二次函数高考练习题

合集下载

二次函数练习题

二次函数练习题

二次函数练习题一、选择题1. 下列哪个函数是二次函数?A. y = x + 1B. y = 2x^2 3x + 1C. y = x^3 3xD. y = sqrt(x)2. 二次函数y = ax^2 + bx + c(a≠0)的图象是()。

A. 抛物线B. 直线C. 双曲线D. 圆3. 二次函数y = 2x^2 + 4x + 5的顶点坐标是()。

A. (1, 3)B. (2, 9)C. (1, 7)D. (0, 5)4. 当a > 0时,二次函数y = ax^2 + bx + c的图象开口()。

A. 向上B. 向下C. 向左D. 向右二、填空题1. 二次函数y = x^2 4x + 4可以写成y = (x ____)^2的形式。

2. 已知二次函数y = x^2 + 2x + 3的顶点坐标为(1, 4),则该函数的对称轴是直线____。

3. 若二次函数y = ax^2 + bx + c的图象开口向上,且顶点坐标为(1, 2),则a的取值范围是____。

三、解答题1. 已知二次函数y = x^2 6x + 9,求其顶点坐标。

2. 求二次函数y = 2x^2 + 4x + 5在x = 2时的函数值。

3. 已知二次函数y = ax^2 + bx + c的图象经过点(1, 3)和(1, 7),且顶点坐标为(0, 5),求该二次函数的解析式。

4. 设二次函数y = x^2 + mx + 1的图象与x轴相交于A、B两点,求线段AB的长度。

5. 已知二次函数y = x^2 4x + 3的图象与x轴相交于C、D两点,求线段CD的中点坐标。

四、应用题1. 一抛物线开口向上,其顶点为原点O(0,0),且经过点P(2,8)。

求该抛物线的解析式。

2. 一运动员在水平地面上进行跳远训练,其跳跃的高度h(单位:米)与跳跃的水平距离x(单位:米)之间的关系可以近似表示为二次函数h = 0.02x^2 + 0.6x。

求运动员跳跃时水平距离为4米时的高度。

高考资料 二次函数基础练习题大全(含答案)

高考资料 二次函数基础练习题大全(含答案)

二次函数基础练习题练习一 二次函数1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式:2、下列函数:① 23yx ;② 21y x x x ;③ 224y x x x ;④ 21y x x ; ⑤ 1y x x ,其中是二次函数的是 ,其中a ,b ,c3、当m 时,函数2235ym x x (m 为常数)是关于x 的二次函数4、当____m 时,函数2221m m ym m x 是关于x 的二次函数 5、当____m 时,函数2564m m ym x +3x 是关于x 的二次函数 6、若点 A ( 2,m ) 在函数 12-=x y 的图像上,则A 点的坐标是____.7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm , 那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式.② 求当边长增加多少时,面积增加 8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二 函数2ax y =的图像与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;(2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图像关于y 轴对称.其中正确的是 .3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )tttA B C D5、函数2ax y =与b ax y +-=的图像可能是( )A .B .C .D . 6、已知函数24m m y mx 的图像是开口向下的抛物线,求m 的值.7、二次函数12-=m mxy 在其图像对称轴的左侧,y 随x 的增大而增大,求m 的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系. 9、已知函数()422-++=m m x m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大;(3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?10、如果抛物线2y ax 与直线1y x 交于点,2b ,求这条抛物线所对应的二次函数的关系式.练习三 函数c ax y +=2的图象与性质st O1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小.2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .练习四 函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 .2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标.(1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位.3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.练习五 ()k h x a y +-=2的图象与性质 1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12 (x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大.4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到.5、 已知抛物线的顶点坐标为2,1,且抛物线过点3,0,则抛物线的关系式是6、 如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<17、已知函数()9232+--=x y .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标;(2) 当x= 时,抛物线有最 值,是 .(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x的增大而减小.(4) 求出该抛物线与x 轴的交点坐标及两交点间距离;(5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的?8、已知函数()412-+=x y .(1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积;(3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式;(5) 该抛物线经过怎样的平移能经过原点.(6) 画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小于0.练习六 c bx ax y ++=2的图象和性质1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322y x x 的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________;7、函数x x y +-=22有最____值,最值为_______;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( )A 、6,4B 、-8,14C 、-6,6D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为( )A 、22B 、23C 、32D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y 11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标 13、已知一次函数的图象过抛物线223yx x 的顶点和坐标原点1) 求一次函数的关系式;2)判断点2,5是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?练习七c=2的性质+bxy+ax1、函数2y x px q的图象是以3,2为顶点的一条抛物线,这个二次函数的表达式为2、二次函数22y mx x m m的图象经过原点,则此抛物线的顶点24坐标是3、如果抛物线2y ax bx c与y轴交于点A(0,2),它的对称轴是1x,那么acb4、抛物线c+=2与x轴的正半轴交于点A、B两点,与y轴交于y+bxx点C,且线段AB的长为1,△ABC的面积为1,则b的值为______. 5、已知二次函数c=2的图象如图所示,则a___0,b___0,c___0,y++bxax2-____0;b4ac6、二次函数c=2的图象如图,则直线bc+bxy+ax=的图象不经过第axy+象限.7、已知二次函数2y ax bx c(0≠a)的图象如图所示,则下列结论:1),a b同号;2)当1a b;4)x时,函数值相同;3)40x和3当2y时,x 的值只能为0;其中正确的是(第5题) (第6题) (第7题) (第10题)8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m=9、二次函数2yx ax b 中,若0a b ,则它的图象必经过点( ) A 1,1 B 1,1 C 1,1 D 1,110、函数b ax y +=与c bx ax y ++=2的图象如上图所示,则下列选项中正确的是( )A 、0,0>>c abB 、0,0><c abC 、0,0<>c abD 、0,0<<c ab11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( )A .4个B .3个C .2个D .1个13、抛物线的图角如图,则下列结论:①>0;②;③>;④<1.其中正确的结论是().(A)①②(B)②③(C)②④(D)③④14、二次函数2y ax bx c的最大值是3a,且它的图象经过1,2,1,6两点,求a、b、c的值。

二次函数练习题(含答案)

二次函数练习题(含答案)

二次函数练习题(含答案)形,如图所示。

将剩余部分折成一个无盖的长方体盒子,已知折痕处的线段长度均为2cm,求这个盒子的体积。

解析:首先确定长方体的长、宽、高分别对应正三角形的边长a、b、c,如图所示。

由于筝形的对角线长度为2cm,根据勾股定理可得$a^2+b^2=4$。

由于正三角形的内角为60度,因此可以利用三角函数求得$a=\sqrt{3}c$和$b=2\sin30^{\circ}c=c$。

将$a$、$b$、$c$代入长方体的体积公式$V=abc$,得到$V=2\sqrt{3}c^3$。

将$c=2$代入即可得到盒子的体积为$V=16\sqrt{3}$。

1.将文章中的公式和图表进行排版整理,删除明显有问题的段落。

2.对于每段话进行小幅度的改写,使其更加简洁明了。

1.某人要制作一个无盖的直三棱柱纸盒,现在需要确定该纸盒的侧面积最大值。

根据图中的信息,我们可以得出最大面积为()A.cm2B.cm2C.cm2D.cm2.2.已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,),下列结论中正确的有几个?①abc<;②b2﹣4ac=0;③a>2;④4a﹣2b+c>。

答案为A.1B.2C.3D.4.3.如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2.现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1.下列结论中正确的有哪些?①b>;②a﹣b+c<;③阴影部分的面积为4;④若c=﹣1,则b2=4.答案为……4.二次函数y=ax2+bx+c的图象如图所示,点O为坐标原点,点A在y轴的正半轴上,点B、C在图象上,四边形OBAC为菱形,且∠OBA=120°。

求菱形OBAC的面积。

5.某水产养殖户为了节省材料,利用水库的岸堤为一边,用总长为80m的围栏在水库中围成了如图所示的①②③三块矩形区域,且这三块矩形区域的面积相等。

设BC的长度为xm,矩形区域ABCD的面积为ym2.(1) 求y与x之间的函数关系式,并注明自变量x的取值范围;(2) 当y有最大值时,x为多少?最大值是多少?6.在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a(a <0)与x轴交于A、B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC。

二次函数练习题(1)

二次函数练习题(1)

二次函数练习题(1)A 卷一、选择题(每题5分,共30分)1.二次函数y=x 2+bx+c,若b+c=0,则它的图象一定过点( )A.(-1,-1)B.(1,-1)C.(-1,1)D.(1,1)2.若直线y=ax+b(ab≠0)不过第三象限,则抛物线y=ax 2+bx 的顶点所在的象限是( )A.一B.二C.三D.四3.函数y=ax 2+bx+c 中,若ac<0,则它的图象与x 轴的位置关系为( )A.无交点B.有1个交点;C.有两个交点D.不确定4.抛物线与x 轴交点的横坐标为-2和1,且过点(2,8),它的关系式为( )A.y=2x 2-2x-4;B.y=-2x 2+2x-4;C.y=x 2+x-2;D.y=2x 2+2x-45.二次函数y=ax 2+bx+c 的图象如图1所示,下列五个代数式ab 、ac 、a-b+c 、b 2- 4ac 、2a+b 中,值大于0的个数为( )A.5B.4C.3D.26.二次函数y=ax 2+bx+c 与一次函数y=ax+c 在同一坐标系内的图象可能是图3所示的( )二、填空题:(每题5分,共30分)1.若抛物线y=x 2+(m-1)x+(m+3)顶点在y 轴上,则m=_______.2.把抛物线y=12x 2 向左平移三个单位, 再向下平移两个单位所得的关系式为________. 3.抛物线y=ax 2+12x-19顶点横坐标是3,则a=____________.4.若y=(a-1)231a x -是关于x 的二次函数,则a=____________.5.二次函数y=mx 2-3x+2m-m2的图象经过点(-1,-1),则m=_________.6.已知点(2,5),(4,5)是抛物线y=ax 2+bx+c 上的两点, 则这条抛物线的对称轴是______.三、解答题(共40分)1.已知二次函数的图象的对称轴为x=2,函数的最小值为3,且图象经过点(- 1,5),求此二次函数图象的关系式.2.二次函数的图象与x 轴交于A 、B 两点,与y 轴交于点C,如图2所示,AC= ,BC= ∠ACB=90°,求二次函数图象的关系式. 3.已知关于x 的二次函数2212m y x mx +=-+与2222m y x mx +=--, 这两个二次函数的图象中的一条与x 轴交于A, B 两个不同的点.图1 Cx B A Oy 图2 图3(l)试判断哪个二次函数的图象经过A, B两点;(2)若A点坐标为(-1, 0),试求B点坐标;(3)在(2)的条件下,对于经过A, B两点的二次函数,当x取何值时,y的值随x值的增大而减小?(B卷)拓广提高(30分)时间:45分钟满分:30分一、选择题(每题4分,共8分)1.把二次函数y=3x2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式为( )A.y=3(x-2)2+1B.y=3(x+2)2-1C.y=3(x-2)2-1D.y=3(x+2)2+12.已知二次函数y=x2-2mx+m-1的图象经过原点,与x轴的另一个交点为A, 抛物线的顶点为B,则△OAB的面积为( ) A.32B.2;C.1;D.12二、填空题:(每题2分,共20分)1.已知二次函数y=2x2-mx-4的图象与x轴的两个交点的横坐标的倒数和为2,则m=_________.2.二次函数y= ax2+ bx+ c 的图象如图5所示, 则这个二次函数的关系式为_________,当______时,y=3,根据图象回答:当x______时,y>0.三、解答题1.(1)请你画出函数y=12x2-4x+10的图象, 由图象你能发现这个函数具有哪些性质?(2)通过配方变形,说出函数y=-2x2+8x-8的图象的开口方向、对称轴、顶点坐标,这个函数有最大值还是最小值?这个值是多少?2.根据下列条件,分别求出对应的二次函数关系式.(1)已知抛物线的顶点是(-1,-2),且过点(1,10);(2)已知抛物线过三点:(0,-2),(1,0),(2,3).(C卷)新题推荐(20分)1.如图6所示,△ABC中,BC=4,∠B=45°,M、N分别是AB、AC上的点,MN∥BC.设MN=x,△MNC的面积为S.(1)求出S与x之间的函数关系式,并写出自变量x的取值范围.(2)是否存在平行于BC的线段MN,使△MNC的面积等于2? 若存在,请求出MN的长; 若不存在,请说明理由.2.如图7,已知直线12y x=-与抛物线2164y x=-+交于A B,两点.图5BMAN图6。

高中二次函数练习题

高中二次函数练习题

高中二次函数练习题一、选择题1. 函数f(x)=x^2-2x+1的图像的对称轴是:A. x=1B. x=-1C. x=0D. x=22. 抛物线y=-x^2+4x-3与x轴的交点坐标是:A. (0,-3)B. (1,0)C. (3,0)D. (4,0)3. 已知二次函数y=ax^2+bx+c的顶点坐标为(-1,-2),且开口向下,则a的值为:A. -1B. 1C. 2D. -24. 二次函数y=x^2-4x+4的最小值为:A. 0B. 4C. -4D. 85. 抛物线y=2x^2-6x+1的开口方向是:A. 向上B. 向下C. 向左D. 向右二、填空题1. 已知二次函数y=2x^2+4x+1,其顶点坐标为______。

2. 函数y=-3x^2+6x+2的图像与y轴交点的纵坐标为______。

3. 若抛物线y=4x^2-12x+9的顶点在x轴上,则其顶点坐标为______。

4. 二次函数y=-x^2+2x+3与x轴的交点坐标为______。

5. 抛物线y=x^2-2x-8与直线y=-x+1的交点坐标为______。

三、解答题1. 已知抛物线y=x^2-6x+5,求其顶点坐标,并判断其开口方向。

2. 抛物线y=-2x^2+8x-1与x轴的交点坐标是什么?并求出其与y轴的交点坐标。

3. 已知二次函数y=3x^2-6x+2,求其与x轴的交点坐标,并判断其图像的开口方向。

4. 抛物线y=4x^2-20x+50经过怎样的平移变换,可以变为抛物线y=4x^2-4x+1?5. 已知抛物线y=-x^2+bx+c与x轴交于点(-1,0)和(5,0),求b和c的值,并写出该抛物线的解析式。

四、应用题1. 某公司生产一种产品,其成本函数为C(x)=0.5x^2-100x+1000,其中x为生产数量,求该公司生产多少产品时,成本最低。

2. 某商场销售一种商品,其销售函数为S(x)=-2x^2+240x-1000,其中x为销售数量,求出该商品的销售数量在什么范围内时,销售额最高。

高中数学-二次函数专项练习题

高中数学-二次函数专项练习题

高中数学-二次函数专项练习题一、填空题1、函数①y=x +;②y=3(x -1)2+2;③y=(x +3)2-2x 2;④y=+x 中是二次函数的有_______2、二次函数y=(m +1)x+2x -1的图象开口向下,则m= .3、函数的对称轴是_______,顶点坐标为_________,函数有最____值______。

将函数化为顶点式为_________________,函数图象与x 轴的交点坐标为__________________,与y 轴的交点坐标为________,当x____时,y 随x 增大而减小。

4、函数的对称轴是_________,顶点坐标为____________,函数有最____值______。

将函数化为一般式为_________________,函数图象与x 轴的交点坐标为______________,与x 轴两交点之间的距离是_____,与y 轴的交点坐标为________,当x_______时,y 随x 增大而增大。

5、函数的对称轴是_________,顶点坐标为_______,将函数化为一般式为________。

6、通过配方把写成的形式后,a=___,m=___,k=___。

7、抛物线y=2x 2向左平移1个单位,再向下平移3个单位,得到的抛物线表达式为 ______8、抛物线与直线交于(1,),则抛物线的解析式_______________x 121x 22-m 122---=x x y ()2122++-=x y ()()313--=x x y 6422---=x x y ()k m x a y ++=22ax y =x y -=m9、若二次函数有最大值,且图象经过原点,则m=______。

10、函数y=x 2-4x+1的图象经过_____象限. 11、函数y =x 2+2x +1写成y =a (x -h)2+k 的形式是__________________12、已知二次函数,则当 时,其最大值为0.13、抛物线过第二、三、四象限,则 0,bc 0.14、抛物线在轴上截得的线段长度是15、二次函数y =-x 2,当x 1<x 2<0时,y 1与y 2的大小为______.16、如图所示的抛物线:当x =_____时,y =0;当y<0时,x 的取值范围是___________;当y >0时,x 的取值范围是___________;当x =_____时,y 有最大值是_____.17、若二次函数y =x 2-2x +c 图象的顶点在x 轴上,则c 等于______ 18、函数 y =(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大。

二次函数练习题及答案

二次函数练习题及答案
17.若二次函数y=(x-m)2-1,当x<1时,y随x的增大而减小,则m的取值范围是______
三、解答题
18.已知二次函数 .
(1)求二次函数 的图象与两个坐标轴的交点坐标;
(2)在坐标平面上,横坐标与纵坐标都是整数的点 称为整点. 直接写出二次函数 的图象与 轴所围成的封闭图形内部及边界上的整点的个数.
(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1)、(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得最大的年利润?
25.(12分)已知抛物线 经过A(﹣1,0),B(3,0)两点,与y轴相交于点C,该抛物线的顶点为点D.
(1)求该抛物线的解析式及点D的坐标;
(2)连接AC,CD,BD,BC,设△AOC,△BOC,△BCD的面积分别为 , 和 ,用等式表示 , 、 之间的数量关系,并说明理由;
(3)点M是线段AB上一动点(不包括点A和点B),过点M作MN∥BC交AC于点N,连接MC,是否存在点M使∠AMN=∠ACM?若存在,求出点M的坐标和此时刻直线MN的解析式;若不存在,请说明理由.
∵12>5>-4,
∴12+m>5+m>-4+m,
∴y1>y2>y3.
按从小到大依次排列为y3<y2<y1.
故答案为y3<y2<y1.
13.③,④
【解析】找到二次项的系数不是2的函数即可.
解:二次项的系数不是2的函数有③④.
故答案为③,④.
本题考查二次函数的变换问题.用到的知识点为:二次函数的平移,不改变二次函数的比例系数.
投入市场后当年能全部售出,且在甲、乙两地每吨的售价p甲、p乙(万元)均与x满足一次函数关系.(注:年利润=年销售额-全部费用)

高中二次函数练习题

高中二次函数练习题

高中二次函数练习题1. 已知二次函数的图像经过点(2, 5)和(-1, 10),求该二次函数的解析式。

2. 给定二次函数y = ax^2 + bx + c,其中a ≠ 0,若该函数的图像与x轴有两个交点,求b^2 - 4ac的值。

3. 已知二次函数y = ax^2 + bx + c的顶点坐标为(-2, 3),且经过点(1, 8),求a、b、c的值。

4. 一个抛物线的顶点在原点,且经过点(3, 9),求该抛物线的方程。

5. 某二次函数的图像与x轴交于点A(-2, 0)和点B(4, 0),求该二次函数的对称轴方程。

6. 给定二次函数y = ax^2 + bx + c,其中a > 0,若该函数的图像在x轴上方,求b^2 - 4ac与0的关系。

7. 已知二次函数y = ax^2 + bx + c的图像在x轴下方,且顶点坐标为(1, -4),求a、b、c的值。

8. 一个二次函数的图像经过点(0, 5)和(2, -3),求该二次函数的顶点坐标。

9. 给定二次函数y = ax^2 + bx + c,其中a ≠ 0,若该函数的图像与y轴交于点(0, 3),求c的值。

10. 一个抛物线的焦点坐标为(0, 2),且经过点(1, 3),求该抛物线的方程。

11. 已知二次函数y = ax^2 + bx + c的图像与x轴交于点A和点B,且|AB| = 4,求a的取值范围。

12. 一个二次函数的图像经过点(-1, 0)和(0, -3),求该二次函数的对称轴方程。

13. 给定二次函数y = ax^2 + bx + c,其中a < 0,若该函数的图像在x轴下方,求b^2 - 4ac与0的关系。

14. 已知二次函数y = ax^2 + bx + c的图像在x轴上方,且顶点坐标为(-3, 2),求a、b、c的值。

15. 一个抛物线的顶点在原点,且经过点(-2, 4),求该抛物线的方程。

16. 给定二次函数y = ax^2 + bx + c,其中a ≠ 0,若该函数的图像与x轴交于点(0, 4),求c的值。

二次函数练习题(含答案)

二次函数练习题(含答案)

1.抛物线y=x 2+3x 的顶点在( ) A.第一象限第一象限B.第二象限第二象限C.第三象限第三象限D.第四象限第四象限 2.抛物线y=-3x 2+2x-1的图象与x 轴、y 轴交点的个数是( ) A.没有交点没有交点B.只有一个交点只有一个交点C.有两个交点有两个交点D.有三个交点有三个交点 3.已知抛物线y=ax 2+bx+c(a≠0)在平面直角坐标系中的位置如图1所示,则有( ) A.a>0,b>0 B.a>0,c>0 C.b>0,c>0 D.a 、b 、c 都小于0 (1) (2) 4.若抛物线y=ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( ) A.13 B.10 C.15 D.145.如图2所示,二次函数y=x 2-4x+3的图象交x 轴于A 、B 两点, 交y 轴于点C, 则△ABC 的面积为( ) A.6 B.4 C.3 D.1 6.(2010年北京崇文区) 函数y=x 2-2x-2的图象如右图所示,根据其中提供的信息,可求得使y ≥1成立的x 的取值范围是(的取值范围是( ) A .31££-x B .31<<-x C .31>-<x x 或 D .31³-£x x 或7.二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y =ax 与正比例函数y =(b +c )x在同一坐标系中的大致图象可能是(象可能是( )A .B .C .D .8.(2010江苏泰州,5,3分)下列函数中,y 随x 增大而增大的是(增大而增大的是( )A.x y 3-= B. 5+-=x y C. 12y x= D. )0(212<=x x y9.二次函数y=ax 2+bx+c 的图象如图3所示,那么abc,b 2-4ac,2a+b,a+b+c 这四个代数式中,值为正数的有( ) A.4个 B.3个 C.2个 D.1个xy OxBACy O (3)-11xyO10.如图所示,当b<0时,函数y=ax+b 与y=ax 2+bx+c 在同一坐标系内的图象可能是( ) 11.二次函数y=2x 2- 4x+ 3 通过配方化为顶点式为通过配方化为顶点式为y= _________, 其对称轴是______,顶点坐标为_______,抛物线开口________,当x_______时,y 随x 的增大而增大;当x____时,y 随x 的增大而减小;当x=______时,y 最值=________. 12.已知抛物线y=ax 2+bx+c(a≠0)图象的顶点为P(-2,3),且过A(-3,0), 则抛物线的关系式为___________. 13.若二次函数y=ax 2+bx+c 的图象经过点(0,-1),(5,-1), 则它的对称轴方程是________. 14.在同一坐标系内,抛物线y=ax 2与直线y=2x+b 相交于A 、B 两点,若点A 的坐标是(2,4),则点B 的坐标是_________. 15.将抛物线y=ax 2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,-1),那么移动后的抛物线的关系式为__________. 16.若抛物线y=ax 2+bx+c 经过(0,1)和(2,-3)两点,且开口向下,对称轴在y 轴左侧,则a 的取值范围是_________. 17.已知抛物线y =ax 2 +bx +c 的对称轴为x =2,且经过点(1,4)和点(5,0),则该抛物线的解析式为_______________. 18.函数y =2x 2 – 4x – 1写成y = a (x –h)2 +k 的形式是________,抛物线y =2x 2 – 4x – 1的顶点坐标是_______,对称轴是__________.19.已知函数①y =x 2+1,②y =-2x 2+x .函数____(填序号)有最小值,当x =____时,该函数的最小值是_______ 20.当m=_________时,函数y = (m 2-4))3(42-+--m xm m x + 3是二次函数,其解析式是__________________,图象的对称轴是_______________,顶点是________,当x=______时,时, y 有最____值_______.21.已知二次函数的图象开口向下,且与y 轴的正半轴相交.请你写出一个满足条件的二次函数的解析式:___________ 22.抛物线c bx ax y ++=22如右图所示,则它关于y 轴对称的抛物线的解析式是__________.1、(2010年宁波市)如图,已知二次函数c bx x y ++-=221的图象经过A (2,0)、B (0,-6)两点。

高考数学专题《二次函数与一元二次方程、不等式》习题含答案解析

高考数学专题《二次函数与一元二次方程、不等式》习题含答案解析

专题2.3 二次函数与一元二次方程、不等式1.(浙江高考真题)已知a ,b ,c ∈R ,函数f (x )=ax 2+bx +c .若f (0)=f (4)>f (1),则( )A .a >0,4a +b =0B .a <0,4a +b =0C .a >0,2a +b =0D .a <0,2a +b =0【答案】A 【解析】由已知得f (x )的图象的对称轴为x =2且f (x )先减后增,可得选项.【详解】由f (0)=f (4),得f (x )=ax 2+bx +c 图象的对称轴为x =-2ba=2,∴4a +b =0,又f (0)>f (1),f (4)>f (1),∴f (x )先减后增,于是a >0,故选:A.2.(2021·全国高三专题练习(文))已知函数42()f x x x =-,则错误的是( )A .()f x 的图象关于y 轴对称B .方程()0f x =的解的个数为2C .()f x 在(1,)+∞上单调递增D .()f x 的最小值为14-【答案】B 【解析】结合函数的奇偶性求出函数的对称轴,判断A ,令()0f x =,求出方程的解的个数,判断B ,令2t x =,2211()()24g t t t t =-=--,从而判断C ,D 即可.【详解】42()f x x x =-定义域为R ,显然关于原点对称,又()()4242()f x x x x x -=---=-()f x =,所以()y f x =是偶函数,关于y 轴对称,故选项A 正确.令()0f x =即2(1)(1)0x x x +-=,解得:0x =,1,1-,函数()f x 有3个零点,故B 错误;练基础令2t x =,2211()(24g t t t t =-=--,1x >时,函数2t x =,2()g t t t =-都为递增函数,故()f x 在(1,)+∞递增,故C 正确;由12t =时,()g t 取得最小值14-,故()f x 的最小值是14-,故D 正确.故选:B .3.(2021·北京高三其他模拟)设x ∈R ,则“2560x x -+<”是“|2|1x -<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】分别解出两个不等式的解集,比较集合的关系,从而得到两命题的逻辑关系.【详解】2560x x -+<23x ⇒<<;|2|1x -<13x ⇒<<;易知集合()2,3是()1,3的真子集,故是充分不必要条件.故选:A.4.(2021·全国高三月考)已知函数2()f x x bx c =-++,则“02b f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭”是“方程()0f x =有两个不同实数解且方程(())0f f x =恰有两个不同实数解”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【答案】C 【解析】根据二次函数的图象与性质,求得((02b f f >,反之若()0f t =有两个正根12t t <,当12max ()t t f x <<,得到方程(())0f f x =恰有四个不同实数解,结合充分条件、必要条件的判定方法,即可求解.【详解】由2()f x x bx c =-++表示开口向下的抛物线,对称轴的方程为2b x =,要使得方程()0f x =有两个不同实数,只需()02b f >,要使得方程(())0f f x =恰有两个不同实数解,设两解分别为12,x x ,且12x x <,则满足1max 2()x f x x <<,因为12(,)x x x ∈时,()0f x >,所以((02bf f >,所以必要性成立;反之,设(02b t f =>,即()0f t >,当()0f t =有两个正根,且满足12t t <,若12max ()t t f x <<,此时方程(())0f f x =恰有四个不同实数解,所以充分性不成立.所以“02b f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭”是“方程()0f x =有两个不同实数解且方程(())0f f x =恰有两个不同实数解”的必要不充分条件.故选:C.5.(2021·全国高三专题练习)若当x ∈(1,2)时,函数y =(x -1)2的图象始终在函数y =log a x 的图象的下方,则实数a 的取值范围是___________.【答案】1<a ≤2.【解析】在同一个坐标系中画出两个函数的图象,结合图形,列出不等式组,求得结果.【详解】如图,在同一平面直角坐标系中画出函数y =(x -1)2和y =log a x 的图象.由于当x ∈(1,2)时,函数y =(x -1)2的图象恒在函数y =log a x 的图象的下方,则1log 21a a >⎧⎨⎩…,解得1<a ≤2.故答案为:1<a ≤2.6.(2020·山东省微山县第一中学高一月考)若不等式220ax x a ++<对任意x ∈R 恒成立,则实数a 的取值范围是_________.【答案】(,1)-∞-【解析】∵不等式220ax x a ++<对任意x ∈R恒成立,∴函数22y ax x a =++的图象始终在x 轴下方,∴20440a a <⎧⎨∆=-<⎩,解得1a <-,故答案为:(,1)-∞-.7.(2021·全国高三专题练习)已知当()0,x ∈+∞时,不等式9x -m ·3x +m +1>0恒成立,则实数m 的取值范围是________.【答案】(,2-∞+【解析】先换元3x =t ,()1,t ∈+∞,使f (t )=t 2-mt +m +1>0在()1,t ∈+∞上恒成立,再利用二次函数图象特征列限定条件,计算求得结果即可.【详解】令3x =t ,当()0,x ∈+∞时,()1,t ∈+∞,则f (t )=t 2-mt +m +1>0在()1,t ∈+∞上恒成立,即函数在()1,t ∈+∞的图象在x 轴的上方,而判别式()()224144m m m m ∆=--+=--,故2440m m ∆=--<或()0121110m f m m ∆≥⎧⎪⎪≤⎨⎪=-++≥⎪⎩,解得2m <+.故答案为:(,2-∞+.8.(2021·浙江高一期末)已知函数2()1(0)f x ax x a =-+≠,若任意1x 、2[1,)x ∈+∞且12x x ≠,都有()()12121f x f x x x ->-,则实数a 的取值范围是___________.【答案】[)1,+∞【解析】本题首先可令12x x >,将()()12121f x f x x x ->-转化为()()1122f x x f x x ->-,然后令()()g x f x x =-,通过函数单调性的定义得出函数()g x 在[1,)+∞上是增函数,最后分为0a =、0a ≠两种情况进行讨论,结合二次函数性质即可得出结果.【详解】因为任意1x 、2[1,)x ∈+∞且12x x ≠,都有()()12121f x f x x x ->-,所以令12x x >,()()12121f x f x x x ->-即()()1212f x f x x x ->-,()()1122f x x f x x ->-,令()()221g x f x x ax x =-=-+,则函数()g x 在[1,)+∞上是增函数,若0a =,则()21g x x =-+,显然不成立;若0a ≠,则0212a a>⎧⎪-⎨-≤⎪⎩,解得1a ≥,综合所述,实数a 的取值范围是[)1,+∞,故答案为:[)1,+∞.9.(2021·四川成都市·高三三模(理))已知函数21,0()2,0x x f x x x x --≤⎧=⎨-+>⎩,若()()12f x f x =,且12x x ≠,则12x x -的最大值为________.【答案】134【解析】由()()12f x f x =得,212221x x x =--,把12x x -转化为212212231x x x x x x -=-=-++,利用二次函数求最值.【详解】()y f x =的图像如图示:不妨令12x x <,由图像可知,10x ≤,20x >由()()22121221221221f x f x x x x x x x =⇒--=-+⇒=--,由212212231x x x x x x -=-=-++当232x =时,12max134x x -=.故答案为:134.10.(2021·浙江高一期末)已知函数2()24f x kx x k =-+.(Ⅰ)若函数()f x 在区间[2,4]上单调递减,求实数k 的取值范围;(Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,求实数k 的取值范围.【答案】(Ⅰ)1(,]4-∞;(Ⅱ)1[,)2+∞【解析】(Ⅰ)由题意讨论0k =,0k >与0k <三种情况,求出函数的对称轴,结合区间,列不等式求解;(Ⅱ)利用参变分离法得24k x x≥+在[2,4]上恒成立,令4()f x x x =+,根据单调性,求解出最值,即可得k 的取值范围.【详解】(Ⅰ)当0k =时,()2f x x =-,在区间[2,4]上单调递减,符合题意;当0k >时,对称轴为1x k=,因为()f x 在区间[2,4]上单调递减,所以14k ≥,得14k ≤,所以104k <≤;当0k <时,函数()f x 在区间[2,4]上单调递减,符合题意,综上,k 的取值范围为1(,]4-∞.(Ⅱ)[2,4]x ∀∈,()0f x ≥恒成立,即[2,4]x ∀∈,22244x k x x x≥=++恒成立,令4()f x x x=+,可知函数()f x 在[2,4]上单调递增,所以()4f x ≥,所以max 2142x x ⎛⎫ ⎪= ⎪⎪+⎝⎭,所以12k ≥,故k 的取值范围为1[,)2+∞1.(2020·山东省高三二模)已知函数()()21f x x m x m =+--,若()()0ff x …恒成立,则实数m 的范围是( )A.3,3⎡--+⎣B.1,3⎡--+⎣C .[]3,1-D.3⎡⎤-+⎣⎦【答案】A 【解析】()()()()211f x x m x m x m x =+--=-+,(1)1m >-,()()0ff x ≥恒成立等价于()f x m ≥或()1f x ≤-恒成立,即()()21f x x m x m m =+--≥或()()211f x x m x m =+--≤-(不合题意,舍去)恒成立;即01m ∆≤⎧⎨>-⎩,解得(1,3m ∈--+,(2)1m =-恒成立,符合题意;(3)1m <-,()()0ff x ≥恒成立等价于()f x m ≤(不合题意,舍去)或()1f x ≥-恒成立,等价于1m ∆≤⎧⎨<-⎩,解得[)3,1m ∈--.综上所述,3,3m ⎡∈--+⎣,故选:A.2.(2021·浙江高三二模)已知()22f x x x =-,对任意的1x ,[]20,3x ∈.方程()()()()12f x f x f x f x m -+-=在[]0,3上有解,则m 的取值范围是( )A .[]0,3B .[]0,4C .{}3D .{}4【答案】D 【解析】对任意的1x ,[]20,3x ∈.方程()()()()12f x f x f x f x m -+-=在[]0,3上有解,不妨取取练提升()11f x =-,()23f x =,方程有解m 只能取4,则排除其他答案.【详解】2()(1)1f x x =-- ,[0,3]x ∈,则min ()1f x =-,max ()3f x =.要对任意的1x ,[]20,3x ∈.方程()()()()12f x f x f x f x m -+-=在[]0,3上都有解,取()11f x =-,()23f x =,此时,任意[0,3]x ∈,都有()()()()124m f x f x f x f x =-+-=,其他m 的取值,方程均无解,则m 的取值范围是{}4.故选:D.3.(2020·浙江省高三二模)已知函数()321,020a x x f x x ax x ⎧-≤⎪=⎨-+->⎪⎩的图象经过三个象限,则实数a 的取值范围是________.【答案】2a <或3a >.【解析】当0x ≤时,3()||11f x a x =-≤-,此时函数图象经过第三象限,当02x <<时,2()(1)2f x x a x =-++,此时函数图象恒经过第一象限,当2[(1)]40a =--->V 且10a +>,即3a >时,函数图像经过第一、四象限,当2x ≥时,2()(1)2f x x a x =---,此时函数图象恒经过第一象限,当(2)0f <,即2a >时,函数图像经过第一、四象限, 综上所述:2a <或3a >.4.(2020·陕西省西安中学高三其他(理))记{},max ,,,m m nm n n m n ≥⎧=⎨<⎩函数{}22()max 44(1),ln (1)f x x ax a x a =-+--<有且只有一个零点,则实数a 的取值范围是_________.【答案】12a <【解析】令()()2244(1)0g x x ax a x =-+-->,因为1a <,则()2(1)651(5)0ln1g a a a a =-+-=---<=,所以(1)ln10f ==,即1是函数()f x 的零点,因为函数()g x 的对称轴为122a x =<,所以根据题意,若函数()f x 有且只有一个零点,则二次函数()g x 没有零点,22(4)16(1)0a a ∆=--<,解得12a <.故答案为:12a <5.(2021·浙江高三专题练习)已知函数()21,()2f x x x a b a b R =+-+∈,若[1,1]x ∈-时,()1f x ≤,则12a b +的最大值是___________.【答案】12-【解析】根据函数()21,()2f x x x a b a b R =+-+∈,分1a >,1a <-和11a -≤≤三种情况讨论,分别求得其最大值,即可求解.【详解】由题意,函数()21,()2f x x x a b a b R =+-+∈,当1a >时,()211,[1,1]22f x x x a b x =-++∈-,因为()1f x ≤,可得(1)11()14f f -≤⎧⎪⎨≥-⎪⎩,所以1122115216a b a b ⎧+≤-⎪⎪⎨⎪+≥-⎪⎩,所以15111622a b -≤+≤-;当1a <-时,()211,[1,1]22f x x x a b x =+-+∈-,因为()1f x ≤,可得()max 11(1)1122f x f a b ==+-+≤,所以1122b a ≤-,所以113222a b a +=-≤-;当11a -≤≤时,()21,[1,1]2f x x x a b x =+-+∈-,由()1f x ≤知,()max (1)1112f f x a b =+--+=,因为11a -≤≤,所以10a --≤,所以()max (1)1112f f x a b =+--+=,所以1122a b +≤-,综上可得,12a b +的最大值是12-.故答案为:12-6.(2021·浙江高三期末)已知函数()()21sin sin ,22bf x x x a a b R =+-+∈,若对于任意x ∈R ,均有()1f x ≤,则+a b 的最大值是___________.【答案】1-【解析】首先讨论1a ≥、1a ≤-时()f x 的最值情况,由不等式恒成立求+a b 的范围,再讨论11a -<<并结合()f x 的单调情况求+a b 的范围,最后取它们的并集即可知+a b 的最大值.【详解】当sin a x ≥时,211()(sin )4216a b f x x +=-+-,当sin a x <时,211()(sin 4216b a f x x -=++-,令sin [1,1]t x =∈-,则()()2211,4216{11(),()4216a b t a t g t b a t a t +⎛⎫-+-≥ ⎪⎝⎭=-++-<∴当1a ≥时,14t =有min 1()216a b g t +=-;1t =-有max 3()22a b g t +=+;由x ∈R 有()1f x ≤,有131121622a b a b ++-≤-<+≤,故1518a b -≤+≤-;当1a ≤-时,14t =-有min 1()216b a g t -=-;1t =有max 3()22b a g t -=+;由x ∈R 有()1f x ≤,有131121622b a b a ---≤-<+≤,故1518b a -≤-≤-,即3a b +≤-;当11a -<<时,()2211(),(1)4216{11,(1)4216a b t t a g t b a t a t +-+--<<=-⎛⎫++-≤< ⎪⎝⎭,∴1(1,)4a ∈--:()g t 在(1,)a -上递减,1[,)4a -上递减,1[,1]4-上递增;11[,]44a ∈-:()g t 在(1,)a -上递减,[,1)a 上递增;1(,1)4a ∈:()g t 在1(1,]4-上递减,1[,)4a 上递增,[,1)a 上递增;∴综上,()g t 在(1,1)-上先减后增,则(1)1(1)1g g ≤⎧⎨-≤⎩,可得1a b +≤-∴1a b +≤-恒成立,即+a b 的最大值是-1.故答案为:1-.7.(2020·武汉外国语学校(武汉实验外国语学校)高一期中)已知函数2()3(,)f x ax bx a b R =++∈,且()0f x ≤的解集为[1,3].(1)求()f x 的解析式;(2)设()()41xh x f x x =+-,在定义域范围内若对于任意的12x x ,,使得()()12h x h x M -≤恒成立,求M 的最小值.【答案】(1)2()43f x x x =-+;(2.【解析】(1)代入方程的根,求得参数值.(2)使不等式恒成立,根据函数单调性求得函数的最值,从而求得参数的值.【详解】解:(1)由题意(1)30(3)9330f a b f a b =++=⎧⎨=++=⎩解得14a b =⎧⎨=-⎩2()43f x x x ∴=-+(2)由题意max ()()minM h x h x - (2)(),2xh x x R x =∈+当0()0x h x ==当10()2x h x x x≠=+,令2()g x x x=+,当0,()x g x >…,当x =取等号,当0,()x g x <≤-当x =取等号,()(,)g x ∴∈-∞-⋃+∞()(0)h x x ⎡⎫⎛∈⋃≠⎪ ⎢⎪ ⎣⎭⎝综上,()h x ⎡∈⎢⎣M ⎛∴= ⎝…min M ∴=8.(2021·浙江高一期末)设函数()()2,f x x ax b a b R =-+∈.(1)若()f x 在区间[]0,1上的最大值为b ,求a 的取值范围;(2)若()f x 在区间[]1,2上有零点,求2244a b b +-的最小值.【答案】(1)[)1,+∞;(2)45.【解析】(1)对实数a 的取值进行分类讨论,分析函数()f x 在区间[]0,1上的单调性,求得()max f x ,再由()max f x b =可求得实数a 的取值范围;(2)设函数()f x 的两个零点为1x 、2x ,由韦达定理化简()22222221222222241414144a x x x x x x b b x +-=+⎛⎫=+--⎪++⎝⎭,设()22224124g x x =⎛⎫+- ⎪⎝⎭,由[]21,2x ∈结合不等式的基本性质求出()2g x 的最小值,即为所求.【详解】(1)二次函数()2f x x ax b =-+的图象开口向上,对称轴为直线2a x =.①当02a≤时,即当0a ≤时,函数()f x 在区间[]0,1上单调递增,则()()max 11f x f a b ==-+;②当012a <<时,即当02a <<时,函数()f x 在0,2a ⎡⎫⎪⎢⎣⎭上单调递减,在,12a ⎛⎤⎥⎝⎦上单调递增,()0f b = ,()11f a b =-+,所以,(){}max 1,01max ,1,12a b a f x b a b b a -+<<⎧=-+=⎨≤<⎩;③当12a≥时,即当2a ≥时,函数()f x 在区间[]0,1上单调递减,则()()max 0f x f b ==.综上所述,()max 1,1,1a b a f x b a -+<⎧=⎨≥⎩.所以,当()f x 在区间[]0,1上的最大值为b ,实数a 的取值范围是[)1,+∞;(2)设函数()f x 的两个零点为1x 、2x ,由韦达定理可得1212x x ax x b +=⎧⎨=⎩,所以,()()22222222222212121211221212122444424142a b b x x x x x x x x x x x x x x x x x +-=++-=-++=+-+()222222222212222222241414141x x x x x x x x x x ⎛⎫=+-+-≥- ⎪+++⎝⎭,设()242222222222422222444144141124x x g x x x x x x x =-===++⎛⎫++- ⎪⎝⎭,由212x ≤≤可得221114x ≤≤,所以,()2222445124g x x =≥⎛⎫+- ⎪⎝⎭.此时,21x =,由212241x x x =+可得115x =.所以,当115x =,21x =时,2244a b b +-取最小值45.9.(2020·全国高一单元测试)已知函数f (x )=9x ﹣a ⋅3x +1+a 2(x ∈[0,1],a ∈R ),记f (x )的最大值为g (a ).(Ⅰ)求g (a )解析式;(Ⅱ)若对于任意t ∈[﹣2,2],任意a ∈R ,不等式g (a )≥﹣m 2+tm 恒成立,求实数m 的范围.【答案】(Ⅰ)g (a )=22499,3431,3a a a a a a ⎧-+≤⎪⎪⎨⎪-+>⎪⎩;(Ⅱ)m ≤﹣52或m ≥52.【解析】(Ⅰ)令u =3x ∈[1,3],得到f (x )=h (u )=u 2﹣3au +a 2,分类讨论即可求出,(Ⅱ)先求出g (a )min =g (32)=﹣54,再根据题意可得﹣m 2+tm ≤﹣54,利用函数的单调性即可求出.【详解】解:(Ⅰ)令u =3x ∈[1,3],则f (x )=h (u )=u 2﹣3au +a 2.当32a≤2,即a ≤43时,g (a )=h (u )min =h (3)=a 2﹣9a +9;当322a>,即a >43时,g (a )=h (u )min =h (1)=a 2﹣3a +1;故g (a )=22499,3431,3a a a a a a ⎧-+≤⎪⎪⎨⎪-+>⎪⎩;(Ⅱ)当a≤43时,g (a )=a 2﹣9a +9,g (a )min =g (43)=﹣119;当a 43>时,g (a )=a 2﹣3a +1,g (a )min =g (32)=﹣54;因此g (a )min =g (32)=﹣54;对于任意任意a ∈R ,不等式g (a )≥﹣m 2+tm 恒成立等价于﹣m 2+tm ≤﹣54.令h (t )=mt ﹣m 2,由于h (t )是关于t 的一次函数,故对于任意t ∈[﹣2,2]都有h (t )≤﹣54等价于5(2)45(2)4h h ⎧-≤-⎪⎪⎨⎪≤-⎪⎩,即2248504850m m m m ⎧+-≥⎨--≥⎩,解得m ≤﹣52或m ≥52.10.(2021·全国高一课时练习)已知函数()22(0)f x ax ax b a =-+>,在区间[]0,3上有最大值16,最小值0.设()()f xg x x=.(1)求()g x 的解析式;(2)若不等式()22log log 0g x k x -⋅≥在[]4,16上恒成立,求实数k 的取值范围;【答案】(1)()148g x x x ⎛⎫=+- ⎪⎝⎭(0)x ≠;(2)(,1]-∞.【解析】(1)由二次函数的性质知()f x 在()0,1上为减函数,在()1,3上为增函数,结合其区间的最值,列方程组求,a b ,即可写出()g x 解析式;(2)由题设得222184()4log log k x x≤-+在[]4,16x ∈上恒成立,即k 只需小于等于右边函数式的最小值即可.【详解】(1)∵()2(1)f x a x b a =-+-(0a >),即()f x 在()0,1上为减函数,在()1,3上为增函数.又在[]0,3上有最大值16,最小值0,∴(1)0f b a =-=,(3)316f a b =+=,解得4a b ==,∴()148g x x x ⎛⎫=+- ⎪⎝⎭(0)x ≠;(2)∵()22log log 0g x k x -≥∴22214log 8log log x k x x ⎛⎫+-≥ ⎪⎝⎭,由[]4,16x ∈,则[]2log 2,4x ∈,∴222221814(44(1)log log log k x x x ≤-+=-,设21log t x =,11,42t ⎡⎤∈⎢⎥⎣⎦,∴()24(1)h t t =-在11,42⎡⎤⎢⎥⎣⎦上为减函数,当12t =时,()h t 最小值为1,∴1k ≤,即(,1]k ∈-∞.1.(浙江省高考真题)若函数()2f x =x ax b ++在区间[0,1]上的最大值是M,最小值是m,则M m -的值练真题( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B 【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,选B .2.(2018·浙江高考真题)已知λ∈R,函数f (x )=x ―4,x ≥λx 2―4x +3,x <λ,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.【答案】 (1,4) (1,3]∪(4,+∞) 【解析】由题意得x ≥2x ―4<0 或x <2x 2―4x +3<0,所以2≤x <4或1<x <2,即1<x <4,不等式f (x )<0的解集是(1,4),当λ>4时,f (x )=x ―4>0,此时f (x )=x 2―4x +3=0,x =1,3,即在(―∞,λ)上有两个零点;当λ≤4时,f (x )=x ―4=0,x =4,由f (x )=x 2―4x +3在(―∞,λ)上只能有一个零点得1<λ≤3.综上,λ的取值范围为(1,3]∪(4,+∞).3.(北京高考真题)已知0x ≥,0y ≥,且1x y +=,则22x y +的取值范围是_____.【答案】1[,1]2【解析】试题分析:22222(1)221,[0,1]x y x x x x x +=+-=-+∈,所以当01x =或时,取最大值1;当12x = 时,取最小值12.因此22x y +的取值范围为1[,1]2.4.(2018·天津高考真题(理))已知0a >,函数222,0,()22,0.x ax a x f x x ax a x ⎧++≤=⎨-+->⎩若关于x 的方程()f x ax=恰有2个互异的实数解,则a 的取值范围是______________.【答案】(48),【解析】分析:由题意分类讨论0x ≤和0x >两种情况,然后绘制函数图像,数形结合即可求得最终结果.详解:分类讨论:当0x ≤时,方程()f x ax =即22x ax a ax ++=,整理可得:()21x a x =-+,很明显1x =-不是方程的实数解,则21x a x =-+,当0x >时,方程()f x ax =即222x ax a ax -+-=,整理可得:()22x a x =-,很明显2x =不是方程的实数解,则22x a x =-,令()22,01,02x x x g x x x x ⎧-≤⎪⎪+=⎨⎪>⎪-⎩,其中211211x x x x ⎛⎫-=-++- ⎪++⎝⎭,242422x x x x =-++--原问题等价于函数()g x 与函数y a =有两个不同的交点,求a 的取值范围.结合对勾函数和函数图象平移的规律绘制函数()g x 的图象,同时绘制函数y a =的图象如图所示,考查临界条件,结合0a >观察可得,实数a 的取值范围是()4,8.5.(2020·江苏省高考真题)已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式;【答案】(1)()2h x x =;【解析】(1)由题设有2222x x kx b x x -+≤+≤+对任意的x ∈R 恒成立.令0x =,则00b ≤≤,所以0b =.因此22kx x x ≤+即()220x k x +-≥对任意的x ∈R 恒成立,所以()220k ∆=-≤,因此2k =.故()2h x x =.6.(浙江省高考真题(文))设函数2(),(,)f x x ax b a b R =++∈.(1)当214a b =+时,求函数()f x 在[1,1]-上的最小值()g a 的表达式;(2)已知函数()f x 在[1,1]-上存在零点,021b a ≤-≤,求b 的取值范围.【答案】(1)222,2,4(){1,22,2,24a a a g a a a a a ++≤-=-<≤-+>;(2)[3,9--【解析】(1)当214a b =+时,2()()12a f x x =++,故其对称轴为2a x =-.当2a ≤-时,2()(1)24a g a f a ==++.当22a -<≤时,()()12a g a f =-=.当2a >时,2()(1)24a g a f a =-=-+.综上,222,2,4(){1,22,2,24a a a g a a a a a ++≤-=-<≤-+>(2)设,s t 为方程()0f x =的解,且11t -≤≤,则{s t ast b+=-=.由于021b a ≤-≤,因此212(11)22t ts t t t --≤≤-≤≤++.当01t ≤≤时,222222t t t b t t --≤≤++,由于222032t t --≤≤+和212932t t t --≤≤-+,所以293b -≤≤-.当10t -≤≤时,222222t t t b t t --≤≤++,由于22202tt--≤<+和2302t tt--≤<+,所以30b-≤<.综上可知,b的取值范围是[3,9--.。

二次函数最经典练习题

二次函数最经典练习题

二次函数最经典练习题1、抛物线y=-(x+2)-3的顶点坐标是().正确答案为(A)(2,-3)。

2、抛物线y x2x1的顶点坐标是(。

)正确答案为(D)(2,-1)。

3、抛物线y=x-2x-3的顶点坐标是不完整的,需要删除。

4、下列二次函数中,图象以直线x= 2为对称轴,且经过点(0,1)的是( )正确答案为(C) y= (x−2)−3.5、将二次函数y x4x5化为y(x h)k的形式,则y.需要删除。

6、二次函数y x2x5有(。

)正确答案为(B) 最小值 5.7、由二次函数y2(x3)21,可知()正确答案为(D) 当x3时,y随x的增大而增大。

二、a、b、c与图象的关系1、如图为抛物线y ax bx c的图像,A、B、C为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是(。

)正确答案为(A) a+b=-1.2、已知抛物线y=ax+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是(。

)正确答案为(A) a>0.3、如图所示的二次函数y ax bx c的图象中,XXX 同学观察得出了下面四条信息:(1)b4ac;(2)c>1;(3)2a-b<0;(4)a+b+c<0.你认为其中错误的有..正确答案为(B) 3个。

4、如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为1,1,下列结论:①ac<;②a+b=0;③4ac-b=4a;④a+b+c<0.其中正确的个数是()正确答案为(C) 3个。

三、列表法、增减性1、下列函数中,当x>0时y值随x值增大而减小的是().需要删除。

1.A。

无需改写。

B。

无需改写。

C。

无需改写。

D。

二次函数y=x^2-2x-3的图象如图所示。

当y<0时,自变量x的取值范围是x<-1或x>3.2.已知二次函数的图象(0≤x≤3)如图所示。

关于该函数在所给自变量取值范围内,下列说法正确的是:B。

二次函数的练习题及答案

二次函数的练习题及答案

二次函数的练习题及答案一、选择题:1. 若二次函数y=ax^2+bx+c的图像开口向上,且与x轴有交点,则a 和b应满足的条件是()。

A. a>0, b>0B. a<0, b<0C. a>0, b^2>4acD. a<0, b^2>4ac2. 二次函数y=-x^2+4x-1的顶点坐标是()。

A. (1,4)B. (2,3)C. (-2,3)D. (2,-3)3. 对于二次函数y=ax^2+bx+c,当x=-1时,函数值最大,那么a的取值范围是()。

A. a>0B. a<0C. a=0D. 无法确定二、填空题:1. 已知二次函数y=2x^2-8x+3,当x=______时,函数值最小。

2. 若二次函数y=-3x^2-6x+5的图像与x轴的交点坐标为(x1,0),(x2,0),则x1+x2=______。

三、解答题:1. 已知二次函数y=-2x^2+4x+1,求出当x取何值时,函数值y最大,并求出最大值。

2. 已知二次函数y=3x^2-6x+2,求出函数与x轴的交点坐标。

四、应用题:1. 某工厂生产一种产品,其生产成本与产品数量的关系可以近似为二次函数:C(x)=0.5x^2-100x+3000,其中x代表产品数量,C(x)代表成本。

求出当生产多少件产品时,成本最低,并求出最低成本。

2. 某公司计划在一块长为60米的空地上建一个矩形花园,花园的长和宽之和为30米。

设花园的长为x米,求出花园的面积最大时的长和宽,并求出最大面积。

答案:一、选择题:1. C2. B3. B二、填空题:1. 22. -2三、解答题:1. 当x=1时,函数值y最大,最大值为3。

2. 函数与x轴的交点坐标为(1,0)和(2,0)。

四、应用题:1. 当生产200件产品时,成本最低,最低成本为2000元。

2. 花园的长为15米,宽为15米时,面积最大,最大面积为225平方米。

《二次函数》练习题及答案

《二次函数》练习题及答案

《二次函数》练习题与答案一、 选择题1,下列函数中,是二次函数の是( ) A,12-=x y B,x x y +=3C,312++=x x y D,2==x y 2,(2012广州)将二次函数y=x 2の图象向下平移一个单位,则平移以后の二次函数の解析式为( ) A .y=x 2﹣1 B .y=x 2+1 C .y=(x ﹣1)2 D .y=(x+1)2 3,(2012兰州)抛物线y=-2x 2+1の对称轴是( ) A.直线12x =B. 直线12x =- C. y 轴 D. 直线x=2 4,(2012北海)已知二次函数y =x 2-4x +5の顶点坐标为( )A .(-2,-1)B .(2,1)C .(2,-1)D .(-2,1)5,(2011XX 台北,6)若下列有一图形为二次函数y =2x 2-8x +6の图形,则此图为何?( )6,(2012滨州)抛物线234y x x =--+ 与坐标轴の交点个数是( ) A .3 B .2 C .1 D .07, ( 2012巴中)对于二次函数y =2(x +1)(x -3)下列说法正确の是( ) A. 图象开口向下 B. 当x >1时,y 随x の增大而减小 C. x <1时,y 随x の增大而减小 D. 图象の对称轴是直线x= - 1 8,(2011XX 威海,7,3分)二次函数223y x x =--の图象如图所示. 当y <0时,自变量x の取值范围是( ). A .-1<x <3B .x <-1C . x >3D .x <-1或x >39,(2012泰安)设A 1(2)y -,,B 2(1)y ,,C 3(2)y ,是抛物线2(1)y x a =-++上の三点,则1y ,2y ,3y の大小关系为( )A .213y y y >>B .312y y y >>C .321y y y >>D .312y y y >>10,(2012菏泽)已知二次函数2y ax bx c =++の图像如图所示,那么一次函数y bx c =+和反比例函数ay x=在同一平面直角坐标系中の图像大致是( )xy(第3题)O11(1,-2)cbx x y ++=2-1 A . B .C .D .,11,(2012泰安)二次函数2()y a x m n =++の图象如图,则一次函数y mx n =+の图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限12,(2012•资阳)如图是二次函数y=ax 2+bx+c の部分图象,由图象可知 不等式ax 2+bx+c <0の解集是( )A .﹣1<x <5B .x >5C .x <﹣1且x >5D .x <﹣1或x >5二、填空题1.(2011江津,18,4)将抛物线y=x 2-2x 向上平移3个单位,再向右平移4 个单位等到の抛物线是_ _ ___.2.(2012XX )二次函数622+-=x x y の最小值是.3. (2011XX 舟山,15,4)如图,已知二次函数c bx x y ++=2の图象经过 点(-1,0),(1,-2),当y 随x の增大而增大时,x の取值范围是. 4.(2012无锡)若抛物线y=ax 2+bx+c の顶点是A (2,1),且经过点B (1,0), 则抛物线の函数关系式为.5. 若抛物线y=x 2-2x-3与x 轴分别交于A 、B 两点,则AB の长为____ ___.6.(2011XX 日照,17,4)如图是二次函数y =ax 2+bx +c (a ≠0)の图象の一 部分,给出下列命题 :①a+b+c=0;②b >2a ;③ax 2+bx +c =0の两根分别为-3和1; ④a -2b +c >0.其中正确の命题是 .(只要求填写正确命题の序号) 7. (2012广安)如图,把抛物线y=21x 2平移得到抛物线m ,抛物线m 经过点 A (-6,0)和原点O (0,0),它の顶点为P ,它の对称轴与抛物线y=21x 2交于点Q ,则图中阴影部分の面积为________________.三、解答题1.(2011广东东莞,15,6分)已知抛物线212y x x c =++与x 轴没有交点. (1)求c の取值范围;(2)试确定直线y =cx +1经过の象限,并说明理由.2.(2012•佳木斯)如图,抛物线y=x 2+bx+c 经过坐标原点,并与x 轴交于点A (2,0). (1)求此抛物线の解析式;(2)写出顶点坐标与对称轴; (3)若抛物线上有一点B ,且S △OAB =3,求点B の坐标.3.(2012•嘉兴)某汽车租赁公司拥有20辆汽车.据统计,当每辆车の日租金为400元时,可全部租出;当每 辆车の日租金每增加50元,未租出の车将增加1辆;公司平均每日の各项支出共4800元.设公司每日租出工辆车时,日收益为y 元.(日收益=日租金收入一平均每日各项支出)(1)公司每日租出x 辆车时,每辆车の日租金为 _________ 元(用含x の代数式表示); (2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元? (3)当每日租出多少辆时,租赁公司の日收益不盈也不亏?4.(2012•鸡西)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且OA=2,OC=3.(1)求抛物线の解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线の对称轴上,是否存在一点P,使得△BDPの周长最小?若存在,请求出点Pの坐标;若不存在,请说明理由.5.(2012•XX)如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A、B两点),与y轴交于点C.(1)写出A、B两点の坐标;(2)二次函数L2:y=kx2﹣4kx+3k(k≠0),顶点为P.①直接写出二次函数L2与二次函数L1有关图象の两条相同の性质;②是否存在实数k,使△ABP为等边三角形?如果存在,请求出kの值;如不存在,请说明理由;③若直线y=8k与抛物线L2交于E、F两点,问线段EFの长度是否会发生变化?如果不会,请求出EFの长度;如果会,请说明理由.答 案一,选择题.1,解:)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数の一般式。

(完整版)二次函数练习题及答案

(完整版)二次函数练习题及答案

n dAl l t h i ng si nt he i rb ei n ga re go od fo二次函数练习题一、选择题:1.下列关系式中,属于二次函数的是(x 为自变量)( ) A. B. C. D.2. 函数y=x 2-2x+3的图象的顶点坐标是( )A. (1,-4)B.(-1,2)C. (1,2)D.(0,3)3. 抛物线y=2(x-3)2的顶点在( )A. 第一象限B. 第二象限C. x 轴上D. y 轴上4. 抛物线的对称轴是( )A. x=-2B.x=2C. x=-4D. x=45. 已知二次函数y=ax 2+bx+c 的图象如图所示,则下列结论中,正确的是( ) A. ab>0,c>0 B. ab>0,c<0 C. ab<0,c>0 D. ab<0,c<06. 二次函数y=ax 2+bx+c 的图象如图所示,则点在第___象限( )A. 一B. 二C. 三D. 四7. 如图所示,已知二次函数y=ax 2+bx+c(a ≠0)的图象的顶点P 的横坐标是4,图象交x 轴于点A(m ,0)和点B ,且m>4,那么AB 的长是( )A. 4+mB. mC. 2m-8D. 8-2m8. 若一次函数y=ax+b 的图象经过第二、三、四象限,则二次函数y=ax 2+bx 的图象只可能是( )9. 已知抛物线和直线 在同一直角坐标系中的图象如图所示,抛物线的对称轴为直线x=-1,P 1(x 1,y 1),P 2(x 2,y 2)是抛物线上的点,P 3(x 3,y 3)是直线 上的点,且-1<x 1<x 2,x 3<-1,则y 1,y 2,y 3的大小关系是( )A. y 1<y 2<y 3 B. y 2<y 3<y 1 C. y 3<y 1<y 2 D. y 2<y 1<y 3andllt hi ng si nt he i rb ei n ga re go od fo rs o 10.把抛物线的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( )A.B.C. D.二、填空题:11. 二次函数y=x 2-2x+1的对称轴方程是______________.12. 若将二次函数y=x 2-2x+3配方为y=(x-h)2+k 的形式,则y=________.13. 若抛物线y=x 2-2x-3与x 轴分别交于A 、B 两点,则AB 的长为_________.14. 抛物线y=x 2+bx+c ,经过A(-1,0),B(3,0)两点,则这条抛物线的解析式为_____________.15. 已知二次函数y=ax 2+bx+c 的图象交x 轴于A 、B 两点,交y 轴于C 点,且△ABC 是直角三角形,请写出一个符合要求的二次函数解析式________________.16. 在距离地面2m 高的某处把一物体以初速度v 0(m/s)竖直向上抛物出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:(其中g 是常数,通常取10m/s 2).若v 0=10m/s ,则该物体在运动过程中最高点距地面_________m.17. 试写出一个开口方向向上,对称轴为直线x=2,且与y 轴的交点坐标为(0,3)的抛物线的解析式为______________.18. 已知抛物线y=x 2+x+b 2经过点,则y 1的值是_________.三、解答题:19. 若二次函数的图象的对称轴方程是,并且图象过A(0,-4)和B(4,0),(1)求此二次函数图象上点A 关于对称轴对称的点A ′的坐标; (2)求此二次函数的解析式;20. 在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k-5)x-(k+4) 的图象交x轴于点A(x1,0)、B(x2,0),且(x1+1)(x2+1)=-8. (1)求二次函数解析式;(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求△POC的面积.21.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点. (1)求抛物线的解析式; (2)求△MCB的面积S△MCB.22.某商店销售一种商品,每件的进价为2.50元,根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.50元时,销售量为500件,而单价每降低1元,就可以多售出200件.请你分析,销售单价多少时,可以获利最大.e an dAl l t h i ng si nt he i rb ei n 答案与解析:一、选择题1.考点:二次函数概念.选A.2.考点:求二次函数的顶点坐标. 解析:法一,直接用二次函数顶点坐标公式求.法二,将二次函数解析式由一般形式转换为顶点式,即y=a(x-h)2+k 的形式,顶点坐标即为(h ,k),y=x 2-2x+3=(x-1)2+2,所以顶点坐标为(1,2),答案选C. 3.考点:二次函数的图象特点,顶点坐标. 解析:可以直接由顶点式形式求出顶点坐标进行判断,函数y=2(x-3)2的顶点为(3,0),所以顶点在x 轴上,答案选C. 4. 考点:数形结合,二次函数y=ax 2+bx+c 的图象为抛物线,其对称轴为. 解析:抛物线,直接利用公式,其对称轴所在直线为答案选B. 5. 考点:二次函数的图象特征. 解析:由图象,抛物线开口方向向下, 抛物线对称轴在y 轴右侧, 抛物线与y 轴交点坐标为(0,c)点,由图知,该点在x 轴上方,答案选C. 6. 考点:数形结合,由抛物线的图象特征,确定二次函数解析式各项系数的符号特征. 解析:由图象,抛物线开口方向向下, 抛物线对称轴在y 轴右侧, 抛物线与y 轴交点坐标为(0,c)点,由图知,该点在x 轴上方,在第四象限,答案选D. 7. 考点:二次函数的图象特征. 解析:因为二次函数y=ax 2+bx+c(a ≠0)的图象的顶点P 的横坐标是4,所以抛物线对an dAl l t h i ng si nt he i rb ei n ga re go od fo rs 称轴所在直线为x=4,交x 轴于点D ,所以A 、B 两点关于对称轴对称,因为点A(m ,0),且m>4,所以AB=2AD=2(m-4)=2m-8,答案选C. 8. 考点:数形结合,由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状. 解析:因为一次函数y=ax+b 的图象经过第二、三、四象限,所以二次函数y=ax 2+bx 的图象开口方向向下,对称轴在y 轴左侧,交坐标轴于(0,0)点.答案选C. 9. 考点:一次函数、二次函数概念图象及性质. 解析:因为抛物线的对称轴为直线x=-1,且-1<x 1<x 2,当x>-1时,由图象知,y 随x 的增大而减小,所以y 2<y 1;又因为x 3<-1,此时点P 3(x 3,y 3)在二次函数图象上方,所以y 2<y 1<y 3.答案选D. 10.考点:二次函数图象的变化.抛物线的图象向左平移2个单位得到,再向上平移3个单位得到.答案选C.二、填空题 11. 考点:二次函数性质. 解析:二次函数y=x 2-2x+1,所以对称轴所在直线方程.答案x=1. 12. 考点:利用配方法变形二次函数解析式. 解析:y=x 2-2x+3=(x 2-2x+1)+2=(x-1)2+2.答案y=(x-1)2+2. 13. 考点:二次函数与一元二次方程关系. 解析:二次函数y=x 2-2x-3与x 轴交点A 、B 的横坐标为一元二次方程x 2-2x-3=0的两个根,求得x 1=-1,x 2=3,则AB=|x 2-x 1|=4.答案为4. 14. 考点:求二次函数解析式. 解析:因为抛物线经过A(-1,0),B(3,0)两点,解得b=-2,c=-3, 答案为y=x 2-2x-3. 15. 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一. 解析:需满足抛物线与x 轴交于两点,与y 轴有交点,及△ABC 是直角三角形,但没有确定哪个角为直角,答案不唯一,如:y=x 2-1. 16. 考点:二次函数的性质,求最大值. 解析:直接代入公式,答案:7.Al l t h i ng si nt he i rb ei n ga re go od fo r 17. 考点:此题是一道开放题,求解满足条件的二次函数解析式,答案不唯一. 解析:如:y=x 2-4x+3. 18. 考点:二次函数的概念性质,求值. 答案:.三、解答题 19. 考点:二次函数的概念、性质、图象,求解析式. 解析:(1)A ′(3,-4) (2)由题设知: ∴y=x 2-3x-4为所求 (3) 20. 考点:二次函数的概念、性质、图象,求解析式. 解析:(1)由已知x 1,x 2是x 2+(k-5)x-(k+4)=0的两根 又∵(x 1+1)(x 2+1)=-8 ∴x 1x 2+(x 1+x 2)+9=0 ∴-(k+4)-(k-5)+9=0 ∴k=5 ∴y=x 2-9为所求 (2)由已知平移后的函数解析式为: y=(x-2)2-9 且x=0时y=-5 ∴C(0,-5),P(2,-9). 21. 解: (1)依题意:n dAl lt h i ng si nt he i rb ei n ga re go od fo rs o (2)令y=0,得(x-5)(x+1)=0,x 1=5,x 2=-1 ∴B(5,0) 由,得M(2,9) 作ME ⊥y 轴于点E , 则 可得S △MCB =15. 22. 思路点拨:通过阅读,我们可以知道,商品的利润和售价、销售量有关系,它们之间呈现如下关系式: 总利润=单个商品的利润×销售量.要想获得最大利润,并不是单独提高单个商品的利润或仅大幅提高销售量就可以的,这两个量之间应达到某种平衡,才能保证利润最大.因为已知中给出了商品降价与商品销售量之间的关系,所以,我们完全可以找出总利润与商品的价格之间的关系,利用这个等式寻找出所求的问题,这里我们不妨设每件商品降价x 元,商品的售价就是(13.5-x)元了. 单个的商品的利润是(13.5-x-2.5) 这时商品的销售量是(500+200x) 总利润可设为y 元. 利用上面的等量关式,可得到y 与x 的关系式了,若是二次函数,即可利用二次函数的知识,找到最大利润. 解:设销售单价为降价x 元.Al l t h i ng si nt he i rb ei n ga re go od fo rs o 顶点坐标为(4.25,9112.5). 即当每件商品降价4.25元,即售价为13.5-4.25=9.25时,可取得最大利润9112.5元。

高考二次函数综合题练习

高考二次函数综合题练习

二次函数综合题一、解答题(题型注释)1.(2014?七里河区校级三模)已知f (x )是二次函数,且f (0)=0,f (x+1)=f (x )+x+1,(1)求f (x )的表达式;(2)若f (x )>a 在x ∈[﹣1,1]恒成立,求实数a 的取值范围.2.已知函数()()||()f x x t x t R =-∈.(1)视t 讨论函数()f x 的单调区间;(2)若(0,2)t ∃∈,对于[1,2]x ∀∈-,不等式()f x x a >+都成立,求实数a 的取值范围.3.(本小题满分10分)函数f (x )=4x 2-4ax +a 2-2a +2在区间[0,2]上有最小值3,求a 的值.4.已知函数2()(1)1f x x m x =+-+.(Ⅰ)若方程()0f x =有两个不相等的实数根,求实数m 的取值范围;(Ⅱ)若关于x 的不等式()0f x <的解集为12(,)x x ,且120||x x <-<,求实数m 的取值范围.5.已知函数)1(52)(2>+-=a ax x x f .(1)若)(x f 的定义域和值域均是],1[a ,求实数a 的值;(2)若)(x f 在区间]2(,-∞上是减函数,且对任意的1x ,]1,1[2+∈a x ,总有12|()()|4f x f x -≤,求实数a 的取值范围.6.(本小题满分12分)已知二次函数()f x 满足(1)()21f x f x x +-=-,且(0)3f =.(1)求()f x 的解析式;(2)若函数31(log ),[,3]3y f x m x =+∈的最小值为3,求实数m 的值;(3)若对任意互不相同的12,(2,4)x x ∈,都有1212|()()|||f x f x k x x -<-成立,求实数k 的取值范围.7.已知二次函数2()f x ax bx =++c 的图象通过原点,对称轴为n x 2-=,()n ∈*N .()f x '是()f x 的导函数,且(0)2,f n '=()n ∈*N .(1)求)(x f 的表达式(含有字母n );(2)若数列{}n a 满足)(1n n a f a '=+,且14a =,求数列{}n a 的通项公式;(3)在(2)条件下,若212nn a a n n b -+⋅=,n n b b b S +++=K 21,是否存在自然数M ,使得当M n >时n n S n -⋅+1250>恒成立?若存在,求出最小的M ;若不存在,说明理由. 8.设函数()221f x x ax a =+--,[]0,2x ∈,a 为常数 (1)求()f x 的最小值()g a 的解析式;(2)在(1)中,是否存在最小的整数m ,使得()0g a m -≤对于任意a R ∈均成立,若存在,求出m 的值;若不存在,请说明理由.9.设函数2()=2f x kx x +(k 为实常数)为奇函数,函数()()1f x g x a =-(01a a >≠且).(1)求k 的值;(2)求()g x 在[]1,2-上的最大值;(3)当a =时,2()21g x t mt ≤-+对所有的[1,1]x ∈-及[1,1]m ∈-恒成立,求实数的取值范围.10.已知二次函数2()4,f x ax bx =++集合{}()A x f x x == (1)若{}1,A =求函数()f x 的解析式;(2)若1A ∈,且12,a ≤≤设()f x 在区间1,22⎡⎤⎢⎥⎣⎦上的最大值、最小值分别为,M m ,记()g a M m =-,求()g a 的最小值.11.已知函数()f x =x2-4x +a +3,g(x)=mx +5-2m .(Ⅰ)若方程f(x)=0在[-1,1]上有实数根,求实数a 的取值范围;(Ⅱ)当a =0时,若对任意的x 1∈[1,4],总存在x 2∈[1,4],使f(x 1)=g(x 2)成立,求实数m 的取值范围;(Ⅲ)若函数y =f(x)(x ∈[t ,4])的值域为区间D ,是否存在常数t ,使区间D 的长度为7-2t ?若存在,求出t 的值;若不存在,请说明理由(注:区间[p ,q]的长度为q -p ).12.已知函数f(x)=2ax bx c ++,其中*,,.a N b N c Z ∈∈∈(I )若b>2a,且 f(sinx)(x ∈R)的最大值为2,最小值为-4,试求函数f(x)的最小值;(II )若对任意实数x ,不等式24()2(1)x f x x ≤≤+恒成立,且存在2000()2(1)x f x x <+使得成立,求c的值。

二次函数练习题及答案

二次函数练习题及答案

一、选择题(每小题3分,共36分)1.下列函数不是二次函数的是( D )A.y=(x-1)2B.y=1-√3x2C.y=-(x+1)(x-1)D.y=2(x+3)2-2x22.在函数y=√x-1中,自变量x的取值范围是( B )1-xA.x≥1B.x>1C.x<1D.x≤13.下列函数:①y=-3x2;②y=-3(x+3)2;③y=-3x2-1;④y=-2x2+5;⑤y=-(x-1)2.其中,图象形状、开口方向相同的是( D )A.②⑤B.③④C.①③④D.①②③4.将抛物线y=2(x-3)2+2向左平移3个单位,再向下平移2个单位,得到抛物线的表达式是( C )A.y=2(x-6)2B.y=2(x-6)2+4C.y=2x2D.y=2x2+45.已知二次函数y=-x2+2x+4,则下列关于这个函数图象和性质的说法,正确的是( C )A.图象的开口向上B.图象的顶点坐标是(1,3)C.当x<1时,y随x的增大而增大D.图象与x轴有唯一交点6.一次函数y=acx+b 与二次函数y=ax 2+bx+c 在同一平面直角坐标系中的图象可能是( B )7.一只葡萄酒杯如图①所示,酒杯的上半部分是以抛物线为模型设计而成,且成轴对称图形.从正面看葡萄酒杯的上半部分是一条抛物线,以顶点C 为原点建立如图②所示的平面直角坐标系,若AB=4,CD=3,则抛物线的表达式为( A )① ②A.y=34x 2 B.y=316x 2 C.y=-34x 2 D.y=-316x 28.竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at 2+bt,若小球在发射后第2 s 与第6 s 时的高度相等,则下列时刻中小球的高度最高的是( B )A.第3 sB.第3.9 sC.第4.5 sD.第6.5 s9.下列关于二次函数y=ax 2-2ax+1(a>1)的图象与x 轴交点的判断,正确的是( D ) A.没有交点B.只有一个交点,且它位于y 轴右侧C.有两个交点,且它们均位于y 轴左侧D.有两个交点,且它们均位于y 轴右侧10.(2022岱岳模拟)下表给出了二次函数y=ax2+bx+c(a≠0)的自变量x与函数值y的部分对应值,那么方程ax2+bx+c=0的一个根的近似值可能是( B )A.1.08B.1.18C.1.28D.1.3811.某旅游景点的收入受季节的影响较大,有时候出现赔本的经营状况.因此,公司规定:若无利润时,该景点关闭.经跟踪测算,该景点一年中的利润W(万元)与月份x之间满足二次函数W=-x2+16x-48,则该景点一年中处于关闭状态有( A )A.5个月B.6个月C.7个月D.8个月12.二次函数y=ax2+bx+c的部分图象如图所示,则下列选项错误的是( D )A.若(-2,y1),(5,y2)是图象上的两点,则y1>y2B.3a+c=0C.方程ax2+bx+c=-2有两个不相等的实数根D.当x≥0时,y随x的增大而减小二、填空题(每小题3分,共18分)13.(2022淄博实验中学模拟)若y=(m2-1)x m2-m是二次函数,则m= 2 .14.已知抛物线y=-x2+bx+c经过点A(-4,1),B(2,1),若函数值y随x 的值的增大而减小,则x的取值范围是x≥-1 .且15.抛物线y=(k-1)x2-x+1与x轴有交点,则k的取值范围是k≤54k≠1 .16.抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,与y轴交于C(0,3),且此抛物线的顶点坐标为M(-1,4),则此抛物线的表达式为y=-x2-2x+3 .17.已知抛物线y=x2-k的顶点为P,与x轴交于点A,B,且△ABP是正三角形,则k的值是 3 .18.如图所示,抛物线y=x2经过平移得到抛物线y=x2-4x,其对称轴与两段抛物线所围成的阴影部分的面积为8 .三、解答题(共46分)19.(6分)已知抛物线y=ax2-2ax-3+2a2(a≠0).(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其表达式;(3)设点P(m,y1),Q(3,y2)在抛物线上,若y1<y2,求m的取值范围.解:(1)∵y=ax2-2ax-3+2a2=a(x-1)2+2a2-a-3.∴抛物线的对称轴为直线x=1.(2)∵抛物线的顶点在x轴上,∴2a 2-a-3=0, 解得a 1=32,a 2=-1.∴抛物线的表达式为y=32x 2-3x+32或y=-x 2+2x-1.(3)∵抛物线的对称轴为直线x=1,则Q(3,y 2)关于x=1对称的点的坐标为(-1,y 2), ∴当a>0,-1<m<3时,y 1<y 2. 当a<0,m<-1或m>3时,y 1<y 2.20.(8分)某快餐店销售A,B 两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份.该店为了增加利润,准备降低每份A 种快餐的利润,同时提高每份B 种快餐的利润.售卖时发现,在一定范围内,每份A 种快餐利润每降1元可多卖2份,每份B 种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是多少元?解:设每份A 种快餐降价a 元,则每天卖出(40+2a)份,每份B 种快餐提高b 元,则每天卖出(80-2b)份, 由题意可得,40+2a+80-2b=40+80, 解得a=b,∴总利润W=(12-a)(40+2a)+(8+a)(80-2a) =-4a 2+48a+1 120 =-4(a-6)2+1 264. ∵-4<0,∴当a=6时,W 取得最大值1 264,即两种快餐一天的总利润最多为1 264元.21.(10分)如图所示,某农户计划用长12 m 的篱笆围成一个“日”字形的生物园饲养两种不同的家禽,生物园的一面靠墙,且墙的可利用长度最长为7 m.(1)若生物园的面积为9 m 2,则这个生物园垂直于墙的一边长为多少? (2)若要使生物园的面积最大,该怎样围? 解:设这个生物园垂直于墙的一边长为x m. (1)由题意,得x(12-3x)=9, 解得x 1=1(不符合题意,舍去),x 2=3, ∴这个生物园垂直于墙的一边长为3 m. (2)设围成生物园的面积为y m 2. 由题意,得y=x(12-3x)=-3(x-2)2+12. ∵{12-3x ≤7,12-3x >0,解得53≤x<4.∴当x=2时,y 最大=12,12-3x=6.∴生物园垂直于墙的一边长为2 m,平行于墙的一边长为6 m 时,围成生物园的面积最大,最大面积为12 m 2.22.(10分)(2022泰山模拟)有一辆宽为2 m 的货车(如图①所示),要通过一条抛物线形隧道(如图②所示).为确保车辆安全通行,规定货车车顶左右两侧离隧道内壁的垂直高度至少为0.5 m.已知隧道的跨度AB 为8 m,拱高为4 m.(1)若隧道为单车道,货车高为3.2 m,该货车能否安全通行?为什么?(2)若隧道为双车道,且两车道之间有0.4 m的隔离带,通过计算说明该货车能够通行的最大安全限高.①②解:(1)货车能安全通行.理由如下:依题意建立平面直角坐标系如图所示., 设抛物线表达式为y=ax2+4,将B(4,0)代入,得16a+4=0,解得a=-14∴抛物线表达式为y=-1x2+4.令x=1可得y=3.75.4∵3.75-0.5=3.25>3.2,∴货车能够安全通行.(2)令x=0.2+2=2.2,可得y=2.79.∵2.79-0.5=2.29,∴货车能够通行的最大安全限高为2.29 m.23.(12分)如图所示,△OAP是等腰直角三角形,∠OAP=90°,点A在第四象限,点P坐标为(8,0),抛物线y=ax2+bx+c经过原点O和A,P两点.(1)求抛物线的函数表达式.(2)点B是y轴正半轴上一点,连接AB,过点B作AB的垂线交抛物线于C,D两点,且BC=AB,求点B坐标;(3)在(2)的条件下,点M是线段BC上一点,过点M作x轴的垂线交抛物线于点N,求△CBN面积的最大值.解:(1)△OAP是等腰直角三角形,∠OAP=90°,点P坐标为(8,0),则点A在抛物线的对称轴上,故点A(4,-4),故抛物线的表达式为y=a(x-4)2-4,将点P的坐标代入上式并解得a=1,4x2-2x.故抛物线的表达式为y=14(2)设点B(0,m),过点C作CH⊥y轴于H,过点A作AQ⊥y轴于点Q,如图所示.∵∠BAQ+∠QBA=90°,∠QBA+∠HBC=90°,∴∠HBC=∠BAQ.又∵BC=AB,∠CHB=∠BQA=90°,∴△CHB≌△BQA(AAS),∴BH=AQ=4,CH=BQ=4+m,故点C(m+4,m+4).将点C的坐标代入抛物线表达式并解得m=8,故点B(0,8).(3)由(2)知点B(0,8),点C(12,12),设直线BC 的表达式为y=kx+n. 将点B,C 的坐标代入,得 {n =8,12k +n =12,解得{k =13,n =8, ∴直线BC 的表达式为y=13x+8.设点N(x,14x 2-2x),则点M(x,13x+8),∴△CBN 的面积S=12×MN ×CH=12×(13x+8-14x 2+2x)×12=-32x 2+14x+48=-32(x-143)2+2423.∵-32<0,故S 有最大值2423.。

(完整版)高中二次函数练习题

(完整版)高中二次函数练习题

二次函数专题一、选择题1.若函数y =(x +1)(x -a )为偶函数,则a 等于( )A .-2B .-1C .1D .22.若f (x )=x 2-ax +1有负值,则实数a 的取值范围是( )A .a >2或a <-2B .-2<a <2C .a ≠±2D .1<a <33.若f (x )=x 2-x +a ,f (-m )<0,则f (m +1)的值为( )A .正数B .负数C .非负数D .与m 有关4.已知函数y =ax 2+bx +c ,如果a >b >c ,且a +b +c =0,则它的图象是( )5.已知函数f (x )=x 2+ax +b ,且f (x +2)是偶函数,则f (1),f (52),f (72)的大小关系是( )A .f (52)<f (1)<f (72)B .f (1)<f (72)<f (52)C .f (72)<f (1)<f (52)D .f (72)<f (52)<f (1)二、填空题6.已知函数f (x )=x 2-2x +2的定义域和值域均为[1,b ],则b =________.7.方程x 2-mx +1=0的两根为α、β,且α>0,1<β<2,则实数m 的取值范围是________.8.已知定义在区间[0,3]上的函数f (x )=kx 2-2kx 的最大值为3,那么实数k 的取值范围为________.三、解答题9.求下列二次函数的解析式:(1)图象顶点坐标为(2,-1),与y 轴交点坐标为(0,11);(2)已知二次函数f (x )满足f (0)=1,且f (x +1)-f (x )=2x .10.已知函数f (x )=x 2-4ax +2a +6(a ∈R ).(1)若函数的值域为[0,+∞),求a 的值;(2)若函数值为非负数,求函数f (a )=2-a |a +3|的值域.11.已知函数f (x )=ax 2+2x +c (a 、c ∈N *)满足:①f (1)=5;②6<f (2)<11.(1)求a 、c 的值;(2)若对任意的实数x ∈[12,32],都有f (x )-2mx ≤1成立,求实数m 的取值范围.。

(完整版)二次函数最经典练习题

(完整版)二次函数最经典练习题

一、顶点、平移1、抛物线y =-(x +2)2-3的顶点坐标是( ).(A) (2,-3); (B) (-2,3); (C) (2,3); (D) (-2,-3) 2、抛物线221y x x =-+的顶点坐标是( ) A .(1,0)B .(-1,0)C .(-2,1)D .(2,-1)3、抛物线y=x 2-2x -3的顶点坐标是 .4、下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是 ( ) A .y = (x − 2)2+ 1 B .y = (x + 2)2+ 1 C .y = (x − 2)2− 3 D .y = (x + 2)2− 35、将二次函数245y x x =-+化为2()y x h k =-+的形式,则y = . 6、二次函数522-+=x x y 有( ) A . 最大值5-B . 最小值5-C . 最大值6-D . 最小值6-7、由二次函数1)3(22+-=x y ,可知( )A .其图象的开口向下B .其图象的对称轴为直线3-=xC .其最小值为1D .当3<x 时,y 随x 的增大而增大 .二、a 、b 、c 与图象的关系1、如图为抛物线2y ax bx c =++的图像,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是 ( )A .a +b =-1B . a -b =-1C . b <2aD . ac <0 2、已知抛物线y =ax 2+bx +c (a ≠0)在平面直角坐标系中的位置如图所示,则下列结论中正确的是( )A . a >0 B . b <0 C . c <0 D . a +b +c >0 3、如图所示的二次函数2y ax bx c =++的图象中,刘星同学观察得出了下面四条信息:(1)240b ac ->;(2)c >1;(3)2a -b <0;(4)a +b +c <0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数**测试试卷考试范围:xxx ;考试时间:100分钟;命题人:xxx姓名:__________班级:__________考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、单项选择1. 设函数f(x)=ax 5+bx 3+cx +7(a ,b ,c 为常数,x ∈R),若f(-7)=-17,则f(7)=( ).A .31B .17C .-31D .24【答案】A2. 已知一次函数y ax b =+的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式(1)0a x b -->的解集为( )A .x <-1B .x >-1C . x >1D .x <1【答案】A3. 已知()f x 是定义在R 上的偶函数, 且在[0,)+∞上是增函数, 则一定有( )A .423()(1)4f f a a ->++B .3()4f -≥42(1)f a a ++C .423()(1)4f f a a -<++D .3()4f -≤42(1)f a a ++ 【答案】C 4. 已知函数f(x)=211x x -+,则f(x)( ) A .在(-∞,0)上单调递增 B .在(0,+∞)上单调递增C .在(-∞,0)上单调递递D .在(0,+∞)上单调递减 【答案】B5. 函数3()ln f x x x =-的零点所在的大致区间是( ) A .(1,2)B .(2,3)C .(3,4)D .(3,)+∞【答案】B6. 已知函数y =使函数值为5的x 的值是( ) A .-2或2B .2或-C .-2D .2或-2或- 【答案】C7.函数()f x =的定义域为 ( )A .(-3,0]B .(-3,1]C .(,3)(3,0]-∞--D .(,3)(3,1]-∞--【答案】A8. 已知函数f(x)是定义在R 上的增函数,则函数y=f(|x-1|)-1的图象可能是【答案】 B .9. 下列说法中,不正确的是( ).A .图像关于原点成中心对称的函数一定是奇函数B .奇函数的图像一定经过原点C .偶函数的图像若不经过原点,则它与x 轴交点个数一定是偶数D .图像关于y 轴对称的函数一定是偶函数【答案】B10. 函数1()ln (1)1f x x x x =->-的零点所在的区间为( ) A.3(1,)2 B.3(,2)2 C.5(2,)2 D.5(,3)2【答案】C11. 下列函数中,既是偶函数又在区间(0,+ ∞)上单调递减的是( )A .1y x =B .x y e -=C .21y x =-+D .lg ||y x =【答案】C12. 抛物线3)2(2+-=x y 的顶点坐标是( )A .(2,3)B .(–2,3)C .(2,–3)D .(–2,–3)【答案】A13. 函数f(x)的定义域是( ).A .[-1,2]B .[-1,0)∪(0,2]C .[-2,0)D .(0,2]【答案】C14. 若关于x 的方程2||4x kx x =+有四个不同的实数解,则k 的取值范围为( ) A. (0,1) B. 1(,1)4 C.1(,)4+∞ D. (1,)+∞ 【答案】C15. 已知函数1()x f x xe +=,若函数2()()2y f x bf x =++恰有四个不同的零点,则实数b 的取值范围是( )A .(,-∞-B . (3,2)--C . (,3)-∞-D .(3,-- 【答案】C二、填空题16. 在平面直角坐标系中,把直线12+=x y 向上平移一个单位后,得到的直线解析式为 . 【答案】22+=x y17. 设函数2()(2)1f x x a x =+--在区间[)2,+∞上是增函数,则实数a 的最小值为 . 【答案】-218. 已知函数f (x )=|x 2-8|,若a <b ≤0,且f (a )=f (b ),则a +b 的最小值是________【答案】19. 的图像交于A (-2,0)且与y 轴的交点分别为B 、C 两点,那么△ABC 的面积是 _________.【答案】420. 一个函数具有下列性质:(1)它的的图象是一条直线; (2)它的图象交y 轴于点(0,3); (3)函数值y 随自变量x 的增大而增大,这个函数表达式可以是________。

【答案】答案不唯一21. 已知函数2,1,()1,1,x ax x f x ax x ⎧-+≤=⎨->⎩ 若1212,,x x x x ∃∈≠R ,使得12()()f x f x =成立,则实数a 的取值范围是_______.【答案】2a <22. 已知偶函数)(x f 满足()(2)0f x f x -+=,且当]1,0[∈x 时,x e x x f ⋅=)(,若在区间]3,1[-内,函数k kx x f x g 2)()(--=有且仅有3个零点,则实数k 的取值范围是 . 【答案】)3,5(ee23. 设f(x)表示-x+6和-2x 2+4x+6的较小者,则函数f(x)的最大值为_________.【答案】624. 对任意的120x x <<,若函数12()f x a x x b x x =-+-的大致图像为如图所示的一条折线(两侧的射线均平行于x 轴),试写出a 、b 应满足的条件是__________.【答案】0,0=+>-b a b a25. 请选择一组你喜欢的c b a 、、的值,使二次函数)0(2≠++=a c bx ax y 的图象同时满足下列条件:①开口向下,②当2<x 时,y 随x 的增大而增大;当2>x 时,y 随x 的增大而减小.这样的二次函数的解析式可以是 【答案】2(2)y x h =--+26. 已知函数2()=,,f x x bx c x Z ++∀∈都有()(0)f x f ≥,则b 的取值范围是_____________; 【答案】[1,1]-27. [x]表示不大于x 的最大整数,则方程21×[x 2+x]=19x +99的实数解x 是 . 【答案】38181-或381587; 28. 将抛物线y =-3x 2向上平移一个单位后,得到的抛物线对应的函数关系式是 ▲ . 【答案】29. 如图, 抛物线21(2)3y a x =+-与交于点A (13),,过点A 作x 轴的平行线,分别交两条抛物线于点B 、C .则以下结论:① 无论x 取何值,2y 的值总是正数;② 当0x =时,215y y -=;④ 当2y >1y 时,0≤x <1;⑤2AB =3AC .其中正确结论的编号是 .【答案】①,⑤30.函数1y x=的定义域为 . 【答案】{|10}x x x ≥-≠且三、解答题31. 如图,平面直角坐标系中Ox 轴、y 轴分别交于A 、B 两点,C 为OA 中点;(1)求直线BC 解析式;(2)动点P 从O 出发以每秒2个单位长度的速度沿线段OA 向终点A运动,同时动点Q 从C 出发沿线段CB B 运动,过点Q 作QM ∥AB 交x 轴于点M ,若线段PM 的长为y ,点P 运动时间为t(s ),求y 于t 的函数关系式;(3)在(2)的条件下,以PC 为直径作⊙N ,求t 为何值时直线QM 与⊙N 相切. 【答案】 (2)t y -=4 (3)(1)∵,∴x=0时,y=6;y=0时,x=-8,∴B (0,6),A (-8,0),∵C 为OA 中点,∴C (-4,0),设BC:y=kx+b ,∴-4k+b=0,b=6,∴;(2)∵QM ∥AB ,∴∴CM=t ,∴-4-xM=t ,∴xM=-4-t ,∵xP=-2t ,∴0<t <4<时,PM=xP-xM=-2t-(-4-t )=-t+4,∴y=-t+4(0<t<4);(3)过N点作NH⊥MQ交直线MQ于H点.∵N为PC的中点,∴∴MN=-2-t-(-4-t)=2,∵MQ∥AB,∴∠QMC=∠BAO,∴sin∠QMC=sin∠NH=2PC=|-2t+4|,∴|-2t+4|=2QM与⊙N相切.32. 已知一次函数yx轴交于点A.与y轴交于点B;象与一次函数y 的图象交于B、C两点,与x轴交于D、E两点且D的坐标为)0,1((1)求二次函数的解析式;(2)在x轴上是否存在点P,使得△PBC是直角三角形?若存在,求出所有的点P,若不存在,请说明理由。

【答案】(1(2)满足条件的点P有四个,分别是(1,0)(3,0)(0.5,0)(5.5,0)解:(1)∵由题意知:当x=0时,y=1,∴B(0,1),由D点的坐标为)0,1(当x=1时,y=0(2)存在;设P(a,0),①P 为直角顶点时,如图,过C 作CF ⊥x 轴于F,∵Rt △BOP ∽Rt △PFC,由题意得,AD =6,OD =1,易知,AD∥BE,整理得:a2-4a+3=0,解得a=1或a=3,此时所求P 点坐标为(1,0)或(3,0).②若B 为直角顶点,则有PB2+BC2=PC2既有12+a2+42+22=32+(4-a)2解得a=0.5此时所求P 点坐标为(0.5,0)③若C 为直角顶点,则有PC2+BC2=PB2既有32+(4-a)2+42+22=12+a2解得a=5.5此时所求P 点坐标为(5.5,0)综上所述,满足条件的点P 有四个,分别是(1,0)(3,0)(0.5,0)(5.5,0)。

33. .直线1l :12+=x y 与经过点(3,-5)的直线2l 关于y 轴对称,求直线2l 的解析式。

【答案】34. 某家庭装修房屋,先由甲装修公司单独装修3天,剩下的工作由甲、乙两个装修公司合作完成.工程进度满足如图所示的函数关系,该家庭共支付工资8000元.(1)求合作部分工作量y 与工作时间x 之间的函数关系式;(2)完成此房屋装修共需多少天?(3)若按完成工作量的多少支付工资,甲装修公司应得多少元?【答案】解:(1)设合作部分一次函数的解析式是y kx b =+(0k k b ≠,,是常数)∴合作部分一次函数的表达式为 (2)当1y =时,,解得9x =∴完成此房屋装修共需9天 (3甲9∴甲得到的工资是: (1)根据图象可设函数关系式为:y kx b =+(0k k b ≠,,是常数),然后利用待定系数法可以求出一次函数关系式;(2)当1y =时,即可求出完成此房屋装修共需的天数;(3)先由正比例函数图象得到甲的工作效率,从而得到甲的工作量,即可得到工资总数。

35. 一辆货车在A 处加满油后匀速行驶,下表记录的是货车一次加满油后油箱内余油量y (升)与行驶时间x(时)之间的关系:(1)求y 与x 之间的函数关系式(2)求货车行驶4.2小时到达B 处时油箱内的余油量【答案】(1)6升(2)20100y x =-+(1)设y 与x 之间的关系为一次函数,其函数表达式为y kx b =+(将(0100),,(180),代入上式得,10080b k b =⎧⎨+=⎩ 解得20100k b =-⎧⎨=⎩ 20100y x ∴=-+ 验证:当2x =时,20210060y =-⨯+=,符合一次函数20100y x ∴=-+; 当 2.5x =时,20 2.510050y =-⨯+=,也符合一次函数20100y x ∴=-+.∴ 可用一次函数20100y x =-+表示其变化规律,而不用反比例函数、二次函数表示其变化规律y ∴与x 之间的关系是一次函数,其函数表达式为20100y x =-+(2)当 4.2x =时,由20100y x =-+可得16y =即货车行驶到B 处时油箱内余油16升36. 国务院总理温家宝2011年11月16日主持召开国务院常务会议,会议决定建立青海三江源国家生态保护综合实验区。

相关文档
最新文档