北师大版探索三角形全等的条件1
探索三角形全等的条件-角边角、角角边教学设计
《探索三角形全等的条件-角边角、角角边》教学设计一、教学内容及解析本课是北师大版七年级下册,第四章第二节第二课时的内容。
全等三角形是平面几何的基础性的核心内容,三角形全等条件的探究是个重要的课题。
本节课是在学习了三角形有关要素、全等三角形的概念、性质以及探索出边边边能判定三角形全等以后进行的。
本节课的知识具有承上启下的作用,是判定三角形全等的重要依据,也是为以后说明线段相等、两角相等提供方法。
在能力培养上,无论是动手操作能力、逻辑思维能力,还是分析概况问题、解决问题的能力,简单的推理能力。
也渗透了分类讨论思想、化一般为特殊、化未知为已知的思想。
因此,全等三角形的判定是今后几何证明的起点,在整个初中数学的学习中有至关重要的作用。
二、教学目标及解析:(1)知识与能力目标①让学生在自主探究的过程中得出“ASA”公理和推导出“AAS”定理,掌握“角边角、角角边”是判定三角形全等的方法。
②使学生会运用“ASA”公理和“AAS”定理解决实际问题。
③发展学生有条理的数学语言的表达能力。
(2)过程与方法目标:①通过通过学生动手操作、观察实验、探索交流、分析归纳等活动,经历探索新知的过程,体会获得数学结论的过程,积累数学活动的经验。
(3)情感、态度与价值观目标:①通过探究活动,培养学生合作交流的意识和大胆猜想、乐于探究的良好品质以及发现问题的能力。
②通过实际生活中的有关全等三角形判定的应用,让学生体验数学来源于生活,服务于生活的辩证思想,感受数学美。
三、学生学情分析:七年级的学生观察、操作、猜想能力已经有了很大的发展,但是演绎推理、归纳、运用数学意识的思想比较薄弱。
在相关知识的学习过程中,学生已经经历了一些简单探索活动,并进行了一些简单的逻辑推理过程,解决了一些简单的现实问题,获得了一些数学活动经验的基础,同时在以前的数学学习中学生已经经历全等三角形判别条件的探索活动,具有了一定的问题分析能力及归纳演绎的能力,具备了一定的合作与交流的能力。
探索三角形全等的条件课件北师大版七年级数学下册
∴∠DAB=∠EAC
在ΔABD与ΔACE中
∠DAB=∠EAC
AB=AC
B
C
∠ABD=∠ACE
∴ΔABD≌ΔACE
∴BD=CE
三 角
01 三角形全等判定——SSS
形
全 02 三角形全等判定——SAS
等
的 判
03 三角形全等判定——AAS
定
条 件
04 三角形全等判定——SAS
判定两个三角形全等的思路:
针对练习:如图,已知OA=OC,OB=OD,∠AOC=∠BOD, 试说明:ΔAOB≌ΔCOD
D C
解:ΔAOB≌ΔCOD,理由如下:
∴∠AOC=∠BOD
∴∠AOC-∠AOD=∠BOD-∠AOD
∴∠COD=∠AOB
在ΔAOB与ΔCOD中
OA=OC
∠COD=∠AOB
OB=OD
O
∴ΔAOB≌ΔCOD
A B
A
全等判定——ASA
F
E
D
B
C
三角形全等的性质
全等判定——SSS
全等判定——SAS
选题背景
全等判定——AAS
针对练习:如图,AC=DC,AB=DE,CB=CE.
试说明:∠1=∠2
A
全等判定——ASA
解:∠1=∠2,理由如下: E 在ΔABC与ΔDEC中
AC=DC
AB=DE
CB=CE
B
∴ΔABC≌ΔDEC
E C
D
A
B
三角形全等的性质
全等判定——SSS
全等判定——SAS
选题背景
全等判定——AAS 全等判定——ASA
判定方法四: 两角及其夹边分别相等的两个三角形全等 ( 简写成“边角边”或“ASA”)
4.3探索三角形全等的条件第1课时边边边(教案)2021-2022学年七年级数学下册北师大版(安徽)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“三角形全等在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
在小组讨论环节,学生们分享的成果让我感到惊喜,他们能够将所学知识应用到实际问题中。但我也意识到,有些学生在表达自己的观点时不够自信,可能需要我在课堂上创造更多机会,鼓励他们大胆发言。
最后,我会在课后收集学生的反馈,了解他们在学习过程中的困惑和问题,以便在下一节课中进行针对性的讲解和辅导。通过不断的反思和改进,我相信我能让这节课更加高效,让学生们真正掌握三角形全等的种方法来帮助学生理解三角形全等的条件,特别是SSS全等定理。我注意到,学生们在开始时对全等概念的理解比较模糊,但在通过实际操作和案例分析后,他们的理解逐渐加深。我觉得有几个环节做得不错,但也有些地方需要改进。
首先,导入新课时的生活化问题设计,成功吸引了学生的注意力,他们能够将新知识与日常生活联系起来,这有助于提高他们的学习兴趣。在讲授理论知识时,我尽量使用简洁明了的语言,结合教具和动画演示,让学生能够直观感受到全等三角形的特征。
2.增强空间想象能力,通过观察和操作,把握三角形全等在几何图形中的应用,培养几何直观;
3.培养数学应用意识,能够将三角形全等知识应用于解决实际问题,体会数学与现实生活的联系,提高解决实际问题的能力。
三、教学难点与重点
1.教学重点
-理解并掌握三角形全等的定义,明确全等三角形的性质。
-熟悉并运用SSS全等条件,即三边分别相等的两个三角形全等。
北师大版《探索三角形全等的条件》ppt精美课件1
AB=AC, BD=CD, AD=AD, AB=AC, BH=CH, AH=AH, BH=CH, BD=CD, DH=DH,
△ABD≌△ACD(SSS) △ABH≌△ACH(SSS) △BDH≌△CDH(SSS)
A
D
B
HC
课堂小结
已知一个三角形的三个内角分别为40
内 容 °,60 °,80
有三边对应相等的两个三角形
解:(1)因为BE = CF,
所以 BE+EC = CF+CE, 所以 BC = EF.
在△ABC 和△DEF中, AB = DE,(已知) AC = DF,(已知) BC = EF,(已证)
所以 △ABC ≌ △DEF ( SSS ).
BB
E
CC
A
A
FF
DD
(2)因为 △ABC ≌ △DEF(已证), 所以 ∠A=∠D(全等三角形对应角相等).
C
探究新知
知识点 2 三角形的稳定性
由前面的结论可知,只要三角形三边的长度确定了,这
个三角形的形状和大小就完全确定了.图1是用三根木条钉 成的一个三角形框架,它的大小和形状是固定不变的,三角
形的这个性质叫做三角形的稳定性.图 2是用四根木条钉成 的框架,它的形状是可以改变的,它不具有稳定性.
图1
图2
需要几个与边或角的大小有关的条件?只知道一个条件行吗?两个条件呢?三个条件呢?
注 意 已知: 如图,点B,E,C,F在同一直线上 , AB = DE
了解三角形的稳定性.
,
AC
=
D条F ,BE件= CF应. 按对应边的顺序书写.
AC是∠BAD的角平分线. AB=FE,
2. 结论中所出现的边必须在
5.7探索直角三角形全等的条件
7
探索直角三角形全等的条件
1、判定两个三角形全等方法, SSS , ASA , AAS, SAS。 判定两个三角形全等方法, 2、如图,Rt ∆ABC中,直角边 BC 、 AC ,斜边 AB 。 如图, ABC中 A C
回 顾 与 思 考
B
A 如图, BE于 BE于 3、如图,AB ⊥ BE于C,DE ⊥ BE于E, B C D,AB=DE, (1)若∠ A=∠ D,AB=DE, ABC与 全等” 则△ ABC与 △DEF 全等 (填“全等”或“不全 等”) ASA 根据 (用简写法) F E
下面让我们一起来验证这个结论。
已知线段a、 ﹤ 和一个直角 和一个直角α, 已知线段 、c(a﹤c)和一个直角 , 利用尺规作一个 一个Rt△ 利用尺规作一个 △ABC,使 使 ∠C= ∠ α ,CB=a,AB=c. ,
a
c
α
想一想,怎样画呢?
按照下面的步骤做一做: 按照下面的步骤做一做:
⑴ 作∠MCN=∠α=90°; ∠ ° M 在射线CM上截取线段 上截取线段CB=a; ⑵ 在射线 上截取线段 M B
C N 为圆心,C为半径画弧 ⑶ 以B为圆心 为半径画弧, 为圆心 为半径画弧, 交射线CN于点 于点A; 交射线CN于点A; M B
C 连接AB. ⑷ 连接 M B
N
C
A
N
C
A
N
就是所求作的三角形吗? ⑴ △ABC就是所求作的三角形吗? 就是所求作的三角形吗 剪下这个三角形,和其他同学所作的三角形进行比较, ⑵ 剪下这个三角形,和其他同学所作的三角形进行比较, 它们能重合吗? 它们能重合吗?
F C
E
Байду номын сангаас
北师大版七年级数学下册4.3.2 探索三角形全等的条件
如图,∠A=∠D,要使△ABC≌△DBC,还需要补充一个条件:
利用“角边角“判定两三角形全等:
所以△BEC≌△CDA(AAS).
解:因为AD是△ABC的中线,所以BD=CD.
因为CF⊥AD,BE⊥AE,
所以∠CFD=∠BED=90°.
BED=CFD,
)
在△BDE和△CDF中,因为
BDE=CDF,
利用“角角边“判定两三角形全等:
又因为OE⊥AB,OF⊥CB,所以∠OEB=∠OFB.
在△BAC和△EAD中,因为
如图,CE⊥AB,DF⊥AB,垂足分别为E,F,AC∥DB,且AE=BF,那么△AEC≌△BFD的理由是(
所以CE=AD=5 cm,BE=CD,
所以△BDE≌△CDF(AAS).
利用“角边角“判定两三角形全等:
两角及其 夹边
分别相等的两个三角形全等(简写成“角边角”
或“ASA”).
几何语言:
在△ABC与△A'B'C'中,
∠=∠',
='',所以△ABC≌ △A'B'C' (
∠=∠',
ASA
).
1.〈厦门〉已知:如图,点B,F,C,E在一条直线上,∠A=
∠D,AC=DF,且AC∥DF.
试说明:△ABC≌△DEF.
在探索三角形全等条件及其应用过程中,能够进行有条理地思考并进行简单地推理.
如图,CE⊥AB,DF⊥AB,垂足分别为E,F,AC∥DB,且AE=BF,那么△AEC≌△BFD的理由是(
)
∠ACB=∠F
B.
所以△BEC≌△CDA(AAS).
的判定方法看缺什么条件,再去说明什么条件,简言
北师大版七年级数学下册4.3探索三角形全等的条件说课稿
(二)教学目标
知识与技能:掌握全等三角形的定义和判定条件(SSS、SAS、ASA、AAS),能够运用全等三角形的性质解决相关问题。
3.探究判定条件:组织学生进行小组讨论,探究全等三角形的判定条件,总结出SSS、SAS、ASA、AAS四种情况。
4.例题讲解:通过典型例题,演示如何运用全等三角形的判定条件解决问题。
5.课堂练习:布置相关练习题,让学生巩固所学知识。
6.总结与拓展:对本节课所学内容进行总结,引导学生思考全等三角形在实际生活中的应用。
(五)作业布置
课后作业布置如下:
1.布置适量的练习题,让学生巩固全等三角形的判定条件及其应用。
2.设计一道综合性的实际问题,让学生运用所学知识解决,培养他们的应用能力。
3.鼓励学生进行拓展学习,如查阅全等三角形在实际生活中的应用案例,提高他们的学习兴趣。
作业的目的是让学生通过练习巩固所学知识,培养他们的自主学习能力和解决问题的能力,同时为下一节课的学习做好铺垫。
重点:全等三角形的定义和判定条件(SSS、SAS、ASA、AAS)。
难点:
1.理解并运用全等三角形的判定条件进行证明。
2.在实际问题中,找到合适的全等三角形判定条件解决问题。
二、学情分析导
(一)学生特点
本节课面向的是七年级学生,这个年龄段的学生正处于青春期,好奇心强,求知欲旺盛,但注意力容易分散。他们的认知水平逐渐从具体运算向形式运算过渡,具备了一定的逻辑思维能力,但还需要通过具体实例来巩固理解。在学习兴趣上,他们对新鲜有趣、富有挑战性的内容更感兴趣。然而,学生的学习习惯参差不齐,部分学生缺乏自主学习能力和合作交流的习惯。
专题探索三角形全等的条件(SSS和SAS)(知识讲解)数学七年级下册(北师大版)
专题4.10 探索三角形全等的条件(SSS 和SAS )(知识讲解)【学习目标】1.理解和掌握全等三角形判定方法1——“边边边”,和判定方法2——“边角边”;2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定1——“边边边”全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).特别说明:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定2——“边角边”1. 全等三角形判定2——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).特别说明:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.【典型例题】类型一、用“SSS”和“SAS”直接证明三角形全等➽➼证明✮✮求值1.如图,已知:AB =AC ,BD =CD ,E 为AD 上一点.(1) 求证:△ABD △△ACD ;(2) 若△BED =50°,求△CED 的度数.【答案】(1) 证明见分析 (2) 50CED ∠=︒【分析】(1)根据SSS 即可证明△ABD △△ACD ;(2)只要证明△EDB △△EDC (SAS ),即可推出△BED =△CED ,进而得到答案. (1)证明:在△ABD 和△ACD 中, AB ACBDCD AD AD ⎧⎪⎨⎪⎩===,△△ABD △△ACD (SSS );(2)解:△△ABD △△ACD ,△△ADB =△ADC ,在△EDB 和△EDC 中,DB DC BDE CDE DE DE ⎧⎪∠∠⎨⎪⎩===,△△EDB △△EDC (SAS ),△△BED =△CED ,△△BED =50°,△△CED =△BED =50°.【点拨】本题考查全等三角形的判定和性质,解题的关键是根据图形题意,熟练掌握两个三角形全等判定与性质.举一反三:【变式1】如图,点A 、M 、N 、C 在同一条直线上,AB CD =,BN DM =,AM CN =,求证:AB CD ∥.【分析】根据AB CD =,BN DM =,AM CN =,利用SSS 定理证明ABN CDM ≌,从而得到A C ∠=∠,再根据内错角相等,两直线平行,AB CD ∥得证.解:证明:∵AM CN =∴AM MN CN MN∴AN CM =在ABN 和CDM 中AB CD BN DM AN CM =⎧⎪=⎨⎪=⎩,∴()ABN CDM SSS △≌△∴A C ∠=∠∴AB CD ∥(内错角相等,两直线平行)【点拨】本题考查了三角形全等的判定方法和性质,以及平行线的判定,解题关键是掌握全等三角形的判定方法,运用全等三角形的性质证明线段和角相等.【变式2】如图,已知AB AC =,AD AE =,BD CE =,求证:312.【分析】利用SSS 可证明△ABD△△ACE ,可得△BAD=△1,△ABD=△2,根据三角形外角的性质即可得△3=△BAD+△ABD ,即可得结论.解:在△ABD 和△ACE 中,AB=AC AD=AE BD=CE ⎧⎪⎨⎪⎩,△△ABD△△ACE ,△△BAD=△1,△ABD=△2,△△3=△BAD+△ABD ,△△3=△1+△2.【点拨】本题考查全等三角形的判定与性质及三角形外角性质,熟练掌握判定定理及外角性质是解题关键.2.已知:如图,AB AC =,F ,E 分别是AB AC ,的中点,求证:ABE ACF ≌.在ABE 与△AB AC A A AE AF =⎧⎪∠=∠⎨⎪=⎩ABE △≌△【点拨】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:ASAAAS 、、【变式1】如图,点D 在BC 上,,ADB B BAD CAE ∠=∠∠=∠.(1) 添加条件:____________(只需写出一个),使ABC ADE ≅;(2) 根据你添加的条件,写出证明过程.【答案】(1) AC AE = (2) 见分析【分析】(1)根据已知条件可得AB AD =,BAC DAE ∠=∠,结合三角形全等的判定条件添加条件即可;(2)结合(1)的条件,根据三角形全等的判定条件添加条件进行证明即可.解:(1)添加的条件是:AC AE =,故答案为AC AE =;(2)△,ADB B ∠=∠△AB AD =,△BAD CAE ∠=∠△BAD DAC CAE DAC ∠+∠=∠+∠,即BAC DAE ∠=∠,又AC AE =△ABC ADE ≅【点拨】本题主要考查了三角形全等的判定,确定出三角形全等判定条件是解答本题的关键.【变式2】如图所示,DC CA ⊥,EA CA ⊥,CD AB =,CB AE =,求证:(1) BCD EAB ≌△△;(2) DB BE ⊥.【分析】(1)利用SAS 判定定理证明三角形全等即可;(2)由()≌DCB BAE SAS △△,可得∠=∠DBC BEA ,∠=∠BDC EBA ,再利用90DBC BDC ∠+∠=︒,可得90∠+∠=︒DBC EBA ,即90DBE ∠=︒,所以DB BE ⊥.解:(1)证明:△DC CA ⊥,EA CA ⊥,△90∠=∠=︒DCB BAE ,在DCB △和BAE 中,CD AB DCB BAE CB AE =⎧⎪∠=∠⎨⎪=⎩△()≌DCB BAE SAS △△. (2)证明:由(1)可知()≌DCB BAE SAS △△, △∠=∠DBC BEA ,∠=∠BDC EBA ,△90DBC BDC ∠+∠=︒,△90∠+∠=︒DBC EBA ,即90DBE ∠=︒,△DB BE ⊥.【点拨】本题考查全等三角形的判定定理及性质,垂直的定义,解题的关键是掌握全等三角形的判定定理及性质.类型二、用“SSS”和“SAS”间接证明三角形全等➽➼证明✮✮求值3.已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF ,求证:△ABC≌≌DEF .【分析】首先根据AF=DC ,可推得AF ﹣CF=DC ﹣CF ,即AC=DF ;再根据已知AB=DE ,BC=EF ,根据全等三角形全等的判定定理SSS 即可证明△ABC△△DEF .解:△AF=DC ,△AF ﹣CF=DC ﹣CF ,即AC=DF ;在△ABC 和△DEF 中AC DF AB DE BC EF =⎧⎪=⎨⎪=⎩△△ABC△△DEF (SSS )举一反三: 【变式1】如图,已知:PA=PB,AC =BD ,PC =PD ,△PAD 和△PBC 全等吗?请说明理由.【分析】由AC=BD ,利用线段的和差关系可得AD=BC ,利用SSS 即可证明△PAD△△PBC.解:△AC =BD ,△AC+CD=BD+CD ,即AD =BC ,又△PA =PB ,PC =PD ,△△PAD△△PBC(SSS)【点拨】本题考查全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题关键.【变式2】如图,点D ,A ,E ,B 在同一直线上,EF =BC ,DF =AC ,DA =EB .试说明:△F =△C .【分析】根据SSS 的方法证明△DEF△△ABC,即可得到结论.解:因为DA =EB , 所以DE =AB.在△DEF 和△ABC 中, 因为DE =AB ,DF =AC ,EF =BC ,所以△DEF△△ABC(SSS),所以△F =△C.【点拨】本题考查了全等三角形的判定和性质,属于简单题,找到证明全等的方法是解题关键.4.如图,在ABCD 中,点E 、F 在BD 上,ABE 与CDF 全等吗?若全等,写出证明过程;若不全等,请你添加一个条件使它们全等,并写出证明过程.(1) 你添加的条件是__________.(2) 证明过程: 【答案】(1) BE DF =,答案不唯一; (2) 证明见分析; 【分析】(1)根据选择的全等三角形判定方法添加合适的条件即可;(2)由四边形ABCD 是平行四边形得到AB CD ∥,AB CD =,得ABE CDF ∠=∠,再用上添加的条件,即可证明结论.(1)解:BE DF =(答案不唯一)故答案为:BE DF =(答案不唯一)(2)证明:△四边形ABCD 是平行四边形,△AB CD ∥,AB CD =,△ABE CDF ∠=∠,在ABE 和CDF 中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩,△ABE CDF △≌△(SAS ).【点拨】此题考查了平行四边形的性质、全等三角形的判定等知识,熟练掌握全等三角形的判定是解题的关键.举一反三:【变式1】如图,在ABC 和ADE 中,AB AD =,AC AE =,且BAD CAE ∠=∠,求证:ABC ADE △≌△.【分析】根据BADCAE ∠=∠可得BAC DAE ∠=∠,再根据SAS 即可证明.证明:△BAD CAE ∠=∠,△BAD DAC CAE DAC ∠+∠=∠+∠,即BAC DAE ∠=∠,在ABC 和ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,△()SAS ABC ADE △≌△.【点拨】本题主要考查了用SAS 证明三角形全等,解题的关键是通过BAD CAE ∠=∠得出BAC DAE ∠=∠.【变式2】图,BE CF =,AC DF =,AC DF ∥.求证:ABC DEF ≌△△.【分析】首先根据BE CF =可得BC EF =,再由AC DF ∥可得ACB F ∠=∠,然后利用定理证明ABC DEF ≌即可.证明:△BE CF =,△BE EC CF EC ++=,即BC EF =,△AC DF ∥,△ACB F ∠=∠, 在ACB △和DFE △中,BC EF ACB F AC DF =⎧⎪∠=∠⎨⎪=⎩,△()SAS ABC DEF ≌.【点拨】此题主要考查了全等三角形的判定和平行线的性质,判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL 、、、、.注意:AAA SSA 、不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.类型三、全等的性质与“SSS”和“SAS”综合➽➼证明✮✮求值 5.已知:如图,在ABC 中,AB AC AD =,是BC 边上的中线.求证:AD BC ⊥(填空).证明:在三角形ABD ACD 和中,△()()()______________BD AB ⎧=⎪⎪=⎨⎪⎪⎩已知已知公共边,△ ≌ ( ).△ADB ∠= (全等三角形的对应角相等).△1902ADB BDC ∠∠︒==(平角的意义). △(垂直的意义).【答案】,,,,SSS DC AC AD AD ABD ACD ADC AD BC =∠⊥,△△,,【分析】证明()SSS ADB ADC ≌△△.推出ADB ADC ∠∠=,可得结论. 证明:△AD 是BC 边上的中线,△BD CD =,在三角形ABD △和ACD 中,【变式1】如图:AB AC =,BD CD =,若28B ∠=︒,求C ∠的度数.【答案】28︒ 【分析】连接AD ,利用“SSS ”证明ABD ACD △≌△,即可得到答案.解:连接AD ,在ABD △和ACD 中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,()SSS ABD ACD ∴≌C B ∴∠=∠,28B ∠=︒,28C ∴∠=︒.【点拨】本题考查了全等三角形的判定和性质,正确作辅助线构造全等三角形是解题关键.【变式2】已知:如图,AC BD =,AD BC =,AD ,BC 相交于点O ,过点O 作OE AB ⊥,垂足为E .求证:(1) ABC BAD ≌.(2) AE BE =.【分析】(1)利用SSS 证明ABC BAD ≌;(2)根据全等三角形的性质得出DAB CBA ∠=∠,则OA OB =,根据等腰三角形的性质可得出结论.(1)证明:在ABC 和BAD 中,AC BD BC AD AB BA =⎧⎪=⎨⎪=⎩,△ABC BAD ≌(2)证明:△ABC BAD ≌△CBA DAB ∠=∠,△OA OB =,△OE AB ⊥,△AE BE =.【点拨】此题考查了全等三角形的判定与性质,利用SSS 证明ABC BAD ≌是解题的关键.6.如图,在ABC 中,CM 是AB 边上的中线,8AC =,12BC =,求CM 的取值范围.【答案】210CM <<【分析】倍长中线CM 至点N ,构造BNM ,易得ACM BNM ≅△△,再利用三角形的三边关系找到CN 的取值范围,进而得到CM 的取值范围.解:如图,延长CM 到点N ,使CM MN =,连接BN ,在ACM △和BNM 中,CM NM AMC BMN AM BM =⎧⎪∠=∠⎨⎪=⎩,∴ACM BNM ≅△△(SAS ),∴8AC BN ==, 在BCN △中,BC BN CN BC BN -<<+,∴128128CN -<<+,即420CN <<,∴4220CM <<,即210CM <<.【点拨】本题考查了全等三角形的性质与判定以及三角形的三边关系,解决本题的关键是倍长中线构造全等三角形.举一反三:【变式1】如图,已知在ABC 与ADE 中,90BAC DAE AB AC AD AE ∠=∠=︒==,,,点C ,D ,E 三点在同一条直线上,连接BD .图中的CE BD 、有怎样的数量和位置关系?请证明你的结论.【答案】CE BD =,证明见分析【分析】根据SAS 证明ACE ABD ≌△△,即可得到CE BD =.解:CE BD =,证明:△90BAC DAE ∠=∠=︒,△BAC CAD DAE CAD ∠+∠=∠+∠,即BAD CAE ∠=∠,在ACE △和ABD △中AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩△()SAS ACE ABD ≌△CE BD =.【点拨】此题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.【变式2】如图已知AOB 和MON △都是等腰直角三角形.(1) 如图1,连接AM ,BM ,此时AM ,BN 的数量关系为___________请说明理由.(2) 若将MON △绕点O 顺时针旋转,如图2,当点N 恰好在AB 边上时,求证:222BN AN MN +=.【答案】(1) AM BN =,理由见分析(2) 见分析 【分析】(1)由AOB 和MON △都是等腰直角三角形,得到AOM BON ≌,即可得到AM BN =(2)连接AM ,由AOB 和MON △都是等腰直角三角形,得到AOM BON ≌,即可得到AM BN =,再求得90MAN ∠=︒,利用勾股定理即可得到222BN AN MN +=解:(1)AM BN =,理由如下:△AOB 和MON △都是等腰直角三角形,△OA OB =,OM ON =,90AOB MON ∠=∠=︒,△AOM BON ∠=∠,在AOM 和BON △中:OA OB OM ON AOM BON =⎧⎪=⎨⎪∠=∠⎩, △AOM BON ≌,△AM BN =(2)如下图,连接AM ,△AOB 和MON △都是等腰直角三角形,△OA OB =,OM ON =,90AOB MON ∠=∠=︒,45B BAO ∠=∠=︒,△AOM BON ∠=∠,在AOM 和BON △中:OA OB OM ONAOM BON =⎧⎪=⎨⎪∠=∠⎩, △AOM BON ≌,△AM BN =,45B MAO ∠=∠=︒,△90MAN MAO BAO ∠=∠+∠=︒,△222AM AN MN +=,△222BN AN MN +=【点拨】本题考查了旋转的性质、全等三角形的判定和性质、等腰直角三角形的性质及勾股定理,熟练掌握全等三角形的判定和性质是解决问题的关键。
北师大版七年级下册数学教案-第4章 三角形-3 探索三角形全等的条件
3探索三角形全等的条件第1课时“边边边(SSS)”和三角形的稳定性教学目标一、基本目标1.掌握三角形全等的“边边边”条件,了解三角形的稳定性.2.经历探索三角形全等条件的过程,体会利用画图、操作、归纳获得数学结论的过程,初步形成解决问题的基本策略.二、重难点目标【教学重点】利用三角形全等的“边边边”条件证明两个三角形全等;三角形的稳定性.【教学难点】利用“SSS”说明三角形全等的思考和推理过程.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P97~P99的内容,完成下面练习.【3 min反馈】1.(教材P97“做一做”)只给一个条件(一条边或一个角)画三角形时,画出的三角形一定全等吗?略2.(教材P97“做一做”)给出两个条件画三角形时,有几种可能的情况?每种情况下作出的三角形一定全等吗?分别按照下面的条件做一做.(1)三角形的一个内角为30°,一条边为3 cm;(2)三角形的两个内角分别为30°和50°;(3)三角形的两条边分别为4 cm,6 cm.略3.(教材P97“议一议”)如果给出三个条件画三角形,你能说出有哪几种可能的情况?解:三条边;三个角;两条边和一个角;两个角和一条边.4.(教材P98“做一做”)(1)已知一个三角形的三个内角分别为40°,60°和80°,你能画出这个三角形吗?把你画的三角形与同伴画出的进行比较,它们一定全等吗?(2)已知一个三角形的三条边分别为4 cm,5 cm和7 cm,你能画出这个三角形吗?把你画的三角形与同伴画出的进行比较,它们一定全等吗?解:(1)三个内角对应相等的两个三角形不一定全等.(2)三边分别相等的两个三角形全等,简称为“边边边”或“SSS”.通常写成下面的格式: 在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,BC =EF ,所以△ABC ≌△DEF (SSS).5.2017年11月5日19时45分,我国在西昌卫星发射中心用长征三号乙运载火箭,以“一箭双星”的方式成功发射第二十四、二十五颗北斗导航卫星.这两颗卫星属于中国地球轨道卫星,是我国北斗三号第一、二颗组网卫星,开启了北斗卫星导航系统全球组网的新时代.如图所示,在发射运载火箭时,运载火箭的发射架被焊接成了许多的三角形,这样做的原因是:三角形具有稳定性.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,已知AB =DE ,AC =DF ,点E 、C 在直线BF 上,且BE =CF .求证:△ABC ≌△DEF .【互动探索】(引发学生思考)已知两个三角形有两组对边相等,同一直线上的一组边相等,可考虑用“SSS ”证明△ABC ≌△DEF .【证明】因为BE =CF ,所以BE +EC =CF +EC ,即BC =EF . 在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,BC =EF ,AC =DF ,所以△ABC ≌△DEF (SSS).【互动总结】(学生总结,老师点评)判定两个三角形全等,先根据已知条件或易证的结论确定判定三角形全等的方法,然后再根据判定方法,看缺什么条件,再去证什么条件.【例2】如图,已知AB =AD ,DC =BC ,∠B 与∠D 相等吗?为什么?【互动探索】(引发学生思考)要判断角相等,可考虑用三角形全等证明,需添加辅助线AC 构造三角形进行证明.【解答】∠B =∠D .理由如下:连结AC . 在△ADC 和△ABC 中,因为⎩⎪⎨⎪⎧AD =AB ,AC =AC ,DC =BC ,所以△ADC ≌△ABC (SSS), 所以∠B =∠D .【互动总结】(学生总结,老师点评)要证∠B 与∠D 相等,可证这两个角所在的三角形全等,而现有的条件并不满足,可以考虑添加辅助线证明.【例3】要使下列木架稳定,可以在任意两个点之间钉上木棍,各图至少需要钉上多少根木棍?【互动探索】(引发学生思考)三角形具有稳定性,怎样添加木棍才能使多边形具有稳定性呢?【解答】如图1,四边形木架至少需要钉上1根木棍; 如图2,五边形木架至少需要钉上2根木棍; 如图3,六边形木架至少需要钉上3根木棍.图1 图2 图3【互动总结】(学生总结,老师点评)n 边形沿一个顶点的对角线添加(n -3)条木棍后就具有稳定性.活动2 巩固练习(学生独学)1.下列实际情景运用了三角形稳定性的是( C ) A .人能直立在地面上 B .校门口的自动伸缩栅栏门 C .古建筑中的三角形屋架D .三轮车能在地面上运动而不会倒2.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB 是一个任意角,在边OA 、OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M 、N 重合,过角尺顶点C 作射线OC .由做法得△MOC ≌△NOC 的依据是SSS.3.如图,AC 与BD 交于点O ,AD =CB ,E 、F 是BD 上两点,且AE =CF ,DE =BF . 求证:(1)∠D =∠B ; (2)AE ∥CF .证明:(1)在△ADE 和△CBF 中,⎩⎪⎨⎪⎧AE =CF ,AD =BC ,DE =BF ,所以△ADE ≌△CBF (SSS), 所以∠D =∠B . (2)因为△ADE ≌△CBF , 所以∠AED =∠CFB .因为∠AED +∠AEO =180°,∠CFB +∠CFO =180°, 所以∠AEO =∠CFO , 所以AE ∥CF .环节3 课堂小结,当堂达标 (学生总结,老师点评)1.“边边边(SSS)”:三边分别相等的两个三角形全等. 2.三角形具有稳定性,四边形具有不稳定性.练习设计请完成本课时对应练习!第2课时 “角边角(ASA)”和“角角边(AAS)”教学目标一、基本目标1.掌握三角形全等的“ASA”“AAS”条件,并会进行简单的应用.2.经历探索三角形全等“两角一边”的过程,体会通过操作、归纳获得数学结论的趣味. 二、重难点目标 【教学重点】应用三角形全等的“ASA”“AAS”条件. 【教学难点】探索三角形全等条件“两角一边”.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P100~P101的内容,完成下面练习. 【3 min 反馈】1.两角及其夹边分别相等的两个三角形全等,简写成“角边角”或“ASA ”.通常写成下面的格式:在△ABC 与△DEF 中,⎩⎪⎨⎪⎧∠B =∠E ,BC =EF ,∠C =∠F ,所以△ABC ≌△DEF .2.两角分别相等且其中一组等角的对边相等的两个三角形全等,简写成“角角边”或“AAS ”.通常写成下面的格式:在△ABC 与△DEF 中,⎩⎪⎨⎪⎧∠A =∠D ,∠B =∠E ,BC =EF ,所以△ABC ≌△DEF .3.能确定△ABC ≌△DEF 的条件是( D ) A .AB =DE ,BC =EF ,∠A =∠E B .AB =DE ,BC =EF ,∠C =∠E C .∠A =∠E ,AB =EF ,∠B =∠D D .∠A =∠D ,AB =DE ,∠B =∠E4.如图,已知点F 、E 分别在AB 、AC 上,且AE =AF ,请你补充一个条件:∠B =∠C ,使得△ABE ≌△ACF .(只需填写一种情况即可)教师点拨:此题答案不唯一,还可以填AB =AC 或∠AEB =∠AFC . 环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,已知AD ∥BC ,BE ∥DF ,AE =CF ,求证:△ADF ≌△CBE .【互动探索】(引发学生思考)回忆我们学过的判定三角形全等的条件,结合已知中的平行线段,可考虑利用“ASA ”证明△ADF ≌△CBE .【证明】因为AD ∥BC ,BE ∥DF , 所以∠A =∠C ,∠DF A =∠BEC . 因为AE =CF ,所以AE +EF =CF +EF ,即AF =CE . 在△ADF 和△CBE 中,⎩⎪⎨⎪⎧∠A =∠C ,AF =CE ,∠DF A =∠BEC ,所以△ADF ≌△CBE (ASA).【互动总结】(学生总结,老师点评)在“ASA ”中,包含“边”和“角”两种元素,是两角夹一边而不是两角及一角的对边对应相等,应用时要注意区分.在“ASA ”中,“边”必须是“两角的夹边”.【例2】如图,在△ABC 中,AD ⊥BC 于点D ,BE ⊥AC 于点E ,AD 与BE 交于点F .若BF =AC ,求证:△ADC ≌△BDF .【互动探索】(引发学生思考)观察图形,要证△ADC ≌△BDF ,只需∠DAC =∠DBF 即可.由在Rt △ADC 与Rt △BDF 中,利用等角的余角相等即可得∠DAC =∠DBF .【证明】因为AD ⊥BC ,BE ⊥AC , 所以∠ADC =∠BDF =∠BEA =∠BEC =90°. 又因为∠AFE =∠BFD , 所以∠DAC =∠DBF .在△ADC 和△BDF 中,⎩⎪⎨⎪⎧∠DAC =∠DBF ,∠ADC =∠BDF ,AC =BF ,所以△ADC ≌△BDF (AAS).【互动总结】(学生总结,老师点评)在解决三角形全等的问题时,要注意挖掘题中的隐含条件,如:对顶角、公共边、公共角等.活动2 巩固练习(学生独学)1.完成教材P102“习题4.7”第1~3题. 略2.如图,点B 在线段AD 上,BC ∥DE ,AB =ED ,∠A =∠E .求证:BC =DB .证明:因为BC ∥DE , 所以∠ABC =∠EDB .在△ABC 和△EDB 中,⎩⎨⎧∠A =∠E ,AB =ED ,∠ABC =∠EDB ,所以△ABC ≌△EDB (ASA), 所以BC =BD .环节3 课堂小结,当堂达标 (学生总结,老师点评)1.“角边角(ASA)”:两角及其夹边分别相等的两个三角形全等.2.“角角边(AAS)”:两角分别相等且其中一组等角的对边相等的两个三角形全等.练习设计请完成本课时对应练习!第3课时“边角边(SAS)”教学目标一、基本目标1.经历画图比较,得出判定三角形全等的“SAS”条件.2.能够利用“SAS”判定两个三角形全等并会用数学语言说明理由.3.在探索三角形全等及其应用的过程中,能够进行有条理地思考并进行简单推理.二、重难点目标【教学重点】通过画图比较,得出“SAS”结论的过程及应用.【教学难点】探索“边边角”能否用于判定全等.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P102~P104的内容,完成下面练习.【3 min反馈】1.(1)两边及夹角,三角形两边分别为2.5 cm,3.5 cm,它们所夹的角为40°,你能画出这个三角形吗?你画的三角形与同桌画的一定全等吗?(2)以2.5 cm,3.5 cm为三角形的两边,长度为2.5 cm的边所对的角为40°,情况又怎样?动手画一画,你发现了什么?解:(1)与同桌画的是全等的(如图1).(2)与同桌画的不一定全等(如图2).图1图2总结:(1)两边及其一边所对的角对应相等,两个三角形不一定全等;(2)三角形全等的判定方法4:两边及其夹角分别相等的两个三角形全等,简写成“边角边”或“SAS”.通常写成下面的格式:在△ABC 与△DEF 中,⎩⎪⎨⎪⎧AB =DE ,∠B =∠E ,BC =EF ,所以△ABC ≌△DEF .2.如图,已知BD =CD ,要根据“SAS”判定△ABD ≌△ACD ,则还需添加的条件是∠ADB =∠ADC .环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,A 、D 、F 、B 在同一直线上,AD =BF ,AE =BC ,且AE ∥BC .求证:△AEF ≌△BCD .【互动探索】(引发学生思考)由题意可知,如果∠A =∠B 就可证△AEF ≌△BCD .由AE ∥BC 可得∠A =∠B .【证明】因为AE ∥BC ,所以∠A =∠B .因为AD =BF ,所以AD +DF =DF +FB ,即AF =BD . 在△AEF 和△BCD 中,⎩⎪⎨⎪⎧AE =BC ,∠A =∠B ,AF =BD ,所以△AEF ≌△BCD (SAS).【互动总结】(学生总结,老师点评)判定两个三角形全等时,若有两边一角对应相等时,角必须是两边的夹角.【例2】如图,BC ∥EF ,BC =BE ,AB =FB ,∠1=∠2,若∠1=60°,求∠C 的度数.【互动探索】(引发学生思考)已知两组边对应相等,可考虑证明△ABC ≌△FBE ,从而得出∠C =∠BEF .又由BC ∥EF 可得∠BEF =∠1,进而解决问题.【解答】因为∠1=∠2,所以∠1+∠ABE =∠2+∠ABE ,即∠ABC =∠FBE . 在△ABC 和△FBE 中,⎩⎪⎨⎪⎧BC =BE ,∠ABC =∠FBE ,AB =FB ,所以△ABC ≌△FBE (SAS), 所以∠C =∠BEF . 又因为BC ∥EF ,所以∠C =∠BEF =∠1=60°.【互动总结】(学生总结,老师点评)(1)全等三角形是证明线段和角相等的重要工具;(2)学会挖掘题中的已知条件,如“公共边”“公共角”等.活动2 巩固练习(学生独学)1.如图,AB =AC ,AD =AE ,欲证△ABD ≌△ACE ,可补充条件( A )A .∠1=∠2B .∠B =∠C C .∠D =∠ED .∠BAE =∠CAD2.下列条件中,不能证明△ABC ≌△DEF 的是( C )A .AB =DE ,∠B =∠E ,BC =EF B .AB =DE ,∠A =∠D ,AC =DF C .BC =EF ,∠B =∠E ,AC =DF D .BC =EF ,∠C =∠F ,AC =DF3.如图,已知AB =AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?解:AC 平分∠BCD .理由如下:因为AC 平分∠BAD ,所以∠BAC =∠DAC .在△ABC 和△ADC 中,⎩⎪⎨⎪⎧ AB =AD ,∠BAC =∠DAC ,AC =AC ,所以△ABC ≌ADC (SAS),所以∠ACB =∠ACD ,所以AC 平分∠BCD .活动3 拓展延伸(学生对学)【例3】如图,四边形ABCD 、DEFG 都是正方形,连结AE 、CG .求证:(1)AE =CG ;(2)AE ⊥CG .【互动探索】(1)观察图形,证明△ADE ≌△CDG ,即可得出AE =CG ;(2)结合全等三角形的性质和正方形的性质即可得AE ⊥CG .【证明】(1)因为四边形ABCD 、DEFG 都是正方形,所以AD =CD ,GD =ED ,∠CDA =∠GDE =90°.因为∠CDG =90°+∠ADG ,∠ADE =90°+∠ADG ,所以∠CDG =∠ADE .在△ADE 和△CDG 中,⎩⎪⎨⎪⎧ AD =CD ,∠ADE =∠CDG ,DE =GD ,所以△ADE ≌△CDG (SAS),所以AE =CG .(2)设AE 与DG 相交于点M ,与CG 相交于点N .由(1)得△ADE ≌△CDG ,所以∠CGD =∠AED .因为∠GMN =∠DME ,∠DEM +∠DME =90°,所以∠CGD +∠GMN =90°,所以∠GNM =90°,所以AE ⊥CG .【互动总结】(学生总结,老师点评)正方形的四条边相等,四个角都等于90°,利用正方形的性质结合全等三角形的判定与性质即可解决问题.环节3课堂小结,当堂达标(学生总结,老师点评)1.“边角边(SAS)”:两边及其夹角分别相等的两个三角形全等.2.利用全等三角形的判定和性质可以证明角或线段相等.练习设计请完成本课时对应练习!。
北师大版七下数学4.3探索三角形全等的条件(第1课时)教案
北师大版七下数学4.3探索三角形全等的条件(第1课时)教案一. 教材分析《北师大版七下数学4.3探索三角形全等的条件》这一课时,是在学生已经掌握了三角形的基本概念、性质以及三角形相似的基础上进行教学的。
本节课的主要内容是让学生通过观察、操作、猜想、验证等过程,探索并掌握三角形全等的条件,培养学生的动手操作能力、观察能力、推理能力及合作交流能力。
二. 学情分析七年级的学生已经具备了一定的几何图形基础,对三角形有一定的了解。
但是,对于三角形全等的概念和判定条件,学生可能还比较陌生。
因此,在教学过程中,教师需要引导学生通过观察、操作、猜想、验证等方法,自主探索三角形全等的条件,从而提高学生的学习兴趣和积极性。
三. 教学目标1.知识与技能目标:让学生掌握三角形全等的条件,能运用三角形全等的条件判断两个三角形是否全等。
2.过程与方法目标:通过观察、操作、猜想、验证等过程,培养学生的动手操作能力、观察能力、推理能力及合作交流能力。
3.情感态度与价值观目标:让学生在探索过程中体验到数学的乐趣,培养学生的团队合作精神,增强学生对数学学科的学习兴趣。
四. 教学重难点1.教学重点:三角形全等的条件。
2.教学难点:如何引导学生探索并理解三角形全等的条件。
五. 教学方法1.情境教学法:通过设置具体的问题情境,激发学生的学习兴趣,引导学生主动参与课堂。
2.启发式教学法:在教学过程中,教师提出问题,引导学生思考、讨论,从而达到理解三角形全等的目的。
3.合作学习法:学生进行小组合作,培养学生的团队合作精神,提高学生的学习效果。
六. 教学准备1.教师准备:教师需要提前准备好相关的教学材料,如PPT、几何图形等。
2.学生准备:学生需要预习相关的内容,了解三角形的基本概念和性质。
七. 教学过程1.导入(5分钟)教师通过向学生展示一些生活中的三角形图片,引导学生回顾三角形的基本概念和性质。
然后,教师提出问题:“你们认为,什么样的两个三角形可以称为全等三角形?”2.呈现(10分钟)教师通过PPT展示三角形全等的定义和判定条件。
北师大版-直角三角形全等的判定
F C
E
D
探索直角三角形 全等的条件
创设情境
回顾思考
创设情境
做一做 探索后 获得新知 想一想 学以致用 议一议 随堂练习 归纳小结 课后作业
舞台背景的形状是两个直角三 角形,工作人员想知道两个直角三角 形是否全等,但每个三角形都有一条 直角边被花盆遮住无法测量。 (1) 你能帮他想个办法吗?
SAS
A D
1
2
C
∴∠1=∠2=90° B ∵AD=CB(已知) AC=CA(公共边)
∴Rt△ABC≌Rt△CDA(HL)
议一议
回顾思考
创设情境
做一做 探索后 获得新知 想一想 学以致用 议一议 随堂练习 归纳小结 课后作业
如图,有两个长度相同的滑梯,左 边滑梯的高度AC与右边滑梯水平方向 的长度DF相等,两个滑梯的倾斜角 ∠ABC和∠DFE大小有什么关系?
做一做 探索后 获得新知 想一想 学以致用 议一议 随堂练习 归纳小结 课后作业
(1)△ABC就是所求作的三角形吗? (2)剪下这个三角形,和其他同学所 作的三角形进行比较,它们能重合吗?
பைடு நூலகம்
直角三角形全等的判定方法
回顾思考
获得新知
创设情境
做一做 探索后 获得新知 想一想 学以致用 议一议 随堂练习 归纳小结 课后作业
∴∠ABC+∠DFE=90°
随堂练习
回顾思考
创设情境
做一做 探索后 获得新知 想一想 学以致用 议一议 随堂练习 归纳小结 课后作业
1.如图,AC=AD,∠C,∠D是直角,将上 述条件标注在图中,你能说明BC与BD相等 C 吗? 解: BC=BD
A
∵∠C=∠D=90°(已知) AB=AB(公共边) D AC=AD(已知) ∴ Rt△ACB≌Rt△ADB (HL) ∴BC=BD(全等三角形对应边相等)
探索三角形全等的条件北师大版
B
C
D
∴△ABC≌△DEF(SAS) E
F
A
D
数
学
语B 言
CE
在△ABC和△DEF中, AB= DE
F
表
∠B= ∠E
达 BC=EF
\ △ABC ≌△DEF (SAS)
分别找出各题中的全等三角形,
并说明理由。
A
B
40°
A
B
DC
D
C
(2)
A
A
B 图一
C
B
C 图二
“两边和其夹角”。
“两边和其中 一边的对角”
探究1: 两边及其夹角 作三角形,两边为15cm、10cm,夹角为450
并剪下,于同桌进行比较
画法:1、画∠MAN=45°; 2、在射线AM上截取AC=15cm; 3、在射线AN上截取AB=10cm; 4、连结BC。△ABC为所作三角形。
与同桌比较,能完全重合吗?
发现:
如果两个三角形有_两_边_及其_夹_角_对应相 等,那么这两个三角形全等。
是否只能是两边及其夹角呢? 两边及一边对角行吗?
探究2: 两边及一边的对角 作三角形,两边为30cm、24cm,
24cm边对角为450
1、画∠MAN=45°; 2、在射线AM上截取AC=30cm; 3、以点C为圆心,24cm长为半径画圆,
E
_
A_
_C
_B
D
∴ EF=BC( 全等三角形的对)应边相等
∠DEF =∠ABC (全等三角形的对应角相等)
∴ EF‖BC(内错角相等,两直线平行)
例:已知,如图AB =AC,AD = AE, ∠1 = ∠2.请判断线段CE与BD有什 么关系?并证明你的猜想.
探索三角形全等的条件 第一课时-七年级数学下册课件(北师大版)
30°
50
2cm 4cm
可以发现按这些条件画的三角形也都不能保 证一定全等.
先任意画出一个△ABC.再画一个△A′B′C′,使 A′ B′=AB , B′C′=BC,C′A′ =CA.把画好的△A′B′C′ 剪下来,放到△ABC上,它们全等吗?
画一个△A′B′C′ ,使A′B′=AB,A′C′=AC,B′C′=BC : (1)画B′C′=BC; (2 )分别以点B′,C′ 为圆心,线段AB,AC 长为半径 画弧,两弧相交于点A′; ( 3 )连接线段A′B′,A′C′.
本节我们就来讨论这个问题.
知识点 1 三角形全等的条件:边边边 1. 只给一个条件(一组对应边相等或一组对应角相等).
①只给一条边:
②只给一个角:
60°
60°
可以发现按这些条件 画的三角形都不能保 证一定全等.
60°
2. 给出两个条件: ①一边一内角:
30°
30°
30°
②两内角:
30° 50°
知识点
例3 如图,在四边形ABCD 中,AB=AD,CB=CD. 试说明:∠B=∠D.
导引: 在图中没有三角形,只有
连接AC,将∠B 和∠D 分
别放在两个三角形中, 通过说明两个三角形全等
来说明∠B 和∠D 相等.
知识点
解:如图,连接AC,在△ABC 和△ADC 中, 因为AB=AD,CB=CD,AC=AC, 所以△ABC ≌△ADC (SSS). 所以∠B=∠D.
知识点
总结
在本例中,有两组相等线段,可作辅助线构造有公共边 的两个三角形,利用“SSS”说明两个三角形全等.
1 如图,AB=DE,AC=DF,BC=EF,则∠D 等于( D )
北师大版七年级数学下册课件:探索三角形全等的条件第1课时利用“边边边”判定三角形全等
板书设计
1.边边边:三边对应相等的两个三角形全等, 简写成“边边边”或“SSS”.
2.三角形的稳定性
教学反思
本节课从操作探究活动入手,有效地激发了学生 的学习积极性和探究热情,提高了课堂的教学效 率,促进了学生对新知识的理解和掌握.从课堂 教学的情况来看,学生对“边边边”掌握较好, 到达了教学的预期目的.存在的问题是少数学生 在辅助线的构造上感到困难,不知道如何添加合 理的辅助线,还需要在今后的教学中进一步加强 巩固和训练
B
E
C A
F
D
AC = DF (已知),
BC = EF (已证), ∴ △ABC ≌ △DEF ( SSS ). (2)∵ △ABC ≌ △DEF(已证),
∴ ∠A=∠D(全等三角形对应角相等).
典例精析
例2 如图,AB=AC,DB=DC,请说明∠B =∠C成立的
理由.
A
解:连接AD.
在△ABD和△ACD中,
AB=AC (已知),
DB=DC(已知),
AD=AD(公共边),
D
∴△ABD≌△ACD (SSS). B
C
∴ ∠B =∠C (全等三角形的对应角相等).
三角形的稳定性
动手做一做
1.将三根木条用钉子钉成一个三角形木架. 2.将四根木条用钉子钉成一个四边形木架.
洋葱微视频(单击)
请同学们看看:三角形和四边形的模型, 扭一扭模型,它们的形状会改变吗?
△A′B′C′剪下,放到△ABC上,他们全等吗?
作法:
A
A′
(1)画B′C′=BC;
(2)分别以B',C'为圆心,
线段AB,AC长为半径画弧,
B
C B′
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实践 出
判定三角形全等的方法:
真知
三边分别相等的两个三角形全等, 简写为“边边边”或“SSS”。
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
例1 如图,AB=CD,AD=CB,△ABD与△CDB 全等吗?请说明理由。
练习1 如图,AB=CD,AF=CE,BE=DF,△ABF和△CDE 是否全等?试说明理由。
结论: 给出两个条件,所画的三角形也不一定全等。
探索3 给出三个条件
三个角
(1)已知三个角分别相等的两个三角形一 定全等吗?
结论: 三个内角分别相等的两个三角形不一定全等。
探索3 给出三个条件
画一画 剪一剪
三条边
比一比
(2)已知三条边分别相等的两个
三角形一定全等吗?
画一个三边长为9cm,12cm,15cm 的三角形,剪下来,互相比较, 有什么发现?
如果有一块玻璃,被打碎了一角,能根据 残缺玻璃中的数据来制作一块与原来形状大小 都相同的玻璃吗?需要哪些数据呢?
复习旧知
A
D
B
C
E
F
几何语言:∵△ABC ≌△DEF
∴AB=DE, ∠A=∠D,
BC=EF, ∠B=∠E,
AC=DF, ∠C=∠F。
第四章 三角形
4.3.1 探索三角形全等的条件(1)
探索1 只给一个条件
已知一条边
不一定全等
5cm 已知一个角
5cm
5cm
不一定全等
30。
30。
结论: 只给一个条件,所画的三角形不一定全等。
分层作业: A层次:优化设计P39 补充练习1~6题 B层次:补充练习1~6题 C层次:优化设计P39 补充练习1~6题 能力提高
能力提升
如图,是我们城市的一座大桥,如果钢绳AB=AC,AD是
连接顶点A与BC中点D的支架,请问:AD与BC有什么样
的位置关系?说明理由。
解:AD ⊥ BC
A
30。
探索2 给出两个条件
动手操作
画一画:按照下面给出的两个条件,画出一个三角形
第1到4组:画两条边分别为8cm和10cm的三角形; 第5到8组:画一个内角是60度,一条边是7cm的三角形; 第9到12组:画两个内角分别为30度和50度的三角形;
剪一剪:把所画的三角形下来;
比一比:在同一小组内与同伴比较。
理由:∵点D是BC的中点
∴ BD = CD ,
在△ABD与△ACD中,
AB = AC,
B
D
C
∵ ∴
BD = CD ,
AD = AD , △ABD≌△ACD( SSS )
∴∠ ADB =∠ ADC( 全等三角形的对应角相等 )
∵ ∠ADB + ∠ADC =180°, ∴ ∠ADB = ∠ADC = 90°, ∴AD ⊥ BC.
问:图中有哪些角相等?为什么?
生活当中有很多应用三角形稳定性的例子
生活当中有很多应用三角形稳定性的例子
能力提升 如图,是我们城市的一座大桥,如果钢绳AB=AC,AD是 连接顶点A与BC中点D的支架,请问:AD与BC有什么样 的位置关系?说明理由。
它的平面图是这样的
A
B
D
C
这节课你学到了什么知识? 用到了哪些方法? 有什么困惑?