(完整word版)五年级数学奥数题..
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等.某人骑电动车过桥时,上坡、走平路和下坡的速度分别为11米/秒、22米/秒和33米/秒,求他过桥的平均速度.
解析:假设上坡、平路及下坡的路程均为66米,那么总时间=66÷11+66÷22+66÷33=6+3+2=11(秒),过桥的平均速度=66×3÷11=18(米/秒)
2. 从前有座山,山上有座庙,庙里有个老和尚会讲故事,王先生开车去拜访这位老和尚,汽车上山以30千米/时的速度,到达山顶后以60千米/时的速度下山.求该车的平均速度.
解析:设两地距离为:[]30,6060=(千米),上山时间为:60302÷=(小时),下山时
间为:60601÷=(小时),所以该飞机的平均速度为:()6022140⨯÷+=(千米)。
3. 汽车以72千米/时的速度从甲地到乙地,到达后立即以48千米/时的速度返回甲地。求该车的平均速度。
解析:想求汽车的平均速度=汽车行驶的全程÷总时间 ,在这道题目中如果我们知道汽车行驶的全程,进而就能求出总时间,那么问题就迎刃而解了。在此我们不妨采用“特殊值”法,这是奥数里面非常重要的一种思想,在很多题目中都有应用。①把甲、乙两地的距离视为1千米,总时间为:1÷72+1÷48,平均速度=2÷(1÷72+1÷48)=57.6千米/时。 ②我们发现①中的取值在计算过程中不太方便,我们可不可以找到一个比较好计算的数呢?在此我们可以把甲、乙两地的距离视为[72,48]=144千米,这样计算时间时就好计算一些,平均速度=144×2÷(144÷72+144÷48)=57.6千米/时。
4. 一只蚂蚁沿等边三角形的三条边由A 点开始爬行一周. 在三条边上它每分钟分别爬行50cm ,20cm ,40cm (如右图).它爬行一周平均每分钟爬行多少厘米?
解析:假设每条边长为200厘米,则总时间=200÷50+200÷20+200÷40=4+10+5=19(分钟),爬行一周的平均速度=200×3÷19=113119(厘米/分钟)。
5. 赵伯伯为了锻炼身体,每天步行3小时,他先走平路,然后上山,最后又沿原路返回.假设赵伯伯在平路上每小时行4千米,上山每小时行3千米,下山每小时行6千米,在每天锻炼中,他共行走多少千米?
解析:上山3千米/小时,平路4千米/小时,下山6千米/小时。假设平路与上下山距离相等,均为12千米,则首先赵伯伯每天共行走12448⨯=千米,平路用时12246⨯÷=小时,上山用时1234÷=小时,下山用时1262÷=小时,共用时64212++=小时,是实际3小时的4倍,则假设的48千米也应为实际路程的4倍,可见实际行走距离为48412÷=千米。
方法二:设赵伯伯每天走平路用a 小时,上山用b 小时,下山用c 小时,因为上山和下山的路程相同,所以36b c =,即2b c =.由题意知3a b c ++=,所以233a c c a c ++=+=.因此,赵伯伯每天锻炼共行43643264124(3)4312a b c a c c a c a c ++=+⨯+=+=+=⨯=(千米),平均速度是1234÷=(千米/时).
6. 有一座桥,过桥需要先上坡,再走一段平路,最后下坡,并且上坡、平路及下坡的路程相等。某人骑自行车过桥时,上坡、走平路和下坡的速度分别为4米/秒、6米/秒和8米/秒,求他过桥的平均速度。
解析:假设上坡、走平路及下坡的路程均为24米,那么总时间为:24÷4+24÷6+24÷8=13(秒),过桥的平均速度为724313513⨯÷=(米/秒).
7.小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。问:小明家到学校多远?
解析:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米。总路程就是=100×30=3000米。
8. 甲、乙两船在相距100千米的A 、B 两港间航行.甲上行全程需用10小时,乙上行全程需用6小时40分钟.甲下行全程需用5小时,请问:乙下行全程需用几个小时?
甲的顺水速度为:100÷5=20(千米/小时),甲的逆水速度为:100÷10=10(千米/小时);
水速=(甲的顺水速度一甲的逆水速度)÷2=(20—10)÷2=5(千米/小时); 乙船的逆水速度为:100÷2
63=100×320
=15(千米/小时); 乙船的船速=15+5=20(千米/小时);
乙船的下行时间为:100+(20+5)=4(小时).
9. 一条河的水流速度是每小时3千米,一条船从此河的上游A 地顺流到达下游的C 地,然后掉头逆流向上到达中游的B 地,共用8小时.已知这条船的顺流速度是逆流速度的2倍,A 地与B 地相距24千米.求A 、C 两地间的距离。
顺流速度比逆流速度多1倍,那么逆流速度为水速的2倍.
逆流速度:3×2=6(千米/小时);
顺流速度:6×2=12(千米/小时);
从A--B 航行时间为:24÷12=2 小时;剩下路程所用的时间:8-2=6小时;因为:BC=顺水速度×顺水时间=逆水速度×逆水时间,所以,逆水航行的时间=2×顺水航行的时间,那么顺水航行BC 这段路程用时间:[6÷(2+1)] ×1=2小时,
BC=2×12=24(千米),AC=24+24=48(千米).
10.一艘小船在河中航行,第一次顺流航行33千米,逆流航行11千米,共用11小时;第二次用同样的时间,顺流航行了24千米,逆流航行了14千米.这艘小船的静水速度和水流速度是多少?
(法1)两次航行顺流的路程差:33-24=9 (千米),逆流的路程差:14-11=3 (千米),也就是说顺流航行9千米所用的时间和逆流航行3千米所用时间相同,那么顺流航行33千米与逆流航行33÷3=11 (千米)时间相同,则逆流速度:
(11+11)÷11=2(千米/小时),同样可得顺流速度为:(24+14×3)÷11=6(千米/小时),静水速度:(6+2)÷2=4(千米/小时),水流速度:(6-2)÷2=2(千米/小时). (法2)根据顺流航行9千米所用的时间和逆流航行3千米所用时间相同,9千米=顺流速度×时间=逆流速度×3倍的时间,可得:顺流速度=3×逆流速度,而后仿照法1部分思路解答.
11.A、B两港相距560千米,甲船往返两港需要105小时,逆流航行比顺流航行多了35小时,乙船的静水速度是甲船静水速度的2倍,那么乙船往返两港需要多少小时?
先求出甲船往返航行的时间分别是:(105+35)÷2=70小时,(105-35)÷2=35.再求出甲船逆水速度每小时560÷70=8千米,顺水速度每小时560÷35=16千米,那么甲船在静水中的速度是每小时(16+8)÷2=12千米,水流的速度是每小时12-8=4千米,乙船在静水中的速度是每小时12×2=24千米,所以乙船往返一次所需要的时间是560÷(24+4)+560÷(24-4)=20+28=48小时.
12.一只帆船的速度是每分60米,船在水流速度为每分20米的河中,从上游的一个港口到下游某一地,再返回到原地,共用了3小时30分,这条船从上游港口到下游某地共走了多少米?
3小时30分=3×60+30=210(分),
顺水速度=60+20=80(米/分),
逆水速度=60—20=40(米/分).
又因为:顺水速度×顺水时间=逆水速度×逆水时间,
逆水时间=2×顺水时间,把顺水时间看成1份,那么顺水时间=210÷(2+1)=70(分),
从上游港口到下游港口共走了80×70=5600(米).
13.某船从甲地顺流而下,5天到达乙地;该船从乙地返回甲地用了7天.问:水从甲地流到乙地用了多少时间?
(法1)水流的时间=甲乙两地间的距离÷水速,而此题并未告诉我们“甲乙两地间距离”,且根据已知,顺水时间及逆水时间也无法求出,而它又是解决此题顺水速度、逆水速度和水速的关键.将甲、乙两地距离看成单位“1”,则顺
水每天走全程的1
5,逆水每天走全程的1
7
.
水速=(顺水速度一逆水速度)÷2=1
35,所以水从甲地流到乙地需:1
135
35
÷=(天).
当然,我们还可以把甲乙两地的距离设成其他方便计算的数字,这其实就是特殊值代入法!
(法2)用方程思路,5×(船速+水速)=7×(船速—水速),即船速=6×水速,所以轮船顺流行5天的路程等于水流5+5×5=35(天)的路程,即木筏从A城漂到B城需35天.