运筹学博弈论.ppt
合集下载
十章博弈论ppt课件
33
34
重复博弈
在现实经济运行中,寡头之间的价格默契并 不容易,主要原因有:
如果博弈重复是有限的,则最后一次博弈会采取低价策 略,理性的结果是抢先低价,一直到第一次博弈;但是, 只要以牙还牙的理性行为有一定折扣或(怀疑),合作 以避免价格战的结果仍然会出现。
厂商较多,使以牙还牙(对欺骗者进行报复和惩罚)难 以实现,合作就十分困难。
参与者Players (玩家): 即参加博弈过程的行为和决策 主体,也是利益主体。在一个博弈中,最少要有两个参 与者。
策略Strategies (战略或策略行为):即参与者在某个博 弈时点,根据其掌握的有关博弈信息而选择的决策变量 和行动计划,一个参与者的全部可行策略称为他的策略 空间。
收益Payoff(支付、得益)和收益函数: 收益是指在既定 策略组合条件下参与者的得失情况。每个参与者的收益 取决于全部参与者所采取的策略,称为收益函数。
11
博弈的分类
(二)静态博弈与动态博弈
(根据参与者选择策略的关系划分) • 参与者同时或独立选择策略的博弈是静态博弈。 • 参与者按照一定的次序选择策略,后选择者了解
先选择者的行动,这种博弈是动态博弈。
12
博弈的分类
(三)完全信息博弈与不完全信息博
(根据参与者对其他参与者的特征、策略空间、 收益函数等信息的了解程度划分)
做广告 10, 5
不做广告 15, 0
不做广告
6, 8
20, 2
19
不存在优势策略的夫妻之争
王先生W 张女士Z
看球赛(T)
看球赛 (T)
1,2
看电影 (F)
0,0
看电影(F) 0,0
3,1
20
2、纳什均衡
34
重复博弈
在现实经济运行中,寡头之间的价格默契并 不容易,主要原因有:
如果博弈重复是有限的,则最后一次博弈会采取低价策 略,理性的结果是抢先低价,一直到第一次博弈;但是, 只要以牙还牙的理性行为有一定折扣或(怀疑),合作 以避免价格战的结果仍然会出现。
厂商较多,使以牙还牙(对欺骗者进行报复和惩罚)难 以实现,合作就十分困难。
参与者Players (玩家): 即参加博弈过程的行为和决策 主体,也是利益主体。在一个博弈中,最少要有两个参 与者。
策略Strategies (战略或策略行为):即参与者在某个博 弈时点,根据其掌握的有关博弈信息而选择的决策变量 和行动计划,一个参与者的全部可行策略称为他的策略 空间。
收益Payoff(支付、得益)和收益函数: 收益是指在既定 策略组合条件下参与者的得失情况。每个参与者的收益 取决于全部参与者所采取的策略,称为收益函数。
11
博弈的分类
(二)静态博弈与动态博弈
(根据参与者选择策略的关系划分) • 参与者同时或独立选择策略的博弈是静态博弈。 • 参与者按照一定的次序选择策略,后选择者了解
先选择者的行动,这种博弈是动态博弈。
12
博弈的分类
(三)完全信息博弈与不完全信息博
(根据参与者对其他参与者的特征、策略空间、 收益函数等信息的了解程度划分)
做广告 10, 5
不做广告 15, 0
不做广告
6, 8
20, 2
19
不存在优势策略的夫妻之争
王先生W 张女士Z
看球赛(T)
看球赛 (T)
1,2
看电影 (F)
0,0
看电影(F) 0,0
3,1
20
2、纳什均衡
博弈论PPT课件
第1个数字表示企业1 的收入, 第2个数字表示企业2的收入。
13
7.2.2合作博弈:建立卡特尔 • 合作是避免囚徒困境的有效方法 • 合作博弈与欺骗者
14
7.2.3重复性博弈:怎样对付欺骗者 • 重复性博弈:反复进行多次博弈 • 重复性博弈的最优策略——针锋相对:模仿上一
次博弈中对手的行为 • 针锋相对是最优策略 • 好的博弈四原则 ☞简单,不易误解 ☞针锋相对不是先搞欺骗 ☞不允许欺骗行为,但要给欺骗行为以处罚 ☞针锋相对是宽大的,允许对方恢复合作
可以采取降价策略,使新的进入者不敢贸然进入 • 投资于剩余生产能力的决策:投资引起的当前的
利润损失低于新企业进入而引起的将来的利润损 失
29
7.3.4先发制人:使市场饱和
• 在各地布点,使新的进入者无法利用高运 输成本的机会
N1 E N2
E1
E2
E4
E3
30
7.3.5 市场渗透定价 •通过制定低价抢占市场份额的策略。 •市场渗透定价是网络外部性明显的产业常用策 略。
的违约问题 • 先合作,第N次违约的收入:
30+30+30+30+······+40
• 现实:不知道N是多少→选择合作策略 • 如何在员工工作的最后一天激励员工? • 有结止日期的有限重复博弈等于一次性博弈
17
•市场中的重复博弈的作用 •市场中的一次性博弈使得生产劣质产品的企业有 利 •市场中的重复博弈促使生产者生产高质量产品
15
重复性博弈下的行为选择
• 合作收入:30+30+30+30+······
• 不合作收入:40+20+20+20 +······
博弈论完整版PPT课件
ac 3
纳什均衡利润为:
Π1NE
Πቤተ መጻሕፍቲ ባይዱ
NE 2
(a c)2 9
.
31
q2 a-c
(a-c)/2 (a-c)/3
.
19
理性共识
0-阶理性共识:每个人都是理性的,但不知道其 他人是否是理性的;
1-阶理性共识:每个人都是理性的,并且知道其 他人也是理性的,但不知道其他人是否知道自己 是理性的;
2-阶理性共识:每个人都是理性的,并且知道其
他人也是理性的,同时知道其他人也知道自己是
理性的;但不知道其他人是否知道自己知道他们
国外经济学教科书改写,加入大量博弈论内容
博弈论进入主流经济学,反映了:
经济学的研究对象越来越转向个体放弃了有些没有微观基础的假设
经济学的研究对象越来越转向人与人之间行为的相互影响和作用
经济学越来越重视对信息的研究
传统微观经济学的工具是数学(微积分、线性代数、统计学),而
博弈论是一种新的数学。以前只有陆军,现在有了空军,其差异
不完全信息
静态
纳什均衡
(纳什)
贝叶斯纳什均衡
(海萨尼)
.
动态
子博弈精练纳什均衡
(泽尔腾)
精练叶贝斯纳什均衡
(泽尔腾等)
9
博弈的分类
根据参与人是否合作
根据参与人的多少
根据博弈结果
根据行动的先后次序
两人博弈 多人博弈
静态博弈 动态博弈
合作博弈 非合作博弈
零和博弈 常和博弈 变和博弈
根据参与人对其他参与人的
4-阶理性:C相信R相信C相信R相信C是理性的,C会将R1从R的战略空间 中剔除, C不会选择C3;
5-阶理性:R相信C相信R相信C相信R相信C是理性的,R会将C3从C的战
运筹学博弈论 PPT
性研究。
6. 2005年二位获诺奖的博弈论学者
Robert Aumann
Thomas Shelling
10.1.2 博弈及博弈论
博弈就是策略对抗,或策略有关键作用的游戏
博弈Game,博弈论Game Theory,Game即游戏、竞技 游戏和经济等决策竞争较量的共同特征:规则、结果、策
略选择,策略和利益相互依存,策略的关键作用 游戏——下棋、猜大小 经济——寡头产量决策、市场阻入、投标拍卖 政治、军事——美国和伊拉克、以色列和巴勒斯坦
囚徒困境
坦白是B的 占优战略
坦白
囚徒 B
抵赖
坦白
坦白是A的 囚徒A 占优战略
抵赖
占优策略(上策)均衡
占优策略(上策)通俗来说是:
• “我所做的是不管你做什么我所能做的最好的” • “你所做的是不管我做什么你所能做的最好的”
占优策略均衡指博弈中的所有参与者的占优策 略组合所构成的均衡。
囚徒困境( Prisoners’Dilemma )
运筹学博弈论
第一节 博弈论概述
一、博弈论的产生和发展
1. 博弈在中国 田忌赛马Байду номын сангаас弈
华容道博弈
从孙子兵法到三十六计 从田忌赛马到孙庞斗智 从运筹帷幄到韬光养晦 从曹刿论战到论持久战
2. 博弈论的开山之作
1943 年 , 冯 ·诺 依 曼 和 摩 根斯顿发表《博弈论和经 济行为》的一书,
标志着博弈论作为一门独立科学的开始, 也标志着新古典经济学进入了一个新的发 展阶段。
10.2.2 重复剔除的占优战略均衡
首先找出某一博弈参与人的严格劣战略,将它剔除 掉,重新构造一个不包括已剔除战略的新的博弈; 然后继续剔除这个新的博弈中某一参与人的严格劣 战略;重复进行这一过程,直到剩下唯一的参与人 战略组合为止。这个唯一剩下的参与人战略组合, 就是这个博弈的均衡解,称为“重复剔除的占优战 略均衡”(iterated dominance equilibrium).
6. 2005年二位获诺奖的博弈论学者
Robert Aumann
Thomas Shelling
10.1.2 博弈及博弈论
博弈就是策略对抗,或策略有关键作用的游戏
博弈Game,博弈论Game Theory,Game即游戏、竞技 游戏和经济等决策竞争较量的共同特征:规则、结果、策
略选择,策略和利益相互依存,策略的关键作用 游戏——下棋、猜大小 经济——寡头产量决策、市场阻入、投标拍卖 政治、军事——美国和伊拉克、以色列和巴勒斯坦
囚徒困境
坦白是B的 占优战略
坦白
囚徒 B
抵赖
坦白
坦白是A的 囚徒A 占优战略
抵赖
占优策略(上策)均衡
占优策略(上策)通俗来说是:
• “我所做的是不管你做什么我所能做的最好的” • “你所做的是不管我做什么你所能做的最好的”
占优策略均衡指博弈中的所有参与者的占优策 略组合所构成的均衡。
囚徒困境( Prisoners’Dilemma )
运筹学博弈论
第一节 博弈论概述
一、博弈论的产生和发展
1. 博弈在中国 田忌赛马Байду номын сангаас弈
华容道博弈
从孙子兵法到三十六计 从田忌赛马到孙庞斗智 从运筹帷幄到韬光养晦 从曹刿论战到论持久战
2. 博弈论的开山之作
1943 年 , 冯 ·诺 依 曼 和 摩 根斯顿发表《博弈论和经 济行为》的一书,
标志着博弈论作为一门独立科学的开始, 也标志着新古典经济学进入了一个新的发 展阶段。
10.2.2 重复剔除的占优战略均衡
首先找出某一博弈参与人的严格劣战略,将它剔除 掉,重新构造一个不包括已剔除战略的新的博弈; 然后继续剔除这个新的博弈中某一参与人的严格劣 战略;重复进行这一过程,直到剩下唯一的参与人 战略组合为止。这个唯一剩下的参与人战略组合, 就是这个博弈的均衡解,称为“重复剔除的占优战 略均衡”(iterated dominance equilibrium).
第九章 运筹学博弈论 ppt课件
则。
1988年 法国人莫里斯-阿莱斯(Maurice Allais)
获奖理由:在市场理论及资源有效利用方面做出了
开创性贡献,并对一般均衡理论重新做了系统阐述。
1987年 美国人罗伯特-索洛(Robert M. Solow)
获奖理由:对增长理论做出贡献。提出长期的经济
增长主要依靠技术进步,而不是依靠资本和劳动力的
获奖理由:对不同汇率体制下的货币和财政政策以及最
优货币区域的分析做出了伟大贡ppt献课件。
8
1998年 印度籍经济学家阿马蒂亚-森(Amartya Sen) 获奖理由:对福利经济学以及发展经济学做出了突破
性贡献。 1997年 美国经济学家迈伦-斯科尔斯(Myron S.
Scholes)和罗伯特-默顿(Robert C. Merton) 获奖理由:前者给出了著名的布莱克-斯科尔斯期权
获奖理由:在动态宏观经济学方面做出了
巨大贡献。 2003年 美国经济学家罗伯特-恩格尔
(Robert F. Engle III)和英国经济学家克莱夫格兰杰(Clive W.J. Granger)
获奖理由:在经济时间数列中运用了统计
学的方法。
ppt课件
7
2002年 美国学者丹尼尔-卡尼曼(Daniel Kahneman)和弗农-
ppt课件
4
在国外,1912年E.Zermelo用集合论研究过下棋 问题,四十年代由于生产和战争的需要,博弈理 论得到了发展,系统博弈理论的形成则以1944 年V.Neumann,O.Morgensten合著的《博弈论 和经济行为》一书为标志.1994年瑞士皇家科 学院决定将诺贝尔经济学奖授予纳什(Nash),哈 萨尼(Harsanyi)和泽尔腾(Selten)三人,表彰他们 在博弈理论和应用研究方面作出的杰出贡献. 目前,博弈论在定价,招投标,拍卖,委托代理以及 很多重要的经营决策中得到应用,它已成为现代 经济学的重要基础.
《博弈论教程》课件
博弈论的应用领域
经济学
博弈论在经济学中广泛应用于 市场行为、产业组织、贸易政
策等领域。
政治学
博弈论在政治学中用于研究国 际关系、政治制度、选举行为 等领域。
社会学
博弈论在社会学中用于研究社 会结构、社会互动、社会行为 等领域。
计算机科学
博弈论在计算机科学中用于人 工智能、机器学习、网络安全
等领域。
应用场景
保险市场、拍卖、投资决策等。
04
纳什均衡
纳什均衡的定义
纳什均衡是指在博弈中,所有参与者 的最优策略组合,即在这种策略组合 下,每个参与者都认为没有更好的选 择。
纳什均衡是一种非合作博弈的解概念 ,适用于各种博弈类型,如囚徒困境 、智猪博弈等。
纳什均衡的求解方法
迭代法
通过不断迭代每个参与者的最优策略,逐步逼近纳什均衡。
03
博弈论应用
04
市场进入博弈中,企业通常会选 择不同的策略,如快速进入、缓 慢进入或等待观察等。这些策略 的选择会影响到企业的收益和市 场格局。
结论
市场进入博弈可以帮助企业制定 出最优的市场进入策略,以最大 化自身的收益。
价格战博弈
总结词
价格战博弈是博弈论中研究企业之间价格竞争的 模型。
博弈论应用
03
市场竞争、个人决策、政治选举等。
完全信息博弈
定义
参与者拥有完全的信息,即每个 参与者都了解其他参与者的策略 和收益。
特点
信息对称、策略空间明确。
应用场景
金融市场、体育比赛等。
不完全信息博弈
定义
参与者之间存在信息不对称,即某个参与者 对其他参与者的策略和收益不完全了解。
特点
不确定性、信息不完全、策略空间的模糊性。
博弈论PPT课件
2020/3/24
6
博弈论的发展
80年代后,克瑞普斯(kreps)和威尔 逊(wilson)则对不完全信息动态博弈 的研究作出了突出的贡献,并提出了更 高级的均衡概念:“贝叶斯精炼纳什均 衡”或称“完美贝叶斯均衡”。
严格地说,博弈论并不是经济学的一个 分支。它是一种方法,实际上,它属于 数学范畴。
2020/3/24
7
博弈论与经济学
– 博弈论在经济学领域应用最广泛,最成功; 博弈论的许多成果是借助于经济学的例子来 发展引申的。
– 经济学家对博弈论的贡献也越来越大,特别 是在动态分析和不完全信息引入博弈后。
– 最根本性的原因是经济学和博弈论的研究模 式是一样的,都强调个人理性,即追求给定 条件下效用最大化。
大程度上相信A会开发,而A是否开发依赖 于A在多大程度上认为需求是大的。假定A 认为高需求的概率为0.5,且B知道A的这个 “先验”信仰,B将选择不开发。这是因为, 如果B开发,A高需求的“信仰”不会向下 调整,A将选择开发,B利润为-3000万。
2020/3/24
14
博弈论的基本概念
参与人(player)也叫局中人,指的是 一个博弈中的决策主体。
2020/3/24
2
博弈论的研究对象
研究决策主体的行为发生直接相互作用 时候的决策以及这种决策的均衡问题。
博弈论与传统经济学有关决策理论区别
– 后者涉及的个人决策,是在给定价格参数和收入的 条件下,追求效用最大化的决策;个人效用只依赖 于自己的选择,而不依赖于他人的选择 。
– 而博弈论看来,个人效用不仅依赖于自己的选择, 而且依赖于他人的选择;个人的最优选择是其他人 选择的函数。
– 比如B的决策要在A之前作出,但B在决策之 前通过市场调研对需求有了确切的了解,而 A却没有。那么,B应该如何决策呢?
《博弈论入门》PPT课件
即规定每个博弈方在进行决策时,可以选择的方案, 做法或经济活动的水平,量值等。
在不同博弈中可供博弈方选择的策略或行为的数量 很不相同,在同一个博弈中,不同博弈方的可选策 略或行为的内容或数量也常不同,有时只有有限的 几种,甚至只有一种,而有时又可能有许多种,甚 至无限多种可选策略或行为。
精选PPT
男人无所谓忠诚,忠诚是因为背叛的砝码太低; 女人无所谓忠贞,忠贞是因为受到的引诱不够.
某个综艺节目现场,女主持人气势咄咄的问一个男嘉宾,你 为什么那么在乎钱,男嘉宾说:“钱能买到一切!” 现场的观 众哗然了。
男嘉宾微笑的说:“我们做个测试吧。”
一个很简单的主题,你的一个仇人爱上了你的女友,现在
局中人所选择的策略构成的组合(招,招)被称为 博弈均衡。
精选PPT
21
参与人(Players)
即在所定义的博弈中究竟有哪几个独立决策、独立 承担结果的个人或组织。
对我们来说,只要在一个博弈中统一决策,统一行 动、统一承担结果,不管一个组织有多大,哪怕是 一个国家,甚至是由许多国有组成的联合国,都可 以作为博弈中的一个参加方。并且,在博弈的规则 确定之后,各参加方都是平等的,大家都必须严格 按照规则办事。
人,也许是在权衡什么。一半的男人沉默了,另一半
的男人怯生生的说:“我要爱情。”身边的女友也有点
呆住了,一个女孩子站起来说:“如果一个男人肯出
五百万,我想我没有理由拒绝他。”沉默..................
精选PPT
26
男人选择了金钱,500万可以买一套房子,一部车子,全家 过上好曰子,甚至可以开始自己的事业。一个男人说:“他是 我的仇人,我有了这个500万,我可以含辛茹苦,我可以报仇 ,我可以计划我所有的未来,当个真正主宰自己的男人。”一 些女人看着身边的男人,若有所思。
在不同博弈中可供博弈方选择的策略或行为的数量 很不相同,在同一个博弈中,不同博弈方的可选策 略或行为的内容或数量也常不同,有时只有有限的 几种,甚至只有一种,而有时又可能有许多种,甚 至无限多种可选策略或行为。
精选PPT
男人无所谓忠诚,忠诚是因为背叛的砝码太低; 女人无所谓忠贞,忠贞是因为受到的引诱不够.
某个综艺节目现场,女主持人气势咄咄的问一个男嘉宾,你 为什么那么在乎钱,男嘉宾说:“钱能买到一切!” 现场的观 众哗然了。
男嘉宾微笑的说:“我们做个测试吧。”
一个很简单的主题,你的一个仇人爱上了你的女友,现在
局中人所选择的策略构成的组合(招,招)被称为 博弈均衡。
精选PPT
21
参与人(Players)
即在所定义的博弈中究竟有哪几个独立决策、独立 承担结果的个人或组织。
对我们来说,只要在一个博弈中统一决策,统一行 动、统一承担结果,不管一个组织有多大,哪怕是 一个国家,甚至是由许多国有组成的联合国,都可 以作为博弈中的一个参加方。并且,在博弈的规则 确定之后,各参加方都是平等的,大家都必须严格 按照规则办事。
人,也许是在权衡什么。一半的男人沉默了,另一半
的男人怯生生的说:“我要爱情。”身边的女友也有点
呆住了,一个女孩子站起来说:“如果一个男人肯出
五百万,我想我没有理由拒绝他。”沉默..................
精选PPT
26
男人选择了金钱,500万可以买一套房子,一部车子,全家 过上好曰子,甚至可以开始自己的事业。一个男人说:“他是 我的仇人,我有了这个500万,我可以含辛茹苦,我可以报仇 ,我可以计划我所有的未来,当个真正主宰自己的男人。”一 些女人看着身边的男人,若有所思。
《运筹学》课件 第六章 博弈论
§1 基本概念
一、博弈论的定义 二、博弈理论的历史 三、博弈问题举例 四、博弈的分类
三、
1. 囚犯困境(Prisoners’ dilemma
囚犯困境是图克(Tucker)1950年提出的; 该博弈是博奕论最经典、著名的博弈; 该博弈本身讲的是一个法律刑侦或犯罪学方面
的问题,但可以扩展到许多经济问题,以及各 种社会问题,可以揭示市场经济的根本缺陷。
所有局中人的策略组成的向量。)
s (s1,, si,, sn ) 表示n个局中人达成的
一个协议,当这个协议可以自动实施(Self-enforcing) 时,即没有任何局中人有积极性破坏这个协议,那么 这个协议就构成纳什均衡。
否则,若至少存在某些局中人有积极性偏离这个协 议,就构不成纳什均衡。
例:囚犯困境问题:
但是,尽管政府当时无力制止这种事情,公众也不 必担心彩电价格会上涨。这是因为,“彩电厂商自 律联盟”只不过是一种“囚徒困境”,彩电价格不 会上涨。在高峰会议之后不到二周,国内彩电价格 不是上涨而是一路下跌。这是因为厂商们都有这样 一种心态:无论其他厂商是否降价,我自己降价是 有利于自己的市场份额扩大的。
Ⅱ
坦白 抵赖
坦白
Ⅰ
-9,-9
0,-10
抵赖 -10,0 -1,-1
均衡解: 二人均坦白
相关概念介绍
➢博弈分析的基本假设 (1)个人理性 假设当事人在决策时能够充分考虑他所面临 的局势,并能做出合乎理性的选择。
(2)最大化自己的收益 假设当事人在决策时通常选择使自己收益最
大化的策略。
坦白 抵赖
➢ 博弈问题的基本要素 (1)局中人(Players)
现代博弈论主要指非合作博弈理论。非合作博弈 更受重视的原因:主导人们行为的主要还是个体理性, 而非集体理性;即,竞争是一切社会、经济关系的根 本基础,不合作是基本的,合作是有条件和暂时的。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
博弈论:博弈论就是系统研究具有上述特征的博弈问 题,寻求各博弈方合理选择战略情况下博弈的解,并 对这些解进行讨论分析的理论。
博弈的分类及对应的均衡概念
完全信息
静态
完全信息静态博弈 纳什均衡
代表人物:纳什(1950,1951)
不完全信息
不完全信息静态博弈 贝叶斯纳什均衡
代表人物:海萨尼(1967-1968)
性研究。
6. 2005年二位获诺奖的博弈论学者
Robert Aumann
Thomas Shelling
10.1.2 博弈及博弈论
博弈就是策略对抗,或策略有关键作用的游戏
博弈Game,博弈论Game Theory,Game即游戏、竞技 游戏和经济等决策竞争较量的共同特征:规则、结果、策
略选择,策略和利益相互依存,策略的关键作用 游戏——下棋、猜大小 经济——寡头产量决策、市场阻入、投标拍卖 政治、军事——美国和伊拉克、以色列和巴勒斯坦
定义:博弈就是参与人(可能是个人,也可能是团体, 如国家、企业、国际组织等)在一定得规则下,同时 或先或后,一次或多次,从各自允许选择的行动或战 略中进行选择并加以实施,而取得相应结果(支付函 数)的过程。
都有一定的规则 都有一个结果 策略至关重要,游戏者不同的策略选择常会带来不同的游戏
结果 策略和利益有相互依存性
第10章 博弈论
10.1博弈论概述 10.2完全信息静态博弈
第一节 博弈论概述
一、博弈论的产生和发展
1. 博弈在中国 田忌赛马博弈
华容道博弈
从孙子兵法到三十六计 从田忌赛马到孙庞斗智 从运筹帷幄到韬光养晦 从曹刿论战到论持久战
2. 博弈论的开山之作
1943 年 , 冯 ·诺 依 曼 和 摩 根斯顿发表《博弈论和经 济行为》的一书,
10.2.1 策略型博弈模型及占优战略博弈
非合作博弈模型从模型自身形式上可分为扩展型和 策略型两种,一般用策略型模型描述完全信息静态 博弈模型。
构成策略型博弈模型的三个要素: 局中人、策略、支付函数
参与人或局中人(Players) :独立决策、独 立承担博弈结果的个人或组织
博弈规则面前博弈方之间平等,不因博弈方 之间权利、地位的差异而改变
囚徒困境( Prisoners’Dilemma )
只达到效率很差的个体理性解,没有实现团体 理性解。 前者是稳定的,是自动实施的;尽管团体理性 解对大家都好,但它是不能自动实施的,需要改变 条件。
提示:该博弈揭示了个体理性与团体理性之间的矛 盾。——从个体利益出发的行为往往不能实现团体的最 大利益,同时也揭示了个体理性本身的内在矛盾——从 个体利益出发的行为最终也不一定能真正实现个体的 最大利益,甚至得到相当差的结果。
囚徒困境
坦白是B的 占优战略
坦白
囚徒 B
抵赖
坦白
坦白是A的 囚徒A 占优战略
抵赖
-5,-5 0,-8
-8,0 -1,-1
占优策略(上策)均衡
占优策略(上策)通俗来说是:
• “我所做的是不管你做什么我所能做的最好的” • “你所做的是不管我做什么你所能做的最好的”
占优策略均衡指博弈中的所有参与者的占优策 略组合所构成的均衡。
10.2.2 重复剔除的占优战略均衡
首先找出某一博弈参与人的严格劣战略,将它剔除 掉,重新构造一个不包括已剔除战略的新的博弈; 然后继续剔除这个新的博弈中某一参与人的严格劣 战略;重复进行这一过程,直到剩下唯一的参与人 战略组合为止。这个唯一剩下的参与人战略组合, 就是这个博弈的均衡解,称为“重复剔除的占优战 略均衡”(iterated dominance equilibrium).
智猪博弈(大小猪博弈)
智猪博弈:假设猪圈里有两头猪,一头大猪,一头小猪, 猪圈的一端有一个猪食槽,另一端安装了一个按钮,控制 猪食的供应。按一下按钮。将有10个单位的猪食进入猪食 槽,供两头猪食用。两头猪面临选择的策略有两个:自己 去按按钮或等待另一头猪去按按钮。如果某一头猪作出自 己去按按钮的选择,它必须付出如下代价:第一,它需要 收益相当于2个单位的成本;第二,由于猪食槽远离猪食, 它将比另一头猪后到猪食槽,从而减少吃食的数量。
标志着博弈论作为一门独立科学的开始, 也标志着新古典经济学进入了一个新的发 展阶段。
3. 1994年三位获诺奖的博弈论学者
John Nash
John Harsany
Leihaden Selten
4. 1996年诺贝尔经 济学奖得主:詹姆 斯·莫里 斯:主要 贡学奖得主:迈克尔 ·斯 宾塞:在不对称信息市 场分析方面所做出开创
博弈方数量对博弈结果和分析有影响
根据博弈方数量分单人博弈、两人博弈、多 人博弈等。最常见的是两人博弈,单人博弈 是退化的博弈
策略或战略(strategies) :博弈中各博 弈方的选择内容。
策略有定性定量、简单复杂之分
不同博弈方之间不仅可选策略不同,而且可选策 略数量也可不同
有限博弈:每个博弈方的策略数都是有限的
动态
完全信息动态博弈 子博弈精炼纳什均衡 代表人物:泽尔腾(1965)
不完全信息动态博弈 精炼贝叶斯纳什均衡 代表人物:泽尔腾(1975) 克瑞普斯和威尔逊(1982) 费登伯格和泰勒尔(1991)
10.2 完全信息静态博弈
10.2.1 策略型博弈模型及占优战略博弈 10.2.2 重复剔除的占优战略博弈 10.2.3 纳什均衡
囚徒的困境是图克(Tucker)1950年提出的 该博弈是博弈论最经典、著名的博弈 该博弈本身讲的是一个法律刑侦或犯罪学方面
的问题,但可以扩展到许多经济问题,以及各 种社会问题,可以揭示市场经济的根本缺陷
基本模型
经典的囚徒困境如下: 警方逮捕甲、乙两名嫌疑犯,但没有足够证据指控二人 入罪。于是警方分开囚禁嫌疑犯,分别和二人见面,并向双 方提供以下相同的选择: 若一人认罪并作证检举对方(相关术语称“背叛”对方), 而对方保持沉默,此人将即时获释,沉默者将判监8年。 若二人都保持沉默(相关术语称互相“合作”),则二人同 样判监1年。 若二人都互相检举(互相“背叛”),则二人同样判监5年。
无限博弈:至少有某些博弈方的策略有无限多个
支付函数(Payoffs function) :各博弈方从 博弈中所获得的利益。
得益对应博弈的结果,也就是各博弈方策略的组合
得益是各博弈方追求的根本目标及行为和判断的主 要依据
根据得益的博弈分类:零和博弈、常和博弈、变和 博弈
例10.1 囚徒困境博弈
博弈的分类及对应的均衡概念
完全信息
静态
完全信息静态博弈 纳什均衡
代表人物:纳什(1950,1951)
不完全信息
不完全信息静态博弈 贝叶斯纳什均衡
代表人物:海萨尼(1967-1968)
性研究。
6. 2005年二位获诺奖的博弈论学者
Robert Aumann
Thomas Shelling
10.1.2 博弈及博弈论
博弈就是策略对抗,或策略有关键作用的游戏
博弈Game,博弈论Game Theory,Game即游戏、竞技 游戏和经济等决策竞争较量的共同特征:规则、结果、策
略选择,策略和利益相互依存,策略的关键作用 游戏——下棋、猜大小 经济——寡头产量决策、市场阻入、投标拍卖 政治、军事——美国和伊拉克、以色列和巴勒斯坦
定义:博弈就是参与人(可能是个人,也可能是团体, 如国家、企业、国际组织等)在一定得规则下,同时 或先或后,一次或多次,从各自允许选择的行动或战 略中进行选择并加以实施,而取得相应结果(支付函 数)的过程。
都有一定的规则 都有一个结果 策略至关重要,游戏者不同的策略选择常会带来不同的游戏
结果 策略和利益有相互依存性
第10章 博弈论
10.1博弈论概述 10.2完全信息静态博弈
第一节 博弈论概述
一、博弈论的产生和发展
1. 博弈在中国 田忌赛马博弈
华容道博弈
从孙子兵法到三十六计 从田忌赛马到孙庞斗智 从运筹帷幄到韬光养晦 从曹刿论战到论持久战
2. 博弈论的开山之作
1943 年 , 冯 ·诺 依 曼 和 摩 根斯顿发表《博弈论和经 济行为》的一书,
10.2.1 策略型博弈模型及占优战略博弈
非合作博弈模型从模型自身形式上可分为扩展型和 策略型两种,一般用策略型模型描述完全信息静态 博弈模型。
构成策略型博弈模型的三个要素: 局中人、策略、支付函数
参与人或局中人(Players) :独立决策、独 立承担博弈结果的个人或组织
博弈规则面前博弈方之间平等,不因博弈方 之间权利、地位的差异而改变
囚徒困境( Prisoners’Dilemma )
只达到效率很差的个体理性解,没有实现团体 理性解。 前者是稳定的,是自动实施的;尽管团体理性 解对大家都好,但它是不能自动实施的,需要改变 条件。
提示:该博弈揭示了个体理性与团体理性之间的矛 盾。——从个体利益出发的行为往往不能实现团体的最 大利益,同时也揭示了个体理性本身的内在矛盾——从 个体利益出发的行为最终也不一定能真正实现个体的 最大利益,甚至得到相当差的结果。
囚徒困境
坦白是B的 占优战略
坦白
囚徒 B
抵赖
坦白
坦白是A的 囚徒A 占优战略
抵赖
-5,-5 0,-8
-8,0 -1,-1
占优策略(上策)均衡
占优策略(上策)通俗来说是:
• “我所做的是不管你做什么我所能做的最好的” • “你所做的是不管我做什么你所能做的最好的”
占优策略均衡指博弈中的所有参与者的占优策 略组合所构成的均衡。
10.2.2 重复剔除的占优战略均衡
首先找出某一博弈参与人的严格劣战略,将它剔除 掉,重新构造一个不包括已剔除战略的新的博弈; 然后继续剔除这个新的博弈中某一参与人的严格劣 战略;重复进行这一过程,直到剩下唯一的参与人 战略组合为止。这个唯一剩下的参与人战略组合, 就是这个博弈的均衡解,称为“重复剔除的占优战 略均衡”(iterated dominance equilibrium).
智猪博弈(大小猪博弈)
智猪博弈:假设猪圈里有两头猪,一头大猪,一头小猪, 猪圈的一端有一个猪食槽,另一端安装了一个按钮,控制 猪食的供应。按一下按钮。将有10个单位的猪食进入猪食 槽,供两头猪食用。两头猪面临选择的策略有两个:自己 去按按钮或等待另一头猪去按按钮。如果某一头猪作出自 己去按按钮的选择,它必须付出如下代价:第一,它需要 收益相当于2个单位的成本;第二,由于猪食槽远离猪食, 它将比另一头猪后到猪食槽,从而减少吃食的数量。
标志着博弈论作为一门独立科学的开始, 也标志着新古典经济学进入了一个新的发 展阶段。
3. 1994年三位获诺奖的博弈论学者
John Nash
John Harsany
Leihaden Selten
4. 1996年诺贝尔经 济学奖得主:詹姆 斯·莫里 斯:主要 贡学奖得主:迈克尔 ·斯 宾塞:在不对称信息市 场分析方面所做出开创
博弈方数量对博弈结果和分析有影响
根据博弈方数量分单人博弈、两人博弈、多 人博弈等。最常见的是两人博弈,单人博弈 是退化的博弈
策略或战略(strategies) :博弈中各博 弈方的选择内容。
策略有定性定量、简单复杂之分
不同博弈方之间不仅可选策略不同,而且可选策 略数量也可不同
有限博弈:每个博弈方的策略数都是有限的
动态
完全信息动态博弈 子博弈精炼纳什均衡 代表人物:泽尔腾(1965)
不完全信息动态博弈 精炼贝叶斯纳什均衡 代表人物:泽尔腾(1975) 克瑞普斯和威尔逊(1982) 费登伯格和泰勒尔(1991)
10.2 完全信息静态博弈
10.2.1 策略型博弈模型及占优战略博弈 10.2.2 重复剔除的占优战略博弈 10.2.3 纳什均衡
囚徒的困境是图克(Tucker)1950年提出的 该博弈是博弈论最经典、著名的博弈 该博弈本身讲的是一个法律刑侦或犯罪学方面
的问题,但可以扩展到许多经济问题,以及各 种社会问题,可以揭示市场经济的根本缺陷
基本模型
经典的囚徒困境如下: 警方逮捕甲、乙两名嫌疑犯,但没有足够证据指控二人 入罪。于是警方分开囚禁嫌疑犯,分别和二人见面,并向双 方提供以下相同的选择: 若一人认罪并作证检举对方(相关术语称“背叛”对方), 而对方保持沉默,此人将即时获释,沉默者将判监8年。 若二人都保持沉默(相关术语称互相“合作”),则二人同 样判监1年。 若二人都互相检举(互相“背叛”),则二人同样判监5年。
无限博弈:至少有某些博弈方的策略有无限多个
支付函数(Payoffs function) :各博弈方从 博弈中所获得的利益。
得益对应博弈的结果,也就是各博弈方策略的组合
得益是各博弈方追求的根本目标及行为和判断的主 要依据
根据得益的博弈分类:零和博弈、常和博弈、变和 博弈
例10.1 囚徒困境博弈