相似三角形的判定学案
三角形相似的判定教学设计(优秀4篇)
三角形相似的判定教学设计(优秀4篇)《相似三角形》数学教案篇一一、教材内容分析《探索三角形相似的条件》是北师大版试验教科书八年级下册第四章第九节的内容,1课时,它是在学生学习了相似三角形的概念基础上,进一步研究三角形相似的条件,是今后进一步研究其他图形的基础。
二、教学目标(知识,技能,情感态度、价值观)1、知识目标:(1)使使学生能通过三角形全等的判定来发现三角形相似的判定。
(2)学生掌握相似三角形判定定理1,并了解它的证明。
(3)使学生初步掌握相似三角形的判定定理1的应用。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、类比、归纳;(2)通过知识的纵横迁移感受数学的系统特征。
三、教学重难点:重点:掌握相似三角形判定定理1及其应用。
难点:定理1的证明方法。
四、教学环境及资源准备1、投影片2、观看相关视频五、教学过程教学过程教师活动学生活动设计意图及资源准备(一)、导入新课1、多媒体展示问题,什么叫相似三角形?相似三角形与全等三角形有何联系?2、到目前为止判定三角形相似的方法有几个?3、什么叫相似三角形?相似三角形与全等三角形有何联系?学生回答证明三角形的两种方法通过提问既起到复习旧知识又起到引出新问题的作用(二)、探究新知1新课讲解(1)、做一做,做出两个三角形来试验是否相似。
(2)、师生共同总结:两角对应相等的两个三角形相似。
2应用新知教学例1:已知:△ABC和△DEF中A=40,B=80,E=80,F=60求证:△ABC∽△DEF例2:直角三角形被斜边上的高分成的两个直三角形的与原三角形相似3、例题小结1、学生亲手实践2、学生理解3、边听讲边思考让学生通过亲手实践来体验知识的准确性,理解,消化主要知识例1,例2的练习加强学生,以达对定理的更深一步的理解与掌握。
(三)、随堂练习学生完成教师订正练习应用巩固知识(四)、课时小结通过这节课的学习,你能获得哪些收获?分小组交流后个别回答知识系统化(五)、课后作业习题4.9第1题、第2题。
相似三角形(章)学案
课时一 相似三角形的判定(一)学习目标:1.经历“有两个角对应相等的两个三角形相似”及其推论的探索过程. 2.能运用“有两个角对应相等”及其推论的判定两个三角形相似. 3.发展同学们合情推理与数学说理能力。
学习过程:一、创设情境,引入新课:问题:如果两个三角形的对应边 ,对应角 ,那么这两个三角形相似。
结合我们学习全等三角形的判定,是否存在判定两个三角形相似的简便方法呢?如果有,包括哪几种情况?写下来:二、合作交流,探究新知: 探究一:相似三角形的判定方法1(1)请同学们观察你与同伴的直角三角尺,同样角度的三角尺是否相似?你能提出什么猜想?(2)由此我们发现:如果一个三角形的三个角分别与另一个三角形的三个角对应相等,那么 。
(3)如果两个三角形的两对角分别对应相等,这两个三角形是否相似?为什么?归纳:由此我们得到判定两个三角形相似的方法1: 。
∴ 如图,∵∠A =∠A ′,∠B =∠B ′∴△ABC ∽△A ′B ′C ′(4)独立思考:如果两个三角形仅有一对角对应相等,它们是否一定相似?举反例说明。
探究二:如图甲与图乙,若DE ∥BC,则△ADE 与△ABC 有什么关系,你能写出证明过程吗?归纳:由此我们得到判定两个三角形相似的方法1的推论: 平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.∵AC ∥DB ∴△ADE ∽△ABC 探究三:ABCA ′B ′C ′A BC D E 图甲AB CDE图乙除了以上常见的基本图形外,能利用本节判定方法的基本图形如下 (1)如图1,若∠AED =∠B,则△ADE ∽△ACB ; (2)如图2,若∠ACD =∠B,则△ACD ∽△ABC ;(3)如图3,若∠BAC =90°,AD ⊥BC,则△ABC ∽△DBA ∽△DAC. 重要方法:1、有一个锐角相等的两个直角三角形相似;2、识别三角形相似的常用思路:(1)当条件中有平行线时,找两对对应角相等;(2)当条件中有一对相等的角(对顶角或公共角)时,可考虑再找一对相等的角; (3)两个等腰三角形,可以找顶角相等或找一对底角相等. 三:应用新知,体验成功:例1、已知△ABC 中,AB =AC ,∠A =36°,BD 是角平分线,求证:△ABC ∽△BDC.例题2.如图,在边长为4的等边三角形ABC 中,D 、E 分别在线段BC ,AC 上运动,在运动过程中始终保持∠ADE =60°,求证:△ABD ∽△DCE.练习.如图,在矩形ABCD 中,以对角线BD 为一边构造一个矩形BDEF ,使得另一边EF 过原矩形的顶点C.(1)设Rt △CBD 的面积为S 1,Rt △BFC 的面积为S 2,Rt △DCE 的面积为S 3,则S 1=S 2+S 3;(用“>”“=”或“<”填空)A B C DE 图1A BC D图2A B CD 图3(2)写出图中的三对相似三角形,并选择其中一对进行证明.例3、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
相似三角形的判定教案
编制人: __________________审核人: __________________审批人: __________________编制学校: __________________编制时间: ____年____月____ 日下载提示:该文档是本店铺精心编制而成的,希翼大家下载后,能够匡助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如幼儿教案、小学教案、中学教案、教学活动、评语、寄语、发言稿、工作计划、工作总结、心得体味、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as preschool lesson plans, elementary school lesson plans, middle school lesson plans, teaching activities, comments, messages, speech drafts, work plans, work summary, experience, and other sample essays, etc. Iwant to knowPlease pay attention to the different format and writing styles of sample essays!这是相似三角形的判定教案,是优秀的数学教案文章,供老师家长们参考学习。
九年级数学上册《相似三角形的判定》教案、教学设计
四、教学内容与过程
(一)导入新课,500字
1.教学活动设计:以生活中的实例作为导入,例如,展示一组相似的图形,如不同大小的三角形装饰品,并提出问题:“你们观察这些图形,它们之间有什么共同之处?”通过引导学生观察和思考,激发学生对相似三角形的兴趣。
1.教学策略:
-采用直观演示与抽象讲解相结合的方式,通过动态几何软件或实物模型,让学生直观感受相似三角形的形成和性质。
-引导学生通过自主探索、小组讨论等形式,发现并理解相似三角形的判定条件。
-设计层次分明的练习题,从基础到提高,逐步深化学生对知识点的掌握。
2.教学过程:
-导入新课:通过生活实例或几何图形,引发学生对相似三角形的好奇心,激发学习兴趣。
-小组展示:每组选取一道典型问题,进行解题思路和答案的展示,培养学生表达能力和逻辑思维能力。
4.家庭作业:
-布置适量的课后作业,涵盖相似三角形的判定方法和性质应用,要求学生在规定时间内完成,家长签字确认。
-鼓励学生在完成作业过程中,遇到问题主动向同学和老师请教,培养自主学习和解决问题的能力。
5.作业评价:
-对学生的作业进行及时批改,给予反馈,关注学生在作业中反映出的薄弱环节,进行针对性辅导。
-开展优秀作业展示活动,激发学生的学习积极性,营造良好的学习氛围。
2.学生在运用相似三角形的判定方法时,可能会出现混淆和错误,教师应针对这一问题进行针对性的讲解和练习。
3.学生的空间想象能力和逻辑思维能力存在差异,教师应充分关注这一点,设计不同难度的教学活动,使每位学生都能得到提高。
4.学生在小组合作学习中,沟通能力和团队协作能力有待提高,教师应引导学生积极参与讨论,学会倾听他人意见。
相似三角形的判定教案3篇
相似三角形的判定教案3篇相似三角形的判定教案1最近,我们九年级学完了《相似三角形的判定》的内容,相似三角形是初中数学学习的重点内容,对学生的能力培养与训练,有着重要的地位,而“相似三角形判定定理”又是相似三角形这章内容的重点与难点所在。
在本章教学中,主要教学目标是让学生在亲自操作、探究的过程中,获得三角形相似的判定方法;培养学生提出问题、解决问题的能力。
2013年12月10日,我在九年级二班刚好就上了《相似三角形的判定》第一课时的内容。
在本节课的教学中,我是通过平行线分线段成比例定理引入教学的,先让学生画三条平行线,再画两条相交直线与其相交,从而得出得出了一些线段,并再让学生自己操作:量一量、算一算、比一比,从图形中判断,得出那些结论。
整个教学过程进展较为顺利,基本完成了教学任务。
在本节课的教学中,我认为以下这几个方面做得较好:1、教学引入照顾到了到多数的同学,培养了学生的动手测量和计算能力。
利用三角板画平行线、相交线,通过测量对比,学生基本能全员参与,调动了学生学习的兴趣和积极性。
学生更易于从图形当中得到结论,这样引入能很好的使学生体验到生活中的数学知识。
通过后来练习及作业反馈、九年级四班的同学也比较容易得出了平行线分线段成比例定理这个结论,说明这种引入的方法是成功的。
2、对教学内容进行了合理整合。
把相似三角形的判定方法放到下一节课学习,使学生对相似三角形的识别方法有个整体的认识,然后再利用第二、三节课巩固深入,杜绝传统的“学生在一节课内学完一个知识点就做相应的练习,模仿套用知识而不需选择,当学完全部相似知识点进行综合练习时,容易产生混淆”的现象。
本节课只学习了平行线分线段成比例定理的内容,以及由此演变而形成的“A 字型”图和“X型图”从一开始就摆脱学生的依赖心理,把问题抛给学生,有效的锻炼了学生的思维,同时还利用全等三角形的识别类比相似三角形的识别,学生容易理解。
3、注意到了推理的逻辑性和严密性。
相似三角形的判定教案
相似三角形的判定教案标题:相似三角形的判定教案一、教学目标:1. 理解相似三角形的定义和性质;2. 学会判定两个三角形是否相似;3. 能够运用相似三角形的性质解决实际问题。
二、教学准备:1. 教学工具:投影仪、白板、黑板、三角尺、直尺等;2. 教学材料:教科书、练习册、实例题。
三、教学过程:步骤一:导入(5分钟)1. 引入相似三角形的概念,与学生一起回顾并讨论相似的含义;2. 提问:如果两个三角形的边长比例相等,我们可以说这两个三角形是相似的吗?为什么?步骤二:概念讲解(15分钟)1. 通过投影仪展示相似三角形的定义和性质,解释相似三角形的判定条件;2. 引导学生理解相似三角形的边长比例和角度相等的关系;3. 通过实例演示,让学生感受相似三角形的特点。
步骤三:判定方法(20分钟)1. 介绍相似三角形的判定方法一:边长比例法。
通过投影仪展示相关例题,引导学生观察边长比例是否相等;2. 介绍相似三角形的判定方法二:角度相等法。
通过投影仪展示相关例题,引导学生观察角度是否相等;3. 强调两种判定方法的等价性,即只要满足任一种方法,就可以判定两个三角形相似。
步骤四:练习与巩固(20分钟)1. 分发练习册,让学生独立完成一些基础练习题,巩固边长比例法和角度相等法;2. 针对学生易混淆的题型,进行重点讲解和示范;3. 鼓励学生互相合作,共同解决难题,提高解题能力。
步骤五:拓展与应用(15分钟)1. 提供一些实际问题,让学生运用相似三角形的性质解决问题;2. 引导学生思考相似三角形在实际生活中的应用,如建筑设计、地图比例等;3. 让学生分享自己的思考和解决方法,促进思维交流和合作学习。
四、课堂小结与作业布置(5分钟)1. 对本节课的重点内容进行小结,强调相似三角形的判定方法和应用;2. 布置相似三角形的相关练习题作为课后作业,以巩固学生的学习成果。
五、教学反思:在教学过程中,应注重理论与实践相结合,通过具体的实例和实际问题,让学生更好地理解相似三角形的概念和判定方法。
人教版九年级下册数学《27.2.1相似三角形的判定》优秀教案
人教版九年级下册数学《27.2.1相似三角形的判定》优秀教案一. 教材分析人教版九年级下册数学《27.2.1相似三角形的判定》这一节,主要让学生掌握相似三角形的判定方法。
教材通过具体的例题,让学生理解并掌握SSS、SAS、ASA、AAS四种判定方法,并能够运用这些方法解决实际问题。
二. 学情分析九年级的学生已经学习了三角形的性质,对于三角形的边长和角度有一定的了解。
但是,对于相似三角形的判定,他们可能还比较陌生。
因此,在教学过程中,需要引导学生从已知的三角形性质出发,推导出相似三角形的判定方法。
三. 教学目标1.了解相似三角形的判定方法,能够运用这些方法判断两个三角形是否相似。
2.能够解决实际问题,运用相似三角形的判定方法。
四. 教学重难点1.教学重点:掌握SSS、SAS、ASA、AAS四种判定方法,并能够运用这些方法判断两个三角形是否相似。
2.教学难点:理解并掌握相似三角形的判定方法,能够解决实际问题。
五. 教学方法采用问题驱动法,通过引导学生思考和探索,让学生自主发现相似三角形的判定方法。
同时,结合例题讲解,让学生在实践中掌握这些方法。
六. 教学准备1.PPT课件:包括相似三角形的判定方法、例题讲解等。
2.练习题:包括基础题和提高题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引发学生对相似三角形的思考。
例如:在建筑设计中,如何根据一个建筑物的缩小模型,计算出实际建筑物的尺寸?2.呈现(10分钟)介绍SSS、SAS、ASA、AAS四种判定方法,并通过PPT课件展示相关的例题。
引导学生思考和探索,让学生自主发现这些判定方法。
3.操练(10分钟)让学生分组讨论,每组选择一道练习题,运用所学的判定方法进行解答。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)请各组代表上台讲解他们的解题过程,其他同学进行评价和提问。
教师总结学生的解题方法,并进行点评。
5.拓展(10分钟)出示一些提高题,让学生独立解答。
相似三角形的判定数学教学教案【优秀10篇】
相似三角形的判定数学教学教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!相似三角形的判定数学教学教案【优秀10篇】数学是人们认识自然、认识社会的重要工具。
数学《相似三角形的判定》教案
相似三角形的判定(一)一、教学内容的说明1、教材所处的地位:三角形相似的判定是相似形这一章的教学重点,是在学习三角形相似的定义和预备定理的基础上作进一步研究。
从知识的系统性来看,相似三角形是全等三角形知识的发展,它们存在一般与特殊的关系,因此可类比三角形全等的判定方法得到三角形相似的判定方法。
同时判定定理1的证明方法又为进一步学习其它几个判定定理奠定了基础。
2、这一内容可分为四课时完成,本教学设计是第一课时。
3、本节课注重分层教学,在各个环节均照顾不同层次的学生,使各层次学生均有所得,体会到成功的喜悦,树立自信心,主动发展。
教学重点:三角形相似的判定定理1的理解和应用。
教学难点:三角形相似的判定定理1的证明方法。
因为它的证明是在只有相似三角形的定义和预备定理的条件下完成的,需要添加辅助线转化为预备定理。
二、教学目标的确定根据本节课的具体内容并结合学生的实际情况,我从知识与技能、过程与方法、情感态度价值观三方面制定了教学目标:1、使学生理解定理内容及其证明方法,初步会运用定理解决有关问题;2、通过学生探索、证明、理解和应用定理,进一步发展符号感和推力能力,使学生学会学习,体验成功;3、通过图形变式,使学生体验数学活动充满着探索性和创造性,并享受数学美;通过小组讨论,培养学生合作意识。
三、教学方法与教学手段的选择为了充分调动学生学习的积极性,使学生变被动学习为主动愉快地学习,我引导学生类比联想,猜想命题,形成定理,采用讨论、探究式的教学方法.在教学手段方面,我选择了计算机辅助教学的方式,运用Powerpoint和几何画板,增加图形的直观性和课堂密度.四、教学过程的设计为了实现教学目标,我遵循学生的认知规律,根据“循序渐进原则”;把这节课分为三个阶段:“定理探索阶段”;“定理运用阶段”;“定理巩固阶段”.下面我将对教学步骤作出说明。
(一)定理探索阶段1、类比,猜想三角形相似的判定方法由于探索三角形相似的新的判定方法首先应让学生对已有知识有一个清晰的认识,所以先让学生复习相似三角形的定义和判定三角形相似的预备定理,教师引导学生思考,现有的判定三角形相似的方法中:①定义需要对应角分别相等,对应边成比例,条件多,过于苛刻;②预备定理要求有三角形一边的平行线,条件过于特殊,使用起来有局限性.说明探索三角形相似的新的判定方法的必要性。
相似三角形sss判定学案
BEDCA 相似三角形判定(三) 姓名: 复习:1.相似三角形定义:对应角 ,对应边的比 的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号“ ”表示,读作“ ”。
3.相似三角形的相似比:相似三角形的对应边的比叫做 ,用字母 表示。
4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的 与原三角形相似。
5.相似三角形的判定定理:(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似, (简叙为 对应相等两三角形 )。
(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成 且 相等,两个三角形相似。
) 6. 如图,已知AE 与CD 交于点B ,AC ∥DE ,求证:⑴△ABC △EBD ⑵若AC=2,BC=3,BD=6,求DE 的长。
新授:一.自学探索结论归纳:通过以上计算和观察,你发现了什么结论?如果两个三角形的三组 的比 ,那么这两个三角形 . 简单地说: 三边对应的比相等,两三角形相似. 用几何语言表示: ∵=DE AB = . ∵=GMDE= . ∴ ∽ ∴ ∽ ∴ ∽E例1:根据下列条件,判断△ABC与△A’B’C’是否相似,并说明理由.(1)∠A=1200,AB=7cm,AC=14cm,∠A’=1200,A’B’=3cm,A’C’=6cm.解:∵=''BAAB, =''CAAC.∴=''BAAB.且∠=∠∴∽()(2)AB=4 cm,BC=6cm,AC=8cm, A’B’=12cm,B’C’=18cm,A’C’=24cm.解:∵=''BAAB, =''CAAC,=''CBBC。
∴=''BAAB= .∴∽()练习:一.如图,在大小为4×4的正方形网格中,是相似三角形的是()A、①和②B、②和③C、①和③D、②和④二.(2011•深圳)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A、B、三.已知:BCDEACAEABAD==,求证:∠BAD=∠CAE.四.(2010•杭州)如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.(1)求证:△ABD∽△CAE;(2)如果AC=BD,AD=22BD,设BD=a,求BC的长.。
《相似三角形的判定》教案
《相似三角形的判定》教案《《相似三角形的判定》教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!作业内容体现学科核心素养的教学设计学习内容分析学习目标描述1.目标(1)掌握平行线分线段成比例的基本事实及其在三角形中的应用;(2)经历“动手操作—直观感知—发现事实”的过程,增强学生发现问题,解决问题的能力.学习内容分析提示:可从学习内容概述、知识点划分及其相互间的关系等角度分析《相似三角形的判定》是在学生认识相似图形,了解相似多边形的性质及判定的基础上进行学习的,是本章的重点内容.本课时首先利用“如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似.”引出两个三角形相似的定义(即三个角分别相等,三条边成比例的两个三角形相似),然后引导学生思考类比全等三角形的判定方法,对于相似三角形是否存在较为简便的方法.学科核心素养分析提示:说明本课堂可以落实哪个或哪些学科核心素养通过本节课的学习,学生经历画图、测量、猜想感知结论,并能将基本事实应用到三角形中,提高学生的动手操作能力和直观感知和知识迁移能力.教学重点相似三角形的判定既是本章的重点,也是整个初中几何的重点.教学难点本课的教学难点是:平行线分线段成比例基本事实的探究学生学情分析学生前面已经学过相似多边形的判定方法和成比例线段及全等三角形的有关知识.在此基础上,学生应不难理解相似三角形的判定.为了使学生在后续相似三角形的判定中更好地学习和掌握各个判定定理,新课标增加了平行线分线段成比例这一基本事实的学习.而这个基本事实,是要求学生能通过动手操作,并且在观察猜想的基础上进行度量与计算,从而自我发现这一事实的真实性,对学生的作图、读数、计算等能力要求较高.教学策略设计教学环节教学目标活动设计信息技术运用说明学习三角形全等时,我们知道,除了可以通过证明对应角相等,对应边相等来判定两个三角形全等外,还有判定的简便方法(SSS,SAS,ASA,AAS等).类似地,判定两个三角形相似时,是不是对所有的对应角和对应边都要一一验证呢?有没有简便方法呢?通过提问,引导学生回顾全等三角形的判定方法.并能类比全等三角形提出相似三角形判定方法的猜想.教师要关注学生的探究投入程度,鼓励学生大胆发表自己的见解.师生活动:学生思考,并猜想判定方法,教师对学生的大胆猜想予以鼓励,并指出为了证明相似三角形的判定定理,我们先来学习下面的平行线分线段成比例这个基本事实.而利用多媒体教学时,学生画图得出数据后,就可以在多媒体上用动态的图像生动形象地展示这一定理,得到相应的比例式,节约下来的时间就可以更加深入细致地探究比例的性质,让学生了解合比性质、分比性质、合分比性质、等比性质等相关的知识,让学生真正理解平行线分线段成比例定理的内涵,并用它们去解决问题。
27.2.1相似三角形的判定(教案)
1.理论介绍:首先,我们要了解相似三角形的基本概念。相似三角形是指两个三角形的对应角相等,对应边成比例。它在几何学中有着重要的地位,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了相似三角形在实际中的应用,以及它如何帮助我们解决问题。
实践活动和小组讨论的环节,学生们表现得非常活跃。他们通过分组讨论和实验操作,不仅加深了对相似三角形判定方法的理解,还提高了合作解决问题的能力。我观察到,在小组讨论中,学生们能够相互启发,共同克服难题,这让我感到很欣慰。
不过,我也发现了一些需要改进的地方。在小组讨论中,有些学生显得不够主动,可能是因为他们对主题还不够自信。为了鼓励这些学生更多地参与进来,我可以在下一次课中采取一些策略,比如提供更多的引导问题,或者给予他们更多的时间来准备分享。
3.重点难点解析:在讲授过程中,我会特别强调AA、SSS、SAS这三个判定方法。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相似三角形的基本原理。
-难点二:在实际问题中运用相似三角形的判定方法。
-学生可能难以从复杂的实际问题中抽象出相似三角形的模型,需要通过案例分析和反复练习,提高学生的几何建模能力。
-举例:在解决实际问题中,指导学生如何从给定的信息中识别出相似三角形的特征,例如在测量物体高度时,如何利用相似三角形的性质来计算。
-难点三:理解相似三角形的判定方法之间的内在联系。
2.教学难点
-难点一:理解“对应角”和“对应边”的概念,以及它们在相似三角形中的应用。
相似三角形的判定教案
相似三角形的判定教案教学目标:1. 能够判断两个三角形是否相似。
2. 能够使用相似三角形的特性解决相关问题。
教学步骤:1. 引入相似三角形的概念。
- 请同学们回忆一下什么是相似图形,以及相似图形有哪些性质。
- 引导学生将相似图形的性质应用在三角形上,让他们思考相似三角形的特点。
2. 判断相似三角形的条件。
- 同学们尝试分析相似三角形的条件,并总结出能够判断两个三角形相似的条件。
- 与同学们讨论并总结出结论: 两个三角形的对应角相等,并且对应边的比例相等。
3. 判断相似三角形的例题练习。
- 给出几个具体的例题,让同学们分析并判断给出的三角形是否相似。
- 引导同学们根据相似三角形的条件来进行判断,并解释判断的依据。
4. 利用相似三角形解决问题。
- 引导同学们分析相似三角形的特性,并掌握如何利用相似三角形解决实际问题。
- 给出一些实际问题,并指导同学们使用相似三角形的特性来解决问题。
5. 总结。
- 与同学们一起总结相似三角形的判定条件和解决问题的方法。
- 强调相似三角形的应用在日常生活中的重要性,并提醒同学们在解决实际问题时要善于利用相似三角形的特性。
教学反思:在本节课中,我们针对相似三角形的判定和应用进行了详细的讲解和练习。
通过引导学生分析相似三角形的特性,培养了他们分析和解决问题的能力。
然后,通过解决实际问题的练习,帮助学生更好地理解和应用相似三角形的知识。
最后,通过总结归纳,巩固了学生对相似三角形判定和应用的理解。
这样的教学设计有助于提高学生对相似三角形的学习兴趣,培养他们的思维能力和解决问题的能力。
人教版九年级数学下册: 27.2.1《相似三角形的判定》教案5
人教版九年级数学下册: 27.2.1《相似三角形的判定》教案5一. 教材分析《相似三角形的判定》是人教版九年级数学下册的教学内容。
本节课主要让学生掌握相似三角形的判定方法,并能灵活运用这些方法解决实际问题。
教材通过引入实例,引导学生探究相似三角形的判定条件,从而让学生理解并掌握相似三角形的判定方法。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的概念和性质,具备了一定的几何直观能力。
但部分学生对于证明两个三角形相似的思路和方法还不够清晰,需要通过实例分析和练习来进一步巩固。
三. 教学目标1.让学生理解相似三角形的判定方法,并能熟练运用这些方法解决实际问题。
2.培养学生的逻辑思维能力和几何直观能力。
3.提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.判定两个三角形相似的方法和思路。
2.如何运用相似三角形的判定方法解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过实例分析和讨论,探索相似三角形的判定方法。
2.运用多媒体辅助教学,展示实例和动画,增强学生的直观感受。
3.采用分组讨论和合作交流的方式,培养学生的团队协作能力。
4.结合练习和问题解决,巩固所学知识。
六. 教学准备1.多媒体教学设备。
2.教案、课件和教学素材。
3.练习题和问题解决题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的相似图形,如姐妹俩的帽子、相似的树叶等,引导学生关注相似图形的现象,激发学生的学习兴趣。
2.呈现(10分钟)呈现两个三角形,引导学生观察并思考:如何判断这两个三角形是否相似?通过引导学生观察和分析,得出相似三角形的判定条件:(1)两对角相等;(2)两边成比例且夹角相等;(3)三边成比例。
3.操练(10分钟)分组讨论,每组选择一种判定方法,利用给出的三角形进行判定。
学生通过实际操作,进一步理解和掌握相似三角形的判定方法。
4.巩固(10分钟)出示一些判断题,让学生运用所学的判定方法进行判断。
相似三角形的判定数学教学教案
相似三角形的判定数学教学教案教案主题:相似三角形的判定教学目标:1.理解相似三角形的定义和性质。
2.掌握相似三角形的判定方法。
3.能够灵活运用相似三角形的判定方法解决相关问题。
教学重点:1.相似三角形的定义和性质。
2.相似三角形的判定方法。
教学难点:1.灵活运用相似三角形的判定方法解决相关问题。
教学准备:课件、投影仪、黑板、粉笔、练习题、实物三角形模型。
教学过程:一、导入(5分钟)通过引入一些易于观察的图形,唤起学生对相似三角形的认识,同时激发学生的学习兴趣。
二、概念介绍(10分钟)1.定义相似三角形:在平面上,两个三角形的对应角相等,那么这两个三角形是相似的。
2.相似三角形的性质:a.对应边的长度成比例;b.对应角相等。
三、相似三角形的判定方法(30分钟)1.SSS判定法:如果两个三角形的三边分别对应成比例,那么这两个三角形是相似的。
可以通过实际测量边长,或运用长度的代数比较方法来判定。
2.SAS判定法:如果两个三角形的一个角相等,且两个角的两边分别成比例,那么这两个三角形是相似的。
3.AA判定法:如果两个三角形的两个角相等,那么这两个三角形是相似的。
四、练习与巩固(30分钟)请学生结合课堂学习和练习题的内容,完成以下练习:1.利用SSS判定法判断下列三角形是否相似:(给出两个三角形的边长)2.利用SAS判定法判断下列三角形是否相似:(给出两个三角形的边长和一个角)3.利用AA判定法判断下列三角形是否相似:(给出两个三角形的角度)五、拓展与应用(15分钟)1.利用相似三角形的性质解决实际问题,如利用相似三角形求高度、距离等问题。
2.提供更复杂的练习题目,让学生进一步运用判定方法解决问题。
六、总结与归纳(10分钟)1.向学生讲解相似三角形判定的方法,总结相似三角形的定义和性质。
2.对相似三角形的判定方法进行再次复习,澄清学生可能存在的疑惑。
七、课堂作业(5分钟)布置相似三角形的练习题作为课堂作业,加深学生对相似三角形判定方法的理解和应用。
相似三角形的判定数学教学教案(优秀6篇)
相似三角形的判定数学教学教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!相似三角形的判定数学教学教案(优秀6篇)学习可以这样来看,它是一个潜移默化、厚积薄发的过程。
相似三角形的判定学案
课题:相似三角形的判定1 总课时: 时间: 姓名:学习目标:1.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程.2.会用“三角形相似判定的预备定理”解决简单的问题.重点与难点:相似三角形的定义与三角形相似的预备定理的应用. 一、导入示标:1.定义:对应角 ,对应边的比 的两个三角形,叫做相似三角形。
2.如图,△ABC 中,点D 为AB 中点,点E 为AC 中点,则线段DE 与BC 为 ;△ADE 与△ABC 相似吗?为什么?二、探究新知:如图,任意画直线12,l l ,再画三条与12,l l 相交的平行线345,,l l l 。
分别度量截得的线段AB ,BC ,DE ,EF 的长度,AB DE BC EF与相等吗?任意平移5l ,再度量截得的线段AB ,BC ,DE ,EF 的长度,AB DE BC EF与相等吗?结论:两条直线被一组平行线所截,所得的 成比例.结论:平行于三角形一边的直线截其他两边(或两边的延长线), 所得的 成比例. 三、深入探究:如图,在ABC ∆中,DE ‖,,BC DE AB AC D E 分别交于点、。
(1)DE AD BC AB=求证:(2)ADE ABC ∆∆与相似吗?由此可以得到什么结论?四、典例分析:如图,D 、E 分别是△ABC 边AB 、AC 上的点,DE ∥BC. (1)写出图中的相似三角形,并说明理由;(2)写出图中相等的角. (3)写出三组成比例的线段.五、变式训练:六、达标检测:1.如图,小明在打网球时,使球恰好能打过网,而且落在离网5米的位置上,球拍击球的高度h 是 .(设网球是直线运动)。
2.如图,在△ABC 中,DE ∥BC,AD=EC ,DB=1cm ,AE=4cm ,BC=5cm ,求DE 的长.。
初中数学初三数学上册《相似三角形的判定》教案、教学设计
1.引导学生回顾本节课所学内容,总结相似三角形的判定方法和性质。
2.教师进行补充和强调,帮助学生构建完整的知识体系。
3.提醒学生课后进行复习,布置适量的课后作业,巩固课堂所学知识。
五、作业布置
1.基础作业:完成课本相应练习题,巩固相似三角形的判定方法和性质。要求学生在完成作业时,注意理解题目要求,规范解题过程,提高解题效率。
作业布置注意事项:
1.作业量要适中,避免过多增加学生的负担。
2.作业难度要适中,既要保证基础知识的巩固,又要激发学生的学习兴趣。
3.作业形式要多样化,注重培养学生的自主学习、合作交流和创新思维能力。
4.教师要及时批改作业,给予反馈,指导学生改进学习方法,提高学习效果。
2.提问:“同学们,你们在生活中还见到过哪些相似的三角形?它们之间有什么共同特征?”通过这个问题,激发学生的好奇心,为学习相似三角形的判定方法做好铺垫。
3.引导学生回顾全等三角形的判定方法,为新课的学习打下基础。
(二)讲授新知
1.结合课本,讲解相似三角形的定义,让学生理解相似三角形的含义。
2.通过几何画板演示,让学生直观地观察相似三角形的性质,如对应角相等、对应边成比例等。
3.讲解相似三角形的判定方法,如AA、SAS、SSS等,结合具体例子进行分析,让学生理解并掌握这些方法。
4.针对不同判定方法,设计相应的例题,引导学生运用所学知识解决问题。
(三)学生小组讨论
1.将学生分成若干小组,每组讨论一个相似三角形的判定方法,并给出实际例子。
2.各小组派代表进行汇报,分享本组讨论成果,其他小组可进行补充和提问。
6.作业:布置适量的课后作业,巩固课堂所学知识。
7.课后反思:教师对课堂教学效果进行反思,针对学生的掌握情况,调整教学方法,提高教学质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形的判定学案 谢文广
例1 从下面这些三角形中,选出相似的三角形.
例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,如果2cm 6=∆AEF S ,求CDF S ∆.
例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.
例4 下列命题中哪些是正确的,哪些是错误的?
(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似.
(3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似. 例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,并且点D 、点E 和ABC ∆的一个顶点组成的小三角形与ABC ∆相似.尽可能多地画出满足条件的图形,并说明线段DE 的画法.
【知能点分类训练】
1.一个三角形的三边之比为3:4:5,另一个三角形的最短边长为8,另外两边长为_________时,这两个三角形相似.
2.△ABC ABC的两边长分别为1
当△A
1B
1
C
1
的第三边长为_______时,△ABC与△A
1
B
1
C
1
相似.
3.一个三角形三边之比为4:5:6,三边中点连结所成三角形的周长为60cm,•则原三角形各边的长为().
A.16cm,20cm,24cm B.32cm,40cm,48cm
C.8cm,10cm,12cm D.12cm,15cm,18cm
4.△ABC∽△A′B′C′且相似比为1
3
,△A′B′C′∽△A″B″C″且相似比为
4
3
,则△ABC与△A″B″C″的相似比为().
A.1
4
B.
9494
..
4949
C D或
5.若△ABC的各边都分别扩大到原来的2倍,得到△A
1B
1
C
1
,下列结论正确的是
().
A.△ABC与△A
1B
1
C
1
的对应角不相等 B.△ABC与△A
1
B
1
C
1
不一定相似
C.△ABC与△A
1B
1
C
1
的相似比为1:2 D.△ABC与△A
1
B
1
C
1
的相似比为2:1
6.△ABC与△A′B′C′满足下列条件,△ABC与△A′B′C′不一定相似的是( •).
A.∠A=∠A′=45°38′,∠C=26°22′,∠C′=108°
B.AB=1,AC=1.5,BC=2,A′B′=12,B′C′=8,A′C′=16
C.BC=a,AC=b,AB=c,A′B′````
B C A C
==
D.AB=AC,A′B′=A′C′,∠A=∠A′=40°
7.已知:在△ACB中,∠ACB是Rt∠,M是 A
AB中点,MD⊥AB交AC于E,BC
的延长线于D M
求证:AB2=4ME·MD E
B C D。