推荐2011年高考数学专题——指数函数、对数函数、幂函数(理科)

合集下载

高考数学中的幂函数和指数函数的性质解析

高考数学中的幂函数和指数函数的性质解析

高考数学中的幂函数和指数函数的性质解析高考数学中的幂函数和指数函数是非常重要的知识点。

这两种函数在数理化等学科中都有广泛的应用,因此在高考中也成为了不可忽视的重点。

掌握它们的性质,不仅可以解决一些基本的计算问题,还可以引申出很多思维难度较大的问题。

本文将对幂函数和指数函数的性质进行深入的解析。

一、幂函数的性质幂函数是一种非常基础的函数类型。

它的形式可以表示为$y = x^a$,其中$x$为自变量,$a$为指数。

幂函数的性质有以下几个方面。

1. 定义域:幂函数的定义域为$x>0$或$x<0$,即幂函数不能为负数。

2. 制图特点:当$a>1$时,幂函数的图像在第一象限上单调递增;当$0<a<1$时,幂函数的图像在第一象限上单调递减;当$a<0$时,幂函数的图像则关于$x$轴对称。

3. 奇偶性:当$a$为偶数时,幂函数关于$y$轴对称;当$a$为奇数时,幂函数关于原点对称。

4. 渐进线:当$a>0$时,幂函数的左渐近线为$x=0$,右渐近线为$y=0$;当$a<0$时,幂函数的左渐近线为$x=0$,右渐近线为$y=0$。

5. 导数规律:当$y=x^a$,则$\dfrac{dy}{dx}=ax^{a-1}$。

在幂函数的导数规律中,指数减1并乘以常数,就是导数。

以上是幂函数的几个常见性质,可以根据具体问题作出判断。

下面将重点介绍指数函数的性质。

二、指数函数的性质指数函数是另一种基础的函数类型。

它的形式可以表示为$y = a^x$,其中$a$为底数,$x$为自变量。

指数函数的性质有以下几个方面。

1. 定义域:指数函数的定义域为$(-\infty,+\infty)$,可以为任意实数。

2. 制图特点:当$0<a<1$时,指数函数的图像在第一象限上单调递减,且关于$y$轴对称;当$a>1$时,指数函数的图像在第一象限上单调递增。

3. 反函数:指数函数的反函数为对数函数,即$y = \log_{a}x$。

幂函数、指数函数与对数函数(解析版))

幂函数、指数函数与对数函数(解析版))

幂函数、指数函数与对数函数知识方法扫描一、指数函数及其性质形如y =a x (a >0,a ≠1)的函数叫作指数函数,其定义域为R ,值域为(0,+∞).当0<a <1时,y =a x 是减函数,当a >1时,y =a x 为增函数,它的图像恒过定点(0,1).二、分数指数幂a 1n=na ,a m n=n a m ,a -n=1an ,a -mn =1na m三、对数函数及其性质对数函数y =log a x (a >0,a ≠1)的定义域为(0,+∞),值域为R ,图像过定点(1,0).它是指数函数y =a x (a >0,a ≠1)的反函数,所有性质均可由指数函数的性质导出.当0<a <1时,y =log a x 为减函数,当a >1时,y =log a x 为增函数.四、对数的运算性质(M >0,N >0)(1)a log M a =M (这是定义);(2)log a (MN )=log M a +log a N ;(3)log a MN=log a M -log a N ;(4)log a M n =n log a M ;(5)log a b =log c blog c a (a ,b ,c >0,a ,c ≠1)(换底公式).由以上性质(4)、(5)容易得到以下两条推论:1)log a mb n =n m log a b ;2)log a b =1log b a.典型例题剖析1已知x 1是方程x +lg x =10的根,x 2是方程x +10x =10的根,求x 1+x 2的值.【解法1】由题意得lg x 1=10-x 110x 2=10-x 2,表明x 1是函数y =lg x 与y =10-x 的交点的横坐标,x 2是函数y =10x 与y =10-x 的交点的横坐标.因为y =lg x 与y =10x 互为反函数,其图像关于y =x 对称,由y =10-x y =x 得,x =5y =5 ,所以x 1+x 22=5,所以x 1+x 2=10.【解法2】构造函数f (x )=x +lg x ,由x 1+lg x 1=10知f x 1 =10,x 2+10x 2=10即10x 2+lg10x 2=10,则f 10x 2 =10,于是f x 1 =f 10x 2 ,又f (x )为(0,+∞)上的增函数,故x 1=10x 2,x 1+x 2=10x 2+x 2=10.【解法3】由题意得x 1=1010-x 110-x 2=10x 2,两式相减有x 1+x 2-10=1010-x 1-10x 2.若x 1+x 2-10>0,则1010-x 1-10x 2>0,得10-x 1>x 2,矛盾;若x 1+x 2-10<0,则1010-x 1-10x 2<0,得10-x 1<x 2,矛盾;而当x 1+x 2=10时,满足题意.【评注】解法1巧妙地利用了数形结合的方法,解法2巧妙地利用了函数的单调性,解法3巧妙地利用了反证法的技巧.2已知a >0,b >0,log9a =log 12b =log 16(a +b ),求ba的值.【解法1】设log 9a =log 12b =log 16(a +b )=k ,则a =9k ,b =12k ,a +b =16k .由于9k ×16k =12k 2故(a +b )a =b 2,解得:b a =1+52(负根舍去).【解法2】设log 9a =log 12b =log 16(a +b )=k ,则a =9k ,b =12k ,a +b =16k .b a =12k 9k =43 k ,而9k +12k =16k,故1+12k 9k =16k 9k ,即43 k 2-43 k -1=0,故b a =43 k =1+52(负根舍去).【评注】对数运算和指数运算互为逆运算,有关对数的运算和处理,往往可以转化为指数的运算和处理.3已知函数f (x )=1x +1+log 13x 2-x,试解不等式f x x -12 >12.【分析】本题为分式不等式与对数不等式混合.初看不易解决,但可以发现该函数在其定义域内单调递减,这是本题的解题关键.【解】易证函数y =f (x )在其定义域(0,2)内是单调减函数.并且f (1)=12,所以原不等式即为f x x -12 >f (1)等价于x x -12 <10<x x -12 <2⇒ x 12<x <1+174或1-174<x <0 .【评注】利用函数单调性解决不易入手的不等式是一种常用方法.4设方程lg (kx )=2lg (x +1)仅有一个实根,求k 的取值范围.【分析】本题要注意函数的定义域.【解法1】当且仅当kx >0①x +1>0②x 2+(2-k )x +1=0③时原方程仅有一个实根,对方程③使用求根公式,得x 1,x 2=12k -2±k 2-4k ④Δ=k 2-4k ≥0⇒k <0或k ≥4.当k <0时,由方程③,得x 1+x 2=k -2<0,x 1x 2=1>0,所以x 1,x 2同为负根.又由方程程④知x 1+1>0,x 2+1<0,所以原方程有一个解x 1.当k =4时,原方程有一个解x =k2-1=1.当k >4时,由方程③,得x 1+x 2=k -2>0,x 1x 2=1>0. 所以x 1,x 2同为正根,且x 1≠x 2,不合题意,舍去.综上所述可得k <0或k =4为所求.【解法2】由题意,方程kx =(x +1)2,也即方程k =x +1x+2在满足关于x 的不等式kx >0x +1>0 的范围内有唯一实数根,以下分两种情况讨论:(1)当k >0时,k =x +1x +2在x >0范围内有唯一实数根,则有k =4;(2)当k <0时,k =x +1x+2在-1<x <0范围内有唯一实数根,则有k <0.综上可得k <0或k =4为所求.【评注】本题实质上是一道一元二次方程问题.5解不等式:log 12(x +3x )>log 64x .【分析】若考虑到去根号,可设x =y 6(y >0),原不等式变为log 12y 3+ y 2 >log 6446=log 2y ,即2log 12y +log 2(y +1)>log 2y ,陷入困境.原不等式即6log 12(x +3x )>log 2x ⇒2log 12x +log 121+x166>log 2x ,设t =log 2x ,则log 12x =1log x12=12log x 2+log x 3,同样陷入困境.下面用整体代换y =log 64x .【解】设y =log 64x ,则x =64y,代人原不等式,有log 128y +4y >y ,8y +4y >12y,23 y +13 y >1,由指数函数的单调性知y =log 64x <1,则0<x <64.故原不等式的解集为(0,64).6已知1<a ≤b ≤c 证明:log a b +log b c +log c a ≤log b a +log c b +log a c .【证法1】注意到log a b +log b c +log c a -log b a +log c b +log a c=ln b ln a +ln c ln b +ln a ln c -ln a ln b+ln b ln c +ln c ln a =ln 2b ln c +ln 2c ln a +ln 2a ln b -ln 2b ln a +ln 2c ln b +ln 2a ln c ln a lnb ln c=-(ln a -ln b )(ln b -ln c )(ln c -ln a )ln a ln b ln c.【证法2】设log b a =x ,log c b =y ,则log a c =1xy ,于是原不等式等价于x +y +1xy ≤1x +1y+xy ,即x 2y +xy 2+1≤y +x +x 2y 2,即xy (x +y )-(x +y )+1-x 2y 2 ≤0,也即(x +y -1-xy )(xy -1)≤0也即(x -1)(y -1)(xy -1)≥0,由1<a ≤b ≤c 知x ≥1,y ≥1,所以(x -1)(y -1)(xy -1)≥0,得证.因为1<a ≤b ≤c ,所以ln a ln b ln c >0,(ln a -ln b )(ln b -ln c )(ln c -ln a )≥0所以log a b +log b c +log c a -log b a +log c b +log a c ≤0即log a b +log b c +log c a ≤log b a +log c b +log a c °【评注】若令x =ln a ,y =ln b ,z =ln c 则原不等式等价于:设0<x ≤y ≤z ,求证:x 2y +y 2z +z 2x ≤xy 2+yz 2+zx 2.7设函数f (x )=|lg (x +1)|,实数a ,b (a <b )满足f (a )=f -b +1b +2,f (10a +6b +21)=4lg2,求a 、b 的值.【分析】利用已知条件构建关于a 、b 的二元方程组进行求解.【解】因为f (a )=f -b +1b +2 ,所以|lg (a +1)|=lg -b +1b +2+1 =lg 1b +2=|lg (b +2)|所以,a +1=b +2或(a +1)(b +2)=1,又因为a <b ,所以a +1≠b +2,所以(a +1)(b +2)=1又由于0<a +1<b +1<b +2,于是0<a +1<1<b +2,所以(10a +6b +21)+1=10(a +1)+6(b +2)=6(b +2)+10b +2>1,从而f (10a +6b +21)=lg 6(b +2)+10b +2=lg 6(b +2)+10b +2,又f (10a +6b +21)=4lg2,所以lg 6(b +2)+10b +2 =4lg2,故6(b +2)+10b +2=16.解得b =-13或b =-1(舍去).把b =-13代故(a +1)(b +2)=1,解得a =-25.所以,a =-25,b =-13.同步训练一、选择题1已知a 、b 是方程log 3x 3+log 27(3x )=-43的两个根,则a +b =().A.1027B.481C.1081D.2881【答案】C .【解析】原方程变形为log 33log 3(3x )+log 3(3x )log 327=-43,即11+log 3x +1+log 3x 3=-43.令1+log 3x =t ,则1t +t 3=-43,解得t 1=-1,t 2=-3.所以1+log 3x =-1或1+log 3x =-3,方程的两根分别为19和181,所以a +b =1081.故选C .2已知函数f (x )=1a x -1+12x 2+bx +6(a ,b 为常数,a >1),且f lglog 81000 =8,则f (lglg2)的值是().A.8 B.4 C.-4 D.-8【答案】B .【解析】由已知可得f lglog 81000 =f lg33lg2=f (-lglg2)=8,又1a -x -1+12=a x 1-a x +12=-1+11-a x +12=-1a x -1-12,令F (x )=f (x )-6,则有F (-x )=-F (x ).从而有f (-lglg2)=F (-lglg2)+6=-F (lglg2)+6=8,即知F (lglg2)=-2,f (lglg2)=F (lglg2)+6=4.3如果f (x )=1-log x 2+log x 29-log x 364,则使f (x )<0的x 的取值范围为().A.0<x <1 B.1<x <83C.x >1D.x >83【答案】B .【解析】显然x >0,且x ≠1.f (x )=1-log x 2+log x 29-log x 364=1-log x 2+log x 3-log x 4=log x 38x .要使f (x )<0.当x >1时,38x <1,即1<x <83;当0<x <1时,38x >1,此时无解.由此可得,使得f (x )<0的x 的取值范围为1<x <83.应选B .4若f (x )=lg x 2-2ax +a 的值域为R ,则a 的取值范围是().A.0<a <1 B.0≤a ≤1 C.a <0或a >1 D.a ≤0或a ≥1【答案】D .【解析】由题目条件可知,(0,+∞)⊆y |y =x 2-2ax +a ,故Δ=(-2a )2-4a ≥0,解得a ≤0或a ≥1.选D .二、填空题5设f (x )=log 3x -4-x ,则满足f (x )≥0的x 的取值范围是.【答案】[3,4].【解析】定义域(0,4].在定义域内f (x )单调递增,且f (3)=0.故f (x )≥0的x 的取值范围为[3,4].6设0<a <1,0<θ<π4,x =(sin θ)log asin θ,y =(cos θ)log atan θ,则x 与y 的大小关系为.【答案】x <y .【解析】根据条件知,0<sin θ<cos θ<1,0<sin θ<tan θ<1,因为0<a <1,所以f (x )=log a x 为减函数,所以log a sin θ>log a tan θ>0,于是x =(sin θ)log a sin θ<(sin θ)log a tan θ<(cos θ)log a tan θ=y .7设f (x )=12x +5+lg 1-x 1+x ,则不等式f x x -12<15的解集为.【答案】1-174,0 ∪12,1+174.【解析】原不等式即为f x x -12<f (0).因为f (x )的定义域为(-1,1),且f (x )为减函数.所以-1<x x -12 <1x x -12 >0.解得x ∈1-174,0∪12,1+174.8设f (x )=11+2lg x +11+4lg x +11+8lg x ,则f (x )+f 1x =.【答案】3.【解析】f (x )+f 1x =11+2lg x +11+4lg x +11+8lg x +11+2-lg x +11+4-lg x +11+8-lg x =3.三、解答题9已知函数f (x )=a x +3a (a >0,a ≠1)的反函数是y =f -1(x ),而且函数y =g (x )的图像与函数y =f -1(x )的图像关于点(a ,0)对称.(1)求函数y =g (x )的解析式;(2)若函数F (x )=f -1(x )-g (-x )在x ∈[a +2,a +3]上有意义,求a 的取值范围.【解析】(1)由f (x )=a x +3a (a >0,a ≠1),得f -1(x )=log a (x -3a ).又函数y =g (x )的图像与函数y =f -1(x )的图像关于点(a ,0)对称,则g (a +x )=-f -1(a -x ),于是,g (x )=-f -1(2a -x )=-log a (-x -a ),(x <-a ).(2)由(1)的结论,有F (x )=f -1(x )-g (-x )=log a (x -3a )+log a (x -a ).要使F (x )有意义,必须满足x -3a >0,x -a >0. 又a >0,故x >3a .由题设F (x )在x ∈[a +2,a +3]上有意义,所以a +2>3a ,即a <1.于是,0<a <1.10设f (x )=log a (x -2a )+log a (x -3a ),其中a >0且a ≠1.若在区间[a +3,a +4]上f (x )≤1恒成立,求a 的取值范围.【解析】f (x )=log a x 2-5ax +6a 2=log a x -5a 2 2-a 24.由x -2a >0x -3a >0, 得x >3a ,由题意知a +3>3a ,故a <32,从而(a +3)-5a 2=-32(2-a )>0,故函数g (x )=x -5a 2 2-a 24在区间[a +3,a +4]上单调递增.若0<a <1,则f (x )在区间[a +3,a +4]上单调递减,所以f (x )在区间[a +3,a +4]上的最大值为f (a +3)=log a 2a 2-9a +9 .在区间[a +3,a +4]上不等式f (x )≤1恒成立,等价于不等式loglog a 2a 2-9a +9 ≤1恒成立,从而2a 2-9a +9≥a ,解得a ≥5+72或a ≤5-72.结合0<a <1,得0<a <1.若1<a <32,则f (x )在区间[a +3,a +4]上单调递增,所以f (x )在区间[a +3,a +4],上的最大值为f (a +4)=log a 2a 2-12a +16 .在区间[a +3,a +4]上不等式f (x )≤1恒成立,等价于不等式log a 2a 2-12a +16 ≤1恒成立,从而2a 2-12a +16≤a ,即2a 2-13a +16≤0,解得13-414≤a ≤13+414.易知13-414>32,所以不符合.综上所述,a 的取值范围为(0,1).11解方程组x x +y=y 12y x +y =x 3,(其中x ,y ∈R * .【解析】两边取对数,则原方程组可化为(x +y )lg x =12lg y ①(x +y )lg y =3lg x ②把式①代入式②,得(x +y )2lg x =36lg x ,所以(x +y )2-36 lg x =0.由lg x =0,得x =1;代入式①,得y =1.由(x +y )2-36=0x ,y ∈R * 得x +y =6.代入式①得lg x =2lg y ,即x =y 2,所以y 2+y -6=0.又y >0,所以y =2,x =4.所以方程组的解为x 1=1y 1=1 ,x 2=4y 2=2 .12已知f (x )=lg (x +1)-12log 3x .(1)解方程f (x )=0;(2)求集合M =n f n 2-214n -1998 ≥0,n ∈Z 的子集个数.【解析】(1)任取0<x 1<x 2,则f x 1 -f x 2 =lg x 1+1 -lg x 2+1 -12log 3x 1-log 3x 2=lgx 1+1x 2+1-12log 3x 1x 2=lg x 1+1x 2+1-log 9x 1x 2,因为x 1+1x 2+1>x 1x 2,所以lg x 1+1x 2+1>lg x 1x 2.故f x 1 -f x 2 =lg x 1+1x 2+1-log 9x 1x 2>lg x 1x 2-lg x1x 2lg9,因为0<lg9<1,lg x 1x 2<0,所以f x 1 -f x 2 >lg x 1x 2-lg x1x 2=0,f (x )为(0,+∞)上的减函数,注意到f (9)=0,当x >9时,f (x )<f (9)=0;当<x <9时,f (x )>f (9)=0,所以f (x )=0有且仅有一个根x =9.(2)由f n 2-214n -1998 ≥0⇒f n 2-214n -1998 ≥f (9)所以n 2-214n -1998≤9n 2-214n -1998>0 ⇔n 2-214n -2007≤0n 2-214n -1998>0⇔(n -223)(n +9)≤0(n -107)2>1998+1072=13447>1152⇔-9≤n ≤223n >222或n <-8 ⇔⇔-9≤n ≤223n ≥223或n ≤-9 ,所以n =223或n =-9,M ={-9,223},M 的子集的个数是4.13已知a >0,a ≠1,试求使得方程log a (x -ak )=log a x 2-a 2 有解的k 的取值范围.【解析】由对数性质知,原方程的解x 应满足(x -ak )2=x 2-a 2x -ak >0x 2-a 2>0(1)(2)(3)若式(1)、式(2)同时成立,则式(3)必成立,故只需要解(x -ak )2=x 2-a 2x -ak >0.由式(1)可得2kx =a 1+k 2(4)当k =0时,式(4)无解;当k ≠0时,式(4)的解是x =a 1+k 2 2k ,代人式(2),得1+k 22k>k .若k <0,则k 2>1,所以k <-1;若k >0,则k 2<1,所以0<k <1.综上所述,当k ∈(-∞,-1)∪(0,1)时,原方程有解.14已知0.301029<lg2<0.301030,0.477120<lg3<0.477121,求20001979的首位数字.【解析】lg20001979=1979lg2000=1979(3+lg2).所以6532.736391<lg20001979<6532.73837.故20001979为6533位数,由lg5=1-lg2,lg6=lg2+lg3,得0.698970<lg5<0.6989710.778149<lg6<0.778151⇒lg5<0.736391<0.73837<lg6,说明20001979的首位数字是5.15已知3a +13b =17a ,5a +7b =11b ,试判断实数a 与b 的大小关系,并证明之.【解析】令a =1,则13b =14,5+7b =11b ,可见b >1.猜想a <b .下面用反证法证明:若a ≥b ,则13a ≥13b ,5a ≥5b ,所以17a =3a +13b ≤3a +13a ,11b =5a +7b ≥5b +7b ,即317 a +1317 a ≥1,511 b +711 b ≤1,而函数f (x )=317 x +1317 x和g (x )=511 x +711 x在R 上均为减函数,且f (1)=317+1317=1617<1≤f (a ),g (1)=511+711=1211>1≥g (b ).所以a <1,b >1.这与a ≥b 矛盾,故a <b .16解不等式log 2x 12+3x 10+5x 8+3x 6+1 <1+log 2x 4+1 .【解析】原不等式等价于log 2x 12+3x 10+5x 8+3x 6+1 <log 22x 4+2 .由于y =log 2x 为单调递增函数,于是x 12+3x 10+5x 8+3x 6+1<2x 4+2,两端同时除以x 6,并整理得2x2+1x 6>x 6+3x 4+3x 2+1+2x 4+2=x 2+1 3+2x 2+1 构造函数g (t )=t 3+2t ,则上述不等式转化为g1x2>g x 2+1 .显然g (t )=t 3+2t 在R 上为增函数.于是以上不等式等价于1x2>x 2+1,即x 2 2+x 2-1<0,解得x 2<5-12.故原不等式的解集为-5-12,5-12.。

高考数学 试题汇编 第三节 幂函数、指数函数与对数函

高考数学 试题汇编 第三节 幂函数、指数函数与对数函

第三节幂函数、指数函数与对数函数指数函数考向聚焦指数函数是高考的重点内容,考查内容涉及以下几个方面:一是指数幂的运算以及幂值的大小比较;二是指数函数以及与指数函数有关的函数图象的应用;三是指数函数的性质及其应用.指数函数在高考中主要以选择题的形式出现,为基础题目,所占分值为5分左右,在高考试卷中常有考查.1.(2010年安徽卷,文7)设a=(,b=(,c=(,则a,b,c的大小关系是( )(A)a>c>b (B)a>b>c (C)c>a>b (D)b>c>a解析:观察a、c可比较幂函数y=在(0,+∞)为增函数,∵>,∴a>c,再比较b、c.利用指数函数y=()x在R上为减函数.而>,∴c>b,∴a>c>b.选A.答案:A.对数函数考向聚焦对数函数是高考的热点内容,考查内容涉及以下几个方面:一是对数运算以及对数值的大小比较;二是对数函数以及与对数函数有关的函数图象的应用;三是对数函数的性质及其应用.对数函数在高考中主要以选择题的形式出现,为基础题目和中档题,所占分值为5分左右,在高考试卷中常有考查.备考指津对数运算是一个难点和易错点,应强化训练,要重视对数函数图象和性质的练习,熟练掌握借助函数图象解决问题的方法.2.(2012年安徽卷,文3,5分)(log29)·(log34)=( )(A)(B)(C)2 (D)4解析:根据对数的换底公式(log29)·(log34)=·=·=4. 答案:D.3.(2012年全国大纲卷,文11,5分)已知x=ln π,y=log52,z=,则( )(A)x<y<z (B)z<x<y(C)z<y<x (D)y<z<x解析:由题意可得x>1,y<1,z<1,又因为y=log5 2<log5=,z==>,∴x>z>y,故选D.答案:D.4.(2012年重庆卷,文7,5分)已知a=log23+log2,b=log29-log2,c=log32,则a,b,c的大小关系是( )(A)a=b<c (B)a=b>c(C)a<b<c (D)a>b>c解析:a=log23+log2=log23=log2>log22=1.b=log29-log2=log2=log2>log22=1,c=log32<log33=1.故选B.答案:B.5.(2011年安徽卷,文5)若点(a,b)在y=lg x图象上,a≠1,则下列点也在此图象上的是( )(A)(,b) (B)(10a,1-b)(C)(,b+1) (D)(a2,2b)解析:由点(a,b)在y=lg x图象上知b=lg a,由于lg=-lg a=-b;lg(10a)=lg 10+lg a=1+lg a=1+b;lg=1-lg a=1-b;lg(a2)=2lg a=2b,因此点(,b),(10a,1-b),(,b+1)不在函数图象上,点(a2,2b)在函数图象上.故选D.答案:D.6.(2011年天津卷,文5)已知a=log23.6,b=log43.2,c=log43.6,则( )(A)a>b>c (B)a>c>b (C)b>a>c (D)c>a>b解析:∵a=log23.6=log43.62,b=log43.2,c=log43.6,又∵f(x)=log4x为增函数,且3.62>3.6>3.2,∴log43.62>log43.6>log43.2,即a>c>b,故选B.答案:B.7.(2011年重庆卷,文6)设a=lo,b=lo,c=log3,则a,b,c的大小关系是( )(A)a<b<c (B)c<b<a(C)b<a<c (D)b<c<a解析:c=log 3=lo.又<<且函数f(x)=lo x在其定义域上为减函数,所以lo>lo>lo,即a>b>c.故选B.答案:B.本题主要考查了对数的换底公式以及对数函数单调性的应用等知识,同时对等价转化的数学思想方法也进行了考查.8.(2010年浙江卷,文2)已知函数f(x)=log2(x+1),若f(α)=1,则α=( )(A)0 (B)1 (C)2 (D)3解析:∵log2(α+1)=1,∴α+1=2,∴α=1.故选B.答案:B.9.(2010年辽宁卷,文10)设2a=5b=m,且+=2,则m=( )(A)(B)10 (C)20 (D)100解析:由2a=m,得a=log2m;同理b=log5m,又+=2,∴+===2.故m=,故选A.答案:A.10.(2012年北京卷,文12,5分)已知函数f(x)=lg x,若f(ab)=1,则f(a2)+f(b2)= . 解析:∵f(x)=lg x,f(ab)=1,∴lg(ab)=1,∴f(a2)+f(b2)=lg a2+lg b2=2(lg a+lg b)=2lg(ab)=2.答案:2幂函数考向聚焦幂函数在高考中考查要求相对较低,主要考查幂函数的定义、常见的简单幂函数的图象与单调性,在高考试卷中幂函数偶有考查.一般以选择题和填空题的形式出现,难度较小,为基础题目,所占分值为4分左右.11.(2012年天津卷,文4,5分)已知a=212,b=()-0.8,c=2log52,则a,b,c的大小关系为( )(A)c<b<a (B)c<a<b(C)b<a<c (D)b<c<a解析:∵b=()-0.8=20.8=<21.2=a,即1<b<a,又∵c=2log52=log54<1,∴c<b<a.故选A.答案:A.。

高一数学指数函数、对数函数、幂函数知识归纳

高一数学指数函数、对数函数、幂函数知识归纳

指数、对数、幂函数知识归纳知识要点梳理知识点一:指数及指数幂的运算1.根式的概念的次方根的定义:一般地,如果,那么叫做的次方根,其中当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为.负数没有偶次方根,0的任何次方根都是0.式子叫做根式,叫做根指数,叫做被开方数.2.n次方根的性质:(1)当为奇数时,;当为偶数时, (2)3.分数指数幂的意义:;注意:0的正分数指数幂等与0,负分数指数幂没有意义.4.有理数指数幂的运算性质:(1) (2) (3)知识点二:指数函数及其性质1.指数函数概念:一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2.函数名称指数函数定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小.知识点三:对数与对数运算1.对数的定义(1)若,则叫做以为底的对数,记作,叫做底数,叫做真数.(2)负数和零没有对数. (3)对数式与指数式的互化:.2.几个重要的对数恒等式:,,.3.常用对数与自然对数:常用对数:,即;自然对数:,即(其中…).4.对数的运算性质如果,那么①加法:②减法:③数乘:④⑤⑥换底公式:知识点四:对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2.函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.1.反函数的概念设函数的定义域为,值域为,从式子中解出,得式子.如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成.2.反函数的性质(1)原函数与反函数的图象关于直线对称.(2)函数的定义域、值域分别是其反函数的值域、定义域.(3)若在原函数的图象上,则在反函数的图象上.(4)一般地,函数要有反函数则它必须为单调函数.3.反函数的求法(1)确定反函数的定义域,即原函数的值域;(2)从原函数式中反解出;(3)将改写成,并注明反函数的定义域.知识点六:幂函数1.幂函数概念形如的函数,叫做幂函数,其中为常数.2.幂函数的性质(1)图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.(2)过定点:所有的幂函数在都有定义,并且图象都通过点.(3)单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.(4)奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当(其中互质,和),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数.(5)图象特征:幂函数,当时,若,其图象在直线下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方.综合训练一、选择题1.若函数在区间上的最大值是最小值的倍,则的值为( )A.B.C.D.2.若函数的图象过两点和,则( )A.B.C.D.3.已知,那么等于( )A.B.8C.18 D.4.函数( )A.是偶函数,在区间上单调递增B.是偶函数,在区间上单调递减C.是奇函数,在区间上单调递增D.是奇函数,在区间上单调递减5.(2011 辽宁理9)设函数f(x)=则满足的的取值范围是()A.B.C.D.6.函数在上递减,那么在上( )A.递增且无最大值B.递减且无最小值C.递增且有最大值D.递减且有最小值二、填空题7.若是奇函数,则实数=_________.8.函数的值域是__________.9.已知则用表示____________.10.设, ,且,则____________;____________.11.计算:____________.12.函数的值域是__________.三、解答题13.比较下列各组数值的大小:(1)和;(2)和;(3).14.解方程:(1);(2).15.已知当其值域为时,求的取值范围.16.已知函数,求的定义域和值域.能力提升一、选择题1.函数上的最大值和最小值之和为,则的值为( ) A.B.C.2D.42.已知在上是的减函数,则的取值范围是( )A. B. C. D.3.对于,给出下列四个不等式①②③④其中成立的是( )A.①与③B.①与④C.②与③D.②与④4.设函数,则的值为( )A.1B.-1C.10 D.5.定义在上的任意函数都可以表示成一个奇函数与一个偶函数之和,如果,那么( )A.,B.,C.,D.,6.若,则( )A.B.C.D.二、填空题7.若函数的定义域为,则的范围为__________.8.若函数的值域为,则的范围为__________.9.函数的定义域是______;值域是______.10.若函数是奇函数,则为__________.11.求值:__________.三、解答题12.解方程:(1)(2) 13.求函数在上的值域.14.已知,,试比较与的大小.15.已知,⑴判断的奇偶性;⑵证明.。

高考数学知识考点精析5:指数函数、对数函数与幂函数

高考数学知识考点精析5:指数函数、对数函数与幂函数

第五讲 指数函数、对数函数与幂函数一、指数:1、n 次方根的定义:如果一个数的n 次方a(n >1,n ∈N *)那么这个数叫做a 的n 次方根,即x n =a,则x 叫做a 的n 次方根(n >1,n ∈N *)。

2、n 次方根的性质:(1)0的n 次方根是0。

即n 0=0(n >1,n ∈N *),(2)nn a )(=a(n ∈N *)(3)当na, 当n 为偶数时, |a |3、分数指数幂的定义:(1)()1,,,0 n N n m a a a n m nm *∈=(2)()1,,,011 n Nn m a aaanmnm nm*-∈==,(3)0的正分数指数幂等于0,0的负分数指数幂没有意义。

二、指数函数:1、定义:形如y=a x(a >0,且a ≠1)的函数叫做指数函数。

2、指数函数y=a x (a >0,且a ≠1)的图象和性质:1、对数的定义:如果()0,1na b aa =≠,那么b 叫做以a 为底N 的对数,记做()log 0,1a N b a a =≠,由定义知负数和0没有对数。

通常以10为底的对数叫做常用对数,记做10lg log N N =。

以无理数e =2.71828…为底的对数叫做自然对数。

记做ln log e N N =。

2、对数的运算性质:()()()()()1log log log ,2log log log .3log log ,4log log ,,,,,,0,1m a a a aa a n n a a a a MMN M N M N N nM n M b b M N a b n ma m=+=-=∙=≠3、对数的恒等式:()()()()()()log log log 1log 10,2log 1,3,4log 15log ,log ,log log log ,,,,0,,1log log ab b NN aa ab a a a b a b b a a N a N N N b bc c a b c N a b a a======∙=≠四、对数函数:1、定义:形如y=log a x (a>0,a ≠1)的函数叫做对数函数。

高考数学 专题2 指数函数、对数函数和幂函数 2.1.2 第1课时 指数函数的图象和性质课件 湘教版必修1

高考数学 专题2 指数函数、对数函数和幂函数 2.1.2 第1课时 指数函数的图象和性质课件 湘教版必修1

若直线y=2a与函数y=|ax-1|(a>0且a≠1)的图象有两个公共
点,由图象可知0<2a<1,所以0<a<
1 2
.
答案 (0,12)
要点三 指数型函数的定义域、值域
例3 求下列函数的定义域和值域:
1
(1)y=2 x4 ; 解 由x-4≠0,得x≠4,
1
故 y=2 x4 的定义域为{x|x∈R,且 x≠4}. 1
规律方法 1.无论指数函数的底数a如何变化,指数函数y= ax(a>0,a≠1)的图象与直线x=1相交于点(1,a),由图象 可知:在y轴右侧,图象从下到上相应的底数由小变大. 2.处理指数函数的图象:①抓住特殊点,指数函数图象过点 (0,1);②巧用图象平移变换;③注意函数单调性的影响.
跟踪演练2 (1)函数y=|2x-2|的图象是( )
[知识链接] 1.ar·as= ar+s ;(ar)s= ars ;(ab)r= ar·br . 其中a>0,b>0,r,s∈R. 2.在初中,我们知道有些细胞是这样分裂的:由1个分裂成2 个,2个分裂成4个,….1个这样的细胞分裂x次后,第x次得 到的细胞个数y与x之间构成的函数关系为 y=2x , x∈{0,1,2,…}.
又 1 ≠0,即 2 x4 ≠ห้องสมุดไป่ตู้, x-4 1
故 y=2 x4 的值域为{y|y>0,且 y≠1}.
(2)y= 1-2x; 解 由1-2x≥0,得2x≤1,∴x≤0, ∴y= 1-2x的定义域为(-∞,0]. 由0<2x≤1,得-1≤-2x<0,∴0≤1-2x<1, ∴y= 1-2x的值域为[0,1).
规律方法 1.指数函数的解析式必须具有三个特征:(1)底 数 a 为 大 于 0 且 不 等 于 1 的 常 数 ; (2) 指 数 位 置 是 自 变 量 x ; (3)ax的系数是1. 2.求指数函数的关键是求底数a,并注意a的限制条件.

高考数学 第四章 指数函数、对数函数与幂函数 4.3 指数函数与对数函数的关系讲义

高考数学 第四章 指数函数、对数函数与幂函数 4.3 指数函数与对数函数的关系讲义

指数函数与对数函数的关系课标解读课标要求核心素养1.了解反函数的概念,知道指数函数和对数函数互为反函数,以及它们的图像间的对称关系.(重点)2.利用图像比较指数函数、对数函数增长的差异.3.利用指数函数、对数函数的图像性质解决一些简单问题.(难点)1.通过反函数的概念及指数函数与对数函数图像间的关系的学习,培养直观想象的核心素养.2.借助指数函数与对数函数综合应用的学习,提升数学运算、逻辑推理的核心素养.观察下面的变换:y=a x x=log a y y=log a x.问题1:指数函数y=a x的值域与对数函数y=log a x的定义域是否相同?答案相同.问题2:指数函数y=a x的定义域与对数函数y=log a x的值域相同吗?答案相同.1.反函数的概念与记法(1)反函数的概念:一般地,如果在函数y=f(x)中,给定值域中任意一个y的值,只有①唯一的x与之对应,那么②x是③y的函数,这个函数称为y=f(x)的反函数,此时,称y=f(x)存在④反函数.(2)反函数的记法:一般地,函数y=f(x)的反函数通常用⑤y=f-1(x)表示.思考:如何准确理解反函数的定义?什么样的函数存在反函数?提示反函数的定义域和值域正好是原函数的值域和定义域,反函数也是函数,因为它符合函数的定义.对于任意一个函数y=f(x),不一定总有反函数,只有当一个函数是单调函数时,这个函数才存在反函数.2.指数函数与对数函数的关系(1)指数函数y=a x与对数函数y=log a x⑥互为反函数.(2)指数函数y=a x与对数函数y=log a x的图像关于直线⑦y=x对称.探究一求函数的反函数例1 求下列函数的反函数.(1)y=;(2)y=x2(x≤0).解析(1)由y=,得x=lo y,且y>0,所以f-1(x)=lo x(x>0).(2)由y=x2得x=±.因为x≤0,所以x=-.所以f-1(x)=-(x≥0).1.(1)已知函数y=e x的图像与函数y=f(x)的图像关于直线y=x对称,则( )A.f(2x)=e2x(x∈R)B.f(2x)=ln2×lnx(x>0)C.f(2x)=2e x(x∈R)D.f(2x)=ln2+lnx(x>0)(2)求函数y=0.2x+1(x≤1)的反函数.答案(1)D解析(1)由题意知函数y=e x与函数y=f(x)互为反函数,y=e x>0,∴f(x)=lnx(x>0),则f(2x)=ln2x=ln2+lnx(x>0).(2)由y=0.2x+1得x=log0.2(y-1),对换x、y得y=log0.2(x-1).∵原函数中x≤1,∴y≥1.2,∴反函数的定义域为[1.2,+∞),因此y=0.2x+1(x≤1)的反函数是y=log0.2(x-1),x∈[1.2,+∞).探究二指数函数与对数函数图像之间的关系例2 (1)已知a>0,且a≠1,则函数y=a x与y=log a x的图像只能是( )(2)当a>1时,函数y=a-x与y=log a x在同一平面直角坐标系中的图像是( )答案(1)C (2)A解析(1)y=a x与y=log a x的单调性一致,故排除A、B;当0<a<1时,排除D;当a>1时,C正确.(2)因为当a>1时,0<<1,所以y=a-x=是减函数,其图像恒过(0,1)点,y=log a x为增函数,其图像恒过(1,0)点,故选A.思维突破互为反函数的两个函数图像的特点(1)互为反函数的两个函数图像关于直线y=x对称;图像关于直线y=x对称的两个函数互为反函数.(2)互为反函数的两个函数在相应区间上的单调性一致.2.(1)已知函数f(x)=a x+b的图像过点(1,7),其反函数f-1(x)的图像过点(4,0),则f(x)的表达式为( )A.f(x)=4x+3B.f(x)=3x+4C.f(x)=5x+2D.f(x)=2x+5(2)若函数y=的图像关于直线y=x对称,则a的值为.答案(1)A (2)-1解析(1)∵f(x)的反函数的图像过点(4,0),∴f(x)的图像过点(0,4),又f(x)=a x+b的图像过点(1,7),故有方程组解得故f(x)的表达式为f(x)=4x+3,选A.(2)由y=可得x=,则原函数的反函数是y=,所以=,解得a=-1. 探究三指数函数与对数函数的综合应用例3 已知f(x)=(a∈R),f(0)=0.(1)求a的值,并判断f(x)的奇偶性;(2)求f(x)的反函数;(3)对任意的k∈(0,+∞),解不等式f-1(x)>log2.解析(1)由f(0)=0,得a=1,所以f(x)=.f(x)的定义域为R,关于原点对称.因为f(x)+f(-x)=+=+=0,所以f(-x)=-f(x),即f(x)为奇函数.(2)因为f(x)=y==1-,所以2x=(-1<y<1),所以f-1(x)=log2(-1<x<1).(3)因为f-1(x)>log2,即log2>log2,所以化简得所以当0<k<2时,原不等式的解集为{x|1-k<x<1};当k≥2时,原不等式的解集为{x|-1<x<1}.3.(变结论)本例中的条件不变,判断f-1(x)的单调性,并给出证明.解析f-1(x)为(-1,1)上的增函数.证明:由原题知f-1(x)=log2(-1<x<1).任取x1,x2∈(-1,1)且x1<x2,令t(x)===-1+,则t(x1)-t(x2)=-=-==.因为-1<x1<x2<1,所以1-x1>0,1-x2>0,x1-x2<0,所以t(x1)-t(x2)<0,t(x1)<t(x2),所以log2t(x1)<log2t(x2),即f-1(x1)<f-1(x2),所以函数f-1(x)为(-1,1)上的增函数.1.若函数y=f(x)是函数y=a x(a>0且a≠1)的反函数,且f(2)=1,则f(x)=( )A.log2xB.C.lo xD.2x-2答案 A y=a x的反函数为f(x)=log a x,又f(2)=1,所以1=log a2,所以a=2,所以f(x)=log2x.2.若函数y=f(x)的反函数的图像过点(1,5),则函数y=f(x)的图像必过点( )A.(1,1)B.(1,5)C.(5,1)D.(5,5)答案 C 原函数的图像与它的反函数的图像关于直线y=x对称,因为y=f(x)的反函数的图像过点(1,5),而点(1,5)关于直线y=x的对称点为(5,1),所以函数y=f(x)的图像必过点(5,1).3.若函数y=log3x的定义域为(0,+∞),则其反函数的值域是( )A.(0,+∞)B.RC.(-∞,0)D.(0,1)答案 A 由原函数与反函数的关系知,反函数的值域为原函数的定义域.4.已知f(x)=2x+b的反函数为f-1(x),若y=f-1(x)的图像过点Q(5,2),则b= .答案 1解析由f-1(x)的图像过点Q(5,2),得f(x)的图像过点(2,5),即22+b=5,解得b=1.数学抽象——指数函数和对数函数关系的理解和应用设方程2x+x-3=0的根为a,方程log2x+x-3=0的根为b,求a+b的值.素养探究:方程根的问题可以借助图像转化为两个函数的图像的交点问题,进而形象、直观地解决问题,过程中体现数形结合的思想和数学抽象核心素养.解析将两个方程整理得2x=-x+3,log2x=-x+3.在同一平面直角坐标系中作出函数y=2x,y=log2x的图像及直线y=-x+3,如图.由图可知,a是指数函数y=2x的图像与直线y=-x+3的交点A的横坐标,b是对数函数y=log2x的图像与直线y=-x+3的交点B的横坐标.因为函数y=2x与y=log2x互为反函数,所以它们的图像关于直线y=x对称,易知A,B两点也关于直线y=x对称,于是A,B两点的坐标可设为A(a,b),B(b,a).因为点A,B都在直线y=-x+3上,所以b=-a+3(A点坐标代入)或a=-b+3(B点坐标代入),故a+b=3.实数x、y满足x+lnx=8,y+e y=8,求x+y的值.解析由x+lnx=8,得lnx=8-x,由y+e y=8,可得e y=8-y,在同一平面直角坐标系中作出直线y=8-x及函数y=lnx,y=e x的图像,如图所示,联立y=8-x与y=x,解得x=y=4,所以点C的坐标为(4,4),方程x+lnx=8的根可视为直线y=8-x与函数y=lnx图像的交点B的横坐标,方程y+e y=8的根可视为直线y=8-x与函数y=e x图像的交点A的横坐标,由图像可知,点A、B关于直线y=x对称,因此,x+y=8.——————————————课时达标训练—————————————1.函数y=log3x的反函数是( )A.y=lo xB.y=3xC.y=D.y=x3答案 B ∵y=log3x,∴3y=x,∴函数y=log3x的反函数是y=3x,故选B.2.若函数y=f(x)是函数y=a x(a>0,且a≠1)的反函数,其图像经过点(,a),则f(x)=( )A.log2xB.lo xC. D.x2答案 B 因为y=a x的反函数为y=log a x,且函数f(x)的图像经过点(,a),所以log a=a,解得a=,所以f(x)=lo x.3.(2019山东沂水第一中学高一期中)函数f(x)=log2(3x+1)的反函数y=f-1(x)的定义域为( )A.(1,+∞)B.[0,+∞)C.(0,+∞)D.[1,+∞)答案 C y=f-1(x)的定义域即为其原函数的值域,∵3x+1>1,∴log2(3x+1)>0.故选C.4.函数y=e x+1的反函数是( )A.y=1+lnx(x>0)B.y=1-lnx(x>0)C.y=-1-lnx(x>0)D.y=-1+lnx(x>0)答案 D 由y=e x+1得x+1=lny,即x=-1+lny,所以所求反函数为y=-1+lnx(x>0).故选D.5.已知函数y=f(x)的图像与y=a x(a>0,a≠1)的图像关于直线y=x对称,则下列结论正确的是( )A.f(x2)=2f(|x|)B.f(2x)=f(x)·f(2)C.f=f(x)+f(2)D.f(2x)=2f(x)答案 A y=f(x)的图像与y=a x(a>0,a≠1)的图像关于直线y=x对称,则f(x)=log a x,f(x2)=log a x2=2log a|x|=2f(|x|),A中结论正确;log a(2x)≠log a x·log a2,B中结论错误;log a≠log a x+log a2=log a(2x),C中结论错误;log a(2x)≠2log a x,D中结论错误.故选A.6.已知函数f(x)=1+log a x,y=f-1(x)是函数y=f(x)的反函数,若y=f-1(x)的图像过点(2,4),则a的值为.答案 4解析因为y=f-1(x)的图像过点(2,4),所以函数y=f(x)的图像过点(4,2),又因为f(x)=1+log a x,所以2=1+log a4,即a=4.7.如果函数f(x)=的反函数为g(x),那么g(x)的图像一定过点.答案(1,0)解析函数f(x)=的反函数为g(x)=lo x,所以g(x)的图像一定过点(1,0).8.已知函数f(x)=log2(x+a)的反函数为y=f-1(x),且f-1(2)=1,则实数a= .答案 3解析函数f(x)=log2(x+a)的反函数为y=f-1(x),且f-1(2)=1,则2=log2(1+a),解得a=3.9.(多选)已知函数f(x)=log a x(a>0,且a≠1)的图像经过点(4,2),则下列说法中正确的是( )A.函数f(x)为增函数B.函数f(x)为偶函数C.若x>1,则f(x)>0D.函数f(x)的反函数为g(x)=2x答案ACD 由题意得2=log a4,解得a=2,故f(x)=log2x,则f(x)为增函数且为非奇非偶函数,故A正确,B错误.当x>1时,f(x)=log2x>log21=0成立,故C正确.f(x)=log2x的反函数为g(x)=2x,故D正确.故选ACD.10.将函数y=2x的图像,再作关于直线y=x对称的图像,可得到函数y=log2(x+1)的图像.( )A.先向上平移一个单位长度B.先向右平移一个单位长度C.先向左平移一个单位长度D.先向下平移一个单位长度答案 D 将函数y=2x的图像向下平移一个单位长度得到y=2x-1的图像,再作关于直线y=x对称的图像即可得到函数y=log2(x+1)的图像.故选D.11.函数y=log a(2x-3)+过定点,函数y=lo x的反函数是.答案;y=()x解析∵对数函数y=log a x过定点(1,0),∴函数y=log a(2x-3)+过定点.函数y=lo x的反函数是y=()x.12.若函数f(x)=log a x(a>0,且a≠1)满足f(27)=3,则f-1(log92)= . 答案解析∵f(27)=3,∴log a27=3,解得a=3.∴f(x)=log3x,∴f-1(x)=3x,∴f-1(log92)===.13.已知f(x)=log a(a x-1)(a>0,且a≠1).(1)求f(x)的定义域;(2)讨论f(x)的单调性;(3)解方程f(2x)=f-1(x).解析(1)要使函数有意义,必须满足a x-1>0,当a>1时,x>0;当0<a<1时,x<0.∴当a>1时,f(x)的定义域为(0,+∞);当0<a<1时,f(x)的定义域为(-∞,0).(2)当a>1时,任取x1,x2,且0<x1<x2,则1<<,故0<-1<-1,∴log a(-1)<log a(-1),∴f(x1)<f(x2).故当a>1时,f(x)在(0,+∞)上单调递增;类似地,当0<a<1时,f(x)在(-∞,0)上单调递增.(3)令y=log a(a x-1),则a y=a x-1,∴x=log a(a y+1),∴f-1(x)=log a(a x+1).由f(2x)=f-1(x),得log a(a2x-1)=log a(a x+1),∴a2x-1=a x+1,解得a x=2或a x=-1(舍去),∴x=log a2.14.已知函数f(x)=,函数g(x)的图像与f(x)的图像关于直线y=x对称.(1)若g(mx2+2x+1)的定义域为R,求实数m的取值范围;(2)当x∈[-1,1]时,求函数y=[f(x)]2-2af(x)+3的最小值h(a).解析(1)由题意得g(x)=lo x,∵g(mx2+2x+1)=lo(mx2+2x+1)的定义域为R,∴mx2+2x+1>0恒成立,所以解得m>1.故实数m的取值范围是(1,+∞).(2)令t=,则t∈,y=t2-2at+3=(t-a)2+3-a2,当a>2时,可得t=2时,y min=7-4a;当≤a≤2时,可得t=a时,y min=3-a2;当a<时,可得t=时,y min=-a.∴h(a)=。

2011届高考数学指数函数与对数函数3

2011届高考数学指数函数与对数函数3

指数函数、对数函数与幂函数
一、知识梳理
1.指数函数)1,0(≠>=a a a y x 与对数函数)1,0(log ≠>=a a x
y a 的图象与性质:
2.同底的指数函数x y a =与对数函数log a y x =互为反函数;
3.指数函数与对数函数的图象特征及性质:
(1)函数x
y a =与log x a y =()01a a >≠且图象关于 对称;
(2)函数x y a =与x y a -=()01a a >≠且图象关于 对称; (3)函数1log x a
y =与log x a y =()01a a >≠且图象关于 对称。

4.幂函数
(1).幂函数的概念:一般地,我们把形如 的函数称为幂函数,其中 是自变量, 是常数; 注意:幂函数与指数函数的区别.
(2).幂函数的性质:
a .幂函数的图象都过点 ;任何幂函数都不过 象限;
b .当0α>时,幂函数在[0,)+∞上 ;当0α<时,幂函数在(0,)+∞上 ;
c .当2,2α=-时,幂函数是 ;当11,1,3,3
α=-时,幂函数是 . 例1.已知函数()()
2531m f x m m x --=--,当 m 为何值时,()f x : (1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数;(3)是正比例函数;(4)是反比例函数;(5)是二次函数。

2011年(课标版)全国高考大纲(理科数学)

2011年(课标版)全国高考大纲(理科数学)

2011年(课标版)全国高考大纲(理科数学)阅读提示:实行新课改高考的省市:至2011年已有20个(其中2007年起的有广东、山东、海南、宁夏,2008年起的有江苏,2009年起的有福建、浙江、辽宁、安徽、天津、上海,2010年起的有北京、黑龙江、吉林、陕西、湖南,2011年起的有山西、江西、河南、新疆);2012年将增加4个(河北、内蒙古、湖北、云南);2013年还将增加(全国最后一批)7个(广西、贵州、青海、甘肃、西藏、四川、重庆)。

实行新课改高考的20个省市2011年高考,仍将使用(课标版)的全国高考大纲及考试说明,或据此再编制本省市的高考大纲补充说明及高考补充考试说明。

2011普通高校招生新课标全国统考大纲(理科数学)Ⅰ考试性质普通高等学校招生全国统一考试是合格的高中毕业生和具有同等学力的考生参加的选拔性考试.高等学校根据考生成绩,按已确定的招生计划,德、智、体全面衡量,择优录取.因此,高考应具有较高的信度、效度,必要的区分度和适当的难度.Ⅱ考试内容根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部2003年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列2和系列4的内容,确定理工类高考数学科考试内容.数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养.数学科考试,要发挥数学作为主要基础学科的作用,要考查考生对中学的基础知识、基本技能的掌握程度,要考查对数学思想方法和数学本质的理解水平,要考查进入高等学校继续学习的潜能.一、考核目标与要求1.知识要求知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列2和系列4中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算,处理数据、绘制图表等基本技能.各部分知识整体要求及其定位参照《课程标准》相应模块的有关说明.对知识的要求依次是了解、理解、掌握三个层次.(1)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.(2)理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力.这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等.(3)掌握:要求能够对所列的知识内容能够推导证明,利用所学知识对问题能够进行分析、研究、讨论,并且加以解决.这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.2.能力要求能力是指空间想像能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.(1)空间想像能力:能根据条件作出正确的图形,根据图形想像出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.空间想像能力是对空间形式的观察、分析、抽象的能力.主要表现为识图、画图和对图形的想像能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想像主要包括有图想图和无图想图两种,是空间想像能力高层次的标志.(2)抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某一观点或作出某项结论.抽象概括能力就是从具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断.(3)推理论证能力:推理是思维的基本形式之一,它由前提和结论两部分组成,论证是由已有的正确的前提到被论证的结论正确的一连串的推理过程.推理既包括演绎推理,也包括合情推理.论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题来论证某一数学命题真实性初步的推理能力.(4)运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力.(5)数据处理能力:会收集数据、整理数据、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断.数据处理能力主要依据统计或统计案例中的方法对数据进行整理、分析,并解决给定的实际问题.(6)应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.(7)创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.3.个性品质要求个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.4.考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.(1)对数学基础知识的考查,既要全面又要突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体,注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度.(2)对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过数学知识的考查,反映考生对数学思想方法的掌握程度.(3)对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度,以及进一步学习的潜能.对能力的考查要全面考查能力,强调综合性、应用性,并要切合学生实际。

2011年高考数学一轮精品复习课件:第2章《函数与导数》——幂函数

2011年高考数学一轮精品复习课件:第2章《函数与导数》——幂函数
数学思想和方法.
返回目录
解得α=2,∴f(x)=x2.
设g(x)=xβ,
1 ∵其图象过点(2, ), 4 1 ∴ =2β,解得β=-2. 4
∴g(x)=x-2.
返回目录
(2)在同一坐标系中,作出f(x)=x2与g(x)=x-2的图象,如图
所示.
由图象可知:f(x),g(x)的图象均过点(-1,1)与(1,1). ∴①当x>1或x<-1时,f(x)>g(x); ②当x=1或x=-1时,f(x)=g(x); ③当-1<x<1且x≠0时,f(x)<g(x). 返回目录
返回目录
3.作幂函数的图象要联系函数的定义域、值域、
单调性、奇偶性等,只要作出幂函数在第一象限内的
图象,然后根据它的奇偶性就可作出幂函数在定义域 内完整的图象. 4.利用幂函数的图象和性质可处理比较大小、判 断复合函数的单调性及幂函数在实际问题中的应用等
类型的题.进一步培养学生的数形结合、分类讨论等的
(2)是幂函数,且是(0,+∞)上的增函数; (3)是正比例函数; (4)是反比例函数; (5)是二次函数. (1)因为f(x)是幂函数, 故m2-m-1=1,即m2-m-2=0, 解得m=2或m=-1. 返回目录
(2)若f(x)是幂函数且又是(0,+∞)上的增函数, 则

m2-m-1=1 -5m-3>0,
是减函数,结合m的取值范围,解出m值,从而求出f(x).在第
(2)问中,当不能准确判断F(-x)与F(x)是否相等时,自然想 到对a,b进行分类讨论. 返回目录
*对应演练*
已知函数f(x)=
x 2 4x 5 . 2 x 4x 4
2 2

高考数学易错点第6讲:指数函数、对数函数、幂函数、二次函数

高考数学易错点第6讲:指数函数、对数函数、幂函数、二次函数

高考数学易错点第6讲:指数函数、对数函数、幂函数、二次函数易错知识1.对数函数、指数函数中容易忽略底数的取值范围;2.在对数式中,要注意真数是大于零的;3.函数的单调区间与在区间上单调是两个不同的概念;4.对于最高项系数含有参数的函数,要注意对参数的讨论;易错分析一、对数函数中忽视对底数的讨论致错1.已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围是__________.【错解】已知f (x )=log a (8-ax )在[1,2]上是减函数,由f (x )>1在区间[1,2]上恒成立,知f (x )min =f (2)=log a (8-2a )>1,且8-2a >0,解得1<a <83.故实数a【错因】没有对底数a 进行分情况讨论,【正解】二、忽视对数式中真数大于零致错2.函数y =log 5(x 2+2x -3)的单调递增区间是______.【错解】令g (x )=x 2+2x -3,则函数g (x )在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,再根据复合函数的单调性,可得函数y =log 5(x 2+2x -3)的单调递增区间是(-1,+∞).【错因】没有保证对数式中真数大于零,【正解】3.已知函数f (x )=log a (ax 2-2x +5)(a >0,且a≠1)a 的取值范围为()忽视对高次项系数的讨论致错使用换元法忽视新变量范围致错A.310(,∪[2,+∞)B.13,(1,2]C.19,13∪[2,+∞)D .19,13∪(1,2]【错解】选A当0<a <1时,由复合函数单调性知函数u =ax 2-2x +5且u >0恒成立,所以⎪⎩⎪⎨⎧≥<<3110aa ,解得0<a ≤13;当a >1时,由复合函数单调性知函数u =ax 2-2x +5u >0恒成立,所以⎪⎩⎪⎨⎧≤>2111a a ,解得a ≥2.综上,a 的取值范围为]310(,∪[2,+∞).【错因】没有保证对数式中真数大于零,【正解】三、忽视高次项系数的讨论致错4.函数f (x )=ax 2-x -1有且仅有一个零点,则实数a 的值为()A .-14B .0 C.14D .0或-14【错解】选A若f (x )=ax 2-x -1有且仅有一个零点,则方程ax 2-x -1=0有且仅有一个根,则Δ=1+4a =0,解得a =-14.【错因】没有对二次项系数a 分情况讨论,【正解】5.若函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是()-14,+∞ B.-14,+∞C.-14,D .-14,0【错解】选C函数f (x )的对称轴为直线x =-1a,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得-14≤a <0.故选C.【错因】没有对二次项系数a 分情况讨论,【正解】四、指数函数中忽视对底数的讨论致错6.若函数f (x )=a22-+1x ax (a >0且a ≠1)在区间(1,3)上单调递增,则实数a 的取值范围为()A .(1,2)B .(0,1)C .(1,4]D .(-∞,4]【错解】选D221y x ax =-+∞根据复合函数的单调性可知,f (x )∞f (x )在(1,3)上单调递增,所以14≤a,解得a ≤4.所以a 的取值范围为(-∞,4].【错因】没有对底数a 进行分情况讨论,【正解】五、幂函数中忽视定义域致错7.已知幂函数f (x )=x-12,若f (a +1)<f (10-2a ),则a 的取值范围为________.【错解】∵f (x )=x -12=1x(x >0),且在(0,+∞)上是减函数,∴aa 2101->+,解得3<a .答案:(3,+∞).【错因】没有考虑函数的定义域,【正解】六、使用换元法时没有注意注意新元的取值范围致错8.(注意新元的取值范围)已知函数y =4x -3·2x +3,若其值域为[1,7],则x 可能的取值范围是()A .[2,4]B .(-∞,0]C .(0,1]∪[2,4]D .(-∞,0]∪[1,2]【错解】选D令t =2x ,则y =t 2-3t +3+34,其图象的对称轴为直线t =32.当x ∈[2,4]时,t ∈[4,16],此时y ∈[7,211],不满足题意;当x ∈(-∞,0]时,t ∈(-∞,1],此时y ∈[1,3),不满足题意;当x ∈(0,1]∪[2,4]时,t ∈(-∞,2]∪[4,16],此时y ∈34,1∪[7,211],不满足题意;当x ∈(-∞,0]∪[1,2]时,t ∈(-∞,1]∪[2,4],此时y ∈[1,7],满足题意.故选D.【错因】没有考虑新元t 的取值范围,因为2x >0,所以t >0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011届高考数学专题复习专题2——指数函数、对数函数、幂函数(理科)1.(2007北京文、理,5分)函数()3(02)x f x x =<≤的反函数的定义域为( ) A .(0)+∞,B .(19],C .(01),D .[9)+∞,B ;[解析] 函数()3(02)x f x x =<≤的反函数的定义域为原函数的值域,原函数的值域为(19],。

[考点透析]根据指数函数在对应区间的值域问题,结合原函数与反函数的定义域与值域之间的关系处理对应反函数的定义域问题。

2.(2007山东文、理,5分)给出下列三个等式:()()()()()()f xy f x f y f x y f x f y =++=,,()()()1()()f x f y f x y f x f y ++=-.下列函数中不满足其中任何一个等式的是( )A .()3x f x =B .()sin f x x =C .2()log f x x =D .()tan f x x =B ;[解析] 依据指、对数函数的性质可以发现A 满足()()()f x y f x f y +=,C 满足()()()f xy f x f y =+,而D满足()()()1()()f x f y f x y f x f y ++=-,B 不满足其中任何一个等式。

[考点透析]根据指数函数、对数函数,结合三角函数等其他相关函数讨论分析对应的性质是高考中比较常见的考题之一,关键是掌握对应函数的基本性质及其应用。

3.(2007全国2理,5分)以下四个数中的最大者是( )A .(ln2)2B .ln (ln2)C .ln 2D .ln2 D ;[解析] ∵0ln 21<<,∴ln (ln2)<0,(ln2)2<ln2,而ln2=21ln2<ln2,∴最大的数是ln2。

[考点透析]根据对数函数的基本性质判断对应函数值的大小关系,一般是通过介值(0,1等一些特殊值)结合对数函数的特殊值来加以判断。

4.(2007安徽理,5分)若A=}822|{2<≤∈-xZ x ,B=}1|l o g||{2>∈x R x ,则)(C R B A 的元素个数为( )A .0个B .1个C .2个D .3个 C ;[解析] 由于A=}822|{2<≤∈-xZ x =}321|{<-≤∈x Z x =}11|{≤<-∈x Z x ={0,1},而B=}1|l o g||{2>∈x R x =}2210|{><<∈x x R x 或,那么)(C R B A ={0,1},则)(C R B A 的元素个数为2个。

[考点透析] 从指数函数与对数函数的单调性入手,解答相关的不等式,再根据集合的运算加以分析和判断,得出对应集合的元素个数问题。

5.(2007江苏,5分)设2()lg()1f x a x=+-是奇函数,则使()0f x <的x 的取值范围是( )A .(1,0)-B .(0,1)C .(,0)-∞D .(,0)(1,)-∞+∞A ;[解析] 由10)0(-==a f 得,011lg )(<-+=x x x f ,得⎪⎪⎩⎪⎪⎨⎧<-+>-+111011xx x x ,01<<-∴x 。

[考点透析]根据对数函数中的奇偶性问题,结合对数函数的性质,求解相关的不等式问题,要注意首要条件是对数函数的真数必须大于零的前提条件。

6.(2007北京理,5分)对于函数①()lg(21)f x x =-+,②2()(2)f x x =-,③()cos(2)f x x =+,判断如下三个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 命题丙:(2)()f x f x +-在()-∞+∞,上是增函数.能使命题甲、乙、丙均为真的所有函数的序号是( )A .①③B .①②C .③D .②D ;[解析] 函数①()lg(21)f x x =-+,函数(2)f x +=lg(||1)x +是偶函数;且()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数;但对命题丙:(2)()f x f x +-=||1lg(||1)lg(|2|1)lg|2|1x x x x ++--+=-+在x ∈(-∞,0)时,(||1)12lglglg(1)(|2|1)213x x x x x +-+==+-+-+-为减函数,排除函数①,对于函数③,()cos(2)f x x =+函数(2)c o s (2f x x +=+不是偶函数,排除函数③,只有函数②2()(2)f x x =-符合要求。

[考点透析]根据对数函数、幂函数、三角函数的相关性质来分析判断相关的命题,也是高考中比较常见的问题之一,正确处理对应函数的单调性与奇偶性问题。

7.(2007天津理,5分)函数)2log 2(0)y x =+>的反函数是( )A.142(2)x x y x +=->B.142(1)x x y x +=-> C.242(2)x x y x +=-> D.242(1)x x y x +=-> C ;[解析] 原函数过(4,1)-故反函数过(1,4)-从而排除A 、B 、D 。

[考点透析]根据对应对数函数型的函数的反函数的求解步骤加以分析求解对应的反函数,但通过原函数与反函数之间的特殊关系,利用排除法加以分析显得更加简单快捷。

8.(2007天津理,5分)设,,a b c 均为正数,且11222112log ,log ,log ,22bcaa b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则( )A.a b c <<B.c b a <<C.c a b <<D.b a c << A ;[解析] 由122log a a =可知0a >21a⇒>121l o g 102a a ⇒>⇒<<,由121l o g 2bb⎛⎫= ⎪⎝⎭可知0b >⇒120l o g 1b <<112b⇒<<,由21log 2cc ⎛⎫= ⎪⎝⎭可知0c >20log 112c c ⇒<<⇒<<,从而a b c <<。

[考点透析] 根据指、对数函数的性质及其相关的知识来处理一些数或式的大小关系是全面考察多个基本初等函数比较常用的方法之一。

关键是掌握对应函数的基本性质及其应用。

9.(2007广东理,5分)已知函数xx f -=11)(的定义域为M ,)1ln()(x x g +=的定义域为N ,则M N ( )A .{}1>x xB .{}1<x xC .{}11<<-x xD .∅ C ;[解析] 依题意可得函数xx f -=11)(的定义域M =}01|{>-x x =}1|{<x x ,)1ln()(x x g +=的定义域N =}01|{>+x x =}1|{->x x ,所以M N =}1|{<x x }1|{->x x ={}11<<-x x 。

[考点透析] 本题以函数为载体,重点考查幂函数与对数函数的定义域,集合的交集的概念及其运算等基础知识,灵活而不难.10.(2007山东理,5分)设a ∈{-1,1,21,3},则使函数y=x a 的定义域为R 且为奇函数的所有a 值为( )A .1,3B .-1,1C .-1,3D .-1,1,3 A ;[解析] 观察四种幂函数的图象并结合该函数的性质确定选项。

[考点透析] 根据幂函数的性质加以比较,从而得以判断.熟练掌握一些常用函数的图象与性质,可以比较快速地判断奇偶性问题.特别是指数函数、对数函数、幂函数及其一些简单函数的基本性质.11.(2007江苏,5分)设函数)(x f 定义在实数集上,它的图象关于直线x =1对称,且当1≥x 时,)(x f =13-x ,则有( )A .)31(f <)23(f <)32(f B .)32(f <)23(f <)31(fC .)32(f <)31(f <)23(f D . )23(f <)32(f <)31(fB ;[解析] 当1≥x 时,)(x f =13-x ,其图象是函数x y 3=向下平移一个单位而得到的1≥x 时图象部分,如图所示,又函数)(x f 的图象关于直线x =1对称,那么函数)(x f 的图象如下图中的实线部分, 即函数)(x f 在区间)1,(-∞上是单调减少函数, 又)23(f =)21(f ,而322131<<,则有)32()21()31(f f f >>,即)32(f <)23(f <)31(f .[考点透析] 利用指数函数的图象结合题目中相应的条件加以分析,通过图象可以非常直观地判断对应的性质关系.12.(2007湖南文、理,5分)函数()⎩⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数是( )A .4B .3C .2D .1 B ;[解析] 函数()⎩⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象如下:根据以上图形,可以判断两函数的图象之间有三个交点。

[考点透析] 作出分段函数与对数函数的相应图象,根据对应的交点情况加以判断。

指数函数与对数函数的图象既是函数性质的一个重要方面,又能直观地反映函数的性质,在解题过程中,充分发挥图象的工具作用。

特别注意指数函数与对数函数的图象关于直线x y =对称。

在求解过程中注意数形结合可以使解题过程更加简捷易懂。

13.(2007四川文、理,5分)函数)(x f =x 2log 1+与)(x g =12+-x 在同一直角坐标系下的图象大致是( )C ;[解析] 函数)(x f =x 2log 1+的图象是由函数x y 2log =的图象向上平移1个单位而得来的;又由于)(x g =12+-x =)1(2--x ,则函数)(x g =12+-x 的图象是由函数x y -=2的图象向右平移1个单位而得来的;故两函数在同一直角坐标系下的图象大致是:C 。

[考点透析] 根据函数表达式与基本初等函数之间的关系,结合函数图象的平移法则,得出相应的正确判断。

14.(2007全国Ⅰ文、理,5分)设1>a ,函数)(x f =x alog 在区间]2,[a a 上的最大值与最小值之差为21,则a =( )A .2 B .2 C .22 D .4D ;[解析] 由于1>a ,函数)(x f =x alog在区间]2,[a a 上的最大值与最小值之差为21,那么a a a a log 2log -=21,即2log a =21,解得221=a ,即a =4。

相关文档
最新文档