:(本题共4小题,每小题5分,共20分.请将答案填写在答题卡相应的位置上)12.已知数列{}n a 满足0n a >,且11a =,22112n n n n a a a a ++-=(*n N ∈),则n a =___________.13.某校科学社团研究一种卫星接收天线,发现其曲面与轴截面的交线为抛物线,在轴截面内的卫星波束呈近似平行状态射入形为抛物线的接收天线,经反射聚焦到焦点处,已知接收天线的口径(直径)为4.8m ,深度为1m ,则该抛物线的焦点到定点的距离为__________m.14.将函数2()2sin sin 21f x x x =+-图像先向左平移一个单位,再将每一点的横坐标变为原来的2倍(纵坐标不变),得到函数()g x 的图像,若1()2g α=,,44ππα⎛⎫∈- ⎪⎝⎭,则cos α=___________. 15.已知球O 为棱长为1的正方体1111ABCD A B C D -的内切球,则平面11B CD 截球O 的截面面积为______. 四、解答题:(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.) 16.(本题满分15分)请从下面两个条件中任选一个,补充在下面的问题中,并解决问题①ABC △的面积为26AB AB BC +⋅=-在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2b c -=,A 为钝角,sin 4A =__________. (1)求边a 的长;(2)求sin 2C 的值. 17.(本题满分12分)已知数列{}n a 是等差数列,且23a =,47a =,数列{}n b 的前n 项和为n S ,且112n n S b =-(*n N ∈). (1)求数列{}n a ,{}n b 的通项公式;(2)记n n n c a b =,数列{}n c 的前n 项和为n T ,证明:2n T <. 18.(本题满分12分)如图,在四棱锥S ABCD -中,底面ABCD 是菱形,G 、P 是线段AB 、SD 的中点.(1)证明://GP 平面SBC ;(2)若3BAD π∠=,2AB SA SB ===,SD =SBC 与平面SGD 所成锐二面角的余弦值.19.(本题满分12分)苏果超市计划按月订购一种酸奶,每天进货量相同,进货成本为每瓶4元,售价每瓶6元.未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[)20,25,需求量为350瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得到下面的频率分布表:(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为420(单位:瓶)时,求Y 的期望值. 20.(本题满分12分)已知椭圆E :22221x y a b +=(0a b >>)的一个焦点坐标为()1,0F ,其左右顶点分别为A ,B ,点31,2M ⎛⎫ ⎪⎝⎭在椭圆E 上.(1)求椭圆E 的标准方程;(2)若过点()4,0P 的直线l 与椭圆E 交于C ,D 两点,AC ,BD 交于点T ,求AP AT ⋅的值. 21.(本题满分12分)已知函数()ln f x x =,函数2ln ()(1)x xg x x e =+.(1)求函数()f x 在1x =处的切线方程;(2)当(0,)x ∈+∞时,证明:当2m ≤时,(1)()mf x g x +≤.高三数学试题一、单项选择题:(本题共7小题,每小题5分,共35分,)1.【答案】B2.【答案】A3.【答案】A4.【答案】C5.【答案】C6.【答案】B7.【答案】B解:设AC x =,则2BC x =在Rt ABE △中,2BC BE x ==,∴279BD x =+3tan 30279x x ︒==+∴24.7x =≈∴374AB x =≈,选B.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9.【答案】AC 10.【答案】AC 10.【答案】AD 解:1P =,即1xy =2S x y =+≥=,当且仅当1x y ==时取“=”,A 正确 2S P =,即2x y xy +=,即11122x y+=1111()12222222x y S x y x y x y y x ⎛⎫=+=++=+++≥+= ⎪⎝⎭当且仅当22x yy x=,即1x y ==时取“=”,最小值为2,B 错 21S P P=+若21()2x y xy xy +=+≥,当且仅当1xy xy =即1xy =即1y x=时取“=” 此时221()4x y x x ⎛⎫+=+≥ ⎪⎝⎭矛盾,C 错∴2S 最小值不能是2.32x y xy xy xy ++=≥+,∴230xy xy +-≤1)0≤,∴1xy ≤即max 1xy =,当且仅当1x y ==时取“=”,D 正确 选AD11.【答案】ABD解:对于A ,∵11A D ⊥平面1A AP ,11A D ⊂平面11A D P ∴平面11A D P ⊥平面1A AP ,A 正确对于B ,11C DPD P CDD V V --=,∵1CDD S △,P 到平面1CDD 的锤子数学距离均为定值故1C DPD V -为定值,B 正确 对于C ,设1A P x =,∴AP =1PD =1AD =此时1AD最长,考察111cos 0APD ∠===当02x <<时,1cos 0APD ∠<,1APD ∠为锐角,当2x =时,1APD ∠为直角,C 错 对于D ,即求1D P 与11A D 所成角11A D P ∠1111tan 1A P A D P A P ∠==∈,3∈,∴11A D P ∠可能为6π,D 正确 选:ABD.三、填空题:(本题共4小题,每小题5分,共20分.请将答案填写在答题卡相应的位置上) 12.【答案】12n - 14.【答案】1.4413.【答案】14解:1()2(1cos 2)sin 211cos 2sin 21224f x x x x x x π⎛⎫=⋅-+-=-+-=- ⎪⎝⎭ ()f x 向左平移4π244x ππ⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦24x π⎛⎫+ ⎪⎝⎭再将每一点的横坐标变为原来锤子数学的2倍,变为()4g x x π⎛⎫=+ ⎪⎝⎭∴1()2g α=142πα⎛⎫+= ⎪⎝⎭∴sin 44πα⎛⎫+= ⎪⎝⎭ ∵,44ππα⎛⎫∈-⎪⎝⎭,则0,42ππα⎛⎫+∈ ⎪⎝⎭cos 04πα⎛⎫+= ⎪⎝⎭,∴cos 44πα⎛⎫+= ⎪⎝⎭∴1cos cos cos cos sin sin 44444442424ππππππαααα⎛⎫⎛⎫⎛⎫=+-=+++=⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 14.【答案】6π解:连接1AC ,则1AC 经过点O 且1AC ⊥平面11B CD由1C 到平面11B CD的锤子数学距离为3,而12OC = 知O 到平面1B CD的距离为6,且圆O 半径为12∴22126S ππ⎡⎤⎛⎫⎢⎥=⋅= ⎪⎢⎥⎝⎭⎝⎭⎣⎦截面. 四、解答题:(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.) 16.解:选① (1)1242bc bc == 2b c -=,∴(2)24b b -=,6b =,4c =∵A为钝角,∴1cos 4A ==- 在ABC △中由锤子数学余弦定理得8a ==. (2)在ABC △中由正弦定理得4sin sin sin sin a c C A C C==⇒=∴7cos 8C =,7sin 22sin cos 28832C C C ==⨯⨯=. 17.解:(1)∵{}n a 为等差数列,设公差为d ∴4222a a d -==,∴32(2)21n a n n =+-=- ∵112n n S b =-① 2n ≥时,11112n n S b --=-②∴11111223n n n n n b b b b b ---⇒=-⇒=①② 在①式中令1n =得123b =∴{}n b 为等比数列,且首项为23公比为13,∴1212333n n n b -⎛⎫=⋅=⎪⎝⎭(2)242(21)33n n n n c n -=-⋅= ∴12312610464233333n n n n n T ---=+++++① 23111264104642333333n n n n n n n T -+---=+++++② -①②得1231141193224444224213333333313n n n n n n n T -++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭--⎢⎥⎣⎦=++++-=+-- 11424244433333n n n n n ++-+=--=- ∴2223n nn T +=-. 18.解:(1)证明:取SC 的中点E ,连接PE ,BE∵G ,P 分别为AB ,SD 的中点,底面ABCD 是菱形 ∴//12BG CD ,//12PE CD ,//BG PE ∴四边形PGBE 为平行四边形∴//GP BE ,∵GP ⊄平面SBC ,BE ⊂平面SBC ∴//GP 平面SBC . (2)∵3BAD π∠=,AB AD =,∴ABD △为等边三角形,又∵SAB △为等边三角形,G 为AB 中点 ∴AB SG ⊥,AB DG ⊥,∵2AB =,∴SG =DG =∴2226SG DG SD +==∴SG DG ⊥,∴SG ⊥底面ABCD分别以图中GB ,GD ,GS 所在的直线为x ,y ,z 轴建立锤子数学空间直角坐标系 ∴(1,0,0)B,C,S,∴(1,0,SB =,SC = 设平面SBC 的一个法向量()1000,,n x y z =,平面SGD 的一个法向量2(1,0,0)n =∴001100000020x n SB n SC x ⎧⎧-=⋅=⎪⎪⇒⎨⎨⋅==⎪⎪⎩⎩令0x =得01z =,01y =-,∴1(3,1,1)n =-设平面SBC 与平面SGD 所成锐二面角为θ,1n ,2n 所成角为ϕ, ∴121215cos |cos |5n n n n θϕ⋅===⋅19.解:(1)最高气温锤子数学低于20的概率为21618190905+==最高气温位于区间[)20,25的概率为362905= 最高气温不低于25的概率为25742905++= X 的所有可能取值为200,350,5001(200)5P X ==,2(350)5P X ==,2(500)5P X == 六月份X 的分布列如下:(2)①当这天锤子数学最高气温低于20时,利润20062202420440Y =⨯+⨯-⨯=-此时1(40)5P Y =-= ②当这天最高气温位于[)20,25时,利润35067024204560Y =⨯+⨯-⨯=∴2(560)5P Y == ③当这天最高气温不低于25时,利润42064204840Y =⨯-⨯=2(840)5P Y == Y 的分布列如下∴Y 的期望值122()40560840552555E Y =-⨯+⨯+⨯= 20.解:(1)由题意知22222192141c a ab b a bc =⎧⎪⎪=⎧⎪⎪+=⇒⎨⎨=⎪⎩⎪=+⎪⎪⎩∴椭圆E 的标准方程为22143x y +=. (2)设直线l 的锤子数学方程为(4)y k x =-,()11,C x y ,()22,D x y ,(2,0)A -,(2,0)B ()22222(4)34816123412y k x x k x x x y =-⎧⇒+-+=⎨+=⎩ ()2222343264120k x k x k +-+-=,212221223234641234k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩直线AC 方程为11(2)2y y x x =++,BD 方程为22(2)2y y x x =-- 联立两直线方程锤子数学得21212222T T x y x x x y ++=⋅-- 而2222143x y +=,∴22222324y x x y +=⋅-- ∴()()()()()()12121222121212222423324444416T T x x x x x x x x k x x k x x x x ++++++=-⋅=-⋅----++⎡⎤⎣⎦ 222222222226412644331443434344366412128163434k k k k k k k k k k k -++++=-⋅=-⋅=-⋅⎡⎤-⋅-+⎢⎥++⎣⎦∴1T x =,∵(6,0)AP =,()3,T AT y =,∴18AP AT ⋅=.21.解:(1)1()f x x'=,1k =,切点(1,0) ∴()f x 在1x =处的锤子数学切线方程为1y x =-.(2)即证:当2m ≤时,2sin ln(1)(1)x m x x e +≤+而22sin 2sin (1)(1)ln(1)(1)2ln(1)2ln(1)x x x x e m x x e x x e++-+≥+-+≥-+ 令2(1)()2ln(1)x g x x e +=-+,2(1)2()1x g x e x +'=-+,令()0g x '=得1x =,且当01x <<时,()0g x '<,()g x ;当1x >时,()0g x '>,()g x∴()1)12ln 0g x g ≥=-=故2sin (1)ln(1)x x em x +≥+,证毕!。
江苏省海门中学2020-2021学年高三上学期10月月考数学
江苏省海门中学高三数学十月月考试卷考试时间:2020年10月31日 试卷满分:150分第Ⅰ卷(共60分)一、单选题:本大题共8个小题,每小题6分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设U R =,集合01x A x x ⎧⎫=>⎨⎬-⎩⎭,{}11B x x =-<<,则()U A B =( )A (]0,1B .[)0,1C .()0,1D .[]0,12.函数()()131ln 2f x x x =--的定义域为( )A .()1,11,3⎡⎫+∞⎪⎢⎣⎭B .1,23⎡⎫⎪⎢⎣⎭C .()1,11,23⎡⎫⎪⎢⎣⎭D .()0,23.在ABC △中,已知45A =︒,30B =︒,2c =a =( )A 62B 62C 31D 314.若[]1,2x ∃∈-,使得不等式220x x a -+<成立,则实数a 的取值范围为( ) A .3a <-B .0a <c .1a <D .3a >-5.“开车不喝酒,喝酒不开车.”公安部交通管理局下发《关于2019年治理酒驾醉驾违法犯罪行为的指导意见》,对综合治理酒驾醉驾违法犯罪行为提出了新规定,根据国家质量监督检验检疫总局下发的标准,车辆驾驶人员饮酒后或者醉酒后驾车血液中的酒精含量阈值见表,经过反复试验,一般情况下,某人喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”如下图,且该图表示的函数模型()0.540sin 13,02390e 14,2x x x f x x π-⎧⎛⎫+≤<⎪ ⎪=⎝⎭⎨⎪⋅+≥⎩,则该人喝一瓶啤酒后至少经过( )小时才可以驾车?(参考数据:ln15 2.71≈,ln30 3.40≈) 车辆驾驶人员血液酒精含量阈值驾驶行为类别 阈值(mg/100mL )饮酒后驾车 20≥,80<醉酒后驾车80≥A .5B .6C .7D .8 6.已知正实数d c b a ,,,满足1,1=+=+d c b a ,则dabc 11+的最小值是( ) A .10 B .9 C .24 D .337.如图,在ABC △中,4BC =,4BA BC ⋅=,点P 为边BC 上的一动点,则PA PC ⋅的最小值为( )A .0B .2-C .94-D .3- 8.已知函数()()sin cos 06f x x x πωωω⎛⎫=++> ⎪⎝⎭在[]0,π内有且仅有3个零点,则ω的取值范围是( )A .811,33⎡⎫⎪⎢⎣⎭B .811,33⎛⎤⎥⎝⎦ C .1013,33⎛⎤⎥⎝⎦D .1013,33⎡⎫⎪⎢⎣⎭二、多选题(本大题4个小题,每小题5分,共20分,每题有两个或以上的选项正确,全选对得5分,少选但没有错选得3分,有错选成全不选得0分)9.若函数1x y a b =+-(0a >,且1a ≠)的图像不经过第二象限,则需同时满足( ) A .1a >B .01a <<C .0b >D .0b ≤10.下列不等式成立的是( )A .若0<<b a ,则22b a >B .若4=ab ,则4≥+b aC .若b a >,则22bc ac >D .若0,0>>>m b a ,则ma mb a b ++< 11.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .954S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++=12.已知函数()1+=x e xx f ,()()⎩⎨⎧>+-≤=0,20,2x a x x x x f x g ,且()01=g ,则x 的方程()()01=--t x g g 实根个数的判断正确的有( )A .当2-<t 时,方程()()01=--t x g g 没有相异实根B .当011<<+-t e或2-=t 时,方程()()01=--t x g g 有1个相异实根 C .当et 111+<<时,方程()()01=--t x g g 有2个相异实根 D .当e t 111+-<<-或10≤<t 或et 11+=时,方程()()01=--t x g g 有4个相异实根 第Ⅱ卷(共90分)三、填空题(本大题3个小题,每题5分,满分15分,将答案填在答题纸上)13.欧拉公式cos sin i e i θθθ=+把自然对数的底数e ,虚数单位i ,三角函数cos sin θθ和联系在一起,充分体现了数学的和谐美,被誉为“数学的天桥”,若复数z 满足()1i e i z i π+⋅=+,则z =_______. 14.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为2sin18m =︒.若24m n +=2=________. 15.若存在两个正实数x ,y 使等式()()ln ln 0x m y x y x +--=成立,(其中 2.71828e =)则实数m的取值范围是________.四、解答题(本大题共5小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16.(本小题满分15分)(注意:在试题...卷.上作答无....效.)在①()sin sin sin B C A C -=- ②tan tan cos A B a B=+ ③2cos cos cos a A b C c B =+这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求出b c +的最大值;若问题中的三角形不存在,请说明理由(若选择多个,则按第一个条件评分)问题:已知ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若2a =,________,求b c +的最大值 17.(本小题满分15分)(注意:在.试.题.卷.上作答无效.....)数列{}n a 中,n S 为其前n 项和,且11a n =+. (Ⅰ)求n S ,n a ;(Ⅱ)若n n b a =⋅{}n b 的其前n 项和n T .18.(本小题满分15分)(注意:在.试题卷...上作答无效.....) 某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为21, l l ,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到21, l l 的距离分别为2千米和5千米,点N 到21, l l 的距离分别为4千米和2.5千米,以12, l l 在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数ay x b=+(其中a ,b 为常数)模型. (1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . ①请写出公路l 长度的函数解析式()f t ,并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.19.(本小题满分15分(注意:在试题...卷.上作答无效.....) 在如图所示的平面直角坐标系中,已知点()1,0A 和点()1,0=1B OC -,,且AOC x ∠=,其中O 为坐标原点. (1)若34x π=,设点D 为线段OA 上的动点,求OC OD +的最小值; (2)若0,2x π⎡⎤∈⎢⎥⎣⎦,向量(),1cos ,sin 2cos m BC n x x x m n ==--⋅,求的最小值及对应的x 值.20.(本小题满分15分)(注意:在试题...卷.上作答无....效.) 已知函数()()ln 1f x ax x =-+.(Ⅰ)若1a =,求函数()f x 的最小值;(Ⅱ)若函数()0f x >对任意的()0,x ∈+∞恒成立,求正实数...a 的最值范围;(Ⅲ)求证:n N +∀∈!ne n <.(e 为自然对数的底数)10月月考数学试卷答案第一部分:选择题(每题5分,共60分.9-12多选题:全选对得5分,少选但没有错选得3分,有错选或全不选得0分)1.B 2.C 3.B 4.C 5.B 6.B 7.C 8.A 9.AD 10.AD 11.ACD 12.AB 7.解:作AO BC ⊥于O 点,由4BA BC ⋅=知,1BO =.法一:建系如图所示,()0,A h ,()1,0B -,()3,0C ,设(),0P x ,则()()(),3,03PA PC x h x x x ⋅=-⋅-=-(其中13x -≤≤)所以当32x =时,PA PC ⋅取得最小值94-. 法二:()PA PC PO OA PC PO PC ⋅=+⋅=⋅,只需考虑P 在OC 上时即可,2924PO PC PO PC PO PC ⎛⎫+⎪⋅=-⋅≥-=- ⎪⎝⎭(当且仅当P 为OC 中点时取等号) 8.解:()sin cos 6f x x x πωω⎛⎫=++ ⎪⎝⎭sin cos cos sin cos 66x x x ππωωω=++ 33sin cos 3sin 223x x x πωωω⎛⎫=+=+ ⎪⎝⎭ 当[]0,x π∈时,,333x πππωπω⎡⎤+∈+⎢⎥⎣⎦∵()f x 在[]0,π有且仅有3个零点 ∴343πππωπ≤+< 综上:∴81133ω≤< 11.解:对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,8112358132154S =+++++++=,故B 错误;对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-, 可得:135********a a a a a ++++=.故1352019a a a a ++++是斐波那契数列中的第2020项.对D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-, ()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-, 220192019202020192018a a a a a =-2222123201920192020a a a a a a ++++=,故D 正确;故选:ACD .三、填空题(每题5分,满分15分,将答案填在答题纸上) 13.1由欧拉公式cos sin cos sin 1i i e i e i θπθθππ=+=+=-有:, 由()1i e i z i π+⋅=+,所以11iz i i +==-- 所以1z =. 14.12-解析:根据题中的条件可得:22cos542sin182cos18-==︒⋅︒︒sin 3612sin 362-︒==-︒,故答案是:12-.15.(),0-∞ 解析:()()ln ln x m x y y x =--,()()ln ln 11ln x y y x y ym x x x --⎛⎫==-⋅ ⎪⎝⎭设0y t x =>且1t ≠,设()()1ln g t t t =-,那么()()11ln 1ln 1g t t t t t t '=-+-⋅=-+-, ()221110t g t t t t+''=--=-<恒成立,所以()g t '是单调递减函数,当1t =时,()10g '=,当()0,1t ∈时,()0g t '>,函数单调递增,当()1,t ∈+∞,()0g t '<,函数单调递减,所以()g t 在1t =时,取得最大值,()10g =,即10m<, 解得:0m <,故填:(),0-∞. 四、解答题16.(15分)解:若选择条件①()sin sin sin B C A C -=-()()sin sin sin A C C A C ⇒+-=- ……………2分2cos sin sin A C C ⇒= ……………6分∵sin 0C >,∴1cos 2A =,∴3A π= ……………15分 若选择条件②tan tan A B =+sin sin cos cos A B A B ⇒=+()sin sin cos cos cos cos A B CA B A B+⇒==∵sin 0C >1tan cos A A=⇒=∴3A π= ……………15分若选择条件③2cos cos cos a A b C c B =+2sin cos sin cos sin cos A A B C C B ⇒=+ ()2sin cos sin sin A A B C A ⇒=+=∵sin 0A >,∴1cos 2A =,∴3A π= 由余弦定理可知 2222cos b c bc A a +-=()222434b c bc b c bc ⇒+-=⇒+-=()224332b c b c bc +⎛⎫⇒+-=≤ ⎪⎝⎭()2444b c b c +⇒≤⇒+≤ 当且仅当b c =时等号成立综上()max 4b c += ……………15分 17.(15分)解:(1)当1n =时,12a =,则11a =, ……………2分则2n S n =,当2n ≥时,121n n n a S S n -=-=- ……………6分当1n =时,11a =适合上式,则21n a n =-, ……………8分 (2)由(1)可知,()212nn b n =- ……………10分则()21232212n n T n =⋅+⋅++- ()23121232212n n T n +=⋅+⋅++-两式相减得()()212222212n n n T n +-=+++--, ……………13分∴()12326n n T n +=-+ ……………15分18.(15分)解(1)依题意可知()()2,5,4,2.5M N ,代入a y x b =+得510202.54a a ba b b ⎧=⎪=⎧⎪+⇒⎨⎨=⎩⎪=⎪+⎩, 所以()1024y x x=≤≤. ……………4分(2)①设10,P t t ⎛⎫ ⎪⎝⎭(24t ≤≤),曲线()1024y x x =≤≤的导函数'210y x =-, 所以曲线()1024y x x =≤≤在P 处切线的斜率为210t-, 由点斜式得切线方程为:()21010y x t t t -=--,即21020y x t t=-+, ……………6分 令0x =得20y t =,即切线l 的纵截距为20t;令0y =得2x t =,即切线l 的横截距为2t ; ……………8分所以()()()2222204002424f t t t t t t⎛⎫=+=+≤≤ ⎪⎝⎭. ……………10分 ②由于()()22400424f t t t t=+≤≤,而22224004004480t t t t+≥⋅=,当且仅当[]224004102,4t t t =⇒=时等号成立. 所以当10=t l 8045=……………15分19.(15分)解:(1)设()(),001D t t ≤≤,由题易知2222C ⎛⎫⎪ ⎪⎝⎭,所以22OC OD t ⎛+= ⎝⎭,所以22221121221222OC OD t t t t t ⎛+=++=+=+ ⎝⎭ ()01t ≤≤,所以当22t =2OC OD +的最小值为12,则OC OD +的最小值为22. ………………………………………………………………………………………………7分 (2)由题意得()()cos ,sin ,cos 1,sin C x x m BC x x ==+,则221cos sin 2sin cos 1cos 2sin 21224m n x x x x x x x π⎛⎫=-+-=--=+⎪⎝⎭. 因为50,,22444x x ππππ⎡⎤∈≤+≤⎢⎥⎣⎦所以,所以当2428x x πππ+==,即时,sin 24x π⎛⎫+ ⎪⎝⎭取得最大值1,所以m n的最小值为1-8x π=.…………15分20.(15分)解:(Ⅰ)当1a =时,由题意()1,x ∈-+∞()1100xf x x '=-==⇒=所以当0x =时,()()min 00f x f == ……………5分 (Ⅱ)由()11f x a x'=-+ 当1a ≥时,()10,11x ∈+,∴()101f x a x'=->+恒成立,即()f x 在()0,+∞上单调递增,所以()()00f x f >=恒成立,符合当01a <<时,()()1111ax a a a f x x x x a ---⎛⎫'==- ⎪++⎝⎭,当10,a x a -⎛⎫∈ ⎪⎝⎭,()0f x '<,即()f x 在10,a x a -⎛⎫∈ ⎪⎝⎭上单调递减,此时()()00f x f <=,不符合综上:1a ≥ ……………10分 说明:此间分离变量结合洛必达法则,酌情给分. (Ⅲ)由(Ⅱ)知,1a =时,()ln 1x x >+,()0,x ∈+∞取1x k =,k N +∈,则11ln 1k k⎛⎫+< ⎪⎝⎭,1k =,2,…,n即111111kkk k e e e k k k +⎛⎫⎛⎫+<⇒+<⇒< ⎪ ⎪⎝⎭⎝⎭,1k =,2,…,n 上式n 个式子相乘得:1232341123nn n e n +⎛⎫⎛⎫⎛⎫⎛⎫⋅⋅< ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭即()1!nnn e n +<e < ……………15分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海门中学2020-2021年度第一学期阶段检测
高三数学试题-无答案
一、单项选择题:(本题共7小题,每小题5分,共35分,)
1.设集合{}2|log 2M x x =<,集合1|82x N x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭
,则( )
A.M
N =∅ B.M N ⊆ C.{|34}M N x x =-<<
D.N M ⊆
2.已知复数1z i
=-,则z =( )
A.1 D.2 3.设x R ∈,则“38x >”是“2x >”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
4.柏拉图多面体,是指严格对称,结构等价的正多面体.由于太完美,因此数量很少,只有正四、六、八、十
二、二十面体五种.如果用边数不同的正多边形来构造接近圆球、比较完美的多面体,那么数量会多一些,用两种或两种以上的正多边形构建的凸多面体虽不是正多面体但有些类似,这样的多面体叫做半正多面体.古希腊数学家物理学家阿基米德对这些正多面体进行研究并发现了13种半正多面体(后人称为“阿基米德多面体”).现在正四面体上将四个角各截去一角,形成最简单的阿基米德家族种的一个,又名截角四面体.设原正四面体的棱长为6,则所得的截角四面体的表面积为( )
A. B. C. D.5.现代健康生活的理念,每天锻炼1小时,健康工作50年,幸福生活一辈子.我国每所学校都会采取一系列措施加强学生的体育运动.在某校举行的秋季运动会中,来自同一队的甲乙丙丁四位同学参加了4100⨯米接力赛,则甲乙互不接棒的概率为( ) A.16 B.13 C.12 D.23
6.已知正方形ABCD 的内切圆的半径为1,点M 是圆上的一动点,则MA MB ⋅的取值范围是( )
A.[]1,0-
B.[]1,3-
C.[]0,3
D.[]1,4-
7.“白日依山尽,黄河入海流,欲穷千里目,更上一层楼”,古诗《登鹳雀楼》是一首登高的名作,诗人王之涣描绘了一幅美妙的山水画,从此也令鹳雀楼名声大作,世人也能领略鹳雀楼之美.鹳雀楼有三层,前对中条山,下临黄河,传说有鹳雀在此停留.下面是复建的鹳雀楼的示意图,游客(视为一质点)从地面D 点看楼顶点A 的仰角为30°,沿直线前进79米到达E 点此时看点C 的仰角为45°,若2BC AC =,则鹳雀楼的
高AB 约为( ) 1.73≈)
A.65米
B.74米
C.83米
D.92米
二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.
8.已知双曲线22
2212x y k k
-=,对于k R ∀∈且0k ≠,则下列四个选项中因k 改变而变化的是( ) A.焦距
B.离心率
C.顶点坐标
D.渐近线方程 9.已知函数1()sin 233f x x π⎛⎫=+ ⎪⎝⎭
,则下列说法中正确的是( ) A.()f x 的最小正周期为π B.()f x 在7,1212ππ⎡⎤⎢⎥⎣⎦
上单调递增 C.5,06π⎛⎫ ⎪⎝⎭是()f x 的一个对称中心 D.当0,6x π⎡⎤∈⎢⎥⎣⎦
时,()f x 的最大值为1 10.设x ,(0,)y ∈+∞,S x y =+,P xy =,以下四个命题中正确的是( )
A.若1P =,则S 有最小值2
B.若2S P =,则S 有最小值4
C.若21S P P
=+,则2S 有最小值2 D.若3S P +=,则P 有最大值1
11.如图,棱长为1的正方体1111ABCD A B C D -中,P 为线段1A B 上的动点(不含端点),则下列说法中正确的是( )
A.平面11A D P ⊥平面1A AP
B.多面体1CDPD 的体积为定值
C.1APD △恒为锐角三角形
D.直线1D P 与BC 所成的角可能为6
π 三、填空题:(本题共4小题,每小题5分,共20分.请将答案填写在答题卡相应的位置上)
12.已知数列{}n a 满足0n a >,且11a =,22
112n n n n a a a a ++-=(*n N ∈),则n a =___________. 13.某校科学社团研究一种卫星接收天线,发现其曲面与轴截面的交线为抛物线,在轴截面内的卫星波束呈近似平行状态射入形为抛物线的接收天线,经反射聚焦到焦点处,已知接收天线的口径(直径)为4.8m ,深度为1m ,则该抛物线的焦点到定点的距离为__________m.
14.将函数2()2sin sin 21f x x x =+-图像先向左平移一个单位,再将每一点的横坐标变为原来的2倍(纵坐标不变),得到函数()g x 的图像,若1()2g α=,,44ππα⎛⎫∈- ⎪⎝⎭
,则cos α=___________. 15.已知球O 为棱长为1的正方体1111ABCD A B C D -的内切球,则平面11B CD 截球O 的截面面积为______.
四、解答题:(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)
16.(本题满分15分)
请从下面两个条件中任选一个,补充在下面的问题中,并解决问题
①ABC △的面积为26AB AB BC +⋅=-
在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2b c -=,A 为钝角,sin 4A =
__________. (1)求边a 的长;(2)求sin 2C 的值.
17.(本题满分12分)
已知数列{}n a 是等差数列,且23a =,47a =,数列{}n b 的前n 项和为n S ,且112
n n S b =-
(*n N ∈). (1)求数列{}n a ,{}n b 的通项公式;
(2)记n n n c a b =,数列{}n c 的前n 项和为n T ,证明:2n T <.
18.(本题满分12分)
如图,在四棱锥S ABCD -中,底面ABCD 是菱形,G 、P 是线段AB 、SD 的中点.
(1)证明://GP 平面SBC ;
(2)若3BAD π
∠=,2AB SA SB ===,SD =SBC 与平面SGD 所成锐二面角的余弦值.
19.(本题满分12分)
苏果超市计划按月订购一种酸奶,每天进货量相同,进货成本为每瓶4元,售价每瓶6元.未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[)20,25,需求量为350瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得到下面的频率分布表:
(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;
(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量为420(单位:瓶)时,求Y 的期望值.
20.(本题满分12分)
已知椭圆E :22221x y a b +=(0a b >>)的一个焦点坐标为()1,0F ,其左右顶点分别为A ,B ,点31,2M ⎛⎫ ⎪⎝⎭
在椭圆E 上.
(1)求椭圆E 的标准方程;
(2)若过点()4,0P 的直线l 与椭圆E 交于C ,D 两点,AC ,BD 交于点T ,求AP AT ⋅的值.
21.(本题满分12分)
已知函数()ln f x x =,函数2ln ()(1)x x g x x e
=+. (1)求函数()f x 在1x =处的切线方程;
(2)当(0,)x ∈+∞时,证明:当2m ≤时,(1)()mf x g x +≤.。