初中数学平行四边形练习题含答案
(必考题)初中八年级数学下册第十八章《平行四边形》经典练习(含答案解析)
一、选择题1.如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5°,EF ⊥AB ,垂足为F ,则EF 的长为( )A .4﹣2B .2﹣4C .1D 2A解析:A【分析】 根据正方形的对角线平分一组对角可得∠ABD =∠ADB =45°,再求出∠DAE 的度数,根据三角形的内角和定理求∠AED ,从而得到∠DAE =∠AED ,再根据等角对等边的性质得到AD =DE ,然后求出正方形的对角线BD ,再求出BE ,最后根据等腰直角三角形的直角边等于2 【详解】解:在正方形ABCD 中,∠ABD =∠ADB =45°,∵∠BAE =22.5°,∴∠DAE =90°﹣∠BAE =90°﹣22.5°=67.5°,在△ADE 中,∠AED =180°﹣45°﹣67.5°=67.5°,∴∠DAE =∠AED ,∴AD =DE =4,∵正方形的边长为4,∴BD =2∴BE =BD ﹣DE =2﹣4,∵EF ⊥AB ,∠ABD =45°,∴△BEF 是等腰直角三角形,∴EF =22BE =22×(2﹣4)=4﹣2. 故选:A .【点睛】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD 是解题的关键,也是本题的难点.2.如图,在等腰直角ABC 中,AB BC =,点D 是ABC 内部一点, DE BC ⊥,DF AB ⊥,垂足分别为E ,F ,若3CE DE =, 53DF AF =, 2.5DE =,则AF =( )A .8B .10C .12.5D .15C解析:C【分析】 根据比例关系设DF=x ,可判断四边形DEBF 为矩形,根据矩形的性质和比例关系分别表示CB 和AB ,再根据AB BC =,列出方程,求解即可得出x ,从而得出AF .【详解】,DE BC DF AB ⊥⊥,90DEB DFB ∴∠=∠=︒,∵△ABC 为等腰直角三角形,∴∠ABC=90°,∴四边形DEBF 为矩形,∴BF=DE=2.5,DF=EB ,设DF=3x ,则EB=3x ,∵53DF AF =,∴AF=5x ,AB=5x+2.5,∵3CE DE =,∴CE=7.5,∴CB=7.5+3x ,∵AB=CB ,∴5x+2.5=7.5+3x ,解得x=2.5,∴512.5AF x ==,故选:C .【点睛】本题考查矩形的性质和判定,等腰三角形的定义,一元一次方程的应用.能借助相关性质表示对应线段的长度是解题关键.本题主要用到方程思想.3.如图,在ABC 中,D ,E 分别是,AB AC 的中点,12BC =,F 是DE 的上任意一点,连接,AF CF ,3DE DF =,若90AFC ∠=︒,则AC 的长度为( )A.4 B.5 C.8 D.10C解析:C【分析】根据三角形中位线定理求出DE,根据题意求出EF,根据直角三角形的性质计算即可.【详解】解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE=12BC=6,∵DE=3DF,∴EF=4,∵∠AFC=90°,E是AC的中点,∴AC=2EF=8,故选:C.【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.4.如图,在菱形ABCD中,对角线BD=4,AC=3BD,则菱形ABCD的面积为()A.96 B.48 C.24 D.6C解析:C【分析】根据菱形的面积等于对角线乘积的一半解答.【详解】解:∵BD=4,AC=3BD,∴AC=12,∴菱形ABCD的面积为12AC×BD=11242⨯⨯=24.故选:C.【点睛】本题主要考查菱形的性质,利用对角线求面积的方法,在求菱形的面积中用得较多,需要熟练掌握.5.如图,己知四边形ABCD是平行四边形,下列说法正确..的是()A.若AB AD=,则平行四边形ABCD是矩形B.若AB AD=,则平行四边形ABCD是正方形C.若AB BC⊥,则平行四边形ABCD是矩形D.若AC BD⊥,则平行四边形ABCD是正方形C解析:C【分析】根据已知及各个特殊四边形的判定方法对各个选项进行分析从而得到最后答案.【详解】解:A、若AB=AD,则▱ABCD是菱形,选项说法错误;B、若AB=AD,则▱ABCD是菱形,选项说法错误;C、若AB⊥BC,则▱ABCD是矩形,选项说法正确;D、若AC⊥BD,则▱ABCD是菱形,选项说法错误;故选:C.【点睛】此题考查了菱形,矩形,正方形的判定方法,对角线互相垂直平分且相等的四边形是正方形.6.菱形的一个内角是60︒,边长是3cm,则这个菱形的较短的对角线长是()A.3cm2B33cm2C.3cm D.33cm C解析:C【分析】根据菱形的四边相等和一个内角是60°,可判断较短对角线与两边组成等边三角形,根据等边三角形的性质可求较短的对角线长.【详解】解:因为菱形的四边相等,当一个内角是60°,则较短对角线与两边组成等边三角形.∵菱形的边长是3cm,∴这个菱形的较短的对角线长是3cm.故选:C.【点睛】此题考查了菱形四边都相等的性质及等边三角形的判定,解题关键是判断出较短对角线与两边构成等边三角形.7.下列命题中,正确的命题是()A.菱形的对角线互相平分且相等B.顺次联结菱形各边的中点所得的四边形是C .矩形的对角线互相垂直平分D .顺次连结矩形各边的中点所得的四边形是正方形B解析:B【分析】根据菱形的性质、矩形的性质、中点四边形的定义逐一判断即可.【详解】解:A. 菱形的对角线互相平分,但不相等,该命题错误;B. 顺次联结菱形各边的中点所得的四边形是矩形,该命题正确;C. 矩形的对角线互相平分,但是不垂直,该命题错误;D. 顺次连结矩形各边的中点所得的四边形是菱形,该命题错误;故选:B .【点睛】本题考查特殊四边形的判定和性质,掌握菱形的性质、矩形的性质、中点四边形的定义是解题的关键.8.如图,在平行四边形ABCD 中,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .添加一个条件,使四边形AEBD 是菱形,这个条件是( )A .BAD BDA ∠=∠B .AB DE =C .DF EF =D .DE 平分ADB ∠D解析:D【分析】 先证明△ADF ≌△BEF ,得到AD=BE ,推出四边形AEBD 是平行四边形,再逐项依次分析即可.【详解】解:在平行四边形ABCD 中,AD ∥BC ,∴∠DAB=∠EBA ,∵点F 是AB 的中点,∴AF=BF ,∵∠AFD=∠BFE ,∴△ADF ≌△BEF ,∴AD=BE ,∵AD ∥BE ,∴四边形AEBD 是平行四边形,A 、当BAD BDA ∠=∠时,得到AB=BD ,无法判定四边形AEBD 是菱形,故该选项不符合B、AB=BE时,无法判定四边形AEBD是菱形,故该选项不符合题意;C、DF=EF时,无法判定四边形AEBD是菱形,故该选项不符合题意;∠时,四边形AEBD是菱形,故该选项符合题意;D、当DE平分ADB故选:D.【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定,熟记平行四边形的性质是解题的关键.9.如图,菱形ABCD中,∠ABC=60°,AB=4,E是边AD上一动点,将△CDE沿CE 折叠,得到△CFE,则△BCF面积的最大值是()A.8 B.83C.16 D.163A解析:A【分析】由三角形底边BC是定长,所以当△BCF的高最大时,△BCF的面积最大,即当FC⊥BC 时,三角形有最大面积.【详解】解:在菱形ABCD中,BC=CD=AB=4又∵将△CDE沿CE 折叠,得到△CFE,∴FC=CD=4由此,△BCF的底边BC是定长,所以当△BCF的高最大时,△BCF的面积最大,即当FC⊥BC时,三角形有最大面积∴△BCF面积的最大值是11448BC FC=⨯⨯=22故选:A.【点睛】本题考查菱形的性质和折叠的性质,掌握三角形面积的计算方法和菱形的性质正确推理计算是解题关键.10.矩形不一定具有的性质是()A.对角线互相平分B.是轴对称图形C.对角线相等D.对角线互相垂直参考答案D解析:D【分析】根据矩形的性质即可判断.【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A、B、C正确,故选:D.【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质.二、填空题11.如图,EF过ABCD对角线的交点O,交AD于E,交BC于F,若ABCD的OE ,则四边形EFCD的周长为_____.周长为19, 2.5145【分析】根据平行四边形的性质易证三角形全等进而易得AE=CF故四边形的周长=AD+CD+EF根据已知求解即可【详解】解:在平行四边形ABCD中AD∥BCAC与BD互相平分∴AO=OC∠DAC=解析:14.5【分析】根据平行四边形的性质易证三角形全等,进而易得AE=CF,故四边形EFCD的周长=AD+CD+EF,根据已知求解即可.【详解】解:在平行四边形ABCD中,AD∥BC,AC与BD互相平分∴AO=OC,∠DAC=∠ACB,∠AOE=∠COF∴△AOE≌△COF∴AE=CF,OF=OE=2.5∴四边形EFCD的周长=CF+DE+CD+EF=AE+DE+CD+EF=AD+CD+EF=19 2.52+×2 =14.5. 故答案为:14.5.【点睛】本题考查了平行四边形的性质以及三角形全等的证明,将所求线段转化为已知线段是解题的关键.12.己知菱形ABCD 的边长是3,点E 在直线AD 上,DE =1,联结BE 与对角线AC 相交于点M ,则AM MC的值是______.或【分析】首先根据题意作图注意分为E 在线段AD 上与E 在AD 的延长线上然后由菱形的性质可得AD ∥BC 则可证得△MAE ∽△MCB 根据相似三角形的对应边成比例即可求得答案【详解】解:∵菱形ABCD 的边长是 解析:23或43【分析】 首先根据题意作图,注意分为E 在线段AD 上与E 在AD 的延长线上,然后由菱形的性质可得AD ∥BC ,则可证得△MAE ∽△MCB ,根据相似三角形的对应边成比例即可求得答案.【详解】解:∵菱形ABCD 的边长是3,∴AD=BC=3,AD ∥BC ,如图①:当E 在线段AD 上时,∴AE=AD -DE=3-1=2,∴△MAE ∽△MCB , ∴23MA AE MC BC ==; 如图②,当E 在AD 的延长线上时,∴AE=AD+DE=3+1=4,∴△MAE ∽△MCB , ∴43MA AE MC BC ==. ∴MA MC 的值是23或43. 故答案为23或43.【点睛】此题考查了菱形的性质,相似三角形的判定与性质等知识.解题的关键是注意此题分为E 在线段AD 上与E 在AD 的延长线上两种情况,小心不要漏解.13.如图,在四边形ABCD 中,150ABC ∠=︒,BD 平分ABC ∠,过A 点作//AE BC 交BD 于点E ,EF BC ⊥于点F 若6AB =,则EF 的长为________.3【分析】过点A 作AM ⊥CB 交CB 延长线于点M 根据题意可知∠ABM=30°可求AM=3再利用平行四边形的性质求出EF【详解】解:过点A 作AM ⊥CB 交CB 延长线于点M ∵∴∠ABM=30°∴AM=AB= 解析:3【分析】过点A 作AM ⊥CB ,交CB 延长线于点M ,根据题意可知,∠ABM=30°,可求AM=3,再利用平行四边形的性质,求出EF .【详解】解:过点A 作AM ⊥CB ,交CB 延长线于点M ,∵150ABC ∠=︒,∴∠ABM=30°,∴AM=12AB=12×6=3, ∵AM ⊥CB ,EF BC ⊥,∴AM ∥EF ,∵//AE BC ,∴四边形AMFE 是平行四边形,∵AM ⊥CB ,∴四边形AMFE 是矩形,∴EF=AM=3,故答案为:3..【点睛】本题考查了含30°角的直角三角形的性质和平行四边形的判定,恰当的作辅助线,构造特殊的直角三角形是解题关键.14.把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若38CDF∠=︒,则EFD∠的度数是_________.64°【分析】先根据矩形的性质求出∠CFD的度数继而求出∠BFD的度数根据图形折叠的性质得出∠EFD=∠BFE=∠BFD即可得出结论【详解】解:∵ABCD是矩形∴∠DCF=90°∵∠CDF=38°∴解析:64°【分析】先根据矩形的性质求出∠CFD的度数,继而求出∠BFD的度数,根据图形折叠的性质得出∠EFD=∠BFE=12∠BFD,即可得出结论.【详解】解:∵ABCD是矩形,∴∠DCF=90°,∵∠CDF=38°,∴∠CFD=52°,∴∠BFD=180°-52°=128°,∵四边形EFDA1由四边形EFBA翻折而成,∴∠EFD=∠BFE=12∠BFD=12×128°=64°.故答案为:64°.【点睛】本题考查的是矩形折叠问题,掌握轴对称的性质是关键.15.如图,B,E,F,D四点在一条直线上,菱形ABCD的面积为2120cm,正方形AECF 的面积为250cm ,则菱形的边长为___cm .13【分析】根据正方形的面积可用对角线进行计算解答即可【详解】解:连接ACBD 交于点O ∵四边形ABCD 是菱形∴AC ⊥BDAO=COBO=DO ∵正方形AECF 的面积为50cm2∴AC2=50∴AC=1 解析:13【分析】根据正方形的面积可用对角线进行计算解答即可.【详解】解:连接AC ,BD 交于点O ,∵四边形ABCD 是菱形,∴AC ⊥BD ,AO=CO ,BO=DO ,∵正方形AECF 的面积为50cm 2, ∴12AC 2=50, ∴AC=10cm ,∴AO=CO=5cm ,∵菱形ABCD 的面积为120cm 2, ∴12×AC×BD=120, ∴BD=24cm ,∴BO=DO=12cm , ∴22AB AO BO +25144+, 故答案为13. 【点睛】本题考查正方形的性质,菱形的性质,关键是根据正方形和菱形的面积进行解答. 16.如图,矩形ABCD 中,10AD =,14AB =,点E 为DC 上一个动点,把ADE 沿AE 折叠,点D 的对应点为D ,若D 落在ABC ∠的平分线上时,DE 的长为_____.5或【分析】连接BD′过D′作MN⊥AB交AB于点MCD于点N作D′P⊥BC交BC于点P先利用勾股定理求出MD′再分两种情况利用勾股定理求出DE【详解】解:如图连接BD′过D′作MN⊥AB交AB于点解析:5或10 3【分析】连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P,先利用勾股定理求出MD′,再分两种情况利用勾股定理求出DE.【详解】解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB-BM=14-x,又折叠图形可得AD=AD′=10,∴x2+(14-x)2=100,解得x=6或8,即MD′=6或8.在Rt△END′中,设ED′=a,①当MD′=6时,AM=14-6=8,D′N=10-6=4,EN=8-a,∴a2=42+(8-a)2,解得a=5,即DE=5,②当MD′=8时,AM=14-8=6,D′N=10-8=2,EN=6-a,∴a2=22+(6-a)2,解得103a=,即103DE=.故答案为:5或10 3.【点睛】本题主要考查了折叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的.17.平行四边形的两条对角线长分别为6和8,其夹角为45︒,该平行四边形的面积为_______.【分析】画出图形证明四边形EFGH 是平行四边形得到∠EHG=45°计算出MG 得到四边形EFGH 的面积从而得到结果【详解】解:如图四边形ABCD 是平行四边形EFGH 分别是各边中点过点G 作EH 的垂线垂足 解析:122 【分析】 画出图形,证明四边形EFGH 是平行四边形,得到∠EHG=45°,计算出MG ,得到四边形EFGH 的面积,从而得到结果.【详解】解:如图,四边形ABCD 是平行四边形,E 、F 、G 、H 分别是各边中点,过点G 作EH 的垂线,垂足为M ,AC=6,BD=8,可得:EF=HG=12AC=3,EH=FG=12BD=4,EF ∥HG ∥AC ,EH ∥FG ∥BD , ∴四边形EFGH 是平行四边形,∵AC 和BD 夹角为45°,可得∠EHG=45°,∴△HGM 为等腰直角三角形,又∵HG=3,∴MG=233222=, ∴四边形EFGH 的面积=MG EH ⋅=62,∴平行四边形ABCD 的面积为122,故答案为:122.【点睛】此题考查了平行四边形的性质,中位线定理,等腰直角三角形的判定和性质,勾股定理,解题的关键是根据题意画出图形,结合图形的性质解决问题.18.如图,在Rt ABC △中,90A ︒∠=,2AB =,点D 是BC 边的中点,点E 在AC 边上,若45DEC ︒∠=,那么DE 的长是__________.【分析】过D作DF⊥AC于F得到AB∥DF求得AF=CF根据三角形中位线定理得到DF=AB=1根据等腰直角三角形的性质即可得到结论【详解】解:过D作DF⊥AC于F∴∠DFC=∠A=90°∴AB∥DF解析:2【分析】过D作DF⊥AC于F,得到AB∥DF,求得AF=CF,根据三角形中位线定理得到DF=12AB=1,根据等腰直角三角形的性质即可得到结论.【详解】解:过D作DF⊥AC于F,∴∠DFC=∠A=90°,∴AB∥DF,∵点D是BC边的中点,∴BD=DC,∴AF=CF,∴DF=12AB=1,∵∠DEC=45°,∴△DEF是等腰直角三角形,∴DE=2DF=2,故答案为:2.【点睛】本题考查了三角形的中位线定理,平行线的判定和性质,等腰直角三角形的性质,正确的作出辅助线构造等腰直角三角形是解题的关键.19.如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD 于点E,AB=8,EF=1,则BC长为__________.15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB得出AF=AB=8同理可得DE=DC=8再由EF的长即可求出BC的长【详解】解:∵四边形ABCD是平行四边形∴AD∥BCDC=AB=8A解析:15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB,得出AF=AB=8,同理可得DE=DC=8,再由EF的长,即可求出BC的长.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=8,AD=BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,则∠ABF=∠AFB,∴AF=AB=8,同理可证:DE=DC=8,∵EF=AF+DE-AD=1,即8+8-AD=1,解得:AD=15;故答案为:15.【点睛】本题主要考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出AF=AB是解决问题的关键.20.在长方形ABCD中,52AB=,4BC=,CE CF=,CF平分ECD∠,则BE=_________.【分析】延长CF交EA的延长线于点G连接EF过点F作FH⊥CE于点H过点E作EM⊥CF于点M由题意易得FH=FDFH=EMEC=EG进而可得△CDF≌△CME然后可得CM=CD=由勾股定理可得BG=解析:7 6【分析】延长CF,交EA的延长线于点G,连接EF,过点F作FH⊥CE于点H,过点E作EM⊥CF于点M,由题意易得FH=FD,FH=EM,EC=EG,进而可得△CDF≌△CME,然后可得CM=CD=52,由勾股定理可得BG=3,设BE=x ,则有EC=EG=3+x ,最后利用勾股定理可求解. 【详解】解:延长CF ,交EA 的延长线于点G ,连接EF ,过点F 作FH ⊥CE 于点H ,过点E 作EM ⊥CF 于点M ,如图所示:∵四边形ABCD 是矩形,4BC =,52AB =∴BC=AD ,52AB DC ==,AB ∥DC ,∠D=∠ABC=∠CBE=90° ∴∠DCF=∠G ,∵CF 平分∠ECD ,∴∠DCF=∠ECF ,DF=FH ,∴∠G=∠ECF ,∴EC=EG ,∴△ECG 是等腰三角形,∴CM=MG ,∵CE=CF ,∴△ECF 是等腰三角形, ∵EM 、FH 分别是等腰三角形ECF 腰上的高线, ∴FH=EM=DF ,∴Rt △CDF ≌Rt △CME (HL ),∴52CM DC ==, ∴CG=5,∴在Rt △CBG 中,223BG CG CB -=,设BE=x ,则有EC=EG=3+x ,在Rt △CBE 中,222BC BE CE +=,∴()22243x x +=+, 解得:76x =,∴76BE =; 故答案为76. 【点睛】本题主要考查等腰三角形的性质与判定、矩形的性质及勾股定理,熟练掌握等腰三角形的性质与判定、矩形的性质及勾股定理是解题的关键.三、解答题21.在Rt ABC 中,90ACB ∠=︒,点D 是AB 的中点,点E 是直线BC 上一点(不与点B ,C 重合),连结CD ,DE .(1)如图①若90CDE ∠=︒,求证:A E ∠=∠.②若BD 平分CDE ∠,且24E ∠=︒,求A ∠的度数.(2)设()45A αα∠=>︒,DEC β∠=,若CD CE =,求β关于α的函数关系式,并说明理由.解析:(1)①见解析;②22°;(2)1452βα=+︒或1452βα=-+︒,见解析 【分析】 (1)①由直角三角形斜边上中线的性质得AD DC BD ==,再根据等腰三角形的性质,由等角的余角相等,即可证明结论;②设DBC x ∠=︒,则24BDE x ∠=︒-︒,根据角平分线的性质以及三角形的内角和列式求出x 的值即可;(2)分情况讨论,当点E 在线段BC 上,或当点E 在线段BC 的延长线上,由等腰三角形的性质即可求出结果.【详解】(1)①证明:∵90ACB ∠=︒,∴90A ABC ∠+∠=︒,∵点D 是AB 的中点,∴AD DC BD ==,∴DCB ABC ∠=∠.∵90CDE ∠=︒,∴90E DCB ∠+∠=︒,∴A E ∠=∠;②解:设DBC x ∠=︒,则24BDE x ∠=︒-︒,∵BD 平分CDE ∠,∴24CDB BDE x ∠=∠=︒-︒.∵DB DC =,∴DCB DBC x ∠=∠=︒,∴24180x x x ︒+︒+︒-︒=︒,解得68x =,∴906822A ∠=︒-︒=︒;(2)①如图,当CD CE =时,∴CDE CED β∠=∠=.∵A α∠=,AD DC =,∴ACD α∠=,∴90DCB α∠=︒-,∴290180βα+︒-=︒,得1452βα=+︒;②如图,当CD CE =时∴CDE E β∠=∠=,∴290βα=︒-,得1452βα=-+︒.【点睛】本题考查等腰三角形的性质,直角三角形斜边上中线的性质,解题的关键是熟练掌握这些几何的性质定理.22.如图,在四边形ABCD 中,//AB CD ,90A ∠=︒,16cm AB =,13cm BC =,21cm CD =,动点N 从点D 出发,以每秒2cm 的速度在射线DC 上运动到C 点返回,动点M 从点A 出发,在线段AB 上,以每秒1cm 的速度向点B 运动,点M ,N 分别从点A ,D 同时出发.当点M 运动到点B 时,点N 随之停止运动,设运动时间为t (秒). (1)当t 为何值时,四边形MNCB 是平行四边形.(2)是否存在点N ,使NMB △是等腰三角形?若存在,请求出所有满足要求的t 的值,若不存在,请说明理由.解析:(1)5秒或373秒;(2)存在,163秒或72秒或685秒 【分析】 (1)由题意已知,AB ∥CD ,要使四边形MNBC 是平行四边形,则只需要让BM=CN 即可,因为M 、N 点的速度已知,AB 、CD 的长度已知,要求时间,用时间=路程÷速度,即可求出时间;(2)使△BMN 是等腰三角形,可分三种情况,即BM=BN 、NM=NB 、MN=MB ;可利用等腰三角形及直角梯形的性质,分别用t 表达等腰三角形的两腰长,再利用两腰相等即可求得时间t .【详解】解:(1)设运动时间为t 秒.∵四边形MNCB 是平行四边形,∴MB=NC ,当N 从D 运动到C 时,∵BC=13cm ,CD=21cm ,∴BM=AB-AM=16-t ,CN=21-2t ,∴16-t=21-2t ,解得t=5,当N 从C 运动到D 时,∵BM=AB-AM=16-t ,CN=2t-21∴16-t=2t-21,解得t=373,∴当t=5秒或373秒时,四边形MNCB是平行四边形;(2)△NMB是等腰三角形有三种情况,Ⅰ.当NM=NB时,作NH⊥AB于H,则HM=HB,当N从D运动到C时,∵MH=HB=12BM=12(16-t),由AH=DN得2t=12(16−t)+t,解得t=163秒;当点N从C向D运动时,观察图象可知,只有由题意:42-2t=12(16-t)+t,解得t=685秒.Ⅱ.当MN=MB,当N从D运动到C时,MH=AH-AM=DN-AM=2t-t=t,BM=16-t,∵MN2=t2+122,∴(16-t)2=122+t2,解得t=72(秒);Ⅲ.当BM=BN,当N从C运动到D时,则BH=AB-AH=AB-DN=16-2t,∵BM2=BN2=NH2+BH2=122+(16-2t)2,∴(16-t)2=122+(16-2t)2,即3t 2-32t+144=0,∵△<0,∴方程无实根,综上可知,当t=163秒或72秒或685秒时,△BMN 是等腰三角形. 【点睛】 本题主要考查了直角梯形的性质、平行四边形的性质、梯形的面积、等腰三角形的性质,特别应该注意要全面考虑各种情况,不要遗漏.23.如图,在四边形ABCD 中//AD BC ,5cm AD =,9cm BC =,M 是CD 的中点,P 是BC 边上的一动点(P 与B ,C 不重合),连接PM 并延长交AD 的延长线于Q .(1)试说明不管点P 在何位置,四边形PCQD 始终是平行四边形.(2)当点P 在点B ,C 之间运动到什么位置时,四边形ABPQ 是平行四边形?并说明理由.解析:(1)见解析;(2)PC=2时【分析】(1)由“ASA”可证△PCM ≌△QDM ,可得DQ=PC ,即可得结论;(2)得出P 在B 、C 之间运动的位置,根据一组对边平行且相等的四边形是平行四边形得出结论.【详解】解:(1)∵AD ∥BC ,∴∠QDM=∠PCM ,∵M 是CD 的中点,∴DM=CM ,∵∠DMQ=∠CMP ,DM=CM ,∠QDM=∠PCM ,∴△PCM ≌△QDM (ASA ).∴DQ=PC ,∵AD ∥BC ,∴四边形PCQD 是平行四边形,∴不管点P 在何位置,四边形PCQD 始终是平行四边形;(2)当四边形ABPQ 是平行四边形时,PB=AQ ,∵BC-CP=AD+QD ,∴9-CP=5+CP ,∴CP=(9-5)÷2=2.∴当PC=2时,四边形ABPQ 是平行四边形.【点睛】本题考查了平行四边形的判定和性质,全等三角形判定和性质,熟练掌握平行四边形的性质和判定方法是解题的关键.24.下面是小明设计的“在一个平行四边形内作菱形”的尺规作图过程.已知:四边形ABCD 是平行四边形,且,AB BC <求作:菱形ABEF ,使点E 在BC 上,点F 在AD 上.作法:①作BAD ∠的角平分线,交BC 于点E ;②以A 为圆心,AB 长为半径作弧,交AD 于点F ;③连接EF .则四边形ABEF 为所求作的菱形.根据小明设计的尺规作图过程(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)求证四边形ABEF 为菱形.解析:(1)见解析;(2)见解析【分析】(1)根据要求画出图形即可.(2)利用平行四边形的判定,菱形的判定解决问题即可.【详解】解:解:()1如图所示.()2证明:AE ∵平分,BAD ∠13,∴∠=∠在ABCD 中,//,AD BC23,∴∠=∠12,∴∠=∠,AB BE ∴=,AF AB =,AF BE ∴=又//,AF BE∴四边形ABEF 为平行四边形.,AF AB = ∴四边形ABEF 为菱形.【点睛】本题考查作图-复杂作图,平行四边形的判定和性质,菱形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.如图,在▱ABCD 中,AB =12cm ,BC =6cm ,∠A =60°,点P 沿AB 边从点A 开始以2cm/秒的速度向点B 移动,同时点Q 沿DA 边从点D 开始以1cm/秒的速度向点A 移动,用t 表示移动的时间(0≤t ≤6).(1)当t 为何值时,△PAQ 是等边三角形?(2)当t 为何值时,△PAQ 为直角三角形?解析:(1)t =2;(2)t =3或65t =. 【分析】 (1)根据等边三角形的性质,列出关于t 的方程,进而即可求解.(2)根据△PAQ 是直角三角形,分两类讨论,分别列出方程,进而即可求解.【详解】解:(1)由题意得:AP =2t (米),AQ =6-t (米).∵∠A =60°,∴当△PAQ 是等边三角形时,AQ =AP ,即2t =6-t ,解得:t =2,∴当t =2时,△PAQ 是等边三角形.(2)∵△PAQ 是直角三角形,∴当∠AQP =90°时,有∠APQ =30°,即AP =2AQ ,∴2t =2(6-t ),解得:t =3(秒),当∠APQ =90°时,有∠AQP =30°,即AQ =2AP ,∴6-t =2·2t ,解得65t =(秒),∴当t =3或65t =时,△PAQ 是直角三角形. 【定睛】 本题主要考查等边三角形的性质,直角三角形的定义以及平行四边形的定义,熟练掌握等边三角形的性质,直角三角形的定义,列出方程,是解题的关键.26.如图,在△ABC 中,AB =AC ,DE 垂直平分AC ,CE ⊥AB ,AF ⊥BC ,(1)求证:CF =EF ;(2)求∠EFB 的度数.解析:(1)证明见解析;(2)EFB 45∠=︒【分析】(1)先根据线段垂直平分线的性质及CE ⊥AB 得出△ACE 是等腰直角三角形,再由等腰三角形的性质得出∠ACB 的度数,由AB=AC ,AF ⊥BC ,可知BF=CF ,CF=EF ; (2)根据三角形外角的性质即可得出结论.【详解】∵DE 垂直平分AC ,∴AE=CE ,∵CE ⊥AB ,∴△ACE 是等腰直角三角形,∠BEC=90°,∵AB=AC ,AF ⊥BC ,∴BF=CF ,即F 是BC 的中点,∴Rt △BCE 中,EF=12BC=CF ; (2)由(1)得:△ACE 是等腰直角三角形,∴∠BAC=∠ACE=45°,又∵AB=AC ,∴∠ABC=∠ACB=()11804567.52︒-︒=︒, ∴∠BCE=∠ACB-∠ACE=67.5°-45°=22.5°,∵CF=EF ,∴∠CEF=∠BCE=22.5°,∵∠EFB 是△CEF 的外角,∴∠EFB=∠CEF+∠BCE=22.5°+22.5°=45°.【点睛】本题考查了线段垂直平分线的性质,等腰直角三角形的判定和性质,斜边的中线等于斜边的一半,三角形的外角性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键,同时要熟悉直角三角形中,斜边的中线等于斜边的一半.27.如图,菱形EFGH 的三个顶点E 、G 、H 分别在正方形ABCD 的边AB 、CD 、DA 上,连接CF .(1)求证:∠HEA =∠CGF ;(2)当AH =DG 时,求证:菱形EFGH 为正方形.解析:(1)见解析;(2)见解析.【分析】(1)连接GE ,根据正方形对边平行,得∠AEG=∠CGE ,根据菱形的对边平行,得∠HEG=∠FGE ,利用两个角的差求解即可;(2)根据正方形的判定定理,证明∠GHE=90°即可.【详解】证明:(1)连接GE ,∵AB ∥CD ,∴∠AEG=∠CGE ,∵GF ∥HE ,∴∠HEG=∠FGE ,∴∠HEA=∠CGF ;(2)∵四边形ABCD 是正方形,∴∠D=∠A=90°,∵四边形EFGH 是菱形,∴HG=HE ,在Rt △HAE 和Rt △GDH 中,AH DG HE HG =⎧⎨=⎩, ∴Rt △HAE ≌Rt △GDH ,∴∠AHE=∠DGH,∵∠DHG+∠DGH=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH为正方形.【点睛】本题考查了正方形的性质和判定,菱形的性质,平行线的性质,熟记正方形的性质和判定是解题的关键.28.如图,在方格纸中,点A,B,P都在格点上.请按要求画出以AB为边的格点图形.(1)在图甲中画出一个三角形,使BP平分该三角形的面积.(2)在图乙中画出一个至少有一组对边平行的四边形,使AP平分该四边形的面积.解析:(1)画图见解析;(2)画图见解析.【分析】△即为所求;(1)连接AP延长至D点,使AP=DP,再连接BD,ABD(2)作EP平行且相等于AB,连接AE,四边形ABPE即为所求.【详解】(1)作图如下,连接AP延长至D点,使AP=DP,再连接BD,△即为所求,ABD=,AP DP∴和BDPABP△是等底同高的两个三角形,∴BP平分ABD△三角形的面积;(2)作图如下,作EP平行且相等于AB,连接AE,四边形ABPE即为所求,AB平行且相等于EP,∴四边形ABPE为平行四边形,∴AP为ABCD的对角线,∴AP平分ABCD的面积.【点睛】本题考查学生的作图能力,涉及三角形面积以及平行四边形面积相关的知识,根据题意作出图像是解题的关键.。
(必考题)初中八年级数学下册第十八章《平行四边形》经典习题(含答案解析)
一、选择题1.如图,菱形ABCD 中,50A ∠=︒,则ADB ∠的度数为( )A .65︒B .55︒C .45︒D .25︒2.如图,在平行四边形ABCD 中,DE 平分,6,2ADC AD BE ∠==,则平行四边形ABCD 的周长是( )A .16B .18C .20D .243.图1中甲、乙两种图形可以无缝隙拼接成图2中的正方形ABCD .已知图甲中,45F ∠=︒,15H ∠=︒,图乙中 2MN =,则图2中正方形的对角线AC 长为( )A .22B .23C .231+D .232+ 4.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为4,120B ∠=︒,则EF 的值是( )A 3B .2C .23D .45.如图,把长方形纸片ABCD 沿对角线折叠,设重叠部分为EBD △.下列说法错误的是( )A .AE CE =B .12AE BE =C .EBD EDB ∠=∠ D .△ABE ≌△CDE 6.如图,在平行四边形ABCD 中,90B ∠<︒,BC AB >.作AE BC ⊥于点E ,AF CD ⊥于点F ,记EAF ∠的度数为α,AE a =,AF b =.则以下选项错误的是( )A .::a b CD BC =B .D ∠的度数为αC .若60α=︒,则四边形AECF 的面积为平行四边形ABCD 面积的一半D .若60α=︒,则平行四边形ABCD 的周长为()433a b + 7.顺次连接菱形四边中点得到的四边形一定是( ) A .矩形 B .平行四边形 C .菱形 D .正方形8.如图,在ABC 中,90A ∠=,D 是AB 的中点,过点D 作BC 的平行线,交AC 于点E ,作BC 的垂线交BC 于点F ,若AB CE =,且DFE △的面积为1,则BC 的长为( )A .25B .5C .45D .109.如图,己知四边形ABCD 是平行四边形,下列说法正确..的是( )A .若AB AD =,则平行四边形ABCD 是矩形B .若AB AD =,则平行四边形ABCD 是正方形C .若AB BC ⊥,则平行四边形ABCD 是矩形D .若AC BD ⊥,则平行四边形ABCD 是正方形10.下列命题中,正确的命题是( )A .菱形的对角线互相平分且相等B .顺次联结菱形各边的中点所得的四边形是矩形C .矩形的对角线互相垂直平分D .顺次连结矩形各边的中点所得的四边形是正方形11.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE )的面积为( )A .6B .7.5C .10D .2012.如图,把一张长方形纸片沿对角线折叠,若△EDF 是等腰三角形,则∠BDC ( )A .45ºB .60ºC .67.5ºD .75º13.如图,已知在正方形ABCD 中,E 是BC 上一点,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于点G ,连接DG .现有如下4个结论:①AG =GF ;②AG 与EC 一定不相等;③45GDE ∠=︒;④BGE △的周长是一个定值.其中正确的个数为( )A .1B .2C .3D .414.如图,Rt Rt ABC BAD △≌△,BC 、AD 交于点E ,M 为斜边的中点,若CMD α∠=,AEB β∠=.则α和β之间的数量关系为( )A .2180βα-=︒B .60βα-=︒C .180αβ+=︒D .2βα= 15.在Rt △ABC 中,∠C =90°,点P 在边AB 上.BC =6, AC =8, ( ) A .若∠ACP=45°, 则CP=5B .若∠ACP=∠B ,则CP=5C .若∠ACP=45°,则CP=245D .若∠ACP=∠B ,则CP=245二、填空题16.如图,在平行四边形ABCD 中,10,AB BAD =∠的平分线与BC 的延长线交于点E 、与DC 交于点F ,且点F 为边DC 的中点,ADC ∠的平分线交AB 于点M ,交AE 于点N ,连接DE .若6DM =,则DE 的长为_______.17.如图,在ABC 中,10AB AC ==,D 为CA 延长线上一点,DE BC ⊥交AB 于点F .若F 为AB 中点,且12BC =,则DF =__________.18.如图,在Rt ABC △中,90ACB ∠=︒,6AC =,8BC =,点E 、F 分别在AC 、BC 上,将CEF △沿EF 翻折,使C 与AB 的中点M 重合,则CF 的长为______.19.如图,,E F 分别是ABCD 的边,AD BC 上的点.8,60,EF DEF =∠=︒将EFCD 四边形沿EF 翻折,得到四边形',EFCD ED '交BC 于点,G 则GEF △的周长为________.20.如图,将ABCD 沿对角线AC 进行折叠,折叠后点D 落在点F 处,AF 交BC 于点E ,有下列结论:①ABF CFB ≌;②AE CE =;③//BF AC ;④BE CE =,其中正确结论的是__________.21.如图,在四边形ABCD 中,AC a =,BD b =,且AC BD ⊥顺次连接四边形ABCD 各边的中点,得到四边形1111D C B A ,再顺次连接四边形1111D C B A 各边中点,得到四边形2222A B C D …如此进行下去,得到四边形n n n n A B C D ,下列结论正确的有__________.①四边形2222A B C D 是矩形;②四边形4444A B C D 是菱形;③四边形5555A B C D 的周长是4a b +.22.如图,正方形ABCD 中,5AD =,点E 、F 是正方形ABCD 内的两点,且4AE FC ==,3BE DF ==,则EF 的平方为________.23.如图,在矩形ABCD 中,AB =3,BC =4,点M 为AD 的中点,点N 为AB 上一点,连接MN ,CN ,将△AMN 沿直线MN 折叠后,点A 恰好落在CN 上的点P 处,则CN 的长为_____.24.如图,将两个边长为1的小正方形,沿对角线剪开,重新拼成一个大正方形,则大正方形的边长是______.25.如图,以Rt ABC 的斜边BC 为边,向外作正方形BCDE ,设正方形的对角线BD 与CE 的交点为O ,连接AO ,若3AC =,6AO =,则AB 的值是__________.26.如图,已知正方形ABCD 的边长为2,延长BC 至E 点,使CE BC =,连结AE 交CD 于点F ,连结BF 并延长与线段DE 交于点G ,则FG 的长是____.三、解答题27.如图,四边形ABCD 是矩形,对角线AC 与BD 相交于点O ,∠AOD =60°,AD =2,求AC 的长度.28.用总长度为4a 的铁丝可围成一个长方形或正方形,小东同学认为围成一个正方形的面积较大.小东同学的看法对不对?请你用数学知识进行说理.29.已知,如图,在等腰直角三角形ABC 中,90C ∠=︒,D 是AB 的中点,点E ,F 分别是AC ,BC 上的动点,且始终满足CE BF =,(1)证明:DE DF =;(2)求EDF ∠的大小;(3)写出四边形ECFD 的面积与三角形ABC 的面积的关系式,并说明理由.30.在ABC 中,23,AB CD AB =⊥于点,2D CD =.(1)如图1,当点D 是线段AB 的中点时,①AC 的长为________;②延长AC 至点E ,使得CE AC =,此时CE 与CB 的数量关系是_______,BCE ∠与A ∠的数量关系是_______;(2)如图2,当点D 不是线段AB 的中点时,画BCE ∠(点E 与点D 在直线BC 的异侧),使2BCE ∠=,A CE CB ∠=,连接AE . ①按要求补全图形;②求AE 的长.。
初中数学《八下》 第十八章 平行四边形-平行四边形 考试练习题
初中数学《八下》第十八章平行四边形-平行四边形考试练习题姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分1、如图,将折叠,使顶点D落在边上的点E处,折痕为,则下列结论一定正确的是A .B .C .D .知识点:平行四边形【答案】C【分析】根据折叠的性质,可得出DF=EF ,再结合题目有,四边形 CBEF 是平行四边形,继而有 BC=EF ,即可得出正确答案.【详解】解:由折叠的性质得,,,∵ 四边形是平行四边形,∴,.∴,∴.∵,∴ 四边形是平行四边形,∴,∴.故选:C .【点睛】本题考查的知识点是折叠的性质以及平行四边形的判定定理及其性质,属于中等难度题.失分的原因有2 个:(1 )不能熟练运用折叠的性质;(2 )未掌握平行四边形的性质与判定.2、已知:如图,在▱ABCD中,点E、F分别在AD、BC上,且BE平分∠ABC,EF ∥AB.求证:四边形ABFE 是菱形.评卷人得分知识点:平行四边形【答案】见解析【分析】先证四边形ABFE是平行四边形,由平行线的性质和角平分线的性质证AB=AE,依据有一组邻边相等的平行四边形是菱形证明即可.【详解】证明:∵ 四边形ABCD是平行四边形,∴AD ∥BC,又∵EF ∥AB,∴ 四边形ABFE是平行四边形,∵BE平分∠ABC,∴∠ABE=∠FBE,∵AD ∥BC,∴∠AEB=∠EBF,∴∠ABE=∠AEB,∴AB=AE,∴ 平行四边形ABFE是菱形.【点睛】本题考查了平行四边形的性质、等腰三角形的判定、菱形的判定,解题关键是熟练运用相关知识进行推理证明,特别注意角平分线加平行,可证等腰三角形.3、下列给出的条件中,能判断四边形ABCD是平行四边形的是()A .AB ∥CD,AD=BCB .∠B=∠C;∠A=∠DC .AB=CD,CB=ADD .AB=AD,CD=BC知识点:平行四边形【答案】C【分析】平行四边形的判定定理① 两组对边分别相等的四边形是平行四边形,② 一组对边平行且相等的四边形是平行四边形,③ 两组对角分别相等的四边形是平行四边形,④ 对角线互相平分的四边形是平行四边形,判断即可.【详解】解:A、根据AD ∥CD,AD=BC不能判断四边形ABCD是平行四边形,故本选项错误;B、根据∠B=∠C,∠A=∠D不能判断四边形ABCD是平行四边形,故本选项错误;C、根据AB=CD,AD=BC,得出四边形ABCD是平行四边形,故本选项正确;D、根据AB=AD,BC=CD,不能判断四边形ABCD是平行四边形,故本选项错误;故选:C.【点睛】本题考查了对平行四边形的判定定理的应用,关键是能熟练地运用平行四边形的判定定理进行推理,此题是一道比较容易出错的题目.4、下列选项中,能判定四边形ABCD是平行四边形的是()A .AB //CD,AD=BCB .∠A=∠D,∠B=∠CC .AB //CD,∠A+∠B=180°D .∠A=∠C,∠B+∠D=180°知识点:平行四边形【答案】C【分析】平行四边形的判定定理:(1 )两组对边分别平行的四边形是平行四边形(2 )两组对边分别相等的四边形是平行四边形(3 )一组对边平行且相等的四边形是平行四边形(4 )两组对角分别相等的四边形是平行四边形(5 )对角线互相平分的四边形是平行四边形.根据平行四边形的判定定理逐个分析即可解答.【详解】解:A 、AB //CD,AD=BC不能判定四边形ABCD是平行四边形,故此选项错误;B 、∠A=∠D,∠B=∠C不能判定四边形ABCD是平行四边形,故此选项错误;C 、因为∠A+∠B=180° ,所以AD //BC,又因为AB //CD,所以四边形ABCD是平行四边形,故此选项正确;D 、∠A=∠C,∠B+∠D=180° 不能判定四边形ABCD是平行四边形,故此选项错误;故选C .【点睛】本题主要考查平行四边形的判定定理,解决本题的关键是要熟练掌握平行四边形的判定定理.5、如图,A,B两地被池塘隔开,小明通过下面的方法测出A,B间的距离:先在AB外选一点C,连接AC,BC.分别取AC,BC的中点D,E,测得米,由此他知道了A,B间的距离为___________ 米,这种做法的依据是 _______________ .知识点:平行四边形【答案】30 三角形中位线性质定理【分析】根据三角形中位线性质定理解答即可.【详解】解:∵ 点D,E是AC,BC的中点,∴AB=2DE=30 (m ),小石的依据是三角形中位线定理,故答案为:30 ;三角形中位线性质定理.【点睛】本题考查的是三角形中位线性质定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.6、如图,□ABCD 的对角线 AC , BD 相交于点 O ,点 E 是 CD 的中点,△ABD 的周长为 16cm ,则△DOE 的周长是 _________ ;知识点:平行四边形【答案】8【详解】∵ 四边形 ABCD 是平行四边形,∴O 是 BD 中点,△ABD≌△CDB ,又∵E 是 CD 中点,∴OE 是△BCD 的中位线,∴OE=BC ,即△DOE 的周长=△BCD 的周长,∴△DOE 的周长=△DAB 的周长.∴△DOE 的周长=×16=8cm .7、如图,D是△ABC内一点,BD ⊥CD,AD =6 ,BD =4 ,CD =3 ,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A . 7B . 8C . 11D . 10知识点:平行四边形【答案】C【详解】分析:根据勾股定理求出BC的长,根据三角形的中位线定理得到HG =BC =EF,EH =FG =AD,求出EF 、HG、EH、FG的长,代入即可求出四边形EFGH的周长.详解:∵BD ⊥DC,BD =4 ,CD =3 ,由勾股定理得:BC ==5 .∵E、F、G、H分别是AB、AC、CD、BD的中点,∴HG =BC =EF,EH =FG =AD.∵AD =6 ,∴EF =HG =2.5 ,EH =GF =3 ,∴ 四边形EFGH的周长是EF +FG +HG +EH =2× (2.5+3 ) =11 .故选C .点睛:本题主要考查对勾股定理,三角形的中位线定理等知识点的理解和掌握,能根据三角形的中位线定理求出EF、HG、EH、FG的长是解答此题的关键.8、如图,在Rt △ABC中,∠BAC=90° ,过点A的直线MN ∥BC,点E为BC边上一点,过点E作DE ⊥AC ,交直线MN于点D,垂足为F.连接AE.(1 )求证:BE=AD;(2 )当点E在BC的中点时,四边形AECD是什么特殊的四边形?说明理由.(3 )若点E为BC的中点,当∠B满足什么条件时,四边形AECD是正方形?说明理由.知识点:平行四边形【答案】(1 )见解析;(2 )菱形,见解析;(3 )∠B=45° ,见解析【分析】(1 )MN ∥BC,得出四边形ADEB是平行四边形,即可得出结论;(2 )先证明AECD是平行四边形,由斜边中线得到AE=EC,可证明AECD是菱形;(3 )当△ABC是等腰直角三角形,由等腰三角形的性质得出AE ⊥BC,即可得出四边形AECD是正方形.【详解】(1 )证明:∵DE ⊥AC,∴∠EFC=90° ,∵∠BAC=90° ,∴∠BAC=∠EFC,∴AB ∥DE,∵MN ∥BC,∴BE ∥AD,∴ 四边形ADEB是平行四边形,∴BE=AD;(2 )结论:四边形AECD是菱形.理由:当点E在BC的中点时,而四边形ADEB是平行四边形,∴ 四边形AECD是平行四边形,又∵,∴ 四边形AECD是菱形.(3 )解:当∠B=45° 时,四边形AECD是正方形.理由:∵∠BAC=90° ,∠B=45° ,∴△ABC是等腰直角三角形,∵E为AB的中点,∴AE ⊥BC,∴∠AEC=90° ,四边形AECD是菱形,∴ 四边形AECD是正方形;故答案为:45° .【点睛】本题主要考查了平行四边形的性质与判定,菱形的判定,正方形的判定,解题的关键在于能够熟练掌握相关知识进行求解.9、已知:如图1 ,四边形 ABCD 是平行四边形, E,F 是对角线 AC 上的两点, AE=CF.(1 )求证:四边形 DEBF 是平行四边形;(2 )如果 AE=EF=FC, 请直接写出图中 2 所有面积等于四边形 DEBF 的面积的三角形 .知识点:平行四边形【答案】(1 )见解析;(2 )△ADF ,△CDE ,△CBE ,△ABF.【分析】(1 )由四边形 ABCD 是平行四边形得出 OA=OC,OB=OD ,因为 AE=CF 可推出 OE=OF ,由对角线互相平分的四边形是平行四边形,可证结论;(2 ) AE=EF=FC 可知,故而可推面积等于四边形DEBF 的面积的三角形有:△ADF ,△CDE ,△CBE ,△ABF.【详解】(1 )证明:连接BD 交 AC 于点 O ,∵ 平行四边形 ABCD∴OA=OC,OB=OD∵AE=CF∴OE=OF∴ 四边形 DEBF 为平行四边形;(2 )由 AE=EF=FC 可知故面积等于四边形DEBF 的面积的三角形有:△ADF ,△CDE ,△CBE ,△ABF ;【点睛】本题考查了平行四边形的性质及判定,以及三角形面积,熟练掌握平行四边形的判定是解题的关键.10、如图,在中,,,分别是边,,的中点,若的周长为10 ,则的周长为______ .知识点:平行四边形【答案】20【分析】根据三角形中位线定理得到AC =2DE,AB =2EF,BC =2DF,根据三角形的周长公式计算,得到答案.【详解】解:∵△DEF的周长为10 ,∴DE +EF +DF =4 ,∵D,E,F分别是AB,BC,CA的中点,∴AC =2DE,AB =2EF,BC =2DF,∴△ABC的周长=AC +AB +BC =2 (DE +EF +DF)=20 ,故答案为:20 .【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.11、如图,在中,对角线,,垂足为,且,,则与之间的距离为______ .知识点:平行四边形【答案】.【分析】设与之间的距离为,由条件可知的面积是的面积的2 倍,可求得的面积,,因此可求得的长.【详解】解:∵ 四边形为平行四边形,∴,,,∴,∵,,,∴,∴,设与之间的距离为,∵,∴,∴,解得,故答案为:.【点睛】本题主要考查平行四边形的性质,由已知条件得到四边形ABCD 的面积是△ABC 的面积的 2 倍是解题的关键(本题也可以采用等底等高的三角形的面积是平行四边形面积的一半来求解).12、如图,菱形ABCD 的两条对角线 AC , BD 相交于点 O , E 是 AB 的中点,若 AC = 6 , BD = 8 ,则 OE 长为()A . 3B . 5C . 2.5D . 4知识点:平行四边形【答案】C【分析】根据菱形的性质可得OB=OD ,AO⊥BO ,从而可判断 OE 是△DAB 的中位线,在Rt△AOB 中求出 AB ,继而可得出 OE 的长度.【详解】解:∵ 四边形 ABCD 是菱形, AC=6 , BD=8 ,∴AO=OC=3 , OB=OD=4 ,AO⊥BO ,又∵ 点 E 是 AB 中点,∴OE 是△DAB 的中位线,在Rt△AOD 中, AB==5 ,则OE=AD=.故选C .【点睛】本题考查了菱形的性质及三角形的中位线定理,熟练掌握菱形四边相等、对角线互相垂直且平分的性质是解题关键.13、如图,以为直径的经过的中点,于点.(1 )求证:是的切线;(2 )当,时,求图中阴影部分的面积(结果保留根号和).知识点:平行四边形【答案】(1 )见解析;(2 )【分析】(1 )连接,根据中位线定理,可得,由已知,可得,进而可得是的切线;(2 ))过点作,连接,根据已知条件求得扇形的圆心角的度数,进而求得扇形面积,求得的面积,根据阴影扇形即可求得阴影部分面积.【详解】(1 )连接,如图,点是的中点,点是的中点,,,l14、如图,菱形ABCD中,对角线AC,BD相交于点O,M为边AB的M中点,若MO=4cm ,则菱形ABCD的周长为()A . 32cmB . 24cmC . 16cmD . 8cm知识点:平行四边形【答案】A【分析】根据菱形的性质可以判定O为BD的中点,结合E是AB的中点可知OM是△A BD的中位线,根据三角形中位线定理可知AD的长,于是可求出四边形ABCD的周长.【详解】解:∵ 四边形ABCD为菱形,∴BO=DO,即O为BD的中点,又∵M是AB的中点,∴MO是△ABD的中位线,∴AD=2MO=2×4 = 8cm ,∴ 菱形ABCD的周长=4AD=4×8 = 32cm ,故选:A .【点睛】本题主要考查了菱形的性质,解答本题的关键是证明EO是△ABD的中位线,此题难度不大.15、如图,在□ABCD中,已知AB>BC.(1 )实践与操作:作∠ADC的平分线交AB于点E,在DC上截取DF =AD,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2 )猜想并证明:猜想四边形AEFD的形状,并给予证明.知识点:平行四边形【答案】(1 )详见解析;(2 )四边形 AEFD 是菱形,理由详见解析 .【分析】(1 )由角平分线的作法容易得出结果,在 AD 上截取 AF=AB ,连接 EF ;画出图形即可;(2 )先利用证明四边形 AEFD 是平行四边形,然后利用 AD=DF 可判断□ AEFD 是菱形..【详解】解:(1 )如图所示:(2 )猜想:四边形 AEFD 是菱形.证明:∵ 四边形 ABCD 为平行四边形,∴AB∥DC ,∴∠CDE=∠DEA ,∵DE 平分∠ADC ,∴∠CDE=∠ADE ,∴∠ADE=∠DEA ,∴AD=AE ,又∵AD=DF ,∴DF=AE 且DF∥AE ,∴ 四边形 AEFD 是平行四边形,∵AD=DF ,∴□ AEFD 是菱形.考点:角平分线的画法;平行四边形的性质;菱形的判定.16、如图,四边形是平行四边形,E,F分别是边,上的点,.证明.知识点:平行四边形【答案】见解析【分析】方法一:证明四边形是平行四边形,根据平行四边形的性质即可得结论;方法二:证明,利用全等三角形的性质即可得结论.【详解】方法一证明:∵ 四边形是平行四边形,∴.∴.又∵,∴ 四边形是平行四边形.∴.方法二证明:∵ 四边形是平行四边形,∴,,.∵,∴.即.∴.∴.【点睛】本题考查了平行四边形的性质及其判定方法,熟练运用平行四边形的性质及判定方法是解决问题的关键.17、以下四个命题:① 任意三角形的一条中位线与第三边上的中线互相平分;②A,B,C,D,E,F六个足球队进行单循环赛,若A,B,C,D,E分别赛了5 , 4 , 3 , 2 , 1 场,则由此可知,还没有与B 队比赛的球队可能是D队;③ 两个正六边形一定位似;④ 有 13 人参加捐款,其中小王的捐款数比 13 人捐款的平均数多 2 元,则小王的捐款数不可能最少,但可能只比最少的多.比其他的都少.其中真命题的个数有()A . 1 个B . 2 个C . 3 个D . 4 个知识点:平行四边形【答案】A【分析】① 根据三角形中位线、中线的性质,结合平行四边形的判定与性质解题;② 由单循环赛对 A 队, E 队进行推理即可;③ 根据正六边形的性质、位似的定义解题;④ 由平均数定义解题.【详解】解:① 如图,是的中线,是的中位线,连接,由中位线定义可知,四边形是平行四边形对角线互相平分,故① 正确;② 由单循环比赛可知,每支队伍最多赛 5 场,A对已经赛5 场,即每支队伍都与A队比赛过,而E 队只比赛1 场,据此可知,E队没有与B对比赛过,故② 错误;③ 两个正六边形不一定位似,没有确定位似中心,只能是相似的,故③ 错误;④13 人参加捐款,其中小王的捐款数比 13 人捐款的平均数多 2 元,则小王的捐款数不可能最少,也可能最多,故④ 错误,其中真命题的个数有① , 1 个,故选:A .【点睛】本题考查中位线、中线的性质,简单推理、位似、正六边形的性质、平均数的应用等知识,是基础考点,难度较易,掌握相关知识是解题关键.18、如图,四边形是平行四边形,且分别交对角线于点E,F.(1 )求证:;(2 )当四边形分别是矩形和菱形时,请分别说出四边形的形状.(无需说明理由)知识点:平行四边形【答案】(1 )证明见解析;(2 )四边形BEDF是平行四边形与菱形.【分析】(1 )根据平行线的性质可得,即可得出,根据平行四边形的性质可得,,利用AAS即可证明;(2 )当四边形ABCD为矩形时,根据全等三角形的性质可得BE =DF,即可证明四边形BEDF是平行四边形;当四边形ABCD为菱形时,根据菱形的性质,利用SAS可证明△ABE ≌△ADE,可得BE =DE,即可证明四边形BEDF是菱形.【详解】(1 )∵∴∴∵ 四边形是平行四边形∴,,∴在△ABE 和△CDF 中,∴.(2 )如图,当四边形ABCD为矩形时,连接DE、BF,同(1 )可知,∴BE =DF,∵BE //DF,∴ 四边形BEDF是平行四边形.如图,当四边形ABCD是菱形时,连接DE、BF,同理可知四边形BEDF是平行四边形,∵ 四边形ABCD是菱形,∴AB =AD,∠BAE =∠D AE,在△ABE和△ADE中,,∴△ABE ≌△ADE,∴BE =DE,∴ 四边形BEDF是菱形.综上所述:当四边形分别是矩形和菱形时,四边形分别是平行四边形与菱形.【点睛】本题考查平行四边形的判定与性质、全等三角形的判定与性质及菱形的判定与性质,熟练掌握相关性质及判定定理是解题关键.19、如图,在四边形中,平分交于点,交的延长线于点为延长线上一点,.(1 )求证;(2 )求的度数.知识点:平行四边形【答案】(1 )见解析;(2 )130°【分析】(1 )由邻补角的定义及题意可得到∠ADE =∠BCE,即可判定AD ∥BC;(2 )根据题意及由三角形的外角定理得到∠DGE =∠E =25° ,由平行线的性质得到∠EBC =∠GDE =25° ,根据角平分线的定义得到∠ABE =∠EBC =25° ,再根据对顶角相等及三角形的内角和求解即可.【详解】解:(1 )证明:∵∠ADE +∠BCF =180° ,∠BCE +∠BCF =180° ,∴∠ADE =∠BCE,∴AD ∥BC;(2 )∵∠ADC =∠E +∠DGE,∠ADC =2∠E =50° ,∴∠DGE =∠E =25° ,由(1 )得,AD ∥BC,∴∠EBC =∠DGE =25° ,∵BE平分∠ABC,∴∠ABE =∠EBC =25° ,∵∠AGB =∠DGE =25° ,∠A +∠ABE +∠AGB =180° ,∴∠A =180°-25°-25°=130° .【点睛】此题考查了多边形的内角与外角及平行线的判定与性质,熟记三角形的内角和、外角定理及平行线的判定定理与性质定理是解题的关键.20、如图,在网格中,线段的两个端点和点都在网格的格点上,分别按下列要求仅用无刻度直尺画图(保留作图痕迹).(1 )在图甲中画线段的中点.(2 )在图乙中画线段,使得.知识点:平行四边形【答案】(1 )见解析;(2 )见解析【分析】(1 )根据矩形的性质即可得到结论;(2 )根据平行四边形的性质作出图形即可.【详解】解:(1 )如图甲,点M即为所求;(2 )如图乙,线段CD即为所求.【点睛】本题考查了作图﹣应用与设计作图,矩形的性质,平行四边形的性质,正确的作出图形是解题的关键.。
(必考题)初中八年级数学下册第十八章《平行四边形》经典练习(答案解析)
一、选择题1.如图,菱形ABCD 中,50A ∠=︒,则ADB ∠的度数为( )A .65︒B .55︒C .45︒D .25︒A解析:A【分析】 由菱形得到AB=AD ,进而得到∠ADB=∠ABD ,再由三角形内角和定理即可求解.【详解】解:∵四边形ABCD 为菱形,∴AD=AB ,∴∠ADB=∠ABD=(180°-∠A)÷2=(180°-50°)÷2=65°,故选:A .【点睛】本题考查了菱形的性质,菱形的邻边相等,属于基础题,熟练掌握菱形的性质是解决本题的关键.2.如图,在平行四边形ABCD 中,DE 平分,6,2ADC AD BE ∠==,则平行四边形ABCD 的周长是( )A .16B .18C .20D .24C解析:C【分析】 根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED ,再根据等角对等边的性质可得CE=CD ,然后利用平行四边形对边相等求出CD 、BC 的长度,再求出▱ABCD 的周长.【详解】解:∵DE 平分∠ADC ,∴∠ADE=∠CDE ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,BC=AD=6,AB=CD ,∴∠ADE=∠CED ,∴∠CDE=∠CED ,∴CE=CD ,∵AD=6,BE=2,∴CE=BC-BE=6-2=4,∴CD=AB=4,∴▱ABCD 的周长=6+6+4+4=20.故选:C .【点睛】本题考查了平行四边形对边平行,对边相等的性质,角平分线的定义,等角对等边的性质,熟练掌握平行四边形的性质,证明CE=CD 是解题的关键.3.如图,点E 、F 分别在正方形ABCD 的边BC 、CD 上,45EAF ∠=︒,已知6AD =(正方形的四条边都相等,四个内角都是直角),2DF =.则AEF 的面积AEF S =( )A .6B .12C .15D .30C解析:C【分析】 延长CD 到G ,使DG=BE ,连接AG ,易证ADG ABE △≌△所以AE=AG ,BAE=DAG ∠∠ , 证AFG AEG △≌△,所以 GF=EF ,设BE=DG=x ,则EF=FG=x+2,在ECF Rt △中,利用勾股定理得222462x x 解得求出x ,最后求AGF S △问题即可求解.【详解】解:延长CD 到G ,使DG=BE ,连接AG ,在正方形ABCD 中,AB=AD ,90ADB B C ADC ∠=∠=∠=∠=︒ 90ADG B ∴∠=∠=︒,ADG ABE(SAS)∴△≌△,,AG AE BAE DAG ∴=∠=∠,45EAF ∠=︒ ,45DAF BAE ∴∠+∠=︒ ,GAF=45DAG DAF ∴∠∠+∠=︒,GAF=EAF ∴∠∠,又AF=AF ,AFG AEG ∴△≌△(SAS),EF=FG ∴,设BE=DG=x ,则EC=6-x ,FC=4,EF=FG=x+2,在ECF Rt △中,222=FC CE EF +,()()22246=2x x ∴+-+,解得,x=3, GF=DG DF=2+3=5∴+,AEF AGF 11S =S =GF AD=56=1522∴⨯⨯△△, 故选:C .【点睛】 本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,正确构造辅助线,证三角形全等是解决本题的关键.4.如图,在平行四边形ABCD 中,100B D ︒∠+∠=,则B 等于( )A .50°B .65°C .100°D .130°A解析:A【分析】 根据平行四边形的对角相等求出∠B 即可得解.【详解】 解:□ABCD 中,∠B =∠D ,∵∠B +∠D =100°,∴∠B =12×100°=50°, 故选:A .【点睛】本题考查了平行四边形的性质,主要利用了平行四边形的对角相等是基础题.5.如图,已知正方形1234A A A A 的边长为1,延长12A A 到1B ,使得1212B A A A =,延长23A A 到2B ,使得2323B A A A =,以同样的方式得到34,B B ,连接1234,,,B B B B ,得到第2个正方形1234B B B B ,再以同样方式得到第3个正方形1234C C C C ,……,则第2020个正方形的边长为( )A .2020B .2019(5)C .2020(5)D .20205B解析:B【分析】 结合题意分析每个正方形的边长,从而发现数字的规律求解【详解】解:由题意可得:第1个正方形1234A A A A 的边长为012=1=(5)A A∵1212B A A A =∴112A B =∴第2个正方形1234B B B B 221+2=5由题意,以此类推,215C B =2225C B =∴第3个正方形1234C C C C 222(5)(25)5(5)+==…∴第n 个正方形的边长为15)n -∴第2020个正方形的边长为2019(5)故选:B .【点睛】本题考查勾股定理及图形类规律探索,题目难度不大,正确理解题意求解每个正方形边长的规律是解题关键.6.在菱形ABCD 中,∠ABC=60゜,AC=4,则BD=( )A .3B .23C .33D .43D解析:D【分析】 根据菱形的性质可得到直角三角形,利用勾股定理计算即可;【详解】如图,AC 与BD 相较于点O ,∵四边形ABCD 是菱形,4AC =,∴AC BD ⊥,2AO =,又∵∠ABC=60゜,∴30ABO ∠=︒,∴24AB AO ==,∴224223BO =-=,∴243BD BO ==;故选D .【点睛】本题主要考查了菱形的性质,结合勾股定理计算是解题的关键.7.如图,在平行四边形ABCD 中,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .添加一个条件,使四边形AEBD 是菱形,这个条件是( )A .BAD BDA ∠=∠B .AB DE =C .DF EF =D .DE 平分ADB ∠D解析:D【分析】先证明△ADF ≌△BEF ,得到AD=BE ,推出四边形AEBD 是平行四边形,再逐项依次分析即可.【详解】解:在平行四边形ABCD 中,AD ∥BC ,∴∠DAB=∠EBA ,∵点F 是AB 的中点,∴AF=BF ,∵∠AFD=∠BFE ,∴△ADF ≌△BEF ,∴AD=BE ,∵AD ∥BE ,∴四边形AEBD 是平行四边形,A 、当BAD BDA ∠=∠时,得到AB=BD ,无法判定四边形AEBD 是菱形,故该选项不符合题意;B 、AB=BE 时,无法判定四边形AEBD 是菱形,故该选项不符合题意;C 、DF=EF 时,无法判定四边形AEBD 是菱形,故该选项不符合题意;D 、当DE 平分ADB ∠时,四边形AEBD 是菱形,故该选项符合题意;故选:D .【点睛】此题考查平行四边形的性质,全等三角形的判定及性质,菱形的判定,熟记平行四边形的性质是解题的关键.8.如图,已知在正方形ABCD 中,E 是BC 上一点,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于点G ,连接DG .现有如下4个结论:①AG =GF ;②AG 与EC 一定不相等;③45GDE ∠=︒;④BGE △的周长是一个定值.其中正确的个数为( )A .1B .2C .3D .4C解析:C【分析】 根据HL 证明△ADG ≌△FDG ,根据角的平分线的意义求∠GDE ,根据GE=GF+EF=EC+AG ,确定△BGE 的周长为AB+AC.【详解】根据折叠的意义,得△DEC ≌△DEF ,∴EF=EC ,DF=DC ,∠CDE=∠FDE ,∵DA=DF ,DG=DG ,∴Rt △ADG ≌Rt △FDG ,∴AG=FG ,∠ADG=∠FDG ,∴∠GDE=∠FDG+∠FDE =12(∠ADF+∠CDF ) =45°, ∵△BGE 的周长=BG+BE+GE ,GE=GF+EF=EC+AG ,∴△BGE 的周长=BG+BE+ EC+AG=AB+AC ,是定值,∴正确的结论有①③④,故选C.【点睛】本题考查了正方形中的折叠变化,直角三角形的全等及其性质,角的平分线,三角形的周长,熟练掌握折叠的全等性是解题的关键.9.如图,正方形ABCD 的对角线相交于点O ,正方形OMNQ 与ABCD 的边长均为a ,OM 与CD 相交于点E ,OQ 与BC 相交于点F ,且满足DE CF ,则两个正方形重合部分的面积为( )A .212aB .214aC .218a D .2116a B 解析:B【分析】由正方形OMNQ 与ABCD 得∠DOC=∠MOQ=90°可推出∠DOE=∠COF 由AC ,BD 是正方形ABCD 的对角线求得∠ODE=∠OCF=45°,可证△DOE ≌△COF (AAS ),利用面积和差S 四边形FOEC = S △EOC +S △DOE =S △DOC =214a 即可. 【详解】∵正方形OMNQ 与ABCD ,∴∠DOC=∠MOQ=90°,∴∠DOE+∠EOC =90º,∠EOC+∠COF=90º,∴∠DOE=∠COF ,又AC ,BD 是正方形ABCD 的对角线,∴∠ODE=∠OCF=45°,∵DE CF =,∴△DOE ≌△COF (AAS ),∴S 四边形FOEC =S △EOC +S △COF = S △EOC +S △DOE =S △DOC ,∵S △DOC =2ABCD 11=44S a 正方形, ∴S 四边形FOEC =214a . 故选择:B .【点睛】 本题考查正方形的性质,全等三角形的判定与性质,掌握正方形的性质,全等三角形的判定与性质是解题关键.10.如图,Rt Rt ABC BAD △≌△,BC 、AD 交于点E ,M 为斜边的中点,若CMD α∠=,AEB β∠=.则α和β之间的数量关系为( )A .2180βα-=︒B .60βα-=︒C .180αβ+=︒D .2βα=A 解析:A【分析】根据题意可得,CAB DBA ABC BAD ∠=∠∠=∠,再由直角三角形斜边的中线等于斜边的一半,可证CM DM AM BM ===,继而证明()AMC BMD SSS △≌△,解得1802AMC BMD CAM ∠=∠=︒-∠,最后根据三角形内角和180°定理,分别解得αβ、与CAM ∠的关系,整理即可解题.【详解】Rt Rt ABC BAD △≌△,CAB DBA ABC BAD ∴∠=∠∠=∠M 是AB 的中点,11,22CM AB DM AB ∴== CM DM AM BM ∴===∴∠CAM=∠MCA ,Rt Rt ABC BAD △≌△AC BD ∴=()AMC BMD SSS △≌△1802AMC BMD CAM ∴∠=∠=︒-∠CMD α∴=∠180AMC BMD =︒-∠-∠1802(1802)CAM =︒-⨯︒-∠4180CAM =∠-︒90ABC BAD CAM ∠=∠=︒-∠,AEB β=∠=180BAD ABC ︒-∠-∠180(90)(90)CAM CAM =︒-︒-∠-︒-∠2CAM =∠2180βα∴-=︒故选:A .【点睛】本题考查全等三角形的判定与性质、直角三角形斜边中线的性质、等腰三角形的性质、三角形内角和180°等知识,是重要考点,难度较易,掌握相关知识是解题关键.二、填空题11.如图,在ABC 中,10AB AC ==,D 为CA 延长线上一点,DE BC ⊥交AB 于点F .若F 为AB 中点,且12BC =,则DF =__________.8【分析】过点A 作AM ⊥BC 过点A 作AN ⊥BC 交DE 于N 证明△AFN ≌△BFE 得出AN=BE=3再利用勾股定理解答即可【详解】解:∵AB=AC ∴∠B=∠C ∵∴∠C+∠BFE=90∠B+∠BFE=90解析:8【分析】过点A 作AM ⊥BC ,过点A 作AN ⊥BC 交DE 于N ,证明△AFN ≌△BFE ,得出AN=BE=3,再利用勾股定理解答即可.【详解】解:∵AB=AC ,∴∠B=∠C ,∵DE BC ⊥,∴∠C+∠BFE=90,∠B+∠BFE=90°,∵∠BFE=∠AFD ,∠B=∠C ,∴∠BFE=∠AED=∠CDE ,∴AD=AF ,过点A 作AM ⊥BC ,在△ABC 中,∵AB=AC ,∴M 为BC 的中点,∴BM=12BC =6, 在Rt △ABM 中,AM=2222106AB BM -=-=8∵F 为AB 中点,FE ⊥BC , ∴FE 为△ABM 的中位线,BF=AF=12AB =5, ∴AD=AF=5,BE=132BM =, 过点A 作AN ⊥BC 交DE 于N ,∵AF=BF ,∠AFN=∠BFE ,∠ANF=∠BEF=90°,∴△AFN ≌△BFE ,∴AN=BE=3,在Rt △AND 中,DN=2222534AD AN -=-=,∵AD=AF ,AN ⊥DF ,∴DF=2DN=8.故答案为:8.【点睛】本题考查了勾股定理,等腰三角形的性质的运用,平行线的性质的运用,全等三角形的判定及性质的运用,正确作出辅助线是解题的关键.12.如图,在菱形ABCD 中,6AC =,5AB =,点E 是直线AB ,CD 之间任意一点,连接AE ,BE ,DE ,CE ,则EAB 和ECD 的面积之和是______.12【分析】连接BD根据菱形对角线的性质利用勾股定理计算BD的长根据两平行线的距离相等所以△EAB和△ECD的面积和等于菱形ABCD面积的一半再利用菱形面积等于对角线积的一半计算可得结论【详解】如图解析:12【分析】连接BD,根据菱形对角线的性质,利用勾股定理计算BD的长,根据两平行线的距离相等,所以△EAB和△ECD的面积和等于菱形ABCD面积的一半,再利用菱形面积等于对角线积的一半计算可得结论.【详解】如图,连接BD交AC于O,∵四边形ABCD是菱形,∴AC⊥BD,OA=12AC=12×6=3,∵AB=5,由勾股定理得:224AB OA-=,∴BD=2OB=8,∵AB∥CD,∴△EAB和△ECD的高的和等于点C到直线AB的距离,∴△EAB 和△ECD 的面积和=12×ABCD S 菱形=12×12×AC×BD=168=124⨯⨯. 故答案为:12. 【点睛】 本题考查菱形的性质,三角形的面积,平行线的性质,熟知平行线的距离相等,得△EAB 和△ECD 的高的和等于点C 到直线AB 的距离是解题的关键.13.如图,在长方形纸片ABCD 中,12AB =,5BC =,点E 在AB 上,将DAE △沿DE 折叠,使点A 落在对角线BD 上的点A '处,则AE 的长为______.【分析】首先利用勾股定理计算出BD 的长再根据折叠可得AD=A′D=5进而得到A′B 的长再设AE=x 则A′E=xBE=12-x 再在Rt △A′EB 中利用勾股定理得出关于x 的方程解出x 的值可得答案【详解】解析:103【分析】首先利用勾股定理计算出BD 的长,再根据折叠可得AD=A′D=5,进而得到A′B 的长,再设AE=x ,则A′E=x ,BE=12-x ,再在Rt △A′EB 中利用勾股定理得出关于x 的方程,解出x 的值,可得答案.【详解】解:∵AB=12,BC=5,∴AD=5,∴22125+=13,根据折叠可得:AD=A′D=5,∴A′B=13-5=8,设AE=x ,则A′E=x ,BE=12-x ,在Rt △A′EB 中:(12-x )2=x 2+82,解得:x=103. 故答案为:103. 【点睛】本题考查了矩形的性质、勾股定理、折叠的性质等知识点,能根据题意得出关于x 的方程是解此题的关键.14.如图,EF 过ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若ABCD 的周长为19, 2.5OE =,则四边形EFCD 的周长为_____.145【分析】根据平行四边形的性质易证三角形全等进而易得AE=CF故四边形的周长=AD+CD+EF根据已知求解即可【详解】解:在平行四边形ABCD中AD∥BCAC与BD互相平分∴AO=OC∠DAC=解析:14.5【分析】根据平行四边形的性质易证三角形全等,进而易得AE=CF,故四边形EFCD的周长=AD+CD+EF,根据已知求解即可.【详解】解:在平行四边形ABCD中,AD∥BC,AC与BD互相平分∴AO=OC,∠DAC=∠ACB,∠AOE=∠COF∴△AOE≌△COF∴AE=CF,OF=OE=2.5∴四边形EFCD的周长=CF+DE+CD+EF=AE+DE+CD+EF=AD+CD+EF=192.5 2×2=14.5.故答案为:14.5.【点睛】本题考查了平行四边形的性质以及三角形全等的证明,将所求线段转化为已知线段是解题的关键.15.如图,菱形ABCD的对角线相交于点O,AC=12,BD=16,点P为边BC上一点,且P 不与写B、C重合.过P作PE⊥AC于E,PF⊥BD于F,连结EF,则EF的最小值等于__________.48【分析】连接由菱形的性质解得再根据勾股定理解得继而证明四边形为矩形得到根据垂线段最短解得当时有最小值最后根据三角形面积公式解题即可【详解】连接四边形是菱形四边形为矩形当时有最小值此时的最小值为故解析:4.8【分析】连接OP ,由菱形的性质解得118,622BO BD OC AC ====,再根据勾股定理解得10BC =,继而证明四边形OEPF 为矩形,得到FE OP =,根据垂线段最短解得当OP BC ⊥时,OP 有最小值,最后根据三角形面积公式解题即可.【详解】连接OP ,四边形ABCD 是菱形,12,16AC BD ==,AC BD ∴⊥118,622BO BD OC AC ==== 22643610BC OB OC ∴=+=+=,,PE AC PF BD AC BD ⊥⊥⊥∴四边形OEPF 为矩形,FE OP ∴=当OP BC ⊥时,OP 有最小值,此时1122OBC S OB OC BC OP =⋅=⋅ 68 4.810OP ⨯∴== EF ∴的最小值为4.8,故答案为:4.8.【点睛】本题考查菱形的性质、矩形的判定与性质、勾股定理、垂线段最短等知识,是重要考点,难度较易,掌握相关知识是解题关键.16.如图,平面直角坐标系中,已知点()9,9A ,点B 、C 分别在y 轴、x 轴上,AB AC ⊥且AB AC =,若B 点坐标为()0,a ,则OC =______(用含a 的代数式表示).18-【分析】过A作AE⊥y轴于EAD⊥x轴于D构造正方形AEOD再证△AEB≌△ADC(SAS)得BE=CD由EB=EO-BO=9-可求CD=9-求出OC=OD+CD=9+9-=18-即可【详解】解析:18-a.【分析】过A作AE⊥y轴于E,AD⊥x轴于D,构造正方形AEOD,再证△AEB≌△ADC(SAS),得BE=CD,由EB=EO-BO=9-a,可求CD=9-a,求出OC=OD+CD=9+9-a=18-a即可.【详解】过A作AE⊥y轴于E,AD⊥x轴于D,A,∵点()9,9AE=AD=OE=OD=9,∠ADO=90º,四边形AEOD为正方形,⊥,∠EAD=90°,∵AB AC∴∠EAB+∠BAD=90°,∠BAD+∠DAC=90°,∴∠BAE=∠CAD,=,AE=AD,∵AB AC∴△AEB≌△ADC(SAS),∴BE=CD,∵EB=EO-BO=9-a,∴CD=9-a,OC=OD+CD=9+9-a=18-a,故答案为:18-a.【点睛】本题考查正方形的判定与性质,三角形全等判定与性质,掌握正方形的判定方法与性质,三角形全等判定的方法与性质是解题关键.17.把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若38CDF∠=︒,则EFD∠的度数是_________.64°【分析】先根据矩形的性质求出∠CFD的度数继而求出∠BFD的度数根据图形折叠的性质得出∠EFD=∠BFE=∠BFD即可得出结论【详解】解:∵ABCD是矩形∴∠DCF=90°∵∠CDF=38°∴解析:64°【分析】先根据矩形的性质求出∠CFD的度数,继而求出∠BFD的度数,根据图形折叠的性质得出∠EFD=∠BFE=12∠BFD,即可得出结论.【详解】解:∵ABCD是矩形,∴∠DCF=90°,∵∠CDF=38°,∴∠CFD=52°,∴∠BFD=180°-52°=128°,∵四边形EFDA1由四边形EFBA翻折而成,∴∠EFD=∠BFE=12∠BFD=12×128°=64°.故答案为:64°.【点睛】本题考查的是矩形折叠问题,掌握轴对称的性质是关键.18.如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF.若1DE=,则BF的长为__________.【分析】连接FE根据题意得CD=2AE=设BF=x则FG=xCF=2-x 在Rt△GEF中利用勾股定理可得EF2=(-2)2+x2在Rt△FCE中利用勾股定理可得EF2=(2-x )2+12从而得到关于 解析:51-【分析】连接FE ,根据题意得CD=2,AE=5,设BF=x ,则FG=x ,CF=2-x ,在Rt △GEF 中,利用勾股定理可得EF 2=(5-2)2+x 2,在Rt △FCE 中,利用勾股定理可得EF 2=(2-x )2+12,从而得到关于x 方程,求解x 即可.【详解】解:连接EF ,如图,∵E 是CD 的中点,且CE=1∴CD=2,DE=1∵四边形ABCD 是正方形,∴AB=BC=CD=DA=2∴2222215AD DE +=+设BF=x ,由折叠得,AG=AB=2,FG=BF=x ,∴52,在Rt △GFE 中,2222252)EF FG GE x =+=+在Rt △CFE 中,CF=BC-BF=2-x ,CE=1∴22222(2)1EF FC CE x =+=-+∴222252)(2)1x x +=-+解得:=51x ,即51,51【点睛】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.19.如图,点E 是平行四边形ABCD 的边BC 上一点,连结AE ,并延长AE 与DC 的延长线交于点F ,若AB AE =,50F ∠=︒,则D ∠=______︒.65【分析】利用平行四边形的性质以及平行线的性质得出∠F=∠BAE=50°进而由等腰三角形的性质和三角形内角和定理求得∠B=∠AEB=65°利用平行四边形对角相等得出即可【详解】解:如图所示∵四边形解析:65【分析】利用平行四边形的性质以及平行线的性质得出∠F=∠BAE=50°,进而由等腰三角形的性质和三角形内角和定理求得∠B=∠AEB=65°,利用平行四边形对角相等得出即可.【详解】解:如图所示,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠F=∠BAE=50°,.∵AB=AE,∴∠B=∠AEB=65°,∴∠D=∠B=65°.故答案是:65.【点睛】此题主要考查了平行四边形的性质,熟练应用平行四边形的性质得出是解题关键.20.如图,在平行四边形ABCD中,∠ABC=135°,AD=42,AB=8,作对角线AC的垂直平分线EF,分别交对边AB、CD于点E和点F,则AE的长为_____.【分析】连接CE过点C作交AB的延长线于点H设AE=x则BE=8-xCE=AE=x在根据勾股定理即可得到x的值【详解】如图:连接CE过点C作交AB的延长线于点H平行四边形ABCD中设AE=x则BE=解析:20 3【分析】连接CE,过点C作CH AB,交AB的延长线于点H,设AE=x,则BE=8-x,CE=AE=x,在根据勾股定理,即可得到x的值.【详解】如图:连接CE ,过点C 作CH AB ⊥,交AB 的延长线于点H ,平行四边形ABCD 中,135,2ABC AD ∠=︒=45,2CBH BC ∴∠=︒=90,H ∠=︒45,BCH ∴∠=︒4CH BH ∴==设AE=x ,则BE=8-x ,EF 垂直平分AC ,CE AE x ∴==, 在Rt CEH 中,222CH EH EC +=,()222484x x ∴+-+=, 解得:203x =, AE ∴的长为203, 故答案为:203. 【点睛】 本题考查了平行四边形的性质,勾股定理以及线段垂直平分线的性质,解决问题的关键是作辅助线构造直角三角形,利用勾股定理求解.三、解答题21.如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别在BD 和DB 的延长线上,且DE BF =,连接AE ,CF .(1)求证:E F ∠=∠;(2)连接AF ,CE ,当BD 平分ABC ∠时,四边形AFCE 是什么特殊四边形?请说明理由.解析:(1)见解析;(2)四边形AFCE 是菱形,理由见解析【分析】(1)根据四边形ABCD 是平行四边形,可以得到AD=CB ,AD ∥BC ,从而可以得到∠ADE=∠CBF ,然后根据SAS 证明△ADE ≌△CBF ,从而得出结论;(2)根据BD 平分∠ABC 和平行四边形的性质,可以证明▱ABCD 是菱形,从而可以得到AC ⊥BD ,然后即可得到AC ⊥EF ,再根据题目中的条件,可以证明四边形AFCE 是平行四边形,然后根据AC ⊥EF ,即可得到四边形AFCE 是菱形.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD=CB ,AD ∥BC ,∴∠ADB=∠CBD ,∴∠ADE=∠CBF ,在△ADE 和△CBF 中,AD CB ADE CBF DE BF =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CBF (SAS ),∴∠E=∠F ;(2)当BD 平分∠ABC 时,四边形AFCE 是菱形,理由:∵BD 平分∠ABC ,∴∠ABD=∠CBD ,∵四边形ABCD 是平行四边形,∴OA=OC ,OB=OD ,AD ∥BC ,∴∠ADB=∠CBD ,∴∠ABD=∠ADB ,∴AB=AD ,∴平行四边形ABCD 是菱形,∴AC ⊥BD ,∴AC ⊥EF ,∵DE=BF ,∴OE=OF ,又∵OA=OC ,∴四边形AFCE 是平行四边形,∵AC ⊥EF ,∴四边形AFCE 是菱形.【点睛】本题考查平行四边形的判定与性质、菱形的判定、全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.22.如图,在四边形ABCD 中,//AB CD ,90A ∠=︒,16cm AB =,13cm BC =,21cm CD =,动点N 从点D 出发,以每秒2cm 的速度在射线DC 上运动到C 点返回,动点M 从点A 出发,在线段AB 上,以每秒1cm 的速度向点B 运动,点M ,N 分别从点A ,D 同时出发.当点M 运动到点B 时,点N 随之停止运动,设运动时间为t (秒). (1)当t 为何值时,四边形MNCB 是平行四边形.(2)是否存在点N ,使NMB △是等腰三角形?若存在,请求出所有满足要求的t 的值,若不存在,请说明理由.解析:(1)5秒或373秒;(2)存在,163秒或72秒或685秒 【分析】 (1)由题意已知,AB ∥CD ,要使四边形MNBC 是平行四边形,则只需要让BM=CN 即可,因为M 、N 点的速度已知,AB 、CD 的长度已知,要求时间,用时间=路程÷速度,即可求出时间;(2)使△BMN 是等腰三角形,可分三种情况,即BM=BN 、NM=NB 、MN=MB ;可利用等腰三角形及直角梯形的性质,分别用t 表达等腰三角形的两腰长,再利用两腰相等即可求得时间t .【详解】解:(1)设运动时间为t秒.∵四边形MNCB是平行四边形,∴MB=NC,当N从D运动到C时,∵BC=13cm,CD=21cm,∴BM=AB-AM=16-t,CN=21-2t,∴16-t=21-2t,解得t=5,当N从C运动到D时,∵BM=AB-AM=16-t,CN=2t-21∴16-t=2t-21,解得t=373,∴当t=5秒或373秒时,四边形MNCB是平行四边形;(2)△NMB是等腰三角形有三种情况,Ⅰ.当NM=NB时,作NH⊥AB于H,则HM=HB,当N从D运动到C时,∵MH=HB=12BM=12(16-t),由AH=DN得2t=12(16−t)+t,解得t=163秒;当点N从C向D运动时,观察图象可知,只有由题意:42-2t=12(16-t)+t,解得t=685秒.Ⅱ.当MN=MB,当N从D运动到C时,MH=AH-AM=DN-AM=2t-t=t,BM=16-t,∵MN2=t2+122,∴(16-t)2=122+t2,解得t =72(秒);Ⅲ.当BM=BN ,当N 从C 运动到D 时,则BH=AB-AH=AB-DN=16-2t ,∵BM 2=BN 2=NH 2+BH 2=122+(16-2t )2,∴(16-t )2=122+(16-2t )2,即3t 2-32t+144=0,∵△<0,∴方程无实根,综上可知,当t=163秒或72秒或685秒时,△BMN 是等腰三角形. 【点睛】 本题主要考查了直角梯形的性质、平行四边形的性质、梯形的面积、等腰三角形的性质,特别应该注意要全面考虑各种情况,不要遗漏.23.如图,平行四边形ABCD 中,,AP BP 分别平分DAB ∠和CBA ∠,交于DC 边上点P , 2.5AD =.(1)求线段AB 的长.(2)若3BP =,求ABP △的面积.解析:(1)5;(2)6【分析】(1)证出AD=DP=2.5,BC=PC=2.5,得出DC=5=AB ,即可求出答案;(2)根据平行四边形性质得出AD ∥CB ,AB ∥CD ,推出∠DAB+∠CBA=180°,求出∠PAB+∠PBA=90°,在△APB 中求出∠APB=90°,由勾股定理求出AP ,从而求得△ABP 的面积.【详解】解:(1)∵AP 平分∠DAB ,∴∠DAP=∠PAB ,∵四边形ABCD 是平行四边形,∵AB ∥CD ,∴∠PAB=∠DPA∴∠DAP=∠DPA∴△ADP 是等腰三角形,∴AD=DP=2.5,同理:PC=CB=2.5,即AB=DC=DP+PC=5;(2)∵四边形ABCD 是平行四边形,∴AD ∥CB ,AB ∥CD ,∴∠DAB+∠CBA=180°,又∵AP 和BP 分别平分∠DAB 和∠CBA ,∴∠PAB+∠PBA=12(∠DAB+∠CBA )=90°, 在△APB 中,∠APB=180°-(∠PAB+∠PBA )=90°;在Rt △APB 中,AB=5,BP=3,∴AP=2253-=4,∴△APB 的面积=4×3÷2=6.【点睛】本题考查了平行四边形的性质,平行线的性质,等腰三角形的性质和判定,三角形的内角和定理,勾股定理等知识点的综合运用.24.如图,菱形ABCD 中,60B ∠=︒,点E ,F 分别在BC 和CD 上,BE CF =,求证:AE AF =.解析:证明见解析.【分析】连接AC ,证ABE ACF ≌即可【详解】证明:连接AC ,∵四边形ABCD 是菱形,∴AB BC CD AD ===,AC 平分BCD ∠.∵60B ∠=︒,∴ABC 是等边三角形,∴AB AC =,60∠=∠=∠︒=B BCA ACF . ∴在ABE △与ACF 中,AB AC B ACF BE CF =⎧⎪∠=∠⎨⎪=⎩.∴ABE ACF ≌.∴AE AF =.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,证明三角形全等是解此题的关键. 25.已知:平行四边形ABCD 中,点M 为边CD 的中点,点N 为边AB 的中点,联结AM 、CN .(1)求证:AM ∥CN ;(2)过点B 作BH AM ⊥,垂足为H ,联结CH .求证:△BCH 是等腰三角形.解析:(1)见解析;(2)见解析【分析】(1)由四边形ABCD 是平行四边形,根据平行四边形的性质,可得AB ∥CD ,AB=CD ,又由点M 为边CD 的中点,点N 为边AB 的中点,即可得CM=AN ,继而可判定四边形ANCM 是平行四边形,则可证得AM ∥CN .(2)由AM ∥CN ,BH ⊥AM ,点N 为边AB 的中点,可证得BH ⊥CN ,ME 是△BAH 的中位线,则可得CN 是BH 的垂直平分线,继而证得△BCH 是等腰三角形.【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB CD =.∵点M 、N 分别是边CD 、AB 的中点,∴12CM CD =,1AN AB 2=. ∴CM AN =.又∵AB ∥CD , ∴四边形ANCM 是平行四边形∴AM ∥CN .(2)设BH 与CN 交于点E ,∵AM ∥CN ,BH ⊥AM ,∴BH ⊥CN ,∵N 是AB 的中点,∴EN 是△BAH 的中位线,∴BE=EH ,∴CN 是BH 的垂直平分线,∴CH=CB ,∴△BCH 是等腰三角形.【点睛】此题考查了平行四边形的判定与性质、线段垂直平分线的性质以及等腰三角形的判定.此题难度适中,注意掌握数形结合思想的应用. 26.综合与实践——探究正方形旋转中的数学问题问程情境:已知正方形ABCD 中,点O 是线段BC 的中点,将将正方形ABCD 绕点O 顺时针旋转得到正方形A B C D ''''(点A ',B ',C ',D 分别是点A ,B ,C ,D 的对应点).同学们通过小组合作,提出下列数学问题,请你解答.特例分析:(1)“乐思”小组提出问题:如图1,在正方形绕点O 旋转过程中,顺次连接点B ,B ',C ,C '得到四边形''BB CC ,求证:四边形''BB CC 是矩形;(2)“善学”小组提出问题:如图2.在旋转过程中,当点B '落在对角线BD 上时,设A B ''与CD 交于点M .求证:四边形OB MC '是正方形.深入探究:(3)“好问”小组提出问题:如图3.若点O 是线段BC 的三等分点且2OB OC =,在正方形ABCD 旋转的过程中当线段A D ''经过点D 时,请直接写出''DD OC 的值. 解析:(1)证明见解析;(2)证明见解析;(3)2'='DD OC. 【分析】(1)由旋转性质可得 OB=OB′ ,OC=OC′ ,得到四边形BB′CC′是平行四边形,又 BC=B′ C′ ,得到平行四边形BB′CC′是矩形.(2)先由∠C=∠OB′M=∠B′OC=90°,证明四边形 OB′MC 是矩形 ,再由OC=OB′ 得到四边形 OB′MC 是正方形.(3)过D 作DN ⊥B′C′,证Rt △DNO ≌Rt △DCO(HL),设OC=a ,得到OC′=a ,DD′=2a ,即可求解.【详解】解:(1)由旋转性质可得OB OB '=,OC OC '=.点O 是线段BC 的中点 OB OC ∴=,''∴=OB OC ,OB OC =.∴四边形''BB CC 是平行四边形.又BC B C ''=,∴平行四边形''BB CC 是矩形. (2)证明:四边形ABCD 是正方形,BC CD ∴=,90C ∠=︒.180180904522-∠︒-∴︒∠=∠===︒︒C CBD CDB 由旋转可知,OB OB '=,45''∴∠=∠=︒OB B OBB454590'''∴∠=∠+∠=︒+︒=︒B OC OB B OBB .四边形A B C D ''''是正方形,90'∴∠=︒OB M∴四边形OB MC '是矩形OB OC =,OC=OC′ ,OB′=OB ,∴OC=OB′∴矩形OB MC '是正方形,(3)2'='DD OC .如图,过D 作DN ⊥B′C′可知,∠A′=∠B′=∠B′ND=90°,∠D′=∠C′=∠C′ND=90°,∴四边形DNC′D′为矩形,四边形DNB′A′为矩形,在Rt △DNO 与Rt △DCO 中,∵OD=OD ,DN=DC ,∴Rt △DNO ≌Rt △DCO(HL)设OC=a ,则OB=2OC=2a ,∴ON=OC=OC′=a∴BC=OB+OC=3a ,DD′=NC′=ON+OC′=2a , ∴2DD a OC a'='=2. 【点睛】 本题考查了特殊的四边形,平行四边形,矩形,正方形的性质和判定,解题的关键是熟练掌握特殊的四边形的性质和判定.27.如图,将长方形ABCD 沿着对角线BD 折叠,使点C 落在C '处,BC '交AD 于点E .(1)试判断BDE 的形状,并说明理由.(2)若4AB =,8AD =,求AE 的长.参考答案解析:(1)BDE 是等腰三角形,证明见解析;(2)3AE =.【分析】(1)根据折叠的性质可知EBD DBC ∠=∠,又因为//AD BC ,可知ADB DBC ∠=∠,即推出ADB EBD ∠=∠,所以BE DE =,BDE 为等腰三角形.(2)设AE x =,则8BE DE x ==-,在Rt ABE △中根据勾股定理列出等式,解出x 即可.【详解】(1)BDE 是等腰三角形,理由是:由折叠得:EBD DBC ∠=∠,∵四边形ABCD 是矩形,∴//AD BC ,∴ADB DBC ∠=∠,∴ADB EBD ∠=∠,∴BE DE =,∴BDE 是等腰三角形.(2)设AE x =,则8BE DE x ==-, ∵四边形ABCD 是矩形,∴90A ∠=︒,∴在Rt ABE △中,222AB AE BE +=,即2224(8)x x +=-,解得:3x =,∴3AE =.【点睛】本题考查翻折的性质,矩形的性质,等腰三角形的判定以及勾股定理.根据翻折的性质间接证明出BE DE =是解答本题的关键.28.如图1,正方形ABCD ,E 为平面内一点,且90BEC ∠=︒,把BCE 绕点B 逆时针旋转90︒得BAG ,直线AG 和直线CE 交于点F .(1)证明:四边形BEFG 是正方形;(2)若135AGD ∠=︒,猜测CE 和CF 的数量关系,并说明理由;(3)如图2,连接DF ,若13AB =,17CF =,求DF 的长.解析:(1)见解析;(2)CE=CF ,理由见解析;(3)522【分析】(1)根据正方形的判定定理进行证明即可;(2)证明Rt ADH ≌Rt BAG 得DH AG =,AH=BG ,再证明△DHG 是等腰直角三角形,可得DH=BH=AG ,最后由BEFG 是正方形可得结论;(3)分点F 在AB 右侧和左侧两种情况求解即可.【详解】解:(1)证明:90BEC =︒∠,把BCE 绕点B 逆时针旋转90︒得BAG , BE BG ∴=,90EBG ∠=︒,90BGA ∠=︒,则90BGF ∠=︒,90BEC EBG BGF ∴∠=∠=∠=︒,∴四边形BEFG 是正方形;(2)CE CF =,理由如下:过D 点作DH AF ⊥,垂足为H ,如图,四边形ABCD 是正方形,90BAD ∴∠=︒,AB AD =,90BGA ∠=︒,90DAH BAG ∴∠+∠=︒,90BAG ABG ∠+∠=︒,DAH ABG ∴∠=∠,在Rt ADH 和Rt BAG 中,90,DAH ABG BGA AHD AD AB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩Rt ADH ∴≌()Rt BAG AAS ,DH AG ∴=,∵∠DGH =180°-∠AGD =45°∴在Rt △DHG 中,∠GDH =45°∴DH =GH =AG∴1122AG GH AH BG === 又AG CE =,EF BG =,2EF CE ∴=,CE CF ∴=;(3)①点F 在AB 右侧时,如图,过D 作DK ⊥AG ,交其延长线于K .设正方形BEFG 的边长为x ,则BE x =,17CE x =-,在Rt BEC △中,13BC =,根据勾股定理可得,222BE CE BC +=,即222(17)13x x +-=,解得112x =,25(x =不符合条件,舍去),即12BG BE ==,17125AG CE ==-=,∵四边形BEFG 是正方形,∴∠BAD =90°.∵DK ⊥AG ,∴∠K =90°.∵∠BAG +∠KAD =180°—∠BAD =90°∠ADK +∠KAD =90°∴∠BAG =∠ADK在Rt △ABG 和Rt △DAK 中,90G K AB ADBAG ADK ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩所以Rt△ADK≌Rt BAG,则AK=BG=12,DK=AG=5,∵AF+FK=AK=BG=GF=AG+AF∴FK=AG=5在R t△DFK中,根据勾股定理可得,DF=2252+=DK FK②点F在AB左侧时,如图,过D作DK⊥AG,交其延长线于K.方法同①,可得FK=AG=12,在R t△DFK中,根据勾股定理可得,DF22122+=DK FK综上所述,DF的长为522【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,正方形的性质,勾股定理,熟练掌握相关性质和定理是解本题的关键.。
人教版 初中数学八年级下册 第十八章 平行四边形 复习习题 (含答案解析)
人教版初中数学八年级下册第十八章平行四边形复习习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB 上的动点,连接PE,PM,则PE+PM的最小值是()A.6B.3C.2D.4.52.如图,在矩形ABCD中,AB=6,AD=8,P是AD上一动点,PE⊥AC于E,PF⊥BD 于F,则PE+PF的值为()A.5B.4.8C.4.4D.43.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF 的中点,那么CH的长是()A.B.C.D.24.如图,菱形ABCD的对角线AC与BD交于点O,过点C作AB垂线交AB延长线于点E,连结OE,若AB=2,BD=4,则OE的长为()A.6 B.5 C.2D.45.如图,将正方形纸片ABCD折叠,使边AB,BC均落在对角线BD上,得到折痕BE,BF,则∠EBF的大小为( )A.15°B.30°C.45°D.60°6.下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形7.如图,四边形ABCD的对角线AC和BD交于点O,则下列不能判断四边形ABCD 是平行四边形的条件是()A.OA=OC,AD∥BC B.∠ABC=∠ADC,AD∥BCC.AB=DC,AD=BC D.∠ABD=∠ADB,∠BAO=∠DCO8.如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于()A.B.C.D.9.(题文)(2018•徐州一模)如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不能得出BE∥DF的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD10.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF11.如图,在▱ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE,BF相交于H,BF与AD 的延长线相交于点G,下面给出四个结论:①BD=BE;②∠A=∠BHE;③AB=BH;④△BCF≌△DCE.其中正确的结论是( )A.①②③B.①②④C.②③④D.①②③④12.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1B.C.4-2D.3-413.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:①∠CAD=30°②BD=③S平行四边形ABCD=AB•AC④OE=AD⑤S△APO=,正确的个数是()A.2B.3C.4D.514.如图,在中,是的中点,将沿翻折得到,连接,则线段的长等于( )A.2 B.C.D.15.如图,已知在正方形中,点、分别在、上,△是等边三角形,连接交于,给出下列结论:①;②;③垂直平分; ④.其中结论正确的共有( ).A.1个B.2个C.3个D.4个16.如图,在梯形中,,中位线与对角线交于两点,若cm, cm,则的长等于( )A.10 cm B.13 cm C.20 cm D.26 cm17.如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A 在x轴上运动时,点C随之在y轴上运动.在运动过程中,点B到原点的最大距离是( )A.6B.2C.2D.2+218.如图,把长方形纸片ABCD折叠,使其对角顶点C与A重合.若长方形的长BC为8,宽AB为4,则折痕EF的长度为( )A.5 B.C.D.19.如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A2017的坐标是()A.(0,21008)B.(21008,21008)C.(21009,0)D.(21009,-21009)20.如图,在边长为1的菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使D1AC,连接AC1,再以AC1为边作第三个菱形AC C D,使D AC;…,按此规律所作的第六个菱形的边长为()A.9B.C.27D.21.如图,矩形AEHC是由三个全等矩形拼成的,AH与BE、BF、DF、DG、CG分别交于点P、Q、K、M、N,设△BPQ,△DKM,△CNH的面积依次为S1,S2,S3.若S1+S3=20,则S2的值为( ).A.6B.8C.10D.1222.已知菱形ABCD在平面直角坐标系的位置如图所示,A(1,1),B(6,1),AC点P是对角线AC上的一个动点,E(0,2),当EPD周长最小时,点P的坐标为().A.(2,2)B.(2,C.D.二、填空题23.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为_____.24.如图,四边形ABCD为矩形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E处, 折痕为AF,若CD=6,则AF等于__________.25.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.∠BAD=60°,AC平分∠BAD,AC=2,BN的长为_____.26.如图,在菱形OABC中,点B在x轴上,点A的标为(2,3),则点C的坐标为__.27.如图,正方形CEGF的顶点E、F在正方形ABCD的边BC、CD上,且AB=5,CE=3,连接BG、DG,则图中阴影部分的面积是_____28.如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD=_____.29.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH.若OB=4,S菱形ABCD=24,则OH的长为______________.30.如图,矩形ABCD的对角线AC与BD相交点O,AC=10,P、Q分别为AO、AD 的中点,则PQ的的长度为________.31.如图,在□ABCD中,E,F是对角线AC上的两点且AE=CF,在①BE=DF;②BE∥DF;③AB=DE;④四边形EBFD为平行四边形;⑤S△ADE=S△ABE;⑥AF=CE这些结论中正确的是_____.32.如图,正方形ABCD的边长为4,E为BC上的点,BE=1,F为AB的中点,P为AC上一个动点,则PF+PE的最小值为_____.33.如图,在正方形ABCD的外侧,作等边三角形ADE. AC,BE相交于点F,则∠BFC为_______°34.如图,正方形纸片ABCD的边长为12,E,F分别是边AD,BC上的点,将正方形纸片沿EF折叠,使得点A落在CD边上的点A′处,此时点B落在点B′处.已知折痕EF=13,则AE的长等于_________.35.如图,在平面直角坐标系中,点A在抛物线y=x2-2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连接BD,则对角线BD的最小值为__.36.如图,在Rt△ABC中,∠C=90°,将△ABC绕点C顺时针旋转90°得到△A′B′C,M 、M′分别是AB、A′B′的中点,若AC=4,BC=2,则线段MM′的长为____.37.平面直角坐标系中,已知平行四边形ABCD的四个顶点坐标分别是A(a,b),B(n,2n-1),C(-a,-b),D (),则m的值是_________38.如图,在矩形ABCD中,点G在AD上,且GD=AB=1,AG=2,点E是线段BC上的一个动点(点E不与点B,C重合),连接GB,GE,将△GBE关于直线GE对称的三角形记作△GFE,当点E运动到使点F落在矩形任意一边所在的直线上时,则所有满足条件的线段BE的长是__________.39.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为_____.40.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为6,则GE+FH的最大值为_____.41.如图,在△ABC中,BC=AC=4,∠ACB =90°,点M是边AC的中点,点P是边AB上的动点,则PM+PC的最小值为_______.42.如图,点E、F是正方形ABCD内两点,且BE=AB,BF=DF,∠EBF=∠CBF,则∠BEF 的度数_____________.43.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D 的坐标为(0,2).延长CB交x轴于点A1,作第1个正方形A1B1C1C;延长C1B1交x轴于点A2,作第2个正方形A2B2C2C1,…,按这样的规律进行下去,第2016个正方形的面积是______.44.已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1,B1D1相交于点O.以点O 为坐标原点,分别以OA1,OB1所在直线为x轴、y轴,建立如图所示的直角坐标系.以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,A n,则点A n的坐标为____________.45.已知直角三角形ABC,∠ABC=90°,AB=3,BC=5,以AC为边向外作正方形ACEF,则这个正方形的中心O到点B的距离为______.46.如图,□ABCD中,∠A=60°,点E、F分别在边AD、DC上,DE=DF,且∠EBF=60°,若AE=2,FC=3,则EF的长度为_________________.47.如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把△ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为_____.48.如图,在矩形ABCD中,O为AC中点,EF过点O且EF⊥AC分别交DC于点F,交AB于点E,点G是AE中点且∠AOG=30°,给出以下结论:①∠AFC=120°;②△AEF是等边三角形;③AC=3OG;④S△AOG=S△ABC其中正确的是______.(把所有正确结论的序号都选上)三、解答题49.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.50.如图,已知□ABCD,延长AB到E使BE=AB,连接BD,ED,EC,若ED=AD.(1)求证:四边形BECD是矩形;(2)连接AC,若AD=4,CD= 2,求AC的长.51.如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC 于E,F,连接BE,DF.求证:四边形BFDE是菱形.52.如图,在矩形ABCD中,E是BC上的点,AE=BC,DF⊥AE,垂足为F,连接DE.(1)求证:△ABE≌△DFA;(2)如果AD=10,AB=6,求DE的长.53.如图,在□ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)连接CF,若∠ABC=60°,AB= 4,AF =2DF,求CF的长.54.54.如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.55.如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.(1)求证:四边形ACDF是平行四边形;(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.56.如图,已知E、F分别是▱ABCD的边BC、AD上的点,且.求证:四边形AECF是平行四边形;若四边形AECF是菱形,且,,求BE的长.57.已知,□ABCD中∠ABC=90°,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证:四边形AFCE为平行四边形.(2)如图1,求AF的长.(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P 的速度为每秒1cm,点Q的速度为每秒0.8cm,设运动时间为t秒,若当A、P、C、Q 四点为顶点的四边形是平行四边形时,求t的值.58.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD 相交于点O,与BC相交于点N,连接BM、DN.求证:四边形BMDN是菱形;若,,求菱形BMDN的面积和对角线MN的长.59.如图,正方形ABCD中,AB=1,点P是BC边上的任意一点(异于端点B、C),连接AP,过B、D两点作BE⊥AP于点E,DF⊥AP于点F.(1)求证:EF=DF﹣BE;(2)若△ADF的周长为,求EF的长.60.如图,在边长为4的正方形ABCD中,E是CD的中点,F是BC上的一点,且∠AEF=90°,延长AE交BC的延长线于点G.(1)求GE的长;(2)求证:AE平分∠DAF;(3)求CF的长.61.如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC= .62.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.63.(1)问题发现如图1,△ABC和△DCE都是等边三角形,点B、D、E在同一直线上,连接AE.填空:①∠AEC的度数为;②线段AE、BD之间的数量关系为.(2)拓展探究如图2,△ABC和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,点B、D、E在同一直线上,CM为△DCE中DE边上的高,连接AE.试求∠AEB的度数及判断线段CM、AE、BM之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=2,点P在以AC为直径的半圆上,AP=1,①∠DPC=°;②请直接写出点D到PC的距离为.64.如图所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.65.如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于点F,连接AD、CF.(1)求证:四边形ADCF是平行四边形;(2)当△ABC满足什么条件时,四边形ADCF是菱形?为什么?66.如图,中,是上一点,于点,是的中点,于点,与交于点,若,平分,连接,.(1)求证:;(2)小亮同学经过探究发现:.请你帮助小亮同学证明这一结论.(3)若,判定四边形是否为菱形,并说明理由.67.67.如图①,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)请直接写出线段AF,AE的数量关系;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论.68.如图,在平面直角坐标系中,直线分别与轴、轴交于点、,且与直线交于点.(1)若是线段上的点,且△的面积为,求直线的函数表达式.()在()的条件下,设是射线上的点,在平面内是否存在点,使以、、、为顶点的四边形是菱形?若存在,直接写出点的坐标,若不存在,请说明理由.69.如图,AB为⊙O的直径,点E在⊙O上,过点E的切线与AB的延长线交于点D,连接BE,过点O作BE的平行线,交⊙O于点F,交切线于点C,连接AC(1)求证:AC是⊙O的切线;(2)连接EF,当∠D=°时,四边形FOBE是菱形.70.如图,正方形ABCD的边长为,点P为对角线BD上一动点,点E在射线BC上,(1)填空:BD=______;(2)若BE=t,连结PE、PC,求PE+PC的最小值(用含t的代数式表示);(3)若点E是直线AP与射线BC的交点,当△PCE为等腰三角形时,求∠PEC的度数.71.如图①,在正方形ABCD中,P是对角线BD上的一点,点E在CD的延长线上,且 C E,PE交AD于点F.求证: A C;求 A E的度数;如图②,把正方形ABCD改为菱形ABCD,其它条件不变,当 ABC,连接AE,试探究线段AE与线段PC的数量关系,并给予证明.72.如图:在Rt△ABC中,∠ACB=90°,AB=6,过点C的直线MN∥AB,D为AB上一点,过点D作DE⊥BC,交直线MN于点E,垂足为F,连结CD,BE,(1)当点D是AB的中点时,四边形BECD是什么特殊四边形?说明你的理由(2)在(1)的条件下,当∠A=时四边形BECD是正方形.73.如图,在Rt△ABC中,∠B=90°,∠C=30°,AC=48,点D从点C出发沿CA方向以每秒4个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒2个单位长的速度向点B匀速运动,当其中一个点到达终点,另一个点也随之停止运动,设点D、E运动的时间是t秒(t>0),过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)当四边形BFDE是矩形时,求t的值;(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.×74.已知:如图,在□ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD 于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=600,AE=2EB,AD=4,求四边形DEBF的周长和面积.75.如图,在△ABC中,BD⊥AC于D,CE⊥AB于E,M,N分别是BC,DE的中点.求证:MN⊥DE(提示:连接ME,MD).76.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度;(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.77.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD 边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.78.定义:如图1,在△ABC和△ADE中,AB=AC=AD=AE,当∠BAC+∠DAE=180°时,我们称△ABC与△DAE互为“顶补等腰三角形”,△ABC的边BC上的高线AM叫做△ADE的“顶心距”,点A叫做“旋补中心”.特例感知:(1)在图2,图3中,△ABC与△DAE互为“顶补三角形”,AM,AN是“顶心距”.①如图2,当∠BAC=90°时,AM与DE之间的数量关系为AM= DE;②如图3,当∠BAC=120°,BC=6时,AN的长为.猜想论证:(2)在图1中,当∠BAC为任意角时,猜想AM与DE之间的数量关系,并给予证明.拓展应用(3)如图4,在四边形ABCD,AD=AB,CD=BC,∠B=90°,∠A=60°,CD=2,在四边形ABCD的内部是否存在点P,使得△PAD与△PBC互为“顶补等腰三角形”?若存在,请给予证明,并求△PBC的“顶心距”的长;若不存在,请说明理由.79.问题提出(1)如图1,将直角三角板的直角顶点P放在正方形ABCD的对角线AC上,一条直角边经过点B,另一条直角边交边DC于点E,线段PB和线段PE相等吗?请证明;问题探究(2)如图2,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交DC的延长线于点E,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;问题解决(3)继续移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交DC的延长线于点E,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由.80.在直角梯形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm。
(必考题)初中数学八年级数学下册第六单元《平行四边形》测试(包含答案解析)
一、选择题1.如图,周长为24的平行四边形ABCD 对角线AC 、BD 交于点O ,AC CD ⊥且BE CE =,若6AC =,则AOE △的周长为( ).A .6B .9C .12D .152.如图,作ABC 关于直线对称的图形A B C ''',接着A B C '''沿着平行于直线l 的方向向下平移,在这个变换过程中两个对应三角形的对应点应具有的性质是( )A .对应点连线相等B .对应点连线互相平行C .对应点连线垂直于直线lD .对应点连线被直线平分3.如图,在ABC 中,点D 在BC 上,且CD CA =,CF 平分ACB ∠,E 是AB 的中点,7BC =,4AC =,则EF 的长是( )A .1.5B .2C .3D .64.如图,在平行四边形ABCD 中,E 为CD 上一点,28ABE ∠︒=,且CE BC =,AE DE =,则下列选项正确的为( )A .56BAE ∠=︒B .68AED ∠=︒C .112AEB ∠=︒D .122C ∠=︒5.如图,设M 是ABCD 边AB 上任意一点,设AMD ∆的面积为1S ,BMC ∆的面积为2S ,CDM ∆的面积为S ,则( )A .12S S S =+B .12S S S >+C .12S S S <+D .不能确定6.如图,在周长为20厘米的平行四边形ABCD 中,AB ADAC BD ≠,,相交于点O ,OE BD ⊥交AD 于点E ,则ABE △的周长为( )A .10厘米B .12厘米C .14厘米D .16厘米 7.如图,AD 、BE 分别是ABC 的中线和角平分线,AD BE ⊥,4AD BE ==,F 为CE 的中点,连接DF ,则AF 的长等于( )A .2B .3C .5D .258.如图,过平行四边形ABCD 对角线交点O 的线段EF ,分别交AD ,BC 于点E ,F ,当AE =ED 时,△AOE 的面积为4,则四边形EFCD 的面积是( )A .8B .12C .16D .32 9.已知在四边形ABCD 中,3AB =,5CD =,M ,N 分别是AD ,BC 的中点,则线段MN的取值范围是( )A .14MN <<B .14MN <≤C .28MN <<D .28MN <≤ 10.若一个正n 边形的每个内角为156°,则这个正n 边形的边数是( )A .13B .14C .15D .1611.如图,在Rt △ABC 中,∠A =30°,BC =1,点D ,E 分别是直角边BC ,AC 的中点,则DE 的长为 ( )A .1B .2C .3D .1+3 12.正多边形的一个外角的度数为72°,则这个正多边形的边数为( )A .4B .5C .6D .7 二、填空题13.在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图BD 是平行四边形ABCD 的对角线,点E 在BD 上,DC =DE =AE ,∠1=25°,则∠C 的大小是_____.14.如图,AE 平分∠BAC ,DE 平分∠BDC ,已知∠B =10°,∠C =40°,则∠E =____________.15.多边形每一个内角都等于108°,多边形一个顶点可引的对角线的条数是________条. 16.过n 边形的一个顶点有9条对角线,则n 边形的内角和为______.17.如图,小亮从点A 出发,沿直线前进15米后向左转30°,再沿直线前进15米,又向左转30°…… 照这样走下去,他第一次回到出发地点A 时,共走了_____米.18.三角形的三边长分别是 4cm ,5cm ,6cm ,则连结三边中点所围成的三角形的周长是______________cm .19.如图,在平面直角坐标系中,点A ,B 的坐标分别为()1,0-,()3,0,现同时将点A ,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A ,B 的对应点C ,D ,则D 的坐标为_______,连接AC ,BD .在y 轴上存在一点P ,连接PA ,PB ,使AB PAB DC S S ∆=四边形.则点P 的坐标为_______.20.一个多边形的内角和是1080°,则这个多边形是边形__________边形.三、解答题21.如图,在△ABC中,AC=BC,E是AB上一点,且CE=BE,将△CBE绕点C旋转得到△CAD.(1)求证:AB∥DC;(2)连接DE,判断四边形BEDC的形状,并说明理由.22.已知一个多边形,它的内角和等于1800︒,求这个多边形的边数.⨯的正方形网格中,每个小正方形的边长为1,小正方形的顶点叫做格23.如图,在66点,连续任意两个格点的线段叫做格点线段.(1)如图1,格点线段AB、CD,请添加一条格点线段EF,使它们构成轴对称图形.(2)如图2,格点线段AB和格点C,在网格中找出一个符合的点D,使格点A、B、C、D四点构成中心对称图形(画出一个即可).=.求24.已知:如图,在BEDF中,点A、C在对角线EF所在的直线上,且AE CF证:四边形ABCD是平行四边形.25.如图,▱ABCD的对角线AC、BD相交于点O,且E、F、G、H分别是AO、BO、CO、DO的中点.(1)求证:四边形EFGH是平行四边形;(2)若AC+BD=36,AB=10,求△OEF的周长.26.如图,在平面直角坐标系中,点A、B、C的坐标分别为(0,2)、(-1,0)、(2,0).(1)求直线AB的函数表达式;(2)直线AB上有一点P,使得△PBC的面积等于9,求点P的坐标;(3)设点D与A、B、C点构成平行四边形,直接写出所有符合条件的点D的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】依据平行四边形ABCD的周长为24,即可得到AB+BC=12,再根据AO=12AC,OE=12AB,AE=12BC,即可得到△AOE的周长.【详解】解:∵平行四边形ABCD的周长为24,∴AB+BC=12,∵平行四边形ABCD对角线AC、BD交于点O,且BE=CE,∴AO=12AC=3,OE=12AB,∵AC⊥CD,且BE=CE,∴Rt△ABC中,AE=12BC,∴△AOE的周长=AO+AE+OE=3+12(BC+AB)=3+12×12=9,故选:B.【点睛】本题考查了平行四边形的性质、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题.2.D解析:D【分析】作点A关于直线l的对称点D,交直线l于F,将点D向下平移得到点A',连接A A'交直线l于E,则AD被对称轴垂直平分,利用EF是△A A'D的中位线,得到AE=E A',同理可知:图形中对应点连线被直线平分.【详解】根据题意,作点A关于直线l的对称点D,交直线l于F,将点D向下平移得到点A',连接A A'交直线l于E,∵A、D关于直线l对称,∴AD被对称轴垂直平分,又∵EF∥A'D,∴EF是△A A'D的中位线,∴AE=E A',即A A'被对称轴平分,同理可知:图形中对应点连线被直线平分,故选:D..【点睛】此题考查平移的性质,轴对称的性质,三角形中位线的性质,熟练掌握各性质是解题的关键.3.A解析:A【分析】根据等腰三角形的三线合一的性质得到DF=AF,根据点E是AB的中点,推出EF是△ABD的中位线,由此得到EF=12BD计算得出答案.【详解】∵CD CA =,CF 平分ACB ∠,∴DF=AF ,CD=4,∵E 是AB 的中点,∴EF 是△ABD 的中位线,∴EF=12BD=12(BC-CD)=1.5, 故选:A .【点睛】此题考查等腰三角形的三线合一的性质,三角形的中位线的性质定理,熟记等腰三角形的三线合一的性质进行证明是解题的关键.4.B解析:B【分析】解根据等腰三角形的性质得出∠EBC =∠BEC ,利用平行四边形的性质解答即可.【详解】∵四边形ABCD 是平行四边形,∴AB ∥DC ,AD ∥BC ,∴∠ABE =∠BEC =28°,∵CE =BC ,∴∠EBC =∠BEC =28°,∴∠ABC =56°,∴∠BAD =∠C =124°,∠DAE =56°,∵AB ∥DC ,∴∠BAE =∠AED ,∵AE =ED ,∴∠D =∠DAE =56°,∴∠BAE =124°−56°=68°,∴∠AED =180°−56°−56°=68°,∴∠AEB =180°−68°−28°=84°,故选:B .【点睛】此题考查平行四边形的性质,关键是根据等腰三角形的性质得出∠EBC =∠BEC 解答. 5.A解析:A【分析】如图(见解析),过点M 作//MN BC ,交CD 于点N ,先根据平行四边形的判定可得四边形AMND 和四边形BMNC 都是平行四边形,再根据平行四边形的性质即可得.【详解】如图,过点M 作//MN BC ,交CD 于点N ,四边形ABCD 是平行四边形,//,//AB CD AD BC ∴,////AD BC MN ∴,∴四边形AMND 和四边形BMNC 都是平行四边形,12,DMN CMN S S SS ∴==, 12DMN CMN S S SS S ∴=+=+, 故选:A .【点睛】本题考查了平行四边形的判定与性质,通过作辅助线,构造平行四边形是解题关键. 6.A解析:A【分析】由平行四边形求出OB=OD ,再利用等腰三角形的三线合一求出BE=DE 由此即可求出ABE △的周长.【详解】∵四边形ABCD 是平行四边形,∴OB OD =.∵OE BD ⊥,∴BE DE =,∴ABE △的周长为20210AB AE BE AB AE DE AB AD ++=++=+=÷=(厘米),故选:A.【点睛】此题考查平行四边形的对角线互相平分、对边相等的性质,等腰三角形的三线合一的性质. 7.D解析:D【分析】已知AD 是ABC 的中线,F 为CE 的中点,可得DF 为△CBE 的中位线,根据三角形的中位线定理可得DF ∥BE ,DF=12BE=2;又因AD BE ⊥,可得∠BOD=90°,由平行线的性质可得∠ADF=∠BOD=90°,在Rt △ADF 中,根据勾股定理即可求得AF 的长.【详解】∵AD是ABC的中线,F为CE的中点,∴DF为△CBE的中位线,∴DF∥BE,DF=12BE=2;∵AD BE⊥,∴∠BOD=90°,∵DF∥BE,∴∠ADF=∠BOD=90°,在Rt△ADF中,AD=4,DF=2,∴22224225AD DF+=+=故选D.【点睛】本题考查了三角形的中位线定理及勾股定理,利用三角形的中位线定理求得DF∥BE,DF=12BE=2是解决问题的关键.8.C解析:C【分析】根据等底等高的三角形面积相等可得S△DOE=S△AOE=4,进而可得S△COD=S△AOD=8,再由平行四边形性质可证明△COF≌△AOE(ASA),S△COF=S△AOE=4,即可得S四边形EFCD=16.【详解】解:∵ABCD是平行四边形,∴AD∥BC,AD=BC,AO=CO,OB=OD∴∠DAC=∠ACB,∵∠AOE=∠COF∴△COF≌△AOE(ASA)∵S△AOE=4,AE=ED∴S△COF=S△DOE=S△AOE=4,∴S△AOD=8∵AO=CO∴S△COD=S△AOD=8∴S四边形EFCD=S△DOE+S△COD+S△COF=4+8+4=16;故选C.【点睛】本题考查了平行四边形性质,全等三角形判定和性质,三角形面积等知识点,关键要会运用等底等高的三角形面积相等.9.B解析:B【分析】利用中位线定理作出辅助线,利用三边关系可得MN 的取值范围.【详解】连接BD ,过M 作MG ∥AB ,连接NG .∵M 是边AD 的中点,AB=3,MG ∥AB ,∴MG 是△ABD 的中位线,BG=GD ,1322MG AB ==; ∵N 是BC 的中点,BG=GD ,CD=5,∴NG 是△BCD 的中位线,1522NG CD ==, 在△MNG 中,由三角形三边关系可知NG-MG <MN <MG+NG ,即53532222MN -<<+, ∴14MN <<,当MN=MG+NG ,即MN=4时,四边形ABCD 是梯形,故线段MN 长的取值范围是1<MN≤4.故选B .【点睛】解答此题的关键是根据题意作出辅助线,利用三角形中位线定理及三角形三边关系解答. 10.C解析:C【解析】试题分析:由一个正多边形的每个内角都为156°,可求得其外角的度数,继而可求得此多边形的边数,则可求得答案.解:∵一个正多边形的每个内角都为156°,∴这个正多边形的每个外角都为:180°﹣156°=24°,∴这个多边形的边数为:360°÷24°=15,故选C .考点:多边形内角与外角.11.A解析:A【分析】根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.【详解】解:如图∵在Rt△ABC中,∠C=90°,∠A=30°,∴AB=2BC=2又∵点D. E分别是AC、BC的中点,∴DE是△ACB的中位线,∴DE=1AB=12故选:A【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.12.B解析:B【分析】正多边形的外角和是360°,且正多边形的每个外角相等,因而用360°除以外角的度数,就得到外角和中外角的个数,外角的个数就是多边形的边数.【详解】∵正多边形的外角和是360°,∴360÷72=5,那么它的边数是5.故选B.【点睛】本题考查了多边形的内角与外角.根据正多边形的外角和求多边形的边数是常用的一种方法,需要熟练掌握.二、填空题13.105°【分析】由已知根据等腰三角形的性质可以求出∠BAE的大小从而得到∠BAD的大小再根据平行四边形对角相等的性质可以得到答案【详解】解:∵DE=AE∠1=25°∴∠ADE=∠1=25°∴∠AEB解析:105°.【分析】由已知,根据等腰三角形的性质,可以求出∠BAE的大小,从而得到∠BAD的大小,再根据平行四边形对角相等的性质可以得到答案.【详解】解:∵DE=AE,∠1=25°,∴∠ADE=∠1=25°,∴∠AEB=∠1+∠ADE=50°,又∵平行四边形ABCD中,AB=CD,∴AB=AE,∴∠ABE=∠AEB=50°,∴∠BAE=80°,∠BAD=80°+25°=105°,又∵∠BAD=∠C,∴∠C=105°,故答案为:105°.【点睛】本题考查平行四边形的应用,熟练掌握平行四边形的性质、等腰三角形的性质、三角形的内外角性质是解题关键.14.15°【分析】根据周角定义和四边形的内角和为360°可得∠BDC﹣∠BAC=50°根据角平分线的定义可得∠EAC=∠BAC∠EDC=∠BDC再根据对顶角相等和三角形的内角和为180°可证得∠E+∠E解析:15°【分析】根据周角定义和四边形的内角和为360°可得∠BDC﹣∠BAC=50°,根据角平分线的定义可得∠EAC=12∠BAC,∠EDC=12∠BDC,再根据对顶角相等和三角形的内角和为180°可证得∠E+∠EDC=∠C+∠EAC,进而可求得∠E的度数.【详解】解:∵∠B+∠BAC+∠C+(360°﹣∠BDC)=360°,∠B=10°,∠C=40°,∴∠BDC﹣∠BAC=50°,∵AE平分∠BAC,DE平分∠BDC,∴∠EAC=12∠BAC,∠EDC=12∠BDC,∴∠EDC﹣∠EAC==12∠BDC﹣12∠BAC=25°,设CD与AE相交于F,则∠DFE=∠AFC,∵∠E+∠EDC+∠DFE=∠C+∠EAC+∠AFC,∴∠E+∠EDC=∠C+∠EAC,∴∠E=∠C﹣(∠EDC﹣∠EAC)=40°﹣25°=15°,故答案为:15°.【点睛】本题考查角平分线的定义、四边形的内角和为360°、周角定义、三角形的内角和定理、对顶角相等,熟练掌握这些知识的运用与联系是解答的关键.15.2【分析】多边形的每一个内角都是108°则每个外角是72°多边形的外角和是360°这个多边形的每个外角相等因而用360°除以外角的度数就得到外角的个数外角的个数就是多边形的边数再根据从n边形的一个顶解析:2【分析】多边形的每一个内角都是108°,则每个外角是72°.多边形的外角和是360°,这个多边形的每个外角相等,因而用360°除以外角的度数,就得到外角的个数,外角的个数就是多边形的边数.再根据从n边形的一个顶点出发可引出(n−3)条对角线,连接这个点与其余各顶点,可以把一个多边形分割成(n−2)个三角形,依此作答.【详解】根据题意得:360°÷(180°−108°)=360°÷72°=5,那么它的边数是五,从它的一个顶点出发的对角线共有5−3=2条,故答案为:2.【点睛】此题考查了多边形内角与外角,根据多边形的外角和求多边形的边数是常用的一种方法,需要熟记.另外需要记住从n边形的一个顶点出发可引出(n−3)条对角线,把这个多边形分割成(n−2)个三角形.16.1800°【分析】根据n边形从一个顶点出发可引出(n-3)条对角线可得n-3=9求出n的值最后根据多边形内角和公式可得结论【详解】解:由题意得:n-3=9解得n=12则该n边形的内角和是:(12-2解析:1800°【分析】根据n边形从一个顶点出发可引出(n-3)条对角线,可得n-3=9,求出n的值,最后根据多边形内角和公式可得结论.【详解】解:由题意得:n-3=9,解得n=12,则该n边形的内角和是:(12-2)×180°=1800°,故答案为:1800°.【点睛】本题考查了多边形的对角线和多边形的内角和公式,掌握n边形从一个顶点出发可引出(n-3)条对角线是解题的关键.17.【分析】根据多边形的外角和=360°求解即可【详解】解:∵多边形的外角和为360°∴边数==12即12×15米=180米故答案为:180【点睛】本题考查了多边形的外角和能熟记多边形的外角和定理是解此解析:【分析】根据多边形的外角和=360°求解即可.【详解】解:∵多边形的外角和为360°,∴边数=36030=12,即12×15米=180米,故答案为:180.【点睛】本题考查了多边形的外角和,能熟记多边形的外角和定理是解此题的关键,注意:多边形的外角和等于360°.18.【分析】三角形两边中点的连线是三角形的中位线如下图DEDFEF都是△ABC的中位线根据中位线的性质可分别求出长度从而得到周长【详解】如下图在△ABC中点DEF分别是ABBCCA的中点AB=4cmBC解析:15 2【分析】三角形两边中点的连线是三角形的中位线,如下图,DE,DF,EF都是△ABC的中位线,根据中位线的性质可分别求出长度,从而得到周长.【详解】如下图,在△ABC中,点D、E、F分别是AB、BC、CA的中点,AB=4cm,BC=5cm,AC=6cm∵点D、E分别是AB、BC的中点∴DE是△BAC的中位线∴DE=12AC=3cm同理,EF=12AB=2cm,DF=1522CB=cm∴△DEF的周长=3+2+51522=cm故答案为:15 2【点睛】本题考查三角形中位线的定理,需要注意,三角形的中位线平行且等于对应底边的一半,且不可弄错边之间的关系.19.(42)(04)或(0-4)【分析】(1)根据平移规律直接得出点D的坐标;(2)设点P到AB的距离为h则S△PAB=×AB×h根据S△PAB=S四边形ABDC列方程求h的值确定P点坐标【详解】解:∵解析:(4,2)(0,4)或(0,-4)【分析】(1)根据平移规律,直接得出点D的坐标;(2)设点P到AB的距离为h,则S△PAB=12×AB×h,根据S△PAB=S四边形ABDC,列方程求h的值,确定P点坐标.【详解】解:∵点B的坐标为(3,0),将点B分别向上平移2个单位,再向右平移1个单位得到点D,∴D(4,2);设点P到AB的距离为h,S△PAB=12×AB×h=2h,S四边形ABDC=AB×y D=8,∵S△PAB=S四边形ABDC,∴2h=8,解得h=4,∴P(0,4)或(0,-4).故答案为:(4,2);(0,4)或(0,-4).【点睛】本题考查了坐标与图形平移的关系,坐标与平行四边形性质的关系,解题的关键是理解平移的规律.20.八【分析】首先设这个多边形的边数为n由n边形的内角和等于180(n-2)即可得方程180(n-2)=1080解此方程即可求得答案【详解】解:设这个多边形的边数为n根据题意得:180(n-2)=108解析:八【分析】首先设这个多边形的边数为n,由n边形的内角和等于180 (n-2),即可得方程180(n-2)=1080,解此方程即可求得答案.【详解】解:设这个多边形的边数为n,根据题意得:180(n-2)=1080,解得:n=8,故答案为:八.【点睛】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.三、解答题21.(1)见解析;(2)平行四边形,理由见解析【分析】(1)由旋转的性质得出∠BCE =∠ACD ,由等腰三角形的性质得出∠B =∠BAC ,∠B =∠BCE ,由平行线的判定可得出结论;(2)由平行四边形的判定可得出结论.【详解】(1)证明:由旋转的性质得∠BCE =∠ACD ,∵AC =BC ,∴∠B =∠BAC ,∵CE =BE ,∴∠B =∠BCE ,∴∠ACD =∠BAC ,∴AB ∥CD ;(2)解:四边形BEDC 是平行四边形,由旋转的性质得CD =CE ,∵CE =BE ,∴CD =BE ,∵AB ∥DC ,∴四边形BEDC 是平行四边形.【点睛】本题考查了旋转的性质、等腰三角形的性质、平行四边形的性质与判定、熟练掌握旋转的性质是解本题的关键;22.十二边形.【分析】设这个多边形的边数为n ,根据多边形的内角和定理即可列方程求解.【详解】解:设这个多边形是n 边形,根据题意得:()21801800n ︒︒-⨯=, 解得:12n =.故这个多边形是十二边形.【点睛】解题的关键是读懂题意,根据多边形的内角和:180°(n-2),正确列方程求解. 23.(1)画图见解析.(2)画图见解析.【分析】(1)轴对称图形沿某条直线折叠后,直线两旁的部分能完全重合得出答案即可; (2)利用中心对称图形的定义得出D 点位置即可;【详解】(1)如图,(2)如图,【点睛】本题考查了轴对称、中心对称作图,以及平行四边形的判定与性质,掌握画图的方法和图形的特点是解题的关键.24.见解析.【分析】如图,连接BD ,交AC 于点O .由平行四边形的对角线互相平分可得OD OB =,OE OF =,结合已知条件证得OA OC =,由对角线互相平分的四边形是平行四边形即可判定四边形ABCD 是平行四边形.【详解】如图,连接BD ,交AC 于点O .∵四边形BEDF 是平行四边形,∴OD OB =,OE OF =.又∵AE CF =,∴AE OE CF OF +=+,即OA OC =,∴四边形ABCD 是平行四边形.【点睛】本题考查了平行四边形的性质及判定,作出辅助线,证明OD OB =、OA OC =是解决问题的关键.25.(1)详见解析;(2)14【分析】(1)由平行四边形的性质可得AO=CO ,BO=DO ,由中点的性质可得EO=12AO ,GO=12CO ,FO=12BO ,HO=12DO ,由对角线互相平分的四边形是平行四边形可得结论; (2)由平行四边形的性质可得EO+FO=9,由三角形中位线定理可得EF=5,即可求解.【详解】证明:(1)∵四边形ABCD 是平行四边形∴AO=CO ,BO=DO∵E 、F 、 G 、H 分别是AO 、BO 、CO 、DO 的中点∴EO=12AO ,GO=12CO ,FO=12BO ,HO=12DO ∴EO=GO ,FO=HO∴四边形EFGH 是平行四边形(2)∵E 、F 分别是AO 、BO 的中点∴EF=12AB ,且AB=10 ∴EF=5 ∵AC+BD=36∴AO+BO=18∴EO+FO=9∴△OEF 的周长=OE+OF+EF=9+5=14.【点睛】本题考查了平行四边形的判定和性质,熟练运用平行四边形的性质是本题的关键. 26.(1)y=2x+2;(2)(2,6)或(-4,-6);(3)(3,2)、(-3,2)、(1,-2)【分析】(1)根据待定系数法,可得函数解析式;(2)设点P 的坐标为(x ,2x+2),根据三角形的面积公式列方程求解即可;(3)分三种情况求解即可:①当AB 、BC 为邻边时,②当AB 为对角线时,③当BC 为对角线时.【详解】解:(1)设直线AB 的函数解析式为y=kx+b ,∵直线AB 经过点A (0,2)、B (-1,0),得20b k b =⎧⎨-+=⎩,解得22 kb=⎧⎨=⎩.∴直线AB的函数解析式为y=2x+2;(2)由题意,设点P的坐标为(x,2x+2),S△POA=12×BC×|p y|=12×3×|2x+2|=9.解得x=2或x=-4.故点P的坐标是(2,6)或(-4,-6);(3)①当AB、BC为邻边时,作D1E⊥BC于E,∵四边形ABCD1是平行四边形,∴AD1=BC=3,AB=CD1,∠ABC=∠D1CE,又∵∠AOB=∠D1EC,∴△AOB≌△D1EC,∴CE=BO=1,∴D1(3,2);同理可求:②当AB为对角线时,D2(-3,2);③当BC为对角线时,D3(1,-2);综上所述:点D与A、B、C点构成平行四边形,点D的坐标为(3,2)、(-3,2)、(1,-2).【点睛】本题考查了待定系数法求一次函数解析式,坐标与图形的性质,三角形的面积公式,平行四边形的性质,以及全等三角形的判定与性质.熟练掌握待定系数法和平行四边形的性质是解答本题的关键。
初中数学特殊的平行四边形50题(含答案)
特殊的平行四边形练习题(50题)菱形、矩形、正方形一、单选题(共18题;共36分)1.下列条件中,能判定一个四边形为矩形的条件是( )A. 对角线互相平分的四边形B. 对角线相等且平分的四边形C. 对角线相等的四边形D. 对角线相等且互相垂直的四边形【答案】B【解析】【解答】解:A、对角线互相平分的四边形是平行四边形,故A不符合题意;B、对角线相等且平分的四边形是矩形,故B符合题意;C、对角线相等的四边形不是矩形,故C不符合题意;D、对角线相等且互相垂直的四边形不是矩形,故D不符合题意.故答案为:B.【分析】根据矩形的判定方法,逐项进行判断,即可求解2.如图,点A、D、G、M在半圆上,四边形ABOC、DEOF、HNMO均为矩形,设BC=a ,EF=b ,NH= c ,则下列各式中正确的是()A. a > b > cB. a =b =cC. c > a > bD. b > c > a【答案】B【解析】【解答】解:连接OA、OD、OM,如图所示:则OA=OD=OM,∵四边形ABOC、DEOF、HNMO均为矩形,∴OA=BC=a,OD=EF=b,OM=NH=c,∴a=b=c;故答案为:B.【分析】连接OA、OD、OM,则OA=OD=OM,由矩形的对角线相等得出OA=BC=a,OD=EF=b,OM=NH=c,再由同圆的半径相等即可得出a=b=c.3.如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是( )A. 1B. 2C.D.【答案】 D【解析】【解答】解:连接DE交AC于P,连接BD,BP,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值,∵∠BAD=60°,AD=AB,∴△ABD是等边三角形,∴AD=BD,∵AE=BE=AB=1,∴DE⊥AB,在Rt△ADE中,DE=,∴ PE+PB的最小值是.故答案为:D.【分析】连接DE交AC于P,连接BD,BP,根据菱形的性质得出B、D关于AC对称,得出DE就是PE+PB 的最小值,根据等边三角形的判定与性质得出DE⊥AB,再根据勾股定理求出DE的长,即可求解.4.若正方形的对角线长为2 cm,则这个正方形的面积为()A. 4B. 2C.D.【答案】B【解析】【解答】解:设正方形的边长为xcm,根据题意得:x2+x2=22,∴x2=2,∴正方形的面积=x2=2(cm2).故答案为:B.【分析】设正方形的边长为xcm,利用勾股定理列出方程,求出x2=2,即可求出正方形的面积为2.5.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A. 72B. 24C. 48D. 96【答案】C【解析】【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=4,∴BD=8,∵OA=6,∴AC=12,∴菱形ABCD的面积= AC•BD=×12×8=48.故答案为:C.【分析】根据菱形的性质得O为BD的中点,再由直角三角形斜边上的中线等于斜边的一半,得BD的长度,最后由菱形的面积公式求得面积.6.将一张长方形纸片折叠成如图所示的形状,则∠ABC等于( )A. 73°B. 56°C. 68°D. 146°【答案】A【解析】【解答】如图,∵∠CBD=34°,∴∠CBE=180°﹣∠CBD=146°,由折叠的性质可得∠ABC=∠ABE= ∠CBE=73°.故答案为:A【分析】根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE= ∠CBE,可得出∠ABC的度数.7.如图,已知矩形AOBC的顶点O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OC,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠BOC内交于点F;③作射线OF,交边BC于点G,则点G的坐标为()A. (4,1)B. (4,)C. (4,)D. (4,)【答案】B【解析】【解答】解:∵四边形AOBC是矩形,A(0,3),B(4,0),∴OB=4,OA=BC=3,∠OBC=90°,∴OC==5,作GH⊥OC于H,如图,由题意可知:OG平分∠BOC,∵GB⊥OB,GH⊥OC,∴GB=GH,设GB=GH=x,由S△OBC=×3×4=×5×x+ ×4×x,解得:x=,∴G(4,).故答案为:B.【分析】根据勾股定理可得OC的长,作GH⊥OC于H,根据角平分线的性质可得GB=GH,然后利用面积法求出GB即可.8.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是( )A. 2B.C.D. 1【答案】B【解析】【解答】解:由图象可知:AE=3,BE=4,在Rt ABE中,∠AEB=90°AB= =5当x=6时,点P在BE上,如图,此时PE=4-(7-x)=x-3=6-3=3∵∠AEB=90°, PQ⊥CD∴∠AEB=∠PQE=90°,在矩形ABCD中,AB//CD∴∠QEP=∠ABE∴PQE BAE, ∴=∴=∴PQ=故答案为:B.【分析】由图象可知:AE=3,BE=4,根据勾股定理可得AB=5,当x=6时,点P在BE上,先求出PE的长,再根据△ PQE ∽△ BAE,求出PQ的长.9.如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是()A. 向左平移1个单位,再向下平移1个单位B. 向左平移个单位,再向上平移1个单位C. 向右平移个单位,再向上平移1个单位D. 向右平移1个单位,再向上平移1个单位【答案】 D【解析】【解答】解:因为B(1,1)由勾股定理可得OB=,所以OA=OB,而AB<OA.故以AB为对角线,OB//AC,由O(0,0)移到点B(1,1)需要向右平移1个单位,再向上平移1个单位,由平移的性质可得由A(,0)移到点C需要向右平移1个单位,再向上平移1个单位,故选D.【分析】根据平移的性质可得OB//AC,平移A到C,有两种平移的方法可使O,A,B,C四点构成的四边形是平行四边形;而OA=OB>AB,故当OA,OB为边时O,A,B,C四点构成的四边形是菱形,故点A平移到C的运动与点O平移到B的相同.10.如图,把长方形ABCD沿EF对折,若∠1=500,则∠AEF的度数等于()A. 25ºB. 50ºC. 100ºD. 115º【答案】 D【解析】解析:∵把矩形ABCD沿EF对折,∴AD∥BC,∠BFE=∠2,∵∠1=50°,∠1+∠2+∠BFE=180°,∴∠BFE==65°,∵∠AEF+∠BFE=180°,∴∠AEF=115°.故选D11.在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A. ②③B. ③④C. ①②④D. ②③④【答案】 D【解析】【解答】∵AB=1,AD=,∴BD=AC=2,OB=OA=OD=OC=1.∴△OAB,△OCD为正三角形.AF平分∠DAB,∴∠FAB=45°,即△ABF是一个等腰直角三角形.∴BF=AB=1,BF=BO=1.∵AF平分∠DAB,∴∠FAB=45°,∴∠CAH=45°﹣30°=15°.∵∠ACE=30°(正三角形上的高的性质)∴∠AHC=15°,∴CA=CH由正三角形上的高的性质可知:DE=OD÷2,OD=OB,∴BE=3ED.所以正确的是②③④.故选D.【分析】这是一个特殊的矩形:对角线相交成60°的角.利用等边三角形的性质结合图中的特殊角度解答.本题主要考查了矩形的性质及正三角形的性质.12.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB 上,当△CDE的周长最小时,点E的坐标为()A. (3,1)B. (3,)C. (3,)D. (3,2)【答案】B【解析】【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y= ,∴点E坐标(3,)故选:B.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.13.如图,正方形ABCD的边长为4,M在DC上,且DM=1,N是AC上一动点,则DN+MN的最小值为().A. 3B. 4C. 5D.【答案】C【解析】【分析】由正方形的对称性可知点B与D关于直线AC对称,连接BM交AC于N′点,N′即为所求在Rt△BCM中利用勾股定理即可求出BM的长即可.【解答】∵四边形ABCD是正方形,∴点B与D关于直线AC对称,连接BD,BM交AC于N′,连接DN′,N′即为所求的点,则BM的长即为DN+MN的最小值,∴AC是线段BD的垂直平分线,又CM=CD-DM=4-1=3,在Rt△BCM中,BM==5,故DN+MN的最小值是5.故选C.【点评】本题考查的是轴对称-最短路线问题及正方形的性质,先作出M关于直线AC的对称点M′,由轴对称及正方形的性质判断出点M′在BC上是解答此题的关键.14.将矩形OABC如图放置,O为原点.若点A(﹣1,2),点B的纵坐标是,则点C的坐标是()A. (4,2)B. (2,4)C. (,3)D. (3,)【答案】 D【解析】【解答】解:过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,过点A作AN⊥BF于点N,过点C作CM⊥x轴于点M,∵∠EAO+∠AOE=90°,∠AOE+∠MOC=90°,∴∠EAO=∠COM,又∵∠AEO=∠CMO,∴∠AEO∽△COM,∴=,∵∠BAN+∠OAN=90°,∠EAO+∠OAN=90°,∴∠BAN=∠EAO=∠COM,在△ABN和△OCM中∴△ABN≌△OCM(AAS),∴BN=CM,∵点A(−1,2),点B的纵坐标是,∴BN= ,∴CM= ,∴MO==2CM=3,∴点C的坐标是:(3, ).故选:D.【分析】次题主要考查了矩形的性质以及相似三角形的判定与性质以及结合全等三角形的判定与性质等知识.构造直角三角形,正确得出CM的长是解题的关键.15.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A. 1B. 2C. 3D. 4【答案】 D【解析】【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB= FB•FG= S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【分析】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB= FB•FG= S四边形CEFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.16.如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M 为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为()A. 5B.C.D.【答案】B【解析】【解答】设BE=x,则CE=6-x,∵四边形ABCD矩形,AB=4,∴AB=CD=4,∠C=∠B=90°,∴∠DEC+∠CDE=90°,又∵F是AB的中点,∴BF=2,又∵EF⊥ED,∴∠FED=90°,∴∠FEB+∠DEC=90°,∴∠FEB=∠CDE,∴△BFE∽△CED,∴=,∴=,∴(x-2)(x-4)=0,∴x=2,或x=4,①当x=2时,∴EF=2,DE=4,DF=2,∴AM=ME=,∴AE===2,②当x=4时,∴EF=2,DE=2,DF=2,∴AM=ME=,∴AE==2,AE==4,∴x=4不合题意,舍去故答案为:B.【分析】设BE=x,则CE=6-x,由矩形性质得出AB=CD=4,∠C=∠B=90°,又由EF⊥ED,根据同角的余角相等可得出∠FEB=∠CDE;由相似三角形的判定得出△BFE∽△CED,再根据相似三角形的性质得出=,由此列出方程从而求出x=2或x=4,分情况讨论:①当x=2时,由勾股定理算出AE===2,②当x=4时,由勾股定理算出AE==2,AE==4,故x=4不合题意,舍去.17.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH,其中,正确的结论有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【解答】∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.18.如图,P是正方形ABCD内一点,∠APB=135,BP=1,AP=,求PC的值()A. B. 3 C. D. 2【答案】B【解析】【分析】解答此题的关键是利用旋转构建直角三角形,由勾股定理求解.如图,把△PBC绕点B逆时针旋转90°得到△ABP′,点C的对应点C′与点A重合.根据旋转的性质可得AP′=PC,BP′=BP,△PBP′是等腰直角三角形,利用勾股定理求出,然后由∠APB=135,可得出∠APP′=90°,再利用勾股定理列式计算求出.故选B.二、填空题(共15题;共16分)19.如图所示,△ABC为边长为4的等边三角形,AD为BC边上的高,以AD为边的正方形ADEF的面积为________。
(必考题)初中八年级数学下册第十八章《平行四边形》经典习题(含答案解析)
一、选择题1.如图,Rt ABC ∆中,90BAC AB AC AD BC ︒∠==⊥,,于点D ABC ∠,的平分线分别交AC AD 、于E F 、两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连DM ,下列结论:①DF DN =; ②DMN ∆为等腰三角形;③DM 平分BMN ∠;④AE NC =,其中正确结论的个数是( )A .1个B .2个C .3个D .4个D解析:D【分析】 求出BD AD =,DBF DAN ∠=∠,BDF ADN ∠=∠,证明()FBD NAD ASA ≅即可判断①,证明()AFB CNA ASA ≅,推出CN AF AE ==即可判断④,证明()ABM NBM ASA ≅,得AM MN =,由直角三角形斜边的中线的性质推出AM DM MN ==,ADM ABM ∠=∠,即可判断③,根据三角形外角性质求出DNM ∠,证明MDN DNM ∠=∠,即可判断②.【详解】解:∵90BAC ∠=︒,AB AC =,AD BC ⊥,∴45ABC C ∠=∠=︒,AD BD CD ==,90ADN ADB ∠=∠=︒,∴45BAD CAD ∠=︒=∠,∵BE 平分ABC ∠, ∴122.52ABE CBE ABC ∠=∠=∠=︒, ∴9022.567.5BFD AEB ∠=∠=︒-︒=︒,∴67.5AFE BFD AEB ∠=∠=∠=︒,∴AF AE =,AM BE ⊥,∴90AMF AME ∠=∠=︒,∴9067.522.5DAN MBN ∠=︒-︒=︒=∠,在FBD 和NAD 中,FBD DAN BD ADBDF ADN ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()FBD NAD ASA ≅,∴DF DN =,故①正确;在AFB △和CNA 中,4522.5BAF C AB ACABF CAN ∠=∠=︒⎧⎪=⎨⎪∠=∠=︒⎩, ∴()AFB CNA ASA ≅,∴AF CN =,∵AF AE =,∴AE CN =,故④正确;在ABM 和NBM 中,90ABM NBM BM BMAMB NMB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴()ABM NBM ASA ≅,∴AM MN =,在Rt ADN △中,AM DM MN ==,∴22.5DAN ADM ABM ∠=∠=︒=∠,∴22.522.545DMN DAN ADM ∠=∠+∠=︒+︒=︒,∴DM 平分BMN ∠,故③正确;∵4522.567.5DNA C CAN ∠=∠+∠=︒+︒=︒,∴1804567.567.5MDN DNM ∠=︒-︒-︒=︒=∠,∴DM MN =,∴DMN 是等腰三角形,故②正确.故选:D .【点睛】 本题考查了全等三角形的性质与判断,三角形外角性质,三角形内角和定理,直角三角形斜边上中线的性质,等腰三角形的性质和判定,解题的关键是熟练掌握这些性质定理进行证明求解.2.如图,正方形ABCD 中,6AB =,点E 在边CD 上,且2CE DE =.将ADE 沿AE 对折至AFE △,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①ABG AFG △≌△;②BG GC =;③//AG CF ;④3FGC S =.其中正确结论的个数是( )A .1B .2C .3D .4C解析:C【分析】 由正方形和折叠的性质得出AF =AB ,∠B =∠AFG =90°,由HL 即可证明Rt △ABG ≌Rt △AFG ,得出①正确;设BG =x ,则CG =BC−BG =6−x ,GE =GF +EF =BG +DE =x +2,由勾股定理求出x =3,得出②正确;由等腰三角形的性质和外角关系得出∠AGB =∠FCG ,证出平行线,得出③正确; 根据三角形的特点及面积公式求出△FGC 的面积,即可求证④.【详解】∵四边形ABCD 是正方形,∴AB =AD =DC =6,∠B =D =90°,∵CD =3DE ,∴DE =2,∵△ADE 沿AE 折叠得到△AFE ,∴DE =EF =2,AD =AF ,∠D =∠AFE =∠AFG =90°,∴AF =AB ,∵在Rt △ABG 和Rt △AFG 中,AG AG AB AF =⎧⎨=⎩, ∴Rt △ABG ≌Rt △AFG (HL ),∴①正确;∵Rt △ABG ≌Rt △AFG ,∴BG =FG ,∠AGB =∠AGF ,设BG =x ,则CG =BC−BG =6−x ,GE =GF +EF =BG +DE =x +2,在Rt △ECG 中,由勾股定理得:CG 2+CE 2=EG 2,∵CG =6−x ,CE =4,EG =x +2∴(6−x )2+42=(x +2)2解得:x =3,∴BG =GF =CG =3,∴②正确;∵CG =GF ,∴∠CFG =∠FCG ,∵∠BGF=∠CFG+∠FCG,又∵∠BGF=∠AGB+∠AGF,∴∠CFG+∠FCG=∠AGB+∠AGF,∵∠AGB=∠AGF,∠CFG=∠FCG,∴∠AGB=∠FCG,∴AG∥CF,∴③正确;∵△CFG和△CEG中,分别把FG和GE看作底边,则这两个三角形的高相同.∴35CFGCEGS FGS GE==,∵S△GCE=12×3×4=6,∴S△CFG=35×6=185,∴④不正确;正确的结论有3个,故选:C.【点睛】本题考查了正方形性质、折叠性质、全等三角形的性质和判定、等腰三角形的性质和判定、平行线的判定等知识点的运用;主要考查学生综合运用性质进行推理论证与计算的能力,有一定难度.3.平行四边形一边的长是12cm,则这个平行四边形的两条对角线长可以是()A.4cm或6cm B.6cm或10cm C.12cm或12cm D.12cm或14cm D 解析:D【分析】由四边形ABCD是平行四边形,可得OA=12AC,OB=12BD,然后利用三角形三边关系分析求解即可求得答案.【详解】解:∵四边形ABCD是平行四边形,∴OA=12AC,OB=12BD,A、∵AC=4cm,BD=6cm,∴OA=2cm,OB=3cm,∴OA+OB=5cm<12cm,不能组成三角形,故不符合;B 、∵AC=6cm ,BD=10cm ,∴OA=3cm ,OB=5cm ,∴OA+OB=8cm <12cm ,不能组成三角形,故不符合;C 、∵AC=12cm ,BD=12cm ,∴OA=6cm ,OB=6cm ,∴OA+OB=12cm=12cm ,不能组成三角形,故不符合;D 、∵AC=12cm ,BD=14cm ,∴OA=6cm ,OB=7cm ,∴OA+OB=13cm >12cm ,能组成三角形,故符合;故选D .【点睛】此题考查了平行四边形的性质以及三角形的三边关系.注意掌握平行四边形的对角线互相平分.4.下列命题中,错误的是 ( )A .有一个角是直角的平行四边形是正方形;B .对角线相等的菱形是正方形;C .对角线互相垂直的矩形是正方形;D .一组邻边相等的矩形是正方形.A 解析:A【分析】根据正方形的判定逐项作出判断即可求解.【详解】解:A. 有一个角是直角的平行四边形是正方形,判断错误,应该是矩形,符合题意;B. 对角线相等的菱形是正方形,判断正确,不合题意;C. 对角线互相垂直的矩形是正方形,判断正确,不合题意;D. 一组邻边相等的矩形是正方形,判断正确,不合题意.故选:A【点睛】本题考查了正方形的判定,熟练掌握正方形的判定方法是解题关键.5.如果平行四边形ABCD 的对角线相交于点O ,那么在下列条件中,能判断平行四边形ABCD 为菱形的是( )A .OAB OBA ∠=∠;B .OAB OBC ∠=∠; C .OAB OCD ∠=∠;D .OAB OAD ∠=∠.D解析:D【分析】根据菱形的判定方法判断即可.【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠OAB=∠ACD ,∵∠OAB=∠OAD ,∴∠DAC=∠DCA ,∴AD=CD ,∴四边形ABCD 是菱形(邻边相等的平行四边形是菱形)故选:D .【点睛】本题考查菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.6.在矩形ABCD 中,对角线AC 、BD 相交于点O ,AE 平分BAD ∠交BC 于点E ,15CAE ∠=︒.连接OE ,则下面的结论:①DOC 是等边三角形;②BOE △是等腰三角形;③2BC AB =;④150∠=︒AOE ;⑤AOE COE S S =,其中正确的结论有( )A .2个B .3个C .4个D .5个B解析:B【分析】 判断出△ABE 是等腰直角三角形,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠ACB =30°,再判断出△ABO ,△DOC 是等边三角形,可判断①;根据等边三角形的性质求出OB =AB ,再求出OB =BE ,可判断②,由直角三角形的性质可得BC 3AB ,可判断③,由等腰三角形性质求出∠BOE =75°,再根据∠AOE =∠AOB +∠BOE =135°,可判断④;由面积公式可得AOE COE SS =可判断⑤;即可求解.【详解】解:∵AE 平分∠BAD ,∴∠BAE =∠DAE =45°,∴∠AEB =45°,∴△ABE 是等腰直角三角形,∴AB =BE ,∵∠CAE =15°,∴∠ACE =∠AEB−∠CAE =45°−15°=30°,∴∠BAO =90°−30°=60°,∵矩形ABCD 中:OA =OB =OC =OD ,∴△ABO 是等边三角形,△COD 是等边三角形,故①正确;∴OB =AB ,又∵ AB =BE ,∴OB =BE ,∴△BOE 是等腰三角形,故②正确;在Rt △ABC 中∵∠ACB=30°∴BC =3AB ,故③错误;∵∠OBE =∠ABC−∠ABO =90°−60°=30°=∠ACB ,∴∠BOE =12(180°−30°)=75°, ∴∠AOE =∠AOB +∠BOE =60°+75°=135°,故④错误;∵AO =CO ,∴AOE COE S S ,故⑤正确;故选:B .【点睛】本题考查了矩形的性质,等腰直角三角形的性质,等边三角形的判定与性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.7.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH ⊥AB 于点H ,连接OH ,若OA =6,S 菱形ABCD =48,则OH 的长为( )A .4B .8C 13D .6A解析:A【分析】 由菱形的性质得出OA =OC =6,OB =OD ,AC ⊥BD ,则AC =12,由直角三角形斜边上的中线性质得出OH =12AB ,再由菱形的面积求出BD =8,即可得出答案. 【详解】解:∵四边形ABCD 是菱形,∴OA =OC =6,OB =OD ,AC ⊥BD ,∴AC =12,∵DH ⊥AB ,∴∠BHD =90°,∴OH =12BD , ∵菱形ABCD 的面积=12×AC×BD =12×12×BD =48, ∴BD =8,∴OH =12BD =4; 故选:A .【点睛】本题考查了菱形的性质,直角三角形的性质,菱形的面积公式,关键是根据直角三角形斜边上的中线性质求得OH=12BD . 8.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE )的面积为( )A .6B .7.5C .10D .20C解析:C【分析】 由折叠结合矩形的性质先证明,BE DE =设,BE DE x == 则8,AE x =- 再利用勾股定理求解,x 从而可得BDE 的面积.【详解】解: 长方形ABCD ,8,4,AD AB ==//,AD BC ∴,ADB CBD ∴∠=∠由对折可得:,CBD C BD '∠=∠,ADB C BD '∴∠=∠,BE DE ∴=设,BE DE x == 则8,AE x =-由222,BE AB AE =+()22248,x x ∴=+-1680,x ∴=5,x ∴= 5,DE BE ∴==115410.22BDE S DE AB ∴==⨯⨯= 故选:.C【点睛】本题考查的是矩形与折叠问题,勾股定理的应用,矩形的性质,掌握以上知识是解题的关键.9.如图,菱形ABCD 中,∠ABC=60°,AB=4,E 是边AD 上一动点,将△CDE 沿CE 折叠,得到△CFE ,则△BCF 面积的最大值是( )A .8B .83C .16D .163A解析:A【分析】 由三角形底边BC 是定长,所以当△BCF 的高最大时,△BCF 的面积最大,即当FC ⊥BC 时,三角形有最大面积.【详解】解:在菱形ABCD 中,BC=CD=AB=4又∵将△CDE 沿CE 折叠,得到△CFE ,∴FC=CD=4由此,△BCF 的底边BC 是定长,所以当△BCF 的高最大时,△BCF 的面积最大,即当FC ⊥BC 时,三角形有最大面积∴△BCF 面积的最大值是1144822BC FC =⨯⨯= 故选:A .【点睛】本题考查菱形的性质和折叠的性质,掌握三角形面积的计算方法和菱形的性质正确推理计算是解题关键.10.矩形不一定具有的性质是()A.对角线互相平分B.是轴对称图形C.对角线相等D.对角线互相垂直参考答案D解析:D【分析】根据矩形的性质即可判断.【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A、B、C正确,故选:D.【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质.二、填空题11.如图,平行四边形ABCD中,CE AD⊥于点E,点F为边AB的中点,连接EF,CF,若12AD CD=,38CEF∠=︒,则AFE∠=_____________.24°【分析】延长CF交DA延长线于点G证△BCF≌△AGF得GF=FC由垂直得△FEC是等腰三角形可知△BFC是等腰三角形求出∠GFE和∠GFA即可【详解】解:延长CF交DA延长线于点G∵AG∥B解析:24°【分析】延长CF交DA延长线于点G,证△BCF≌△AGF,得GF=FC,由垂直得△FEC是等腰三角形,12AD CD=,可知△BFC是等腰三角形,求出∠GFE和∠GFA即可.【详解】解:延长CF交DA延长线于点G,∵AG∥BC,∴∠G=∠BCF ,∠GAF=∠B ,∵AF=FB ,∴△AGF ≌△BCF ,∴GF=CF ,AG=BC ,∵CE AD ⊥,∴EF=FG=FC ,∠GEC=90°,∵38CEF ∠=︒,∴∠FEG=∠FGE=52°,∠GFE=76°, ∵12AD CD =, ∴BC=BF=AF ,∵AG=BC ,∴AG=AF ,∠G=∠AFG=52°, AFE ∠=76°-52°=24°.【点睛】本题考查了平行四边形的性质,直角三角形的性质,等腰三角形的性质,全等三角形的性质与判定,解题关键是作出适当的辅助线,构造等腰三角形.12.如图,在平行四边形ABCD 中,2AD CD =,F 是AD 的中点,CE AB ⊥,垂足E 在线段AB 上.下列结论①DCF ECF ∠=∠;②EF CF =;③3DFE AEF ∠=∠;④2BEC CEF S S <中,一定成立的是_________.(请填序号)②③④【分析】如图延长EF 交CD 的延长线于H 作EN ∥BC 交CD 于NFK ∥AB 交BC 于K 利用平行四边形的性质全等三角形的判定和性质一一判断即可解决问题【详解】解:如图延长EF 交CD 的延长线于H 作EN ∥解析:②③④【分析】如图延长EF 交CD 的延长线于H .作EN ∥BC 交CD 于N ,FK ∥AB 交BC 于K .利用平行四边形的性质,全等三角形的判定和性质一一判断即可解决问题.【详解】解:如图,延长EF 交CD 的延长线于H .作EN ∥BC 交CD 于N ,FK ∥AB 交BC 于K . ∵四边形ABCD 是平行四边形,∴AB ∥CH ,∴∠A=∠FDH ,在△AFE 和△DFH 中,A FDH AFE HFD AF DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFH ,∴EF=FH ,∵CE ⊥AB ,AB ∥CH ,∴CE ⊥CD ,∴∠ECH=90°,∴CF=EF=FH ,故②正确,∵DF=CD=AF ,∴∠DFC=∠DCF=∠FCB ,∵∠FCB >∠ECF ,∴∠DCF >∠ECF ,故①错误,∵FK ∥AB ,FD ∥CK ,∴四边形DFKC 是平行四边形,∵AD=2CD ,F 是AD 中点,∴DF=CD ,∴四边形DFKC 是菱形,∴∠DFC=∠KFC ,∵AE ∥FK ,∴∠AEF=∠EFK ,∵FE=FC ,FK ⊥EC ,∴∠EFK=∠KFC ,∴∠DFE=3∠AEF ,故③正确,∵四边形EBCN 是平行四边形,∴S △BEC =S △ENC ,∵S △EHC =2S △EFC ,S △EHC >S △ENC ,∴S △BEC <2S △CEF ,故④正确,故正确的有②③④.故答案为②③④.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质、直角三角形斜边的中线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.13.一个三角形的三边长分别为 6,8,10,则这个三角形最长边上的中线为_____.5【分析】根据勾股定理逆定理判断出三角形是直角三角形然后根据直角三角形斜边上的中线等于斜边的一半解答即可【详解】解:∵62+82=100=102∴该三角形是直角三角形∴×10=5故答案为:5【点睛】解析:5【分析】根据勾股定理逆定理判断出三角形是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:∵62+82=100=102,∴该三角形是直角三角形,∴1×10=5.2故答案为:5【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的逆定理,判断出直角三角形是解题的关键.cm,两条对角线之比为3∶4,则菱形的周长为14.已知菱形的面积为962__________.40【分析】依题意已知菱形的面积以及对角线之比首先根据面积公式求出菱形的对角线长然后利用勾股定理求出菱形的边长【详解】解:设两条对角线长分别为3x和4x由题意可得:解得:x=±4(负值舍去)∴对角线解析:40cm【分析】依题意,已知菱形的面积以及对角线之比,首先根据面积公式求出菱形的对角线长,然后利用勾股定理求出菱形的边长.【详解】解:设两条对角线长分别为3x和4x,由题意可得:134962x x =,解得:x=±4(负值舍去) ∴对角线长分别为12cm 、16cm ,又∵菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长=226+8=10cm ,则菱形的周长为40cm .故答案为:40cm .【点睛】此题主要考查菱形的性质和菱形的面积公式,综合利用了勾股定理.15.如图,在菱形纸片ABCD 中,4AB =,60A ∠=︒,将菱形纸片翻折,使点A 落在CD 边的中点E 处,折痕为FG ,点F 、G 分别在边AB 、AD 上,则GE =_______.28【分析】过点作于根据菱形的性质得到继而可证再利用含30°角的直角三角形性质解得结合勾股定理解得的长根据折叠的性质得到最后在中利用勾股定理得据此整理解题即可【详解】过点作于是菱形是中点在中折叠在中解析:2.8【分析】过点E 作EH AD ⊥于H , 根据菱形的性质,得到//AB CD ,4AD BC CD AB ====,继而可证60A HDE ∠=∠=︒,再利用含30°角的直角三角形性质,解得12DH DE =,结合勾股定理解得HE 的长,根据折叠的性质,得到,AG GE AF EF ==,最后在Rt HGE 中利用勾股定理得222GE GH HE =+,据此整理解题即可.【详解】过点E 作EH AD ⊥于H ,ABCD 是菱形//AB CD ∴,4AD BC CD AB ====60A HDE ∴∠=∠=︒E 是CD 中点2DE ∴=在Rt DHE △中,2DE =HE DH ⊥60HDE ∠=︒30HED ∴∠=︒ 221,213DH HE ∴==-=折叠,AG GE AF EF ∴==在Rt HGE 中222GE GH HE =+22(41)3GE GE ∴=-++2.8GE ∴=故答案为:2.8.【点睛】本题考查翻折变换、菱形的性质、含30°角的直角三角形等知识,是重要考点,难度较易,掌握相关知识是解题关键.16.如图,四边形ABCD 是长方形,F 是DA 延长线上一点,CF 交AB 于点E ,G 是CF 上一点,且∠ACG =∠AGC ,∠GAF =∠F .若∠ECB =20°,则∠ACD 的度数是______________.30°【分析】根据矩形的性质得到AD ∥BC ∠DCB =90°根据平行线的性质得到∠F =∠ECB =20°根据三角形的外角的性质得到∠ACG =∠AGC =∠GAF+∠F =2∠F =40°于是得到结论【详解】解 解析:30°【分析】根据矩形的性质得到AD ∥BC ,∠DCB =90°,根据平行线的性质得到∠F =∠ECB =20°,根据三角形的外角的性质得到∠ACG =∠AGC =∠GAF +∠F =2∠F =40°,于是得到结论.【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC ,∠DCB =90°,∴∠F =∠ECB∵∠ECB =20°,∴∠F =∠ECB =20°,∵∠GAF =∠F ,∴∠GAF =∠F =20°,∴∠ACG =∠AGC =∠GAF +∠F =2∠F =40°,∴∠ACB =∠ACG +∠ECB =60°,∴∠ACD =90°﹣∠ACB =90°﹣60°=30°,故答案为:30°.【点睛】本题考查了矩形的性质,用到的知识点为:矩形的对边平行;两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和.17.如图,,E F 分别是ABCD 的边,AD BC 上的点.8,60,EF DEF =∠=︒将EFCD 四边形沿EF 翻折,得到四边形',EFCD ED '交BC 于点,G 则GEF △的周长为________.24【分析】根据平行四边形的性质得到AD ∥BC 由平行线的性质得到∠AEG=∠EGF 根据折叠的性质得到推出△GEF 是等边三角形于是得到结论【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BC ∴∠AEG 解析:24【分析】根据平行四边形的性质得到AD ∥BC ,由平行线的性质得到∠AEG=∠EGF ,根据折叠的性质得到60GEF DEF ∠=∠=︒,推出△GEF 是等边三角形,于是得到结论.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEG=∠EGF ,∵将四边形EFCD 沿EF 翻折,得到EFC D '',∴60GEF DEF ∠=∠=︒,∴∠AEG=60°,∴∠EGF=60°,∴△EGF 是等边三角形,∵EF=8,∴△GEF 的周长=24,故答案为:24.【点睛】此题考查平行四边形的性质,折叠的性质,等边三角形的判定及性质,熟练掌握基本性质是解题关键.18.己知菱形ABCD 的边长是3,点E 在直线AD 上,DE =1,联结BE 与对角线AC 相交于点M ,则AM MC 的值是______.或【分析】首先根据题意作图注意分为E 在线段AD 上与E 在AD 的延长线上然后由菱形的性质可得AD ∥BC 则可证得△MAE ∽△MCB 根据相似三角形的对应边成比例即可求得答案【详解】解:∵菱形ABCD 的边长是解析:23或43【分析】 首先根据题意作图,注意分为E 在线段AD 上与E 在AD 的延长线上,然后由菱形的性质可得AD ∥BC ,则可证得△MAE ∽△MCB ,根据相似三角形的对应边成比例即可求得答案.【详解】解:∵菱形ABCD 的边长是3,∴AD=BC=3,AD ∥BC ,如图①:当E 在线段AD 上时,∴AE=AD -DE=3-1=2,∴△MAE ∽△MCB ,∴23MA AE MC BC ==; 如图②,当E 在AD 的延长线上时,∴AE=AD+DE=3+1=4,∴△MAE ∽△MCB ,∴43MA AE MC BC ==. ∴MA MC的值是23或43. 故答案为23或43.【点睛】此题考查了菱形的性质,相似三角形的判定与性质等知识.解题的关键是注意此题分为E 在线段AD 上与E 在AD 的延长线上两种情况,小心不要漏解.19.如图,在正方形纸片ABCD 中,E 是CD 的中点,将正方形纸片折叠,点B 落在线段AE 上的点G 处,折痕为AF .若1DE =,则BF 的长为__________.【分析】连接FE 根据题意得CD=2AE=设BF=x 则FG=xCF=2-x在Rt △GEF 中利用勾股定理可得EF2=(-2)2+x2在Rt △FCE 中利用勾股定理可得EF2=(2-x )2+12从而得到关于 解析:51-【分析】连接FE ,根据题意得CD=2,AE=5,设BF=x ,则FG=x ,CF=2-x ,在Rt △GEF 中,利用勾股定理可得EF 2=(5-2)2+x 2,在Rt △FCE 中,利用勾股定理可得EF 2=(2-x )2+12,从而得到关于x 方程,求解x 即可.【详解】解:连接EF ,如图,∵E 是CD 的中点,且CE=1∴CD=2,DE=1∵四边形ABCD 是正方形,∴AB=BC=CD=DA=2∴2222215AD DE +=+设BF=x ,由折叠得,AG=AB=2,FG=BF=x ,∴52,在Rt △GFE 中,2222252)EF FG GE x =+=+在Rt △CFE 中,CF=BC-BF=2-x ,CE=1∴22222(2)1EF FC CE x =+=-+∴222252)(2)1x x +=-+解得:=51x ,即51,51【点睛】本题主要考查了折叠的性质、勾股定理.折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键.20.如图,在平行四边形ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB =8,EF =1,则BC 长为__________.15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB 得出AF=AB=8同理可得DE=DC=8再由EF 的长即可求出BC 的长【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BCDC=AB=8A解析:15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB ,得出AF=AB=8,同理可得DE=DC=8,再由EF 的长,即可求出BC 的长.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,DC=AB=8,AD=BC ,∴∠AFB=∠FBC ,∵BF 平分∠ABC ,∴∠ABF=∠FBC ,则∠ABF=∠AFB ,∴AF=AB=8,同理可证:DE=DC=8,∵EF=AF+DE-AD=1,即8+8-AD=1,解得:AD=15;故答案为:15.【点睛】本题主要考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出AF=AB 是解决问题的关键.三、解答题21.如图,在四边形ABCD 中//AD BC ,5cm AD =,9cm BC =,M 是CD 的中点,P 是BC 边上的一动点(P 与B ,C 不重合),连接PM 并延长交AD 的延长线于Q .(1)试说明不管点P 在何位置,四边形PCQD 始终是平行四边形.(2)当点P 在点B ,C 之间运动到什么位置时,四边形ABPQ 是平行四边形?并说明理由.解析:(1)见解析;(2)PC=2时【分析】(1)由“ASA”可证△PCM ≌△QDM ,可得DQ=PC ,即可得结论;(2)得出P 在B 、C 之间运动的位置,根据一组对边平行且相等的四边形是平行四边形得出结论.【详解】解:(1)∵AD ∥BC ,∴∠QDM=∠PCM ,∵M 是CD 的中点,∴DM=CM ,∵∠DMQ=∠CMP ,DM=CM ,∠QDM=∠PCM ,∴△PCM ≌△QDM (ASA ).∴DQ=PC ,∵AD ∥BC ,∴四边形PCQD 是平行四边形,∴不管点P 在何位置,四边形PCQD 始终是平行四边形;(2)当四边形ABPQ 是平行四边形时,PB=AQ ,∵BC-CP=AD+QD ,∴9-CP=5+CP ,∴CP=(9-5)÷2=2.∴当PC=2时,四边形ABPQ 是平行四边形.【点睛】本题考查了平行四边形的判定和性质,全等三角形判定和性质,熟练掌握平行四边形的性质和判定方法是解题的关键.22.如图,四边形ABCD ,//BC AD ,P 为CD 上一点,PA 平分BAD ∠且BP AP ⊥. (1)若80BAD ︒∠=,求ABP ∠的度数;(2)求证:=+BA BC AD ;(3)设3BP a =,4AP a =,过点P 作一条直线,分别与AD ,BC 所在直线交于点E 点F .若AB EF =,求AE 的长(用含a 的代数式表示).解析:(1)50︒;(2)证明见解析;(3)52a 或3910a 【分析】(1)根据已知条件PA 平分BAD ∠且BP AP ⊥以及三角形内角和,即可求得ABP ∠的度数;(2)延长BP 交AD 的延长线于点G ,由已知条件即可证明ABP AGP ≌,即可得到BA GA =,BP GP =,进而即可证明BCP GDP △≌△,即可得到=BC GD ,通过相等关系,即可证明=+BA BC AD ;(3)根据题意可知,可以分两种情况进行讨论,分别为:①当//AB EF 时,延长BP 交AD 的延长线于点G ,可知此时四边形ABFE 是平行四边形,可以求得AB 的长度,由(2)中证明的ABP AGP ≌,BCP GDP △≌△,可得BA GA =,BP GP =,=CP DP ,=BC GD ,进而可以证明CFP ≌DEP ,可得CF DE =,进而通过线段的等量关系求得AE 的长;②如图3,过B 作BH AD ⊥交AD 于H ,过F 作FI AD ⊥交AD 于I ,同①可得PFC PED △≌△,则CF DE =,则可得5BF AE BC AD AB a +=+==,由ABP △和梯形ABCD 的面积关系可得BH 的长度,通过勾股定理即可得到AH 的长度,通过证明Rt BHA △≌Rt FIE △,可得75AH EI a ==,进而通过等量关系即可得到AE 的长. 【详解】(1)∵PA 平分BAD ∠,BP AP ⊥,∴11804022BAP DAP BAD ∠=∠=∠=⨯︒=︒,90APB ∠=︒, ∴在Rt ABP 中,180180409050ABP BAP APB ∠=︒-∠-∠=-︒-︒=︒;(2)如图1,延长BP 交AD 的延长线于点G , ∵BP AP ⊥,PA 平分BAD ∠,∴90APB APG ∠=∠=︒,BAP GAP ∠=∠, 在ABP △和AGP 中,BAP GAP ∠=∠,AP AP =,APB APG ∠=∠,∴ABP AGP ≌,∴BA GA =,BP GP =, ∵//BC AD , ∴CBP DGP ∠=∠, 在BCP 和GDP △中,CBP DGP ∠=∠,BP GP =,CPB DPG ∠=∠,∴BCP GDP △≌△, ∴=BC GD ,∴BA GA AD GD AD BC ==+=+;(3)分两种情况讨论,①当//AB EF 时,如图2,延长BP 交AD 的延长线于点G , ∴由已知条件可知,此时四边形ABFE 是平行四边形, ∴AE BF =,∵3BP a =,4AP a =,BP AP ⊥,∴在Rt ABP 中,222AB BP AP =+,解得,5AB a =, 由(2)可知,ABP AGP ≌, ∴5BA GA a ==,3BP GP a ==, 由(2)可知,BCP GDP △≌△, ∴=CP DP ,=BC GD , ∵//BC AD , ∴BFP GEP ∠=∠, 在CFP 和DEP 中,CFP DEP ∠=∠,=CP DP ,CPF DPE ∠=∠, ∴CFP ≌DEP , ∴CF DE =, ∵=BC GD ,∴BC CF GD DE +=+, ∴BF EG =,又∵四边形ABFE 是平行四边形, ∴BF AE =,∴BF AE EG ==, ∴25AG AE a ==,∴52AE a =;图2②如图3,过B 作BH AD ⊥交AD 于H ,过F 作FI AD ⊥交AD 于I , 同①可得PFC PED △≌△, ∴CF DE =,∴BF AE BF AD DE BF AD CF BC AD +=++=++=+, ∴5BF AE BC AD AB a +=+==, 在Rt ABP 中,2162ABP S BP AP a =⋅=△, 由(2)可知,梯形ABCD 的面积2212ABP S a ==△, 梯形ABCD 的面积2122BC ADBH a +=⨯=, 解得,245BH a =, 在Rt ABH 中,2275AH AB BH a =-=,∵//BC AD ,∴BH FI =,BF HI =, ∵在Rt BHA △和Rt FIE △中,BH FI =,AB EF =, ∴Rt BHA △≌Rt FIE △,∴75AH EI a ==,∴2()BF AE BF AH EI HI BF AH +=+++=+,∴2()BF AE BF AH +=+, ∴1110BF a =, ∴3910AE AB BF a =-=.图3 【点睛】本题考查了平行线的性质、角平分线的性质、勾股定理、全等三角形的证明和性质、三角形面积、梯形面积、线段的和差、三角形内角和等知识,解答本题的关键是正确的作出辅助线,证明三角形全等.23.如图,在菱形ABCD 中,过点D 分别作DE ⊥AB 于点E ,作DF ⊥BC 于点F .求证:AE =CF .解析:见解析 【分析】先由菱形的性质得到AD CD =,A C ∠=∠,再由AAS 证得ADE CDF ∆≅∆,即可得出结论. 【详解】解:证明:∵四边形ABCD 是菱形,AD CD ∴=,A C ∠=∠, DE AB ∵⊥,DF BC ⊥, 90AED CFD ∴∠=∠=︒, 在ADE ∆和CDF ∆中, AED CFD A CAD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADE CDF AAS ∴∆≅∆,AE CF ∴=.【点睛】本题考查了菱形的性质、全等三角形的判定与性质等知识;熟练掌握菱形的性质和全等三角形的判定与性质是解题的关键.24.如图,CD 是线段AB 的垂直平分线,M 是AC 延长线上一点.(1)在图中补充完整以下作图,保留作图痕迹:作∠BCM的角平分线CN,过点B作CN 的垂线,垂足为E;(2)求证:四边形BECD是矩形;(3)AB与AC满足怎样的数量关系时,四边形BECD是正方形?证明你的结论.解析:(1)如图所示,见解析;(2)见解析;(3)当AB=2AC时,矩形BECD是正方形,证明见解析.【分析】(1)根据角平分线及垂线的作图方法依次作图;(2)根据CD是AB的垂直平分线,推出∠CDB=90°,AC=BC,利用CN平分∠BCM求出∠DCN=∠DCB+∠BCN=90°,由BE⊥CN求得∠BEC=90°,即可得到结论;(3)当AB=2AC时,矩形BECD是正方形,由AD=BD,AB=2AC,求得BD=22AC,根据AD⊥CD,∠CDB=90°,推出BD=CD,由此得到矩形BECD是正方形.【详解】(1)解:如图所示,(2)证明:∵CD是AB的垂直平分线,∴CD⊥BD,AD=BD,∴∠CDB=90°,AC=BC,∴∠DCB=12∠ACB,∵CN平分∠BCM,∴∠BCN=12∠BCM,∵∠ACB+∠BCM=180°,∴∠DCN=∠DCB+∠BCN=12(∠ACB+∠BCM)=90°,∵BE⊥CN,∴∠BEC=90°,∴四边形BECD是矩形;(3)当AB=2AC时,矩形BECD是正方形∵AD=BD,AB=2AC,∴BD=22AC,∵AD⊥CD,∠CDB=90°,∴BD=CD,∴矩形BECD是正方形.【点睛】此题考查作图—角平分线、垂线,矩形的判定定理,正方形的判定定理,正确作图及熟练掌握矩形和正方形的判定定理是解题的关键.25.如图,在▱ABCD中,AB=12cm,BC=6cm,∠A=60°,点P沿AB边从点A开始以2cm/秒的速度向点B移动,同时点Q沿DA边从点D开始以1cm/秒的速度向点A移动,用t表示移动的时间(0≤t≤6).(1)当t为何值时,△PAQ是等边三角形?(2)当t为何值时,△PAQ为直角三角形?解析:(1)t=2;(2)t=3或65t .【分析】(1)根据等边三角形的性质,列出关于t的方程,进而即可求解.(2)根据△PAQ是直角三角形,分两类讨论,分别列出方程,进而即可求解.【详解】解:(1)由题意得:AP=2t(米),AQ=6-t(米).∵∠A=60°,∴当△PAQ是等边三角形时,AQ=AP,即2t=6-t,解得:t=2,∴当t=2时,△PAQ是等边三角形.(2)∵△PAQ 是直角三角形,∴当∠AQP =90°时,有∠APQ =30°,即AP =2AQ ,∴2t =2(6-t ),解得:t =3(秒), 当∠APQ =90°时,有∠AQP =30°,即AQ =2AP ,∴6-t =2·2t ,解得65t =(秒), ∴当t =3或65t =时,△PAQ 是直角三角形. 【定睛】本题主要考查等边三角形的性质,直角三角形的定义以及平行四边形的定义,熟练掌握等边三角形的性质,直角三角形的定义,列出方程,是解题的关键.26.如图,在四边形ABCD 中,BD 为一条对角线,//AD BC ,2AD BC =,90ABD ∠=︒,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分BAD ∠,1BC =,求AC 的长. 解析:(1)见解析;(2)3AC =【分析】(1)根据2AD BC =,E 为AD 的中点,证得四边形BCDE 是平行四边形,再根据BE=DE 即可证得结论;(2)根据AD ∥BC ,AC 平分BAD ∠,求出AD=2BC=2=2AB ,得到30ADB ∠=︒,60ADC ∠=︒,90ACD ∠=︒,根据Rt ACD ∆求出答案即可. 【详解】(1)证明:2AD BC =,E 为AD 的中点, DE BC ∴=. //AD BC ,∴四边形BCDE 是平行四边形. 90ABD ∠=︒,AE DE =, BE DE ∴=,则四边形BCDE 是菱形;(2)解:如答图所示,连接AC , //AD BC ,AC 平分BAD ∠, BAC DAC BCA ∴∠=∠=∠. 1AB BC ∴==.22AD BC ∴==, 2AD AB ∴=,∴在Rt ABD ∆中,30ADB ∠=︒.30DAC ∴∠=︒,60ADC ∠=︒,90ACD ∠=︒. 在Rt ACD ∆中 2AD =, 1CD ∴=,∴223AC AD CD =-=..【点睛】此题考查菱形的判定定理及性质定理,勾股定理,直角三角形30度角的性质,平行线的性质,直角三角形斜边中线等于斜边一半的性质,熟记菱形的判定及性质是解题的关键. 27.在Rt ABC 中,90ACB ︒∠=,以AC 为一边向外作等边三角形ACD ,点E 为AB 的中点,连接DE .(1)证明://DE CB ;(2)探索AC 与AB 满足怎样的数量关系时,四边形DCBE 是平行四边形,并说明理由.解析:(1)见解析;(2)AC =12AB 【分析】(1)首先连接CE ,根据直角三角形的性质可得CE =12AB =AE ,再根据等边三角形的性质可得AD =CD ,然后证明△ADE ≌△CDE ,进而得到∠ADE =∠CDE =30°,再有∠DCB =150°可证明DE ∥CB ; (2)当AC =12AB 或AB =2AC 时,四边形DCBE 是平行四边形.根据(1)中所求得出DC ∥BE ,进而得到四边形DCBE 是平行四边形.【详解】解:(1)证明:连结CE .∵点E 为Rt △ACB 的斜边AB 的中点, ∴CE =12AB =AE . ∵△ACD 是等边三角形, ∴AD =CD . 在△ADE 与△CDE 中,AD DC DE DE AE CE =⎧⎪=⎨⎪=⎩, ∴△ADE ≌△CDE (SSS ), ∴∠ADE =∠CDE =30°. ∵∠DCB =150°, ∴∠EDC +∠DCB =180°. ∴DE ∥CB . (2)当AC =12AB 或AB =2AC 时,四边形DCBE 是平行四边形, 理由:∵AC =12AB ,∠ACB =90°, ∴∠B =30°, ∵∠DCB =150°, ∴∠DCB +∠B =180°, ∴DC ∥BE , 又∵DE ∥BC ,∴四边形DCBE 是平行四边形.【点睛】此题主要考查了平行线的判定、全等三角形的判定与性质,以及平行四边形的判定,关键是掌握直角三角形的性质,以及等边三角形的性质.28.如图,在直角ABC 中,90BAC ∠=︒,点D 是BC 上一点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接DE 交AC 于点M .(1)如图1,若2,30,AB C AD BC =∠=︒⊥,求CD 的长; (2)如图2,若45ADB ∠=︒,点N 为ME 上一点,12MN BC =,求证:AN EN CD =+;(3)如图3,若30C ∠=︒,点D 为直线BC 上一动点,直线DE 与直线AC 交于点M ,当ADM △为等腰三角形时,请直接写出此时CDM ∠的度数. 解析:(1)3;(2)见解析;(3)60︒或15︒或37.5︒ 【分析】(1)根据含30°角的直角三角形的性质可得BC=2AB=4,BD=12AB=1,即可得出CD 的长;(2)在BD 上截取DF=EN ,可证出AEN ADF △≌△,由全等三角形的性质得AN=AF ,,EAN DAF ANE AFD ∠=∠∠=∠,可得出,MAN BAF ANM AFB ∠=∠∠=∠,则AMN ABF △≌△,可得12BF MN BC ==,即F 是BC 的中点,可得出AN=AF=FC=DF+CD=EN+CD ;(3)由题意可得AD=AE ,90EAD ∠=︒,45EDA AED ∠=∠=︒,分三种情况:①AM=MD ,②AM=AD ,③AD=MD ,根据等腰三角形的性质求出AMD ∠的度数,再根据三角形外角的性质即可求解. 【详解】解:(1)∵90BAC ∠=︒,2,30AB C =∠=︒, ∴BC=2AB=4,60B ∠=︒, ∵AD BC ⊥∴90,30ADB BAD ∠=︒∠=︒, ∴BD=12AB=1, ∴CD =BC-BD=4-1=3;(2)证明:如图2,在BD 上截取DF=EN ,。
(必考题)初中数学八年级数学下册第六单元《平行四边形》测试(含答案解析)(1)
一、选择题1.如图,ABCD 的对角线AC 、BD 交于点O ,AE 平分BAD 交BC 于点E ,且ADC 60∠=,12AB BC =,连接OE .下列结论:①AE CE >;②ABC S AB AC =⋅;③ABE AOE S S =;④14OE BC =;成立的个数有( )A .1个B .2个C .3个D .4个2.已知如图:为估计池塘的宽度BC ,在池塘的一侧取一点A ,再分别取AB 、AC 的中点D 、E ,测得DE 的长度为20米,则池塘的宽BC 的长为( )A .30米B .60米C .40米D .25米 3.如图,在□ABCD 中,AB=5,BC=6,点O 是AC 的中点,OE ⊥AC 交边AD 于点E ,则△CDE 的周长为等于( )A .5.5B .8C .11D .224.把边长相等的正五边形ABCDE 和正方形ABFG ,按照如图所示的方式叠合在一起,连结AD ,则∠DAG =( )A .18°B .20°C .28°D .30°5.如图,下面不能判定四边形ABCD 是平行四边形的是( )A .AB //CD,AB CD =B .,AB CD AD BC ==C .B DAB 180,AB CD ︒∠+∠==D .B D,BCA DAC ∠=∠∠=∠6.如图,下列哪组条件不能判定四边形ABCD 是平行四边形( )A .AB ∥CD ,AB =CDB .AB ∥CD ,AD ∥BC C .OA =OC ,OB =OD D .AB ∥CD ,AD =BC7.如图,在平行四边形ABCD 中,EF 过两条对角线的交点O ,若1,7,3AB BC OE ===则四边形EFCD 的周长是( )A .17B .14C .11D .108.如图,在△ABC 中,∠ACB=90°,分别以点A 和点C 为圆心,以相同的长(大于12AC )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD ,下列结论错误的是( )A .AD=CDB .∠A=∠DCEC .∠ADE=∠DCBD .∠A=2∠DCB 9.已知长方形的长和宽分别为a 和b ,其周长为4,则222a ab b ++的值为( ) A .2 B .4 C .8 D .16 10.如图,在四边形ABCD 中,90,32,7A AB AD ︒∠===,M N 分别为线段,DM MN的中点,则BC AB上的动点(含端点,但点M不与点B重合),点,E F分别为,EF长度的最大值为( )A.7B.2.5C.5D.3.511.如图,在平行四边形ABCD中,下列结论错误的是()A.∠BDC=∠ABD B.∠DAB=∠DCBC.AD=BC D.AC⊥BD12.正多边形的一个外角的度数为72°,则这个正多边形的边数为()A.4 B.5 C.6 D.7二、填空题13.如图,已知正五边形ABCDE,过点A作CD的平行线,交CB的延长线于点F,点→→→.当AFP为等腰三角形时,则P在正五边形的边上运动,运动路径为A B C DAFP的顶角为______度.14.如果一个多边形所有内角和与外角和共为2520°,那么从这个多边形的一个顶点出发共有_________条对角线15.已知直角坐标系内有四个点A(-1,2),B(3,0),C(1,4),D(x,y),若以A,B,C,D 为顶点的四边形是平行四边形,则D点的坐标为___________________.16.如图,平行四边形ABCD的对角线AC与BD相交于点O,AB⊥AC.若AB=12,AC=10,则BD的长为_____.17.如图,在ABCD 中,E 为边BC 延长线上一点,且2CE BC =,连结AE 、DE .若ADE 的面积为1,则ABE △的面积为____.18.如图,顺次连结△ABC 三边的中点D ,E ,F 得到的三角形面积为S 1,顺次连结CEF △三边的中点M ,G ,H 得到的三角形面积为S 2,顺次连结CGH 三边的中点得到的三角形面积为S 3,设ABC 的面积为64,则S 1+S 2+S 3=_____.19.如图,已知矩形ABCD 中,6cm AB =,8cm BC =,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点,则四边形EFGH 的周长等于_____cm .20.若正多边形的内角和等于720︒,那么它的每一个外角是 __________︒三、解答题21.如图,点E 和点F 是平行四边形ABCD 对角线AC 上的两点,连接DE 、DF 、BE 和BF ,ADE CBF ∠=∠.求证:四边形BEDF 是平行四边形.22.如图,△ABC 和△DEF 关于某点对称(1)在图中画出对称中心O ;(2)连结AF 、CD ,判断四边形ACDF 的形状,并说明理由.23.在ABCD 中,BD 是对角线,AE BD ⊥于点E ,CF BD ⊥于点F .(1)求证:ABE CDF △≌△;(2)试判断四边形AECF 是不是平行四边形,并说明理由.24.如图,ABC 和BDE 都是等腰直角三角形,90ACB DBE ∠=∠=︒,连接CD ,以CA ,CD 为邻边作CAFD ,连接CE ,BF .(1)如图1,当D 在BC 边上时,请直接写出CE 与BF 的关系;(2)如图2,将图1中的BDE 绕点B 顺时针旋转到图2的位置,其他条件不变,(1)中的结论是否成立?若成立,请给予证明;若不存在,请说明理由;(3)若3AC =,2BD =,将图1中的BDE 绕点B 顺时针旋转一周,当BD 与直线BC 夹角为30°时,请直接写出CE 的值.25.在ABC 中,AB AC =,36BAC ∠=︒,将ABC 绕点A 顺时针旋转一个角度α得到ADE ,点B 、C 的对应点分别是D 、E .(1)如图1,若点E 恰好与点B 重合,DF AB ⊥,垂足为F ,求BDF ∠的大小; (2)如图2,若108α=︒,连接EC 交AB 于点G ,求证:四边形ADEG 是平行四边形.26.如图1,在Rt ABC 中,906060B AC cm A ∠=︒=∠=︒,,,点D 从点C 出发沿CA 方向以4/cm s 的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2/cm s 的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D E 、运动的时间是t 秒()015t <<.过点D 作DF BC ⊥于点F ,连接DE ,EF . (1)用含t 的代数式表示下列线段:AE = ,DF = ,AD = ;(2)判断线段EF 与AC 的位置关系,并说明理由;(3)如图2,连接AF ,交DE 于点O ,设y 为ADO △与DFO 的周长差,求y 与t 的函数关系式,并求当t 为何值时,ADO △与DFO 的周长相等.(4)是否存在某一时刻t ,使得DEF 为直角三角形?若存在,请直接写出t 值;不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用平行四边形的性质可得60ABC ADC ∠=∠=︒,120BAD ∠=︒,利用角平分线的性质证明ABE ∆是等边三角形,然后推出12AE BE BC ==,再结合等腰三角形的性质:等边对等角、三线合一进行推理即可.【详解】 解:四边形ABCD 是平行四边形, 60ABC ADC ∴∠=∠=︒,120BAD ∠=︒,AE ∵平分BAD ∠,60BAE EAD ∴∠=∠=︒ABE ∴∆是等边三角形,AE AB BE ∴==,60AEB ∠=︒, 12AB BC =, 12AE BE BC ∴==, AE CE ∴=,故①错误;可得30EAC ACE ∠=∠=︒90BAC ∴∠=︒,ABCD S AB AC ∴=⋅,故②正确;BE EC =,E ∴为BC 中点,ABE ACE S S ∆∆∴=,AO CO =,1122AOE EOC AEC ABE S S S S ∆∆∆∆∴===, 2ABE AOE S S ∆∆∴=;故③不正确;四边形ABCD 是平行四边形,AC CO ∴=,AE CE =,EO AC ∴⊥,30∠=︒ACE ,12EO EC ∴=, 12EC AB =, 1144OE BC AD ∴==,故④正确;故正确的个数为2个,故选:B.【点睛】此题主要考查了平行四边形的性质,以及等边三角形的判定与性质.注意证得ABE是等边三角形是关键.2.C解析:C【分析】根据三角形中位线定理可得DE=12BC,代入数据可得答案.【详解】解:∵线段AB,AC的中点为D,E,∴DE=12BC,∵DE=20米,∴BC=40米,故选:C.【点睛】此题主要考查了三角形中位线定理,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.3.C解析:C【分析】由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,继而可得△CDE的周长等于AD+CD,又由平行四边形ABCD的AB+BC=AD+CD=11.【详解】∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵AB=5,BC=6,∴AD+CD=11,∵OE⊥AC,OA=OC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=11.故选:C.【点睛】此题考查了平行四边形的性质,关键是根据线段垂直平分线的性质进行分析.此题难度不大,注意掌握数形结合思想的应用.4.A解析:A【分析】利用多边形内角和公式求得∠E的度数,在等腰三角形AED中可求得∠EAD的度数,进而求得∠BAD的度数,再利用正方形的内角得出∠BAG=90°,进而得出∠DAG的度数.【详解】解:∵正五边形ABCDE的内角和为(5﹣2)×180°=540°,∴∠E=∠BAE=1×540°=108°,5又∵EA=ED,∴∠EAD=1×(180°﹣108°)=36°,2∴∠BAD=∠BAE﹣∠EAD=72°,∵正方形GABF的内角∠BAG=90°,∴∠DAG=90°﹣72°=18°,故选:A.【点睛】本题考查正多边形的内角和,掌握多边形内角和公式是解题的关键.5.C解析:C【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形判断即可.【详解】根据平行四边形的判定,A、B、D均符合是平行四边形的条件,C则不能判定是平行四边形.故选C.【点睛】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.6.D解析:D【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【详解】根据平行四边形的判定,A 、B 、C 均符合是平行四边形的条件,D 则不能判定是平行四边形.故选D .【点睛】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.7.B解析:B【分析】由在平行四边形ABCD 中,EF 过两条对角线的交点O ,易证得AOE COF ∆≅∆,则可得DE CF AD ,26EF OE ,继而求得四边形EFCD 的周长.【详解】 解:四边形ABCD 是平行四边形, //AD BC ∴,OA OC =,1CD AB ==,7AD BC ==EAO FCO ∴∠=∠,在AOE ∆和COF ∆中,EAO FCO OA OCAOE COF ∠=∠=∠=∠⎧⎪⎨⎪⎩, ()AOE COF ASA ∴∆≅∆,AE CF ∴=,3OE OF ==,6EF ∴=,∴四边形EFCD 的周长是:17614CD DE EF CF CD DE AE EF CD AD EF ,故选:B .【点睛】题考查了平行四边形的性质以及全等三角形的判定与性质,熟悉相关性质是解题的关键. 8.D解析:D【分析】根据题意可知DE 是AC 的垂直平分线,由此即可一一判断.【详解】∵DE 是AC 的垂直平分线,∴DA=DC ,AE=EC ,故A 正确,∴DE ∥BC ,∠A=∠DCE ,故B 正确,∴∠ADE=∠CDE=∠DCB ,故C 正确,故选D .【点睛】本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形中位线定理等知识,解题的关键是熟练运用这些知识解决问题.9.B解析:B【分析】由题意可以得到a+b 的值,再利用完全平方公式可以得到答案.【详解】解:由题意可得:2(a+b)=4,∴a+b=2,∴()2222224a ab b a b ++=+==, 故选B .【点睛】本题考查长方形周长与完全平方公式的综合应用,灵活应用有关知识求解是解题关键 . 10.B解析:B【分析】连接BD 、ND ,由勾股定理得可得BD=5,由三角形中位线定理可得EF=12DN ,当DN 最长时,EF 长度的最大,即当点N 与点B 重合时,DN 最长,由此即可求得答案.【详解】连接BD 、ND ,由勾股定理得,BD=()()2222732AD AB +=+=5∵点E 、F 分别为DM 、MN 的中点,∴EF=12DN , 当DN 最长时,EF 长度的最大,∴当点N 与点B 重合时,DN 最长,∴EF 长度的最大值为12BD=2.5, 故选B .【点睛】本题考查了勾股定理,三角形中位线定理,正确分析、熟练掌握和灵活运用相关知识是解题的关键.11.D解析:D【分析】根据平行四边形的性质进行判断即可.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BDC=∠ABD,故选项A正确;∵四边形ABCD是平行四边形,∴∠DAB=∠DCB,故选项B正确;∵四边形ABCD是平行四边形,∴AD=BC,故选项C正确;由四边形ABCD是平行四边形,不一定得出AC⊥BD,故选D.【点睛】本题主要考查平行四边形的性质,掌握平行四边形的相关知识点是解答本题的关键.12.B解析:B【分析】正多边形的外角和是360°,且正多边形的每个外角相等,因而用360°除以外角的度数,就得到外角和中外角的个数,外角的个数就是多边形的边数.【详解】∵正多边形的外角和是360°,∴360÷72=5,那么它的边数是5.故选B.【点睛】本题考查了多边形的内角与外角.根据正多边形的外角和求多边形的边数是常用的一种方法,需要熟练掌握.二、填空题13.36或72或108【分析】根据题意可以分情况谈论:①当AP=AF;②当PF=FA;③当FA=PF;分别求其顶角的度数;【详解】解:易知正五边形的内角为:;∴∠CBA=108°=∠BAE∴∠ABF=1解析:36或72或108【分析】根据题意可以分情况谈论:①当AP=AF;②当PF=FA;③当FA=PF;分别求其顶角的度数;【详解】 解:易知正五边形的内角为:540=1085︒︒ ; ∴∠CBA=108°=∠BAE ,∴∠ABF=180°-108°=72°, ∠BAF=180108362︒-︒=︒ , ∴∠BFA=180°-72°-36°=72°;∴AB=AF , 若P 在AB 边上,不可能有PF=FA ,①若PA=PF ,则∠PAF=∠PFA=36°,∴顶角为∠APF=180°-36°×2=108°;②若PA=AF ,则P 与B 重合,此时顶角为∠PAF=36°;若P 在BC 边上,连接AC ,易知AC=CF ,不存在PA=AF ;①若PF=FA ,此时顶角为∠ PFA=72°,②若PA=PF ,则P 与C 重合,顶角为36°;若P 在CD 上,不存在等腰三角形;综上:顶角为108°或36°或72°;故答案为:36或72或108;【点睛】本题考查了正多边形的内角和公式和三角形的内角和问题,要注意分类讨论的问题,不要遗漏.14.11【分析】先根据题意求出多边形的边数再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答【详解】设多边形的边数为n 则有(n-2)•180+360=2520解得:n=1414-3=11即从这个多解析:11【分析】先根据题意求出多边形的边数,再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答.【详解】设多边形的边数为n ,则有(n -2)•180+360=2520,解得:n =14,14-3=11,即从这个多边形的一个顶点出发共有11条对角线,故答案为11.【点睛】本题考查了多边形的内角和与外角和、多边形的对角线,得到多边形的边数是解本题的关键.15.(52)(-36)(1-2)【分析】D 的位置分三种情况分析;由平行四边形对边平行关系用平移规律求出对应点坐标【详解】解:根据平移性质可以得到AB 对应DC 所以由BC 的坐标关系可以推出AD 的坐标关系即D解析:(5,2),(-3,6),(1,-2) .【分析】D 的位置分三种情况分析;由平行四边形对边平行关系,用平移规律求出对应点坐标.【详解】解:根据平移性质可以得到AB 对应DC ,所以,由B ,C 的坐标关系可以推出A ,D 的坐标关系,即D(-1-2,2+4),所以D 点的坐标为(-3,6);同理,当AB 与CD 对应时,D 点的坐标为(5,2);当AC 与BD 对应时,D 点的坐标为(1,-2)故答案为:(5,2),(-3,6),(1,-2).【点睛】本题考核知识点:平行四边形和平移.解题关键点:用平移求出点的坐标.16.【分析】利用平行四边形的性质可知AO =5在Rt △ABO 中利用勾股定理可得BO =13即可得出BD =2BO =26【详解】解:∵四边形ABCD 是平行四边形∴BD =2BOAO =OC =AC =5∵AB ⊥AC ∴∠解析:【分析】利用平行四边形的性质可知AO =5,在Rt △ABO 中利用勾股定理可得BO =13,即可得出BD =2BO =26.【详解】解:∵四边形ABCD 是平行四边形,∴BD =2BO ,AO =OC =12AC =5, ∵AB ⊥AC ,∴∠BAC =90°,在Rt △ABO 中,由勾股定理可得:BO 22AO AB 225+1213, ∴BD =2BO =26,故答案为:26.【点睛】本题考查了平行四边形对角线互相平分性质和勾股定理运用,解题关键是熟悉相关性质. 17.3【分析】首先根据平行四边形的性质可得AD=BC 又由可得BE=3BC=3AD 和的高相等即可得出的面积【详解】解:∵∴AD=BCAD ∥BC ∴和的高相等设其高为又∵∴BE=3BC=3AD 又∵∴故答案为3解析:3【分析】首先根据平行四边形的性质,可得AD=BC ,又由2CE BC =,可得BE=3BC=3AD ,ADE 和ABE △的高相等,即可得出ABE △的面积.【详解】解:∵ABCD , ∴AD=BC ,AD ∥BC , ∴ADE 和ABE △的高相等,设其高为h ,又∵2CE BC =,∴BE=3BC=3AD ,又∵1=12ADE S AD h =△,1=2ABE S BE h △ ∴11=3322ABE S BE h AD h =⨯=△ 故答案为3.【点睛】此题主要考查利用平行四边形的性质进行等量转换,即可求得三角形的面积.18.21【分析】根据三角形中位线性质证△ADF ≌△DBE ≌△EFD ≌△FEC 求出S1=S △FEC =S =16S2=S1=4S3=S2=1【详解】解:∵点DEF 分别是△ABC 三边的中点∴AD =DBDF =BC解析:21【分析】根据三角形中位线性质证△ADF ≌△DBE ≌△EFD ≌△FEC ,求出S 1=S △FEC =14S =16,S 2=14S 1=4,S 3=14S 2=1. 【详解】解:∵点D ,E ,F 分别是△ABC 三边的中点,∴AD =DB ,DF =12BC =BE ,DE =12AC =AF , 在△ADF 和△DBE 中,AD DB AF DE BE DF =⎧⎪==⎨⎪⎩,∴△ADF ≌△DBE (SSS ),同理可证,△ADF ≌△DBE ≌△EFD ≌△FEC ,∴S1=S△FEC=14S=16,同理可得,S2=14S1=4,S3=14S2=1,∴S1+S2+S3=16+4+1=21,故答案为:21.【点睛】考核知识点:三角形中位线.理解三角形中位线性质,证三角形全等是解决问题的关键.19.20【分析】连接ACBD根据三角形的中位线求出HGGFEFEH的长再求出四边形EFGH的周长即可【详解】如图连接ACBD四边形ABCD是矩形AC=BD=8cmEFGH分别是ABBCCDDA的中点HG解析:20【分析】连接AC、BD,根据三角形的中位线求出HG,GF,EF,EH的长,再求出四边形EFGH的周长即可.【详解】如图,连接AC、BD,四边形ABCD是矩形,AC=BD=8cm,E、F、G、H分别是AB、BC、CD、DA的中点,HG=EF=12AC=4cm,EH=FG=12BD=4cm,四边形EFGH的周长等于4+4+4+4=16cm.【点睛】本题考查了矩形的性质,三角形的中位线的应用,能求出四边形的各个边的长是解此题的关键,注意:矩形的对角线相等,三角形的中位线平行于第三边,并且等于第三边的一半. 20.60【分析】首先设此多边形为n边形根据题意得:180(n-2)=720即可求得n=6再由多边形的外角和等于360°即可求得答案【详解】解:设此多边形为n边形根据题意得:180(n-2)=720解得:解析:60【分析】首先设此多边形为n边形,根据题意得:180(n-2)=720,即可求得n=6,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=720,解得:n=6,∴这个正多边形的每一个外角等于:360°÷6=60°.故答案为:60°.【点睛】本题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.三、解答题21.证明见详解【分析】证明△ADE≌△CBF(ASA),得DE=BF,∠AED=∠CFB,则∠DEF=∠BFE,证出DE∥BF,即可得出四边形BEDF是平行四边形.【详解】解:证明:∵四边形ABCD为平行四边形,∴AD=BC,AD∥BC,∴∠DAE=∠BCF,在△ADE和△CBF中,ADE CBF AD CBDAE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADE≌△CBF(ASA),∴DE=BF,∠AED=∠CFB,∴∠DEF=∠BFE,∴DE∥BF,∴四边形BEDF是平行四边形.【点睛】本题主要考查平行四边形的性质和判定、全等三角形的判定与性质等知识,熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.22.(1)见解析;(2)平行四边形,理由见解析【分析】(1)根据中心对称的性质,连接对应点AD、CF,交点即为旋转中心;(2)根据旋转的性质,对应点的连线段互相平分,再根据对角线互相平分的四边形是平行四边形证明.【详解】解:(1)对称中心O 如图所示;(2)∵A 与F ,C 与D 是对应点,∴AO =DO ,CO =FO ,∴四边形ACDF 是平行四边形.【点睛】本题考查了利用旋转变换作图,熟练掌握旋转的性质是解题的关键.23.(1)见解析;(2)是,理由见解析【分析】(1)根据平行四边形的性质,可得AB 与CD 的关系,根据平行线的性质,可得∠ABE =∠CDF ,根据AAS ,可得答案;(2)根据平行线的判定,可得AE 与CF 的关系,根据全等三角形的判定与性质,可得AE 与CF 的大小关系,根据平行四边形的判定,可得答案.【详解】解:(1)△ABE ≌△CDF ,理由如下:∵AE ⊥BD 于点E ,CF ⊥BD 于点F ,∴∠AEB =∠CFD =90°.∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠ABE =∠CDF ,在△ABE 与△DCF 中,ABE CDF AEB CFD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△CDF (AAS );(2)四边形AECF 是平行四边形.理由如下:∵△ABE ≌△CDF (AAS ),∴AE =CF ,∵AE ⊥BD 于点E ,CF ⊥BD 于点F ,∴AE//CF ,∴四边形AECF 是平行四边形.【点睛】本题考查了平行四边形的判定与性质,全等三角形的判定与性质,平行四边形的判定,熟记平行四边形的判定与性质是解题关键.24.(1)CE BF =,CE BF ⊥;(2)成立,证明见解析;(3719【分析】(1)证明△BEC ≌△DBF (SAS ),由全等三角形的性质得出CE=BF ,∠BCE=∠DFB ,则可得到结论;(2)延长FD 交BC 于点G ,证明△CBE ≌△△FDB (SAS ),由全等三角形的性质得出CE=BF ,∠ECB=∠BFG ,则可得出结论;(3)分两种情况画出图形,由勾股定理可求出答案;【详解】(1)CE BF =,CE BF ⊥;如图,设CE 与BF 相交于点M ,∵△ABC 和△BDE 均为等腰直角三角形,∠ACB=∠DBE=90°,∴AC=BC ,DE=DB ,∵四边形CAFD 是平行四边形,∴CA=DF=BC ,CA ∥DF ,∠ACB=∠FDB ,∴∠CBE=∠FDB=90°,∴△BEC ≌△DBF (SAS ),∴CE=BF ,∠BCE=∠DFB ,∵∠DFB+∠DBF=90°,∴∠BCE+∠DBF==90°,∴∠CMB=90°,∴CE BF ⊥.(2)成立证明:如图,延长FD 交BC 于点G .四边形ACDF 是平行四边形,//AC FD ∴,AC FD =,90DGB ACB ∴∠=∠=︒,FDB DGB DBG ∴∠=∠+∠,90FDB DBG ∴∠=︒+∠,90DBE ∠=︒,90CBE DBG ∴∠=︒+∠,FDB CBE∠=∠,ABC是等腰直角三角形,∴=,AC BC=,又AC DF∴=,BC DF=,BD BE∴≌,CBE FDB∴=,ECB BFGCE BF∠=∠,BFG FBG∠+∠=︒,90∴∠+∠=︒,ECB FBG90∴⊥.CE BF(3)如(2)题图,由(2)知∠DGB=90°,BF=CE,∵∠DBC=30°,BD=2,∴DG=1,3,∵AC=3,AC=DF,∴FG=DF+DG=3+1=4,∴()2222=+=+=,4319BF FG BG∴19,如图所示,延长CB交DF于点M,∵AC ∥DF ,AC ⊥BC ,∴BM ⊥DF ,∴∠BMF=∠BMD=90°,∵∠MBD=30°,BD=2,∴DM=1,3,∵AC=DF=3,∴FM=DF-DM=3-1=2, ∴22347BF BM FM =+=+,∴7 ,∴CE 719【点睛】本题是四边形几何变换综合题,考查了平行四边形的性质,全等三角形的判定和性质,等腰直角三角形的性质,旋转的性质,勾股定理,熟练掌握旋转的性质是解题的关键; 25.(1)18BDF ∠=︒;(2)见解析.【分析】(1)根据等腰三角形的性质求出∠ACB=72゜,再由旋转的性质得∠DBF=∠ACB=72゜,最后根据直角三角形两锐角互余可得结论;(2)分别证明∠DEC=108゜,∠DAG =108゜,可得EG//AD ,AG//DE ,从而可证四边形ADEG 是平行四边形.【详解】解:(1)∵AB AC =,36BAC ∠=︒∴72ABC ACB ∠=∠=︒∴72ADB ABD ∠∠==︒∵DF AB ⊥,∴90DFB ∠=︒∴∠DBF+∠BDF=90゜∴907218BDF ∠=︒-︒=︒(2)∵108α=︒,即108CAE ∠=︒又AE AC =∴36ACE AEC ∠=∠=︒∵∠AED=∠ADE=72゜∴∠DEC=72゜+36゜=108゜∴∠ADE+∠CED=180゜∴EG//AD∵∠DAE=∠BAC∴∠DAE+∠EAG=∠CAB+∠EAG=108゜∴∠DAG+∠ADE=180゜∴AG//DE∴四边形ADEG 是平行四边形【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了平行四边形的判定.26.(1)2t ,2t ,604t -;(2)//EF AC ,理由见解析;(3)606y t =-,10t =;(4)存在,152t s =或12t s = 【分析】 (1)根据题意直接写出AE ,AD ,在Rt CDF 中写出DF 即可;(2)根据题意可得//DF AE ,再结合(1)中结论,证得四边形ADFE 是平行四边形即可;(3)由(2)可知四边形ADFE 是平行四边形,点O 即为对角线的交点,ADO △与DFO 的周长差即为线段AD 与DF 的差,从而列出表达式再计算即可;(4)分两种情况进行讨论,当DE DF ⊥与DE FE ⊥时,各自进行计算即可.【详解】(1)同时运动t 时间时,2AE t =,4CD t =,604AD AC DC t =-=-,因为30C ∠=︒,DF BC ⊥,则122==DF CD t , 故答案为:2t ,2t ,604t -;(2)//EF AC ,理由如下:由题:DF BC ⊥,AB BC ⊥,则//DF AB , 又E 在AB 上,//DF AE ∴,由(1)可知,随着时间变化,总有2AE DF t ==,即:DF 与AE 是平行且相等的关系,则四边形ADFE 是平行四边形,//EF AC ∴,(3)由(2)可知,四边形ADFE 是平行四边形,连接AF ,点O 即为对角线AF 和DE 的交点,则AO FO =,ADO DFO A C D F C D ∆∆∴-=-,即:6042606y t t t =--=-,若ADO △与DFO 的周长相等,则0y =,即:6060t -=,解得:10t =,606y t ∴=-,当10t =时,ADO △与DFO 的周长相等;(4)①若DE DF ⊥,即90EDF ∠=︒时,//DE BC ,则在Rt ADE △中,30ADE C ∠=∠=︒,24AD AE t ∴==,又604AD t =-,6044t t ∴-=, 解得:152t =;②若DE FE ⊥,即90DEF ∠=︒时,四边形ADFE 是平行四边形,//AD EF ∴,DE AD ∴⊥,ADE ∴为直角三角形,90ADE ∠=︒,60A ∠=︒,30DEA ∴∠=︒,12AD AE ∴=, 即:604t t -=,解得:12t =,综上,当152t s =或12t s =时,DEF 为直角三角形. 【点睛】 本题考查了平行四边形的判定与性质,直角三角形的性质等,熟记基本的性质,灵活分类讨论是解题关键.。
平行四边形练习题及答案
平行四边形练习题及答案平行四边形是初中数学中的重要概念之一,它具有特殊的性质和特点。
通过练习题的形式,我们可以更好地理解和掌握平行四边形的相关知识。
本文将为大家提供一些平行四边形的练习题及答案,希望能对大家的学习有所帮助。
1. 练习题一:已知平行四边形ABCD中,AB = 6cm,BC = 8cm,角A的度数为60°,求AD的长度。
解答:由平行四边形的性质可知,平行四边形的对边长度相等。
因此,AD = BC =8cm。
2. 练习题二:已知平行四边形EFGH中,EF = 10cm,GH = 15cm,角E的度数为120°,求FG的长度。
解答:由平行四边形的性质可知,平行四边形的对边长度相等。
因此,FG = EH =15cm。
3. 练习题三:已知平行四边形IJKL中,IJ = 12cm,KL = 18cm,角I的度数为135°,求JK的长度。
解答:由平行四边形的性质可知,平行四边形的对边长度相等。
因此,JK = IL = 18cm。
4. 练习题四:已知平行四边形MNOP中,MN = 5cm,NO = 7cm,角M的度数为45°,求OP的长度。
解答:由平行四边形的性质可知,平行四边形的对边长度相等。
因此,OP = MN = 5cm。
5. 练习题五:已知平行四边形QRST中,QR = 9cm,ST = 12cm,角Q的度数为30°,求RS 的长度。
解答:由平行四边形的性质可知,平行四边形的对边长度相等。
因此,RS = QT =9cm。
通过以上练习题,我们可以发现平行四边形的一个重要性质:平行四边形的对边长度相等。
这个性质在解题过程中起到了关键的作用,帮助我们求解未知的边长。
除了对边长度相等外,平行四边形还具有其他一些重要的性质。
例如,平行四边形的对角线互相平分,即对角线互相等长。
这个性质在解题过程中也经常被用到。
练习题只是帮助我们巩固平行四边形的相关知识点,实际问题中,平行四边形的应用非常广泛。
初中数学平行四边形练习题及答案
练习1一、选择题(3'x 10=30')1 •下列性质中,平行四边形具有而非平行四边形不具有的是()•A .内角和为360°B .外角和为360°C .不确定性D .对角相等2. 二ABCD中,/ A=55°,则/ B/ C的度数分别是().A . 135°, 55 °B . 55°, 135°C . 125°, 55°D . 55 ° , 125°3. 下列正确结论的个数是().①平行四边形内角和为360 °;②平行四边形对角线相等;③平行四边形对角线互相平分;④平行四边形邻角互补.A . 1B . 2C . 3D . 44. 平行四边形中一边的长为10cm,那么它的两条对角线的长度可能是().A . 4cm和6cmB . 20cm 和30cmC . 6cm和8cmD . 8cm和12cm25. 在UABCC中,AB+BC=11cm/ B=30°, S Y ABC=15CRI,贝U AB与BC的值可能是().A . 5cm 和6cmB . 4cm 和7cmC . 3cm 和8cmD . 2cm 和9cm6. 在下列定理中,没有逆定理的是().A .有斜边和一直角边对应相等的两个直角三角形全等;B .直角三角形两个锐角互余;C .全等三角形对应角相等;D .角平分线上的点到这个角两边的距离相等•7. 下列说法中正确的是().A .每个命题都有逆命题B .每个定理都有逆定理C .真命题的逆命题是真命题D .假命题的逆命题是假命题& 一个三角形三个内角之比为 1 : 2: 1,其相对应三边之比为().A . 1 : 2: 1B . 1: •- 2 : 1C . 1 : 4: 1D . 12: 1 : 29. 一个三角形的三条中位线把这个三角形分成面积相等的三角形有()个.A . 2B . 3C . 4D . 510 .如图所示,在△ ABC中,M是BC的中点,AN平分/ BAC丄AN 若AB=?14, ?AC=19,贝U MN的长为().A. 2 B . 2.5 C . 3 D . 3.5二、填空题(3'x 10=30')11 .用14cm长的一根铁丝围成一个平行四边形,短边与长边的比为3: 4,短边的比为_________ ,长边的比为_________12 .已知平行四边形的周长为20cm, —条对角线把它分成两个三角形,?周长都是18cm,则这条对角线长是 __________ cm .13 .在二ABCD中, AB的垂直平分线EF经过点D,在AB上的垂足为E, ?若二ABCD的周长为38cm, △ ABD的周长比UABCD勺周长少10cm,则丫ABCD勺一组邻边长分别为____ 14 .在匚ABCD中,E是BC边上一点,且AB=BE又AE的延长线交DC的延长线于点F .若/ F=65°U DABC [的各内角度数分别为 _____________ . 15•平行四边形两邻边的长分别为20cm, 16cm ,两条长边的距离是 8cm, ?则两条短边的距离是 _____ cm.16. ________________________________________________ 如果一个命题的题设和结论分别是另一个命题的 ____________________________________________ 和 _______ , ?那么这两个命题是互为逆命题.17•命题“两直线平行,同旁内角互补”的逆命题是 _____________ . 18•在直角三角形中,已知两边的长分别是 4和3,则第三边的长是 ___________ .19.直角三角形两直角边的长分别为8和10,则斜边上的高为 ___________ ,斜边被高分成两 部分的长分别是 ___________ .20上ABC 的两边分别为5,12,另一边c 为奇数,且a+b+?c?是3?的倍数,?则c?应为 __________此三角形为 _________ 三角形. 三、解答题(6'x 10=60')21.如右图所示, 在二 ABCD 中, BF 丄 AD 于 F , BE X CD 于 E , 求丫 ABCD 的周长.22.如图所示,在 二ABCD 中,E 、F 是对角线 BD 上的两点,且 BE=DF. 求证:(1) AE=CF (2)AE// CF.CB?的延长线于点 F , DE 的长是3,求(1)Z C 的大小;(2) DF 的长.# — E护24. 如图所示, 二ABCD 中,AQ BN CN DQ 分别是/ DAB / ABC / BCD ? / CDA 的平分 线,AQ与BN 交于P , CN 与DQ 交于M 在不添加其它条件的情况下,试写出一个由上述 条件推出的结若/ A=60°, AF=3cm CE=2cm23.如图所示, 二ABCD 的周长是 10、3 +6 2 , AB 的长是5 . 3 , DEI AB 于 E , DF X CB 交论,并给出证明过程(要求:?推理过程中要用到“平行四边形”和“角平分线”这两个条件).25. 已知△ ABC的三边分别为a, b, c, a=n2-16 , b=8n , c=n2+16 ( n>4) 求证:/ C=90°.26. 如图所示,在△ ABC 中,AC=8 BC=6 在厶ABE 中,DEL AB 于D, DE=12 S MBE=60,求/ C的度数.AD27. 已知三角形三条中位线的比为3: 5: 6,三角形的周长是112cm, ?求三条中位线的长.28. 如图所示,已知AB=CD AN=ND BM=CM求证:/ 仁/ 2.29. 如图所示,△ ABC的顶点A在直线MN上, △ ABC绕点A旋转,BEL MN于E, ?CD?L MN 于D, F为BC中点,当MN经过△ ABC的内部时,求证:(1) FE=FD (2)当厶ABC继续旋转,?使MN不经过△ ABC内部时,其他条件不变,上述结论是否成立呢?B30. 如图所示,E 是二ABCD 的边AB 延长线上一点, DE 交BC 于F ,求证:S M BF =S ^EFC .答案:一、 1. D 2 . C 3 . C 4 . B 5 . A 6 . C 7 . A 8 . B 9 . C 10 . C二、 11. 3cm 4cm 12 . 8 13 . 9cm 和 10cm 14 . 50°, 130°, 50°, 130° ? ? 15 . 10 16 .结论 题设17 .同旁内角互补,两直线平行 18 . 5 或 J 7 19 . 空丿^?^41 20 . 13 直角 41 ‘41‘41三、 21.二ABCD 的周长为 20cm 22 .略 23 . (1)/ C=45°(2) DF=^-^ 24 .略225 . ?略 26 . / C=90° 27 .三条中位线的长为: 12cm ; 20cm ; 24cm28 .提示:连结 BD 取BD?的中点G 连结MG NG 29 . (1 )略 (2)结论仍成立.提示:过F 作FG 丄MN 于G 30 .略练习2、填空题(每空2分,共28分)1•已知在二ABCD 中,AB=14cm ,BC=16cm ,则此平行四边形的周长为 ____________ cm . 2•要说明一个四边形是菱形,可以先说明这个四边形是 形,再说明(只需填写一种方法)3•如图,正方形ABCD 的对线 AC 、BD 相交于点 O. 那么图中共有 _____________________ 个等腰直角三角形•4. 把“直角三角形、等腰三角形、等腰直角三角形”填入 下列相应(1)正方形可以由两个能够完全重合的 ______________________D拼合而成B (第3题) C的空格上•(2) 菱形可以由两个能够完全重合的 _________________________ 拼合而成; (3) 矩形可以由两个能够完全重合的 _________________________ 拼合而成• 5.矩形的两条对角线的夹角为 _____________________ 60 较短的边长为12cm ,则对角线长为 cm .6. 若直角梯形被一条对角线分成两个等腰直角三角形,那么这个梯形中除两个直角外 ,其余两个内角的度数分别为 ______ :和 _____ ::7. 平行四边形的周长为 24 cm ,相邻两边长的比为 3:1,那么这个平行四边形较短的边长为____ cm .8. 根据图中所给的尺寸和比例,可知这个“十”字标志的周长为 _______________ m .16.如图矩形ABCD 沿着AE 折叠,使 D 点落在BC 边上的F 点处,如果• BAF =60 [则.DAE 等 于 ()A.15:B.30:C.45:D.60:O _ D第10题)12 cm 和6 cm ,那么这个平行四边(已知平行四边形的两条对角线互相垂直且长分别为的面积为 _________ cm 2.10.如图,1是四边形 ABCD 的对称轴,如果AD// BC 有下列结论:(1)AB// CD;(2)AB=CD(3)AB 丄 BC(4)AO=OC 其中正确的结论是 ____________________ . (把你认为正确的结论的序号都填上 )二、选择题(每题3分,共24分)11. 如果一个多边形的内角和等于一个三角形的外角和,那么这个多边形是(A 、三角形B 、四边形 12. 下列说法中,错误的是A.平行四边形的对角线互相平分 C.平行四边形的对角相等13. 给出四个特征(1)两条对角线相等 9. 、五边形 D 、六边形 但不是中心对称图形 A.1个 14. 四边形ABCD 中, A 、3: 5: 6:15. 如图,直线a ABC 的面积 A.变大//( ) B.对角线互相平分的四边形是平行四边形 D.对角线互相垂直的四边形是平行四边形;(2)任一组对角互补;(3)任一组邻角互补;(4)是轴对称图形(,其中属于矩形和等腰梯形共同具有的特征的共有B.2个C.3个D.4个 AD//BC ,那么的值可能是(B 、3: 4: 5: 6C 、4: 5: 6: 3D 、6: 5: )3: 4b,A 是直线a 上的一个定点,线段BC 在直线b 上移动,那么在移动过程中 ()不变B.变小C.D.无法确定(B 第15题)CB EC第16题)17. 如图,在ABC中,AB=AC=5,D是BC上的点,DE// AB交AC于点E,DF// AC交AB于点F,那么四边形 AFDE 的周长是 A.5B.10C.15D.2018. 已知四边形ABCD 中,AC 交BD 于点0,如果只给条件“ AB // CD',那么还不能判定四形 ABCD 为平行四边形,给出以下四种说法: (1) 如果再加上条件 ⑵如果再加上条件 (3)如果再加上条件 ⑷如果再加上条件 其中正确的说法是 A.(1)(2)B.(1) (3)(4)C.(2)(3)D.(2)(3)(4)三、解答题(第 19题8分第20~23题每题10分,共48分)19. 如图, ABCC 中,DB=CD. C =70:;AE 丄 BD 于 E.试求.DAE 的度数.20.如图, ABCD 中,G 是CD 上一点,BG 交AD 延长线于 E AF=CG DGE = 100 ?.(1) 试说明DF=BG (2) 试求.AFD 的度数. 21.工人师傅做铝合金窗框分下面三个步骤进行 :(1) 先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH (2) 摆放成如图②的四边形,则这时窗框的形状是 形,根据的数学道理是(3)将直角尺靠紧窗框的一个角 (如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 ___________ 形,根据的数学道理是:—BC=AD',那么四边形ABCD 一定是平行四边形; .BAD=/BCD ” ,那么四边形ABCD 一定是平行四边形; A0=0C',那么四边形ABCD 一定是平行四边形; .DBA =/CAB ” ,那么四边形ABCD 一定是平行四边形 )C22.李大伯家有一口如图所示的四边形的池塘 ,在它的四个角上均有一棵大柳树,李大伯开挖池塘,使池塘面积扩大一倍,又想保持柳树不动,如果要求新池塘成平行四边形的形状 .请问李大伯愿望能否实现?若能,请画出你的设计;若不能,请说明理由.答案1.60.2.平行四边形;有一组邻边相等.3.8. 提示:它们是.AOB, • BOC, • COD,. AOD, . ABD,. ABC, • BCD,. ACD.4.(1)等腰直角三角形;(2)等腰三角形;(3)直角三角形. 8.4.提示:如图所示,将"十”字标志的某些边 进行平移后可得到一个边长为 1 m 的正方形,所以它的周长为 4m .9. 36.提示:菱形的面积等于菱形两条对角线乘积的一半 10. (1)(2)(4).提示:四边形ABCD 是菱形. 11.B.12.D. 13.C. 14.C.15. C .提示:因为「ABC 的底边BC 的长不变,BC 边上的高等于直线 a,b 之间的距离也不变,所 以UABC 的面积不变.116. A.提示:由于/FAE 是由乙DAE 通过折叠后得到的,所以ZFAE ZDAE 90、ZBAF .217. B. 提示:先说明 DF=BF,DE=CE,所以四边形 AFDE 的周长 =AF+DF+DE+AE=AF+BF+CE+AE=AB+AC. 18. C. 19. 因为BD=CD 所以• DBC 二/C,又因为四边形ABCD 是平行四边形,所以AD // BC ,所以ND=NDBC,因为 AE 丄 BD,所以在直角 MED 中,ZDAE =90°—Z D =90°—70°=20°20. (1)因为四边形 ABCD 是平行四边形,所以AB=DC 又AF=CG 所以AB -AF=DC-CG 即卩GD=BF,又DG / BF 所以四边形 DFBG 是平行四边形,所以DF=BG(2) 因为四边形DFBG 是平行四边形,所以DF// GB,所以.GBF 二/AFD ,同理可得(图①)(图②) ( 图③) (图④)第21题)Z GBF Z DGE ,所以Z AFD E DGE=100〔21. (1)平行四边,两组对边分别相等的四边形是平行四边形;(2) 矩,有一个是直角的平行四边形是矩形•22.如图所示,连结对角线AC BD,过A、B、C D分别作BD AC BD AC的平行线,且这些平行线两两相交于E、F、G H四边形EFGF即为符合条件的平行四边形•练习31把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H (如图)•试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想.2、四边形ABCD DEFGTE是正方形,连接AE CG (1)求证:AE=CG ( 2)观察图形,猜想AE 与CG之间的位置关系,并证明你的猜想.3、将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D'处,折痕为挑战自我:1、(2010年眉山市).如图,每个小正方形的边长为1,A B C 是小正方形的顶点,则/2、 ( 2010福建龙岩中考)下列图形中,单独选用一种图形不能进行平面镶嵌的图形是()A.正三角形B.正方形C.正五边形D.正六边形3.(2010年北京顺义)若一个正多边形的一个内角是120°,则这个正多边形的边数是 ()A. 9 B . 8 4、(2010年福建福州中考)如图 4,在口ABCD 中,对角线 AC BD 相交于点 O,若AC=14,BD=8 AB=10,则厶OAB 的周长为 _____________ 。
初中数学平行四边形作图专题题专项训练含答案
初中数学平行四边形作图专题题专项训练含答案姓名:__________ 班级:__________考号:__________一、作图题(共10题)1、如图所示,在形状为平行四边形的一块地ABCD中,有一条小折路EFG.•现在想把它改为经过点E的直路,要求小路两侧土地的面积都不变,•请在图中画出改动后的小路.2、如图,有两个边长为2的正方形,将其中一个正方形沿对角线剪开成两个全等的等腰直角三角形,用这三个图片分别在网格备用图的基础上(只要再补出两个等腰直角三角形即可),分别拼出一个三角形、一个四边形、一个五边形、一个六边形.3、图(a)、图(b)、图(c)是三张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1.请在图(a)、图(b)、图(c)中,分别画出符合要求(1),(2),(3)的图形,所画图形各顶点必须与方格纸中的小正方形顶点重合.(1)画一个底边为4,面积为8的等腰三角形;(2)画一个面积为10的等腰直角三角形;(3)画一个面积为12的平行四边形.4、如图,AE为菱形ABCD的高,请仅用无刻度的直尺按要求画图。
(不写画法,保留作图痕迹)。
(1)在图1中,过点C画出AB边上的高;(2)在图2中,过点C画出AD边上的高。
5、如图,公园里有一块平行四边形的草坪,草坪里有一个圆形花坛,有关部门计划在草坪上修一条小路,这条小路要把草坪和花坛的面积同时平分,请在图中画出这条小路。
(小路用AB表示)6、我们把能够平分一个图形面积的直线叫“好线”,如图1.图1 图2 图3问题情境:如图2,M是圆O内的一定点,请在图2中作出两条“好线”(要求其中一条“好线”必须过点M),使它们将圆O的面积四等分.小明的思路是:如图3,过点M、O画一条“好线”,过O作OM的垂线,即为另一条“好线”.所以这两条“好线”将的圆O的面积四等分.问题迁移:(1)请在图4中作出两条“好线”,使它们将□ABCD的面积四等分;(2)如图5,M 是正方形内一定点,请在图5中作出两条“好线”(要求其中一条“好线”必须过点),使它们将正方形的面积四等分;(3)如图6,在四边形中,,,点是的中点,点是边一点,请作出“好线”将四边形的面积分成相等的两部分.图6图4图57、如图,多边形ABCDEF中,AB∥CD∥EF,AF∥DE∥BC,请用两种不同的方法用一条直线将该多边形分成面积相等的两块.8、用两种不同方法把平行四边形面积二等分(在所给的图形中画出你的设计方案,画图工具不限).9、如图1,有一张菱形纸片ABCD ,,。
初中数学平行四边形练习题(含答案和解析)
一般平行四边形习题1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD 于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).2.如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.3.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.4.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.5.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.6.如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形.7.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.8.在▱ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.9.如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.9.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C 向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?答案与评分标准1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD 于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).考点:平行四边形的判定与性质;全等三角形的判定与性质。
初中数学平行四边形性质练习题及答案
初中数学平行四边形性质练习题及答案练习题一:1. 证明平行四边形的对角线互相平分。
2. 若平行四边形的一条对角线被平分,那么这个平行四边形是什么形状?3. 怎样判定一个四边形是平行四边形?答案一:1. 证明:设平行四边形ABCD的对角线AC和BD相交于点O。
要证明对角线AC和BD互相平分,只需证明AO=CO和BO=DO。
首先,由平行四边形的性质可知,AB∥CD,AD∥BC。
根据平行线性质,AO=CO(对应角相等)同理,BO=DO所以,平行四边形的对角线互相平分。
2. 若平行四边形的一条对角线被平分,那么这个平行四边形是矩形。
证明:设平行四边形ABCD的对角线AC被平分于点O。
要证明ABCD是矩形,只需证明∠A=∠B=∠C=∠D=90°。
由平行四边形的性质可知,AB∥CD,AD∥BC。
由对角线互相平分的性质可知,AO=CO,BO=DO。
因此,∠AOC=∠COA,∠BOC=∠COD。
又∠AOC+∠BOC=180°(补角定理)所以,∠AOC=90°(相等补角)。
同理,∠COA=90°,∠BOC=90°,∠COD=90°。
所以,ABCD是矩形。
3. 判定平行四边形的方法:方法一:判定对边平行若四边形ABCD满足AB∥CD及AD∥BC,则四边形ABCD是平行四边形。
方法二:判定对角线互相平分若四边形的对角线互相平分,则四边形是平行四边形。
方法三:判定边长及对角线长度关系若平行四边形ABCD的对角线AC和BD相等,则四边形ABCD是平行四边形。
练习题二:1. 证明平行四边形的相邻角互补。
2. 若平行四边形的一组相邻角是补角,那么这个平行四边形是什么形状?3. 如何判断一个四边形是菱形?答案二:1. 证明:设平行四边形ABCD的两组相邻角为∠A和∠B,∠B和∠C,∠C和∠D,∠D和∠A。
要证明平行四边形的相邻角互补,只需证明∠A+∠B=180°,∠B+∠C=180°,∠C+∠D=180°,∠D+∠A=180°。
初中数学平行四边形的判定习题及答案题
BDCAOHGFE OABDOABD平行四边形的判定练习题识记知识1)定义:两组对边分别平行的四边形是平行四边形.∵,∴四边形是平行四边形.2)定理:两组对边分别相等的四边形是平行四边形.∵∴四边形是平行四边形.3)定理:一组对边平行且相等的四边形是平行四边形.∵∴四边形是平行四边形.4)定理:对角线互相平分的四边形是平行四边形.∵∴四边形是平行四边形.5两组对角分别相等的四边形是平行四边形∵∴四边形是平行四边形.二、平行四边形性质与判定的综合应用例1:如图,已知:E、F是平行四边形对角线上的两点,并且。
求证:四边形是平行四边形变式一:在□中,E,F为上两点,.求证:四边形为平行四边形.变式二:在□中,分别是上两点,⊥于E,⊥于F.求证:四边形为平行四边形想一想:在□中,E,F为上两点,=.那么可以证明四边形是平行四边形吗?例2:如图,平行四边形中,=,=。
求证:和互相平分。
练习1、如图所示,在四边形中,M是中点,、互相平分于点O,那么请说明且∥:1、以不在同一直线上的三点为顶点作平行四边形,最多能作()A、4个B、3个C、2个D、1个2、如图,在□中,已知两条对角线相交于点O,E、F、G、H分别是、、、的中点,以图中的点为顶点,尽可能多地画出平行四边形在四边形中,∥,且>,= 6分别从A,C 同时出发,P 以1厘米/秒的速度由A 向D 运动,Q 以2厘米/秒的速度由C 向B 运动,几秒后四边形成为平行四边形?HG图20.1.3-1FED CBA图1FEDCB A 图2F E D CBA 图4GF EDCBA ABCDE图1FE DCBA 4321图3F E D C BA H G 图2F E D CB A1、下列条件中,能判定四边形是平行四边形的是( )A 、一组对边相等,另一组对边平行;C 、一组对角相等,一组邻角互补;B 、一组对边平行,一组对角互补;D 、一组对角互补,另一组对角相等。
初中数学八年级下册平行四边形练习题(含解析)
易错专题03平行四边形(含解析)共39小题一.直角三角形斜边上的中线(共3小题)1.如图,在△ABC中,△B=50°,CD△AB于点D,△BCD和△BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则△ACD+△CED=()A.125°B.145°C.175°D.190°2.两个连续整数a、b满足a<√11<b,则以a、b为边的直角三角形斜边上的中线为.3.如图(1),已知锐角△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.(1)求证:MN△DE.(2)连接DM,ME,猜想△A与△DME之间的关系,并证明猜想.(3)当△A变为钝角时,如图(2),上述(1)(2)中的结论是否都成立,若结论成立,直接回答,不需证明;若结论不成立,说明理由.二.三角形中位线定理(共5小题)4.如图,在△ABC中,D,E分别是AB,AC的中点,AC=10,F是DE上一点,连接AF,CF,DF=1.若△AFC=90°,则BC的长度为()A.10B.12C.14D.165.如图,在△ABC中,△ABC=90°,BC=5.若DE是△ABC的中位线,延长DE交△ABC 的外角△ACM的平分线于点F,且DF=9,则CE的长为.6.已知:如图,AD、CE分别是△ABC的角平分线和中线,AD△CE,AD=CE=4,则BC 的长等于.7.如图,在△ABC中,AB=6cm,AC=10cm,AD平分△BAC,BD△AD于点D,BD的延长线交AC于点F,E为BC的中点,求DE的长.8.(1)如图1,BD、CE分别是△ABC的外角平分线,过点A作AF△BD,AG△CE,垂足分别是F、G,连接FG.求证:FG=12(AB+BC+AC).[提示:分别延长AF、AG与直线BC相交](2)如图2,若BD、CE分别是△ABC的内角平分线,过点A作AF△BD,AG△CE,垂足分别是F、G,连接FG.线段FG与△ABC的三边又有怎样的数量关系?写出你的猜想,并给予证明.三.平行四边形的性质(共4小题)9.下列平行四边形中,其图中阴影部分面积不一定等于平行四边形面积一半的是( )A .B .C .D .10.平行四边形的一条边长是12cm ,那么它的两条对角线的长可能是( )A .8cm 和16cmB .10cm 和16cmC .8cm 和14cmD .8cm 和12cm11.如图,平行四边形ABCD 中,点O 为对角线AC 、BD 的交点,点E 为CD 边的中点,连接OE ,如果AB =4,OE =3,则平行四边形ABCD 的周长为 .12.在平面直角坐标系中,已知△OBAC ,其中点O (0,0)、A (﹣6,﹣8)、B (m ,43m ﹣4),则△OBAC 的面积为 .四.平行四边形的判定(共2小题)13.在下列给出的条件中,不能判定四边形ABCD 是平行四边形的是 ( )A .AB △CD ,AB =CDB .AB △CD ,△A =△C C .AB =BC ,AD =DC D .AD △BC ,△A +△D =180°14.如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出 个平行四边形.五.平行四边形的判定与性质(共4小题)15.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.对角线相等四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行且相等的四边形是平行四边形16.如图,已知△XOY=60°,点A在边OX上,OA=2.过点A作AC△OY于点C,以AC 为一边在△XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD△OY交OX于点D,作PE△OX交OY于点E.设OD=a,OE=b,则a+2b 的取值范围是.17.如图,在四边形ABCD中,△A=△B=△BCD=90°,AB=DC=4,AD=BC=8.延长BC到E,使CE=3,连接DE,由直角三角形的性质可知DE=5.动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P运动的时间为t秒.(t>0)(1)当t=3时,BP=;(2)当t=时,点P运动到△B的角平分线上;(3)请用含t的代数式表示△ABP的面积S;(4)当0<t<6时,直接写出点P到四边形ABED相邻两边距离相等时t的值.18.如图,BD 是△ABCD 的对角线,△ABD 的平分线BE 交AD 于点E ,△CDB 的平分线DF 交BC 于点F .求证:四边形DEBF 为平行四边形.六.菱形的性质(共3小题)19.如图,已知菱形ABCD 的边长为6,点M 是对角线AC 上的一动点,且△ABC =120°,则MA +MB +MD 的最小值是( )A .3√3B .3+3√3C .6+√3D .6√320.如图,在菱形ABCD 中,△A =100°,E ,F 分别是边AB 和BC 的中点,EP △CD 于点P ,则△FPC =( )A .35°B .45°C .50°D .55°21.如图,菱形ABCD 的顶点B 、C 在x 轴上(B 在C 的左侧),顶点A 、D 在x 轴上方,对角线BD 的长是23√10,点E (﹣2,0)为BC 的中点,点P 在菱形ABCD 的边上运动,点F 在y 轴的正半轴上,且△EFO =30°,当点F 到EP 所在直线的距离取得最大值时,点P 恰好落在AB 的中点处,则菱形ABCD 的边长等于 .七.菱形的判定(共2小题)22.如图,在△ABC中,AB=AC,△B=60°,△F AC、△ECA是△ABC的两个外角,AD平分△F AC,CD平分△ECA.求证:四边形ABCD是菱形.23.如图,在△ABC中,△ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当△B满足什么条件时,四边形ACEF是菱形,并说明理由.八.菱形的判定与性质(共4小题)24.如图,AD是△ABC的角平分线,DE△AC交AB于点E,DF△AB交AC于点F,且AD 交EF于点O,则△AOF为()A.60°B.90°C.100°D.110°25.如图,在四边形ABCD中,AC=BD=6,E、F、G、H分别是AB、BC、CD、DA的中点,则EG2+FH2=.26.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:△BAC=△DAC,△AFD=△CFE.(2)若AB△CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使得△EFD=△BCD,并说明理由.27.如图,已知点E,F分别是△ABCD的边BC,AD上的中点,且△BAC=90°.(1)求证:四边形AECF是菱形;(2)若△B=30°,BC=10,求菱形AECF面积.九.矩形的性质(共4小题)28.下列结论中,菱形具有而矩形不一定具有的性质是()A.内角和为360°B.对角线互相平分C.对角线相等D.对角线互相垂直29.如图,四边形ABCD为矩形,H、F分别为AD、BC边的中点,四边形EFGH为矩形,E、G分别在AB、CD边上,则图中四个直角三角形面积之和与矩形EFGH的面积之比为.30.如图,在矩形ABCD中,点E在AD上,且BE=BC.(1)EC平分△BED吗?证明你的结论.(2)若AB=1,△ABE=45°,求BC的长.31.已知:如图,在△ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG△DB 交CB的延长线于G.(1)求证:△ADE△△CBF;(2)若四边形AGBD是矩形,则四边形BEDF是什么特殊四边形?请证明你的结论一十.矩形的判定(共1小题)32.下列各句判定矩形的说法(1)对角线相等的四边形是矩形;(2)对角线互相平分且相等的四边形是矩形;(3)有一个角是直角的四边形是矩形;(4)有四个角是直角的四边形是矩形;(5)四个角都相等的四边形是矩形;(6)对角线相等,且有一个角是直角的四边形是矩形;是正确有几个()A.2个B.3个C.4个D.5个一十一.矩形的判定与性质(共1小题)33.如图,直角三角形ABC中,△ACB=90°,AC=3,BC=4,点D是AB上的一个动点,过点D作DE△AC于E点,DF△BC于F点,连接EF,则线段EF长的最小值为.一十二.正方形的性质(共4小题)34.如图,以边长为4的正方形ABCD 的中心O 为端点,引两条相互垂直的射线,分别与正方形的边交于E 、F 两点,则线段EF 的最小值为( )A .2B .4C .√2D .2√235.将n 个边长都为1cm 的正方形按如图所示的方法摆放,点A 1,A 2,…,A n 分别是正方形对角线的交点,则n 个正方形重叠形成的重叠部分的面积和为( )A .14 cm 2B .n−14cm 2C .n 4 cm 2D .(14)n cm 2 36.有5张边长为2的正方形纸片,4张边长分别为2、3的矩形纸片,6张边长为3的正方形纸片,从其中取出若干张纸片,且每种纸片至少取一张,把取出的这些纸片拼成一个正方形(原纸张进行无空隙、无重叠拼接),则拼成正方形的边长最大为( )A .6B .7C .8D .937.如图,正方形ABCD 的边长为5,E 是AD 边上一点,AE =3,动点P 由点D 向点C 运动,速度为每秒2个单位长度,EP 的垂直平分线交AB 于M ,交CD 于N .设运动时间为t 秒,当PM △BC 时,t 的值为( )A .√2B .2C .√3D .32 一十三.正方形的判定(共1小题)38.下列说法正确的是( )A .一组对边平行,另一组对边相等的四边形是平行四边形B .对角线相等的四边形是矩形C .每一条对角线都平分一组对角的四边形是菱形D .对角线互相垂直且相等的四边形是正方形一十四.正方形的判定与性质(共1小题)39.如图,正方形ABCD 的对角线交于点O ,以AD 为边向外作Rt△ADE ,△AED =90°,连接OE ,DE =6,OE =8√2,则另一直角边AE 的长为 .易错专题03平行四边形(含解析)共39小题参考答案与试题解析一.直角三角形斜边上的中线(共3小题)1.如图,在△ABC中,△B=50°,CD△AB于点D,△BCD和△BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则△ACD+△CED=()A.125°B.145°C.175°D.190°【分析】根据直角三角形的斜边上的中线的性质,即可得到△CDF是等边三角形,进而得到△ACD=60°,根据△BCD和△BDC的角平分线相交于点E,即可得出△CED=115°,即可得到△ACD+△CED=60°+115°=175°.【解答】解:△CD△AB,F为边AC的中点,△DF=12AC=CF,又△CD=CF,△CD=DF=CF,△△CDF是等边三角形,△△ACD=60°,△△B=50°,△△BCD+△BDC=130°,△△BCD和△BDC的角平分线相交于点E,△△DCE+△CDE=65°,△△CED=115°,△△ACD+△CED=60°+115°=175°,故选:C.【点评】本题主要考查了直角三角形的斜边上的中线的性质,在直角三角形中,斜边上的中线等于斜边的一半.2.两个连续整数a 、b 满足a <√11<b ,则以a 、b 为边的直角三角形斜边上的中线为 2.5或2 .【分析】求出√11的范围,得出a =3,b =4,有两种情况:△当b 是斜边时,求出12b 即可;△当ab 为直角边时,由勾股定理求出斜边,再求出12斜边即可. 【解答】解:△3<√11<4,△a =3,b =4,△当b 是斜边时,以a 、b 为边的直角三角形斜边上的中线是2;△当ab 为直角边时,由勾股定理得:斜边=√32+42=5,△以a 、b 为边的直角三角形斜边上的中线是2.5;故答案为:2.5或2.【点评】本题考查了直角三角形斜边上的中线,勾股定理,实数大小比较等知识点的应用,主要应用直角三角形斜边上的中线等于斜边的一半.3.如图(1),已知锐角△ABC 中,CD 、BE 分别是AB 、AC 边上的高,M 、N 分别是线段BC 、DE 的中点.(1)求证:MN △DE .(2)连接DM ,ME ,猜想△A 与△DME 之间的关系,并证明猜想.(3)当△A 变为钝角时,如图(2),上述(1)(2)中的结论是否都成立,若结论成立,直接回答,不需证明;若结论不成立,说明理由.【分析】(1)连接DM ,ME ,根据直角三角形的性质得到DM =12BC ,ME =12BC ,得到DM =ME ,根据等腰直角三角形的性质证明;(2)根据三角形内角和定理、等腰三角形的性质计算;(3)仿照(2)的计算过程解答.【解答】(1)证明:如图(1),连接DM,ME,△CD、BE分别是AB、AC边上的高,M是BC的中点,△DM=12BC,ME=12BC,△DM=ME,又△N为DE中点,△MN△DE;(2)在△ABC中,△ABC+△ACB=180°﹣△A,△DM=ME=BM=MC,△△BMD+△CME=(180°﹣2△ABC)+(180°﹣2△ACB),=360°﹣2(△ABC+△ACB),=360°﹣2(180°﹣△A),=2△A,△△DME=180°﹣2△A;(3)结论(1)成立,结论(2)不成立,理由如下:连接DM,ME,在△ABC中,△ABC+△ACB=180°﹣△BAC,△DM=ME=BM=MC,△△BME+△CMD=2△ACB+2△ABC,=2(180°﹣△BAC),=360°﹣2△BAC,△△DME=180°﹣(360°﹣2△BAC),=2△BAC﹣180°.【点评】本题考查的是直角三角形的性质、三角形内角和定理,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.二.三角形中位线定理(共5小题)4.如图,在△ABC中,D,E分别是AB,AC的中点,AC=10,F是DE上一点,连接AF,CF,DF=1.若△AFC=90°,则BC的长度为()A.10B.12C.14D.16【分析】先证明EF=5,继而得到DE=6;再证明DE为△ABC的中位线,即可解决问题.【解答】解:如图,△△AFC=90°,E是AC的中点,△Rt△ACF中,EF=12AC=12×10=5,△DE=1+5=6;△D,E分别是AB,AC的中点,△DE为△ABC的中位线,△BC=2DE=12,故选:B.【点评】本题主要考查了三角形的中位线定理、直角三角形的性质等几何知识点及其应用问题;牢固掌握三角形的中位线定理、直角三角形的性质等几何知识点是解题的基础和关键.5.如图,在△ABC中,△ABC=90°,BC=5.若DE是△ABC的中位线,延长DE交△ABC 的外角△ACM的平分线于点F,且DF=9,则CE的长为 6.5.【分析】依据三角形中位线定理,可得DE=12BC=2.5,DE△BC,再根据DE△BC,CF平分△ACM,可得△ECF=△FCM=△EFC,进而得出CE=FE=6.5.【解答】解:△BC=5,DE是△ABC的中位线,△DE=12BC=2.5,DE△BC,又△DF=9,△EF=9﹣2.5=6.5,△DE△BC,CF平分△ACM,△△ECF=△FCM=△EFC,△CE=FE=6.5,故答案为:6.5.【点评】本题主要考查了三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.6.已知:如图,AD、CE分别是△ABC的角平分线和中线,AD△CE,AD=CE=4,则BC 的长等于3√5.【分析】过E作EF△AD,交BC于F,依据EF是△ABD的中位线,可得EF=12AD=2,进而得到Rt△CEF中,CF=√EF2+CE2=√22+42=2√5,依据G是CE的中点,GD△EF,可得D是CF的中点,进而得到BC的长.【解答】解:如图,过E作EF△AD,交BC于F,则△CEF=90°,△E是AB的中点,△F是BD的中点,△EF是△ABD的中位线,△EF=12AD=2,△Rt△CEF中,CF=√EF2+CE2=√22+42=2√5,△AD平分△BAC,AD△CE,△△ACE=△AEC,△AC=AE,△G是CE的中点,△GD△EF,△D是CF的中点,△CD=DF=BF=√5,△BC=3√5,故答案为:3√5.【点评】本题主要考查了三角形中位线定理以及平行线分线段成比例定理的运用,解决问题的关键掌握:三角形的中位线平行于第三边,并且等于第三边的一半.7.如图,在△ABC中,AB=6cm,AC=10cm,AD平分△BAC,BD△AD于点D,BD的延长线交AC于点F,E为BC的中点,求DE的长.【分析】根据等腰三角形的判定和性质定理得到AB =AF =6,BD =DF ,求出CF ,根据三角形中位线定理计算即可.【解答】解:△AD 平分△BAC ,BD △AD ,△AB =AF =6,BD =DF ,△CF =AC ﹣AF =4,△BD =DF ,E 为BC 的中点,△DE =12CF =2.【点评】本题考查的是等腰三角形的判定和性质、三角形中位线定理的应用,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.8.(1)如图1,BD 、CE 分别是△ABC 的外角平分线,过点A 作AF △BD ,AG △CE ,垂足分别是F 、G ,连接FG .求证:FG =12(AB +BC +AC ).[提示:分别延长AF 、AG 与直线BC 相交](2)如图2,若BD 、CE 分别是△ABC 的内角平分线,过点A 作AF △BD ,AG △CE ,垂足分别是F 、G ,连接FG .线段FG 与△ABC 的三边又有怎样的数量关系?写出你的猜想,并给予证明.【分析】(1)利用全等三角形的判定定理ASA 证得△ABF △△MBF ,然后由全等三角形的对应边相等进一步推出MB =AB ,AF =MF ,同理CN =AC ,AG =NG ,由此可以证明FG 为△AMN 的中位线,然后利用中位线定理求得FG =12(AB +BC +AC );(2)延长AF 、AG ,与直线BC 相交于M 、N ,与(1)类似可以证出答案.【解答】解:(1)如图1,△AF △BD ,△ABF =△MBF ,△△BAF =△BMF ,在△ABF 和△MBF 中,{∠AFB =∠MFB BF =BF ∠ABF =∠MBF ,△△ABF△△MBF(ASA),△MB=AB,△AF=MF,同理:CN=AC,AG=NG,△FG是△AMN的中位线,△FG=12MN,=12(MB+BC+CN),=12(AB+BC+AC).(2)猜想:FG=12(AB+AC﹣BC),证明:如图2,延长AG、AF,与直线BC相交于M、N,△由(1)中证明过程类似证△ABF△△NBF,△NB=AB,AF=NF,同理CM=AC,AG=MG,△FG=12MN,△MN=2FG,△BC=BN+CM﹣MN=AB+AC﹣2FG,△FG=12(AB+AC﹣BC).【点评】本题主要考查了三角形的中位线定理,三角形的内角和定理,等腰三角形的性质和判定等知识点,解此题的关键是作辅助线转化成三角形的中位线.三.平行四边形的性质(共4小题)9.下列平行四边形中,其图中阴影部分面积不一定等于平行四边形面积一半的是()A.B.C.D.【分析】利用平行四边形的性质,根据三角形的面积和平行四边形的面积逐个进行判断,即可求解.【解答】解:A、因为高相等,三个底是平行四边形的底,根据三角形和平行四边形的面积可知,阴影部分的面积等于平行四边形的面积的一半,正确;B、因为两阴影部分的底与平行四边形的底相等,高之和正好等于平行四边形的高,所以阴影部分的面积等于平行四边形的面积的一半,正确;C、根据平行四边形的对称性,可知小阴影部分的面积等于小空白部分的面积,所以阴影部分的面积等于平行四边形的面积的一半,正确;D、无法判断阴影部分面积是否等于平行四边形面积一半,错误.故选:D.【点评】本题考查了平行四边形的性质,并利用性质结合三角形的面积公式进行判断,找出选项.10.平行四边形的一条边长是12cm,那么它的两条对角线的长可能是()A.8cm和16cm B.10cm和16cm C.8cm和14cm D.8cm和12cm 【分析】根据平行四边形的性质中,两条对角线的一半和一边构成三角形,利用三角形三边关系判断可知.【解答】解:A、4+8=12,不能构成三角形,不满足条件,故A选项错误;B、5+8>12,能构成三角形,满足条件,故B选项正确.C、4+7<12,不能构成三角形,不满足条件,故C选项错误;D、4+6<12,不能构成三角形,不满足条件,故D选项错误.故选:B.【点评】主要考查了平行四边形中两条对角线的一半和一边构成三角形的性质.并结合三角形的性质解题.11.如图,平行四边形ABCD中,点O为对角线AC、BD的交点,点E为CD边的中点,连接OE ,如果AB =4,OE =3,则平行四边形ABCD 的周长为 20 .【分析】平行四边形中对角线互相平分,则点O 是BD 的中点,而E 是CD 边中点,根据三角形两边中点的连线平行于第三边且等于第三边的一半可得AD =6,进一步即可求得△ABCD 的周长.【解答】解:△四边形ABCD 是平行四边形,△OB =OD ,OA =OC ,又△点E 是CD 边中点△AD =2OE ,即AD =6,△△ABCD 的周长为(6+4)×2=20.故答案为:20.【点评】此题主要考查了平行四边形的性质及三角形中位线定理,三角形中位线性质应用比较广泛;三角形的中位线平行于第三边,并且等于第三边的一半.12.在平面直角坐标系中,已知△OBAC ,其中点O (0,0)、A (﹣6,﹣8)、B (m ,43m ﹣4),则△OBAC 的面积为 24 .【分析】由A (﹣6,﹣8)可得AO 的解析式为y =43x ,由B (m ,43m ﹣4),可得点B 在直线y =43x ﹣4上,设直线y =43x ﹣4与y 轴交于点D ,则AO △BD ,D (0,﹣4),依据S △ABO =S △ADO =12×4×6=12,即可得到S 平行四边形ABOC =2×12=24. 【解答】解:如图所示,由A (﹣6,﹣8)可得,AO 的解析式为y =43x ,又△B (m ,43m ﹣4), △点B 在直线y =43x ﹣4上,设直线y =43x ﹣4与y 轴交于点D ,则AO △BD ,D (0,﹣4),△S △ABO =S △ADO =12×4×6=12,△S 平行四边形ABOC =2×12=24,故答案为:24.【点评】本题主要考查了平行四边形的性质,解题时注意:平行四边形是中心对称图形.四.平行四边形的判定(共2小题)13.在下列给出的条件中,不能判定四边形ABCD是平行四边形的是()A.AB△CD,AB=CD B.AB△CD,△A=△CC.AB=BC,AD=DC D.AD△BC,△A+△D=180°【分析】根据平行四边形的判定即可判断A、C;根据平行线的性质和已知求出△B=△D,根据平行四边形的判定判断B即可;根据平行线的判定推出AD△BC,根据平行四边形的判定判断D即可.【解答】解:A,△AB△CD,AB=CD,△四边形ABCD是平行四边形,故本选项错误;B、△AB△CD,△△A+△D=180°,△B+△C=180°,△△A=△C,△△B=△D,△四边形ABCD是平行四边形,故本选项错误;C、根据AB=BC,AD=DC,不能判断四边形是平行四边形,故本选项正确;D、△△A+△D=180°,△AB△CD,△AD△BC,△四边形ABCD是平行四边形,故本选项错误;故选:C.【点评】本题考查了对平行线的性质和判定,平行四边形的判定等知识点的应用,关键是推出证明是四边形是平行四边形的条件,题型较好,是一道容易出错的题目.14.如图,用9个全等的等边三角形,按图拼成一个几何图案,从该图案中可以找出15个平行四边形.【分析】根据全等三角形的性质及平行四边形的判定,可找出现15个平行四边形.【解答】解:两个全等的等边三角形,以一边为对角线构成的四边形是平行四边形,这样的两个平行四边形又可组成较大的平行四边形,从该图案中可以找出15个平行四边形.故答案为:15.【点评】此题主要考查学生对平行四边形的判定的掌握情况和读图能力,注意找图过程中,要做到不重不漏.五.平行四边形的判定与性质(共4小题)15.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.对角线相等四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行且相等的四边形是平行四边形【分析】根据矩形、菱形、正方形、平行四边形的判定定理判断即可.【解答】解:A、有一组邻边相等的平行四边形是菱形,本选项说法错误;B、对角线相等平行四边形是矩形,本选项说法错误;C、对角线垂直且相等的平行四边形是正方形,本选项说法错误;D、一组对边平行且相等的四边形是平行四边形,本选项说法正确;故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.16.如图,已知△XOY=60°,点A在边OX上,OA=2.过点A作AC△OY于点C,以AC为一边在△XOY 内作等边三角形ABC ,点P 是△ABC 围成的区域(包括各边)内的一点,过点P 作PD △OY 交OX 于点D ,作PE △OX 交OY 于点E .设OD =a ,OE =b ,则a +2b 的取值范围是 2≤a +2b ≤5 .【分析】作辅助线,构建30度的直角三角形,先证明四边形EODP 是平行四边形,得EP =OD =a ,在Rt△HEP 中,△EPH =30°,可得EH 的长,计算a +2b =2OH ,确认OH 最大和最小值的位置,可得结论.【解答】解:如图1,过P 作PH △OY 交于点H ,△PD △OY ,PE △OX ,△四边形EODP 是平行四边形,△HEP =△XOY =60°,△EP =OD =a ,Rt△HEP 中,△EPH =30°,△EH =12EP =12a ,△a +2b =2(12a +b )=2(EH +EO )=2OH , 当P 在AC 边上时,H 与C 重合,此时OH 的最小值=OC =12OA =1,即a +2b 的最小值是2;当P 在点B 时,如图2,OC =1,AC =BC =√3,Rt△CHP 中,△HCP =30°,△PH =√32,CH =32,则OH 的最大值是:OC +CH =1+32=52,即(a +2b )的最大值是5,△2≤a+2b≤5.【点评】本题考查了等边三角形的性质、直角三角形30度角的性质、平行四边形的判定和性质,有难度,掌握确认a+2b的最值就是确认OH最值的范围.17.如图,在四边形ABCD中,△A=△B=△BCD=90°,AB=DC=4,AD=BC=8.延长BC到E,使CE=3,连接DE,由直角三角形的性质可知DE=5.动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P运动的时间为t秒.(t>0)(1)当t=3时,BP=6;(2)当t=8时,点P运动到△B的角平分线上;(3)请用含t的代数式表示△ABP的面积S;(4)当0<t<6时,直接写出点P到四边形ABED相邻两边距离相等时t的值.【分析】(1)根据题意可得BP=2t,进而可得结果;(2)根据△A=△B=△BCD=90°,可得四边形ABCD是矩形,根据角平分线定义可得AF=AB=4,得DF=4,进而可得t的值;(3)根据题意分3种情况讨论:△当点P在BC上运动时,△当点P在CD上运动时,△当点P在AD上运动时,分别用含t的代数式表示△ABP的面积S即可;(4)当0<t<6时,点P在BC、CD边上运动,根据题意分情况讨论:△当点P在BC 上,点P到AD边的距离为4,点P到AB边的距离也为4,△当点P在BC上,点P到AD边的距离为4,点P到DE边的距离也为4,△当点P在CD上,点P到AB边的距离为8,但点P到AB、BC边的距离都小于8,进而可得当t=2s或t=3s时,点P到四边形ABED相邻两边距离相等.【解答】解:(1)BP=2t=2×3=6,故答案为:6;(2)作△B的角平分线交AD于F,△△ABF=△FBC,△△A=△ABC=△BCD=90°,△四边形ABCD是矩形,△AD△BC,△△AFB=△FBC,△△ABF=△AFB,△AF=AB=4,△DF=AD﹣AF=8﹣4=4,△BC+CD+DF=8+4+4=16,△2t=16,解得t=8.△当t=8时,点P运动到△ABC的角平分线上;故答案为:8;(3)根据题意分3种情况讨论:△当点P在BC上运动时,S △ABP =12×BP ×AB =12×2t ×4=4t ;(0<t <4); △当点P 在CD 上运动时,S △ABP =12×AB ×BC =12×4×8=16;(4≤t ≤6); △当点P 在AD 上运动时,S △ABP =12×AB ×AP =12×4×(20﹣2t )=﹣4t +40;(6<t ≤10);(4)当0<t <6时,点P 在BC 、CD 边上运动,根据题意分情况讨论:△当点P 在BC 上,点P 到四边形ABED 相邻两边距离相等,△点P 到AD 边的距离为4,△点P 到AB 边的距离也为4,即BP =4,△2t =4,解得t =2s ;△当点P 在BC 上,点P 到AD 边的距离为4,△点P 到DE 边的距离也为4,△PE =DE =5,△PC =PE ﹣CE =2,△8﹣2t =2,解得t =3s ;△当点P 在CD 上,如图,过点P 作PH △DE 于点H ,点P 到DE 、BE 边的距离相等,即PC =PH ,△PC =2t ﹣8,△S △DCE =S △DPE +S △PCE ,△12×3×4=12×5×PH +12×3×PC , △12=8PH ,△12=8(2t﹣8),解得t=19 4.综上所述:t=2或t=3或t=194时,点P到四边形ABED相邻两边距离相等.【点评】本题考查了平行四边形的性质、角平分线定义、三角形的面积、全等三角形的判定与性质,解决本题的关键是综合运用以上知识.18.如图,BD是△ABCD的对角线,△ABD的平分线BE交AD于点E,△CDB的平分线DF交BC于点F.求证:四边形DEBF为平行四边形.【分析】根据平行四边形性质和角平分线定义求出△FDB=△EBD,推出DF△BE,根据平行四边形的判定判断即可.【解答】解:△四边形ABCD是平行四边形,△AD△BC,AB△CD,△△CDB=△ABD,△DF平分△CDB,BE平分△ABD,△△FDB=12△CDB,△EBD=12△ABD,△△FDB=△EBD,△DF△BE,△AD△BC,即ED△BF,△四边形DEBF是平行四边形.【点评】本题考查了角平分线定义,平行四边形的性质和判定等的应用,关键是推出DF△BE,主要检查学生能否运用定理进行推理,题型较好,难度适中.六.菱形的性质(共3小题)19.如图,已知菱形ABCD的边长为6,点M是对角线AC上的一动点,且△ABC=120°,则MA+MB+MD的最小值是()A.3√3B.3+3√3C.6+√3D.6√3【分析】过点D作DE△AB于点E,连接BD,根据垂线段最短,此时DE最短,即MA+MB+MD最小,根据菱形性质和等边三角形的性质即可求出DE的长,进而可得结论.【解答】解:如图,过点D作DE△AB于点E,连接BD,△菱形ABCD中,△ABC=120°,△△DAB=60°,AD=AB=DC=BC,△△ADB是等边三角形,△△MAE=30°,△AM=2ME,△MD=MB,△MA+MB+MD=2ME+2DM=2DE,根据垂线段最短,此时DE最短,即MA+MB+MD最小,△菱形ABCD的边长为6,△DE=√AD2−AE2=√62−32=3√3,△2DE=6√3.△MA+MB+MD的最小值是6√3.故选:D.【点评】本题考查了菱形的性质,等边三角形的判定与性质,解决本题的关键是掌握菱形的性质,等边三角形的判定与性质.20.如图,在菱形ABCD中,△A=100°,E,F分别是边AB和BC的中点,EP△CD于点P,则△FPC=()A.35°B.45°C.50°D.55°【分析】延长EF交DC的延长线于H点.证明△BEF△△CHF,得EF=FH.在Rt△PEH 中,利用直角三角形斜边上的中线等于斜边的一半,得△FPC=△FHP=△BEF.在等腰△BEF中易求△BEF的度数.【解答】解:延长EF交DC的延长线于H点.△在菱形ABCD中,△A=100°,E,F分别是边AB和BC的中点,△△B=80°,BE=BF.△△BEF=(180°﹣80°)÷2=50°.△AB△DC,△△FHC=△BEF=50°.又△BF=FC,△B=△FCH,△△BEF△△CHF.△EF=FH.△EP△DC,△△EPH=90°.△FP=FH,则△FPC=△FHP=△BEF=50°.故选:C.【点评】此题考查了菱形的性质、全等三角形的判定方法、直角三角形斜边上的中线等于斜边的一半等知识点,综合性较强.如何作出辅助线是难点.21.如图,菱形ABCD的顶点B、C在x轴上(B在C的左侧),顶点A、D在x轴上方,对角线BD 的长是23√10,点E (﹣2,0)为BC 的中点,点P 在菱形ABCD 的边上运动,点F 在y 轴的正半轴上,且△EFO =30°,当点F 到EP 所在直线的距离取得最大值时,点P 恰好落在AB 的中点处,则菱形ABCD 的边长等于 2√103 .【分析】如图1中,当点P 是AB 的中点时,作FG △PE 于G ,连接EF .首先说明点G 与点E 重合时,FG 的值最大,如图2中,当点G 与点E 重合时,连接AC 交BD 于H ,PE 交BD 于J .设BC =2a .利用相似三角形的性质构建方程求解即可.【解答】解:如图1中,当点P 是AB 的中点时,作FG △PE 于G ,连接EF ,△E (﹣2,0),△EFO =30°,△OE =2,EF =4,△△FGE =90°,△FG ≤EF ,△当点G 与E 重合时,FG 的值最大.如图2中,当点G 与点E 重合时,连接AC 交BD 于H ,PE 交BD 于J .设BC =2a .△P A =PB ,BE =EC =a ,△PE △AC ,BJ =JH ,△四边形ABCD 是菱形,△AC △BD ,BH =DH =√103,BJ =√106,△PE △BD ,△△BJE =△EOF =△PEF =90°,△△EBJ =△FEO ,△△BJE △△EOF ,△BE EF =BJ EO ,△a 4=√1062, △a =√103,△BC =2a =2√103. 故答案为:2√103. 【点评】本题考查菱形的性质,坐标与图形的性质,相似三角形的判定和性质,垂线段最短等知识,解题的关键是理解题意,学会添加常用辅助线,构造相似三角形解决问题,属于中考选择题中的压轴题.七.菱形的判定(共2小题)22.如图,在△ABC 中,AB =AC ,△B =60°,△F AC 、△ECA 是△ABC 的两个外角,AD 平分△F AC ,CD 平分△ECA .求证:四边形ABCD是菱形.【分析】根据平行四边形的判定方法得出四边形ABCD是平行四边形,再利用菱形的判定得出.【解答】证明:△△B=60°,AB=AC,△△ABC为等边三角形,△AB=BC,△△ACB=60°,△F AC=△ACE=120°,△△BAD=△BCD=120°,△△B=△D=60°,△四边形ABCD是平行四边形,△AB=BC,△平行四边形ABCD是菱形.【点评】此题主要考查了平行四边形的判定以及菱形的判定和角平分线的性质等内容,注意菱形与平行四边形的区别,得出AB=BC是解决问题的关键.23.如图,在△ABC中,△ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当△B满足什么条件时,四边形ACEF是菱形,并说明理由.。
中考数学复习专项之平行四边形(含答案)
平行四边形一、选择题1.(2022年北京龙文教育一模)已知:如图,在平行四边形ABCD 中,4=AB ,7=AD ,∠ABC 的平分线交AD 于点E ,交CD 的延长线于点F ,则DF 的长为 A .6 B . 5 C .4 D . 3答案:D2.(2022年北京龙文教育一模)如图,已知平行四边形ABCD 中,AB =3,AD =2,=150B ∠︒,则平行四边形ABCD 的面积为A. 2B. 3C. 33D. 6 答案:B3.(2022年北京平谷区一模)如图,在□ABCD 中,CE AB ⊥,E 为垂足. 如果125A =∠,则BCE =∠ A .25B .30C .35D .55答案:C4、(2022年湖北荆州模拟6)如图,已知一张纸片□ABCD ,90B ∠>︒,点E 是AB 的中点,点G 是BC 上的一个动点,沿EG 将纸片折叠,使点B 落在纸片上的点F 处,连结AF ,则下列各角中与BEG ∠不.一定..相等的是( ▲ ) A. ∠FEG B. ∠EAFC.∠AEFD. ∠EFA 答案:C5、(2022年广东省珠海市一模)如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M ,N .则线段BM ,DN 的大小关系是 A . BM >DN B . BM <DN C . BM=DN D . 无法确定题7图 题10图 答案:C6.(2022辽宁葫芦岛一模)如图,在平行四边形ABCD 中,AD =5,AB =3,AE 平分∠BAD 交BC 边于点E ,则线段BE ,EC 的长度分别为 ( )FE ABCD第1题第2题AEBCD第3题图 第1题图AB CDEA .2和3B .3和2C .4和1D .1和4答案:B7、(2022年福州市初中毕业班质量检查)如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且A 、D 在BC 同侧,连接AD ,量一量线段AD 的长,约为 A .1.0cm B .1.4cm C .1.8cm D .2.2cm B二、填空题1、(2022年湖北荆州模拟题)如图,□ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,CD =2DE .若△DEF 的面积为a ,则□ABCD 中的面积为 ▲ (用a 的代数式表示) .答案:8a 2、(2022重庆一中一模)已知在平面直角坐标系中有)2,1(-A ,)21(,B 两点,现从)22(--,、)62(,、)(2,1-、)(6,0四点中,任选两点作为C 、D ,则以A 、B 、C 、D 四个点为顶点所组成的四边形中是平行四边形的概率是________. 【答案】.133、(2022辽宁葫芦岛一模)如图,E 、F 分别是 ABCD 的边AB 、CD 上的点,AF 与DE 相交于点P ,BF 与CE 相交于点Q ,若S△APD15=2cm ,S △BQC 25=2cm ,则阴影部分的面积为 2cm .答案:404、(2022珠海市文园中学一模)如图,在四边形ABCD 中,E 是BC 边上的一点,连结DE 并延长,交AB 的延长线于F 点,且DE EF =,AB BF =.再添加一个条件,你认为下面四个条件中不能使四边形ABCD 是平行四边形的是 ( )A .AD BC =B .CD BF =C .A C ∠=∠D .F CDE ∠=∠答案:BABC第7题图PA BDEQ(第3题)E BAFC D5.(2022年杭州拱墅区一模)在面积为12的平行四边形ABCD 中,过点A 作直线BC 的垂线交BC 于点E ,过点A 作直线CD 的垂线交CD 于点F ,若AB =4,BC =6,则CE +CF 的值为 ; 答案:10+53或2+3三、解答题1、 (2022沈阳一模)如图,四边形ABCD 中,∠BAD =120°,∠B =∠D =90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN +∠ANM 的度数是 .答案:120°求证:AF CE =答案1、(2022年安徽省模拟八)如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥,: 平行四边形ABCD 中,AD BC ∥,AD BC =,ACB CAD ∴∠=∠.又BE DF ∥,BEC DFA ∴∠=∠.在BEC △和DFA △中,,.BEC DFA ACB CAD AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩BEC DFA ∴△≌△,∴CE AF =2、(2022届金台区第一次检测)已知:如图,□ABCD 中,点E 是AD 的中点,延长CE 交BA 的延长线于点F . 求证:AB=AF .答案:证∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB=CD .CAEF第1题图∴∠F =∠2, ∠1=∠D . (2分) ∵E 为AD 中点,∴AE =ED . (3分)在△AEF 和△DEC 中21F D AE ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△AEF ≌△DEC . (5分) ∴AF =CD .∴AB =AF . (6分)3、(2022年江苏南京一模)(7分)我们可以将一个纸片通过剪切,结合图形的平移、旋转、翻折,重新拼接成一个新的图形.如图,沿△ABC 的中位线DE 剪切,将△ADE 绕点E 顺时针旋转180°, 可得到□BCFD .请尝试解决下面问题(不写画法,保留痕迹,并作必要说明): (1)将梯形纸片剪拼成平行四边形:请在下图中画出示意图,要求用两种不同..的画法, 并简要说明如何剪拼和变换的;(2)如图,将四边形ABCD 剪拼成平行四边形.在下图中画出示意图.4、两个全等的直角三角形ABC 和DEF 重叠在一起,其中∠A =60°,AC =1. 固定△ABC 不动,将△DEF 进行如下操作:(1) 如图△DEF 沿线段AB 向右平移(即D 点在线段AB 内移动),连结DC 、CF 、FB ,四边形CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当D 点移到AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.A B E FC DABEFCD温馨提示:由平移性质可得CF ∥AD ,CF =AD(3)如图,△DEF 的D 点固定在AB 的中点,然后绕D 点按顺时针方向旋转△DEF ,使DF 落在AB 边上,此时F 点恰好与B 点重合,连结AE ,请你求出sinα的值.解:(1)过C 点作CG ⊥AB 于G ,在Rt △AGC 中,∵sin 60°=ACCG,∴23=CG ·············································· 1分∵AB =2,∴S 梯形CDBF =S △ABC =2323221=⨯⨯ ················································ 3分(2)菱形 ···························································································· 5分 ∵CD ∥BF , FC ∥BD ,∴四边形CDBF 是平行四边形 ·························· 6分 ∵DF ∥AC ,∠ACD =90°,∴CB ⊥DF ··············································· 7分 ∴四边形CDBF 是菱形 ··································································· 8分 (判断四边形CDBF 是平行四边形,并证明正确,记2分)(3)解法一:过D 点作DH ⊥AE 于H ,则S △ADE =233121EB AD 21=⨯⨯=⋅⋅8分 又S △ADE =2321=⋅⋅DH AE ,)721(733或==AE DH ······························· 10分 ∴在Rt △DHE’中,si nα=)1421(723或=DE DH ········································· 12分 解法二:∵△ADH ∽△ABE ······························································ 8分∴AEADBE DH = 即:713=DH∴73=DH ····································································· 10分DG)∴sinα=)1421(723或 DE DH ················································· 12分5、(2022河南南阳市模拟)(8分)如图,已知E 是平行四边形ABCD 的边AB 上的点,连接DE . (1)在∠ABC 的内部,作射线BM 交线段CD 于点F ,使∠CBF=∠ADE ; (要求:用尺规作图,保留作图痕迹,不写作法和证明) 在(1)的条件下,求证:△ADE ≌△CBF . (2)证明:∵四边形ABCD 是平行四边形 ∴∠A=∠C ,AD=BC …5分 ∵∠ADE=∠CBF …6分 ∴△ADE ≌△CBF (ASA ).2、6.(2022云南勐捧中学一模)(本小题7分)已知,如图E 、F 是四边形ABCD 的对角线AC 上的两点,AF=CE ,DF=BE ,DF ∥BE ,四边形ABCD 是平行四边形吗?请说明理由. 【答案】解:结论:四边形ABCD 是平行四边形, 证明:∵DF ∥BE , ∴∠AFD=∠CEB , 又∵AF=CE DF=BE ,∴△AFD ≌△CEB (SAS ), ∴AD=CB ,∠DAF=∠BCE , ∴AD ∥CB ,∴四边形ABCD 是平行四边形.B(E )(F )CDE (F )αH第19题图DCF BAE7、(2022云南勐捧中学二模)(本小题6分)如图,在□ABCD 中,E 为BC 的中点,连接DE .延长DE 交AB 的延长线于点F .求证:AB=BF . 【答案】解:由□ABCD 得AB ∥CD , ∴∠CDF =∠F ,∠CBF =∠C . 又∵E 为BC 的中点, ∴△DEC ≌△FEB . ∴DC =FB .由□ABCD 得AB =CD , ∵DC =FB ,AB =CD , ∴AB =BF .8、(2022年广东省中山市一模)如图,在ABCD 中,E 为BC 边上一点,且AB AE =. (1)求证:ABC EAD △≌△.(2)若AE 平分DAB ∠,25EAC =∠,求AED ∠的度数. 证明:∵四边形ABCD 为平行四边形,∴AD BC AD BC =∥,. ∴DAE AEB =∠∠.………1分 又∵AB AE =∴AEB B =∠∠ ∴B DAE =∠∠.………2分 ∴ABC EAD △≌△. ………3分(2)∵AE 平分DAB ∠∴DAE BAE DAE AEB ==∠∠,∠∠, ∴BAE AEB B ==∠∠∠. ∴ABE △为等边三角形. ………4分 ∴60BAE =∠.∵25EAC =∠∴85BAC =∠ ∵ABC EAD △≌△∴85AED BAC ==∠∠. ………5分9、(2022浙江永嘉一模)18.(本题8分)如图,E ,F 是平行四边形ABCD 的对角线AC 上的点,CE =AF ,请你猜想:BE 与DF 有怎样的位置关系和数量关系?对你的猜想加以证明. 猜想:证明:【答案】解:猜想BE ∥DF ,BE =DF …………2分证明:∵四边形ABCD 是平行四边形 ∴BC =AD ,∠1=∠2又CE =AF ,∴⊿BCE ≌⊿DAF ……3分 ∴BE =DF ,∠3=∠4 …………2分(第1题图)B∴BE ∥DF ……………………1分10.(2022江西饶鹰中考模拟)在平行四边形ABCD 中,点E 是DC 上一点,且CE =BC ,AB =8,BC =5. (1)作AF 平分∠BAD 交DC 于F (尺规作图,保留作图痕迹); (2)在(1)的条件下求EF 的长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学平行四边形练习题含答案一、解答题1.已知,四边形ABCD是正方形,点E是正方形ABCD所在平面内一动点(不与点D重合),AB=AE,过点B作DE的垂线交DE所在直线于F,连接CF.提出问题:当点E运动时,线段CF与线段DE之间的数量关系是否发生改变?探究问题:(1)首先考察点E的一个特殊位置:当点E与点B重合(如图①)时,点F与点B也重合.用等式表示线段CF与线段DE之间的数量关系:;(2)然后考察点E的一般位置,分两种情况:情况1:当点E是正方形ABCD内部一点(如图②)时;情况2:当点E是正方形ABCD外部一点(如图③)时.在情况1或情况2下,线段CF与线段DE之间的数量关系与(1)中的结论是否相同?如果都相同,请选择一种情况证明;如果只在一种情况下相同或在两种情况下都不相同,请说明理由;拓展问题:(3)连接AF,用等式表示线段AF、CF、DF三者之间的数量关系:.2.在四边形ABCD中,AD∥BC,AB=8cm,AD=16cm,BC=22cm,∠ABC=90°.点P从点A 出发,以1cm/s的速度向点D运动,点Q从点C同时出发,以3cm/s的速度向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t秒.(1)当t= 时,四边形ABQP 成为矩形?(2)当t= 时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形?(3)四边形PBQD 是否能成为菱形?若能,求出t 的值;若不能,请说明理由,并探究如何改变Q 点的速度(匀速运动),使四边形PBQD 在某一时刻为菱形,求点Q 的速度.3.如图,在Rt ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D 从点C 出发沿CA 方向以4cm/s 的速度向点A 匀速运动.同时点E 从点A 出发沿AB 方向以2cm/秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是ts (0<t≤15).过点D 作DF ⊥BC 于点F ,连接DE ,EF .(1)求证:AE =DF ;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值,如果不能,说明理由; (3)当t 为何值时,DEF 为直角三角形?请说明理由.4.(1)如图①,在正方形ABCD 中,AEF ∆的顶点E ,F 分别在BC ,CD 边上,高AG 与正方形的边长相等,求EAF ∠的度数;(2)如图②,在Rt ABD ∆中,90,BAD AD AB ︒∠==,点M ,N 是BD 边上的任意两点,且45MAN ︒∠=,将ABM ∆绕点A 逆时针旋转90度至ADH ∆位置,连接NH ,试判断MN ,ND ,DH 之间的数量关系,并说明理由;(3)在图①中,连接BD 分别交AE ,AF 于点M ,N ,若正方形ABCD 的边长为12,GF=6,BM= 32,求EG ,MN 的长.5.如图,ABC 是等腰直角三角形,90,ACB ∠=︒分别以,AB AC 为直角边向外作等腰直角ABD △和等腰直角,ACE G 为BD 的中点,连接,,CG BE ,CD BE 与CD 交于点F .(1)证明:四边形ACGD 是平行四边形;(2)线段BE 和线段CD 有什么数量关系,请说明理由;(3)已知2,BC =求EF 的长度(结果用含根号的式子表示).6.已知:在ABC 中,∠BAC=90°,AB=AC ,点D 为直线BC 上一动点(点D 不与B 、C 重合).以AD 为边作正方形ADEF ,连接CF .(1)如图1,当点D 在线段BC 上时,BD 与CF 的位置关系为__________;CF 、BC 、CD 三条线段之间的数量关系____________________.(2)如图2,当点D 在线段BC 的延长线上时,其它条件不变,请你写出CF 、BC 、CD 三条线段之间的数量关系并加以证明;(3)如图3,当点D 在线段BC 的反向延长线上时,且点A 、F 分别在直线BC 的两侧,其它条件不变:①请直接写出CF 、BC 、CD 三条线段之间的关系.②若连接正方形对角线AE 、DF ,交点为O ,连接OC ,探究AOC △的形状,并说明理由.7.在正方形ABCD 中,点E 是CD 边上任意一点,连接,AE 过点B 作BF AE ⊥于F ,交AD 于H .()1如图1,过点D 作DG AE ⊥于G .求证:BF DG FG -=;()2如图2,点E 为CD 的中点,连接DF ,试判断,,DF FH EF 存在什么数量关系并说明理由;()3如图3,1AB =,连接EH ,点Р为EH 的中点,在点E 从点D 运动到点C 的过程中,点Р随之运动,请直接写出点Р运动的路径长.8.已知如图1,四边形ABCD 是正方形,45EAF ︒∠= .()1如图1,若点,E F 分别在边BC CD 、上,延长线段CB 至G ,使得BG DF =,若3,2BE BG ==,求EF 的长;()2如图2,若点,E F 分别在边CB DC 、延长线上时,求证: .EF DF BE =-()3如图3,如果四边形ABCD 不是正方形,但满足,90,45,AB AD BAD BCD EAF ︒︒=∠=∠=∠=且7, 13,5BC DC CF ===,请你直接写出BE 的长.9.如图,点A 的坐标为(6,6)-,AB x ⊥轴,垂足为B ,AC y ⊥轴,垂足为C ,点,D E 分别是射线BO 、OC 上的动点,且点D 不与点B 、O 重合,45DAE ︒∠=.(1)如图1,当点D 在线段BO 上时,求DOE ∆的周长;(2)如图2,当点D 在线段BO 的延长线上时,设ADE ∆的面积为1S ,DOE ∆的面积为2S ,请猜想1S 与2S 之间的等量关系,并证明你的猜想.10.如图,在正方形ABCD 中,点E 、F 是正方形内两点,BE DF ∥,EF BE ⊥,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:(1)在图1中,连接BD ,且BE DF =①求证:EF 与BD 互相平分;②求证:222()2BE DF EF AB ++=;(2)在图2中,当BE DF ≠,其它条件不变时,222()2BE DF EF AB ++=是否成立?若成立,请证明:若不成立,请说明理由.(3)在图3中,当4AB =,135DPB ∠=︒2246B BP PD +=时,求PD 之长.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)DE2CF;(2)在情况1与情况2下都相同,详见解析;(3)AF+CF=2DF或|AF-CF|2【分析】(1)易证△BCD是等腰直角三角形,得出2CB,即可得出结果;(2)情况1:过点C作CG⊥CF,交DF于G,设BC交DF于P,由ASA证得△CDG≌△CBF,得出DG=FB,CG=CF,则△GCF是等腰直角三角形,2CF,连接BE,设∠CDG=α,则∠CBF=α,∠DEA=∠ADE=90°-α,求出∠DAE=2α,则∠EAB=90°-2α,∠BEA=∠ABE=12(180°-∠EAB)=45°+α,∠CBE=45°-α,推出∠FBE=45°,得出△BEF是等腰直角三角形,则EF=BF,推出EF=DG,DE=FG,得出2CF;情况2:过点C作CG⊥CF交DF延长线于G,连接BE,设CD交BF于P,由ASA证得△CDG≌△CBF,得出DG=FB,CG=CF,则△GCF是等腰直角三角形,得2CF,设∠CDG=α,则∠CBF=α,证明△BEF是等腰直角三角形,得出EF=BF,推出DE=FG,得出2CF;(3)①当F在BC的右侧时,作HD⊥DF交FA延长线于H,由(2)得△BEF是等腰直角三角形,EF=BF,由SSS证得△ABF≌△AEF,得出∠EFA=∠BFA=12∠BFE=45°,则△HDF是等腰直角三角形,得2DF,DH=DF,∵∠HDF=∠ADC=90°,由SAS证得△HDA≌△FDC,得CF=HA,即可得出2;②当F在AB的下方时,作DH⊥DE,交FC延长线于H,在DF上取点N,使CN=CD,连接BN,证明△BFN是等腰直角三角形,得BF=NF,由SSS证得△CNF≌△CBF,得∠NFC=∠BFC=12∠BFD=45°,则△DFH是等腰直角三角形,得2,DF=DH,由SAS证得△ADF≌△CDH,得出CH=AF,即可得出2DF;③当F在DC的上方时,连接BE,作HD⊥DF,交AF于H,由(2)得△BEF是等腰直角三角形,EF=BF,由SSS证得△ABF≌△AEF,得∠EFA=∠BFA=12∠BFE=45°,则△HDF是等腰直角三角形,得出HF=2DF,DH=DF,由SAS证得△ADC≌△HDF,得出AH=CF,即可得出AF-CF=2DF;④当F在AD左侧时,作HD⊥DF交AF的延长线于H,连接BE,设AD交BF于P,证明△BFE是等腰直角三角形,得EF=BF,由SSS证得△ABF≌△AEF,得∠EFA=∠BFA=12∠BFE=45°,则∠DFH=∠EFA=45°,△HDF是等腰直角三角形,得DH=DF,HF=2DF,由SAS证得△HDA≌△FDC,得出AF=CF,即可得出CF-AF=2DF.【详解】解:(1)∵四边形ABCD是正方形,∴CD=CB,∠BCD=90°,∴△BCD是等腰直角三角形,∴DB=2CB,当点E、F与点B重合时,则DE=2CF,故答案为:DE=2CF;(2)在情况1或情况2下,线段CF与线段DE之间的数量关系与(1)中结论相同;理由如下:情况1:∵四边形ABCD是正方形,∴CD=CB=AD=AB=AE,∠BCD=∠DAB=∠ABC=90°,过点C作CG⊥CF,交DF于G,如图②所示:则∠BCD=∠GCF=90°,∴∠DCG=∠BCF,设BC交DF于P,∵BF⊥DE,∴∠BFD=∠BCD=90°,∵∠DPC=∠FPB,∴∠CDP=∠FBP,在△CDG和△CBF中,DCG BCF CD CBCDG CBF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△CDG ≌△CBF (ASA ),∴DG=FB ,CG=CF ,∴△GCF 是等腰直角三角形,∴FG=2CF,连接BE ,设∠CDG=α,则∠CBF=α,∠ADE=90°-α,∵AD=AE ,∴∠DEA=∠ADE=90°-α,∴∠DAE=180°-2(90°-α)=2α,∴∠EAB=90°-2α,∵AB=AE ,∴∠BEA=∠ABE=12(180°-∠EAB )=12(180°-90°+2α)=45°+α, ∴∠CBE=90°-(45°+α)=45°-α,∴∠FBE=∠CBE+∠CBF=45°-α+α=45°,∵BF ⊥DE ,∴△BEF 是等腰直角三角形,∴EF=BF ,∴EF=DG ,∴EF+EG=DG+EG ,即DE=FG ,∴DE=2CF ;情况2:过点C 作CG ⊥CF 交DF 延长线于G ,连接BE ,设CD 交BF 于P ,如图③所示:∵∠GCF=∠BCD=90°,∴∠DCG=∠BCF ,∵∠FPD=∠BPC ,∴∠FDP=∠PBC ,在△CDG 和△CBF 中,DCG BCF CD CBCDG CBF ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△CDG ≌△CBF (ASA ),∴DG=FB ,CG=CF ,∴△GCF 是等腰直角三角形,∴FG=2CF ,设∠CDG=α,则∠CBF=α,同理可知:∠DEA=∠ADE=90°-α,∠DAE=2α,∴∠EAB=90°+2α,∵AB=AE ,∴∠BEA=∠ABE=45°-α,∴∠FEB=∠DEA-∠AEB=90°-α-(45°-α)=45°,∵BF ⊥DE ,∴△BEF 是等腰直角三角形,∴EF=BF ,∴EF=DG ,∴DE=FG ,∴DE=2CF ;(3)①当F 在BC 的右侧时,作HD ⊥DF 交FA 延长线于H ,如图④所示:由(2)得:△BEF 是等腰直角三角形,EF=BF ,在△ABF 和△AEF 中,AB AE AF AF BF EF ⎧⎪⎨⎪⎩===,∴△ABF ≌△AEF (SSS ),∴∠EFA=∠BFA=12∠BFE=45°, ∴△HDF 是等腰直角三角形,∴HF=2DF ,DH=DF ,∵∠HDF=∠ADC=90°,∴∠HDA=∠FDC ,在△HDA 和△FDC 中,DH DF HDA FDC DA DC ⎧⎪∠∠⎨⎪⎩===,∴△HDA ≌△FDC (SAS ),∴CF=HA ,∴2DF=HF=HA+AF=CF+AF ,即AF+CF=2DF ;②当F 在AB 的下方时,作DH ⊥DE ,交FC 延长线于H ,在DF 上取点N ,使CN=CD ,连接BN ,如图⑤所示:设∠DAE=α,则∠CDN=∠CND=90°-α,∴∠DCN=2α,∴∠NCB=90°-2α,∵CN=CD=CB ,∴∠CNB=∠CBN=12(180°-∠NCB )=12(180°-90°+2α)=45°+α, ∵∠CNE=180°-∠CND=180°-(90°-α)=90°+α,∴∠FNB=90°+α-(45°+α)=45°,∴△BFN 是等腰直角三角形,∴BF=NF ,在△CNF 和△CBF 中,CN CB CF CF NF BF ⎧⎪⎨⎪⎩===,∴△CNF ≌△CBF (SSS ),∴∠NFC=∠BFC=12∠BFD=45°, ∴△DFH 是等腰直角三角形,∴FH=2DF ,DF=DH ,∵∠ADC=∠HDE=90°,∴∠ADF=∠CDH ,在△ADF 和△CDH 中,AD CD ADF CDH DF DH ⎧⎪∠∠⎨⎪⎩===,∴△ADF ≌△CDH (SAS ),∴CH=AF ,∴FH=CH+CF=AF+CF ,∴AF+CF=2DF ;③当F 在DC 的上方时,连接BE ,作HD ⊥DF ,交AF 于H ,如图⑥所示:由(2)得:△BEF 是等腰直角三角形,EF=BF ,在△ABF 和△AEF 中,AB AE AF AF BF EF ⎧⎪⎨⎪⎩===,∴△ABF ≌△AEF (SSS ),∴∠EFA=∠BFA=12∠BFE=45°, ∴△HDF 是等腰直角三角形,∴2,DH=DF ,∵∠ADC=∠HDF=90°,∴∠ADH=∠CDF ,在△ADC 和△HDF 中,AD CD ADH CDF DH DF ⎧⎪∠∠⎨⎪⎩===,∴△ADC ≌△HDF (SAS ),∴AH=CF ,∴HF=AF-AH=AF-CF ,∴AF-CF=2DF ;④当F 在AD 左侧时,作HD ⊥DF 交AF 的延长线于H ,连接BE ,设AD 交BF 于P ,如图⑦所示:∵AB=AE=AD ,∴∠AED=∠ADE ,∵∠PFD=∠PAB=90°,∠FPD=∠BPA ,∴∠ABP=∠FDP ,∴∠FEA=∠FBA ,∵AB=AE ,∴∠AEB=∠ABE ,∴∠FEB=∠FBE ,∴△BFE 是等腰直角三角形,∴EF=BF ,在△ABF 和△AEF 中, AB AE AF AF BF EF ⎧⎪⎨⎪⎩===,∴△ABF ≌△AEF (SSS ),∴∠EFA=∠BFA=12∠BFE=45°, ∴∠DFH=∠EFA=45°,∴△HDF 是等腰直角三角形,∴DH=DF ,DF ,∵∠HDF=∠CDA=90°,∴∠HDA=∠FDC ,在△HDA 和△FDC 中,DH DF HDA FDC AD CD ⎧⎪∠∠⎨⎪⎩===,∴△HDA ≌△FDC (SAS ),∴AF=CF ,∴AH-AF=CF-AF=HF ,∴DF ,综上所述,线段AF 、CF 、DF 三者之间的数量关系:DF 或DF , 故答案为:DF 或DF .【点睛】本题是四边形综合题,主要考查了正方形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形内角和定理、等腰三角形的性质等知识;熟练掌握全等三角形的判定与性质和等腰直角三角形的判定与性质是解题的关键.2.(1)112;(2)112或4;(3)四边形PBQD 不能成为菱形 【分析】 (1)由∠B=90°,AP ∥BQ ,由矩形的判定可知当AP=BQ 时,四边形ABQP 成为矩形; (2)由(1)可求得点P 、Q 与点A 、B 为顶点的四边形为平行四边形;然后由当PD=CQ 时,CDPQ 是平行四边形,求得t 的值;(3)由PD ∥BQ ,当PD=BQ=BP 时,四边形PBQD 能成为菱形,先由PD=BQ 求出运动时间t 的值,再代入求BP ,发现BP≠PD ,判断此时四边形PBQD 不能成为菱形;设Q 点的速度改变为vcm/s 时,四边形PBQD 在时刻t 为菱形,根据PD=BQ=BP 列出关于v 、t 的方程组,解方程组即可求出点Q 的速度.【详解】(1)如图1,∵∠B=90°,AP ∥BQ ,∴当AP=BQ 时,四边形ABQP 成为矩形,此时有t=22﹣3t ,解得t=112. ∴当t=112时,四边形ABQP 成为矩形; 故答案为112; (2)如图1,当t=112时,四边形ABQP 成为矩形,如图2,当PD=CQ 时,四边形CDPQ 是平行四边形,则16﹣t=3t ,解得:t=4,∴当t=112或4时,以点P 、Q与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形; 故答案为112或4; (3)四边形PBQD 不能成为菱形.理由如下:∵PD ∥BQ ,∴当PD=BQ=BP 时,四边形PBQD 能成为菱形.由PD=BQ ,得16﹣t=22﹣3t ,解得:t=3,当t=3时,PD=BQ=13,BP=22AB AP + =228t +=2283+=73≠13,∴四边形PBQD 不能成为菱形;如果Q 点的速度改变为vcm/s 时,能够使四边形PBQD 在时刻ts 为菱形,由题意,得221622168t vtt t-=-⎧⎪⎨-=+⎪⎩,解得62t v =⎧⎨=⎩. 故点Q 的速度为2cm/s 时,能够使四边形PBQD 在某一时刻为菱形.【点睛】此题属于四边形的综合题.考查了矩形的判定、菱形的判定以及勾股定理等知识.注意掌握分类讨论思想与方程思想的应用是解此题的关键.3.(1)证明见解析;(2)能,10;(3)152,理由见解析; 【分析】(1)利用题中所给的关系式,列出CD,DF,AE的式子,即可证明.(2)由题意知,四边形AEFD是平行四边形,令AD=DF,求解即可得出t值.(3)由题意可知,当DE∥BC时,△DEF为直角三角形,利用AD+CD=AC的等量关系,代入式子求值即可.【详解】(1)由题意知:三角形CFD是直角三角形∵∠B=90°,∠A=60°∴∠C=30°,CD=2DF,又∵由题意知CD=4t,AE=2t,∴CD=2AE∴AE=DF.(2)能,理由如下;由(1)知AE=DF又∵DF⊥BC,∠B=90°∴AE∥DF∴四边形AEFD是平行四边形.当AD=DF时,平行四边形AEFD是菱形∵AC=60cm,DF=12CD,CD=4t,∴AD=60-4t,DF=2t,∴60-4t=2t∴t=10.(3)当t为152时,△DEF为直角三角形,理由如下;由题意知:四边形AEFD是平行四边形,DF⊥BC,AE∥DF,∴当DE∥BC时,DF⊥DE∴∠FDE=∠DEA=90°在△AED中,∵∠DEA=90°,∠A=60°,AE=2t∴AD=4t,又∵AC=60cm,CD=4t,∴AD+CD=AC,8t=60,∴t=152.即t=152时,∠FDE=∠DEA=90°,△DEF为直角三角形.【点睛】本题主要考查了三角形、平行四边形及菱形的性质,正确掌握三角形、平行四边形及菱形的性质是解题的关键.4.(1)见解析;(2)MN2=ND2+DH2,理由见解析;(3)EG=4,MN=52【分析】(1)根据高AG与正方形的边长相等,证明三角形全等,进而证明角相等,从而求出解.(2)用三角形全等和正方形的对角线平分每一组对角的知识可证明结论.(3)设EG=BE=x,根据正方形的边长得出CE,CF,EF,在Rt△CEF中利用勾股定理得到方程,求出EG的长,设MN=a,根据MN2=ND2+BM2解出a值即可.【详解】解:(1)在Rt△ABE和Rt△AGE中,AB=AG,AE=AE,∴Rt△ABE≌Rt△AGE(HL).∴∠BAE=∠GAE.同理,∠GAF=∠DAF.∴∠EAF=12∠BAD=45°;(2)MN2=ND2+DH2.∵∠BAM=∠DAH,∠BAM+∠DAN=45°,∴∠HAN=∠DAH+∠DAN=45°.∴∠HAN=∠MAN,又∵AM=AH,AN=AN,∴△AMN≌△AHN(SAS).∴MN=HN,∵∠BAD=90°,AB=AD,∴∠ABD=∠ADB=45°,∴∠HDN=∠HDA+∠ADB=90°,∴NH2=ND2+DH2,∴MN2=ND2+DH2;(3)∵正方形ABCD的边长为12,∴AB=AG=12,由(1)知,BE=EG,DF=FG.设EG=BE=x,则CE=12-x,∵GF=6=DF,∴CF=12-6=6,EF=EG+GF=x+6,在Rt△CEF中,∵CE2+CF2=EF2,∴(12-x)2+62=(x+6)2,解得x=4,即EG=BE=4,在Rt△ABD中,,在(2)中,MN2=ND2+DH2,BM=DH,∴MN2=ND2+BM2.a+,设MN=a,则a2=()(22a+,即a 2=()(22∴a=MN=【点睛】本题考查正方形的性质,四边相等,对角线平分每一组对角,以及全等三角形的判定和性质,勾股定理的知识点等.5.(1)见解析;(2)BE=CD,理由见解析;(3)EF【分析】(1)利用等腰直角三角形的性质易得BD=2BC,因为G为BD的中点,可得BG=BC,由∠CGB=45°,∠ADB=45得AD∥CG,由∠CBD+∠ACB=180°,得AC∥BD,得出四边形ACGD为平行四边形;(2)利用全等三角形的判定证得△DAC≌△BAE,由全等三角形的性质得BE=CD;首先证得四边形ABCE为平行四边形,再利用全等三角形的判定定理得△BCE≌△CAD,易得∠CBE=∠ACD,由∠ACB=90°,易得∠CFB=90°,得出结论.(3)先证明△DBF是直角三角形,再利用勾股定理进行计算,即可求出答案.【详解】解:(1)∵△ABC和△ABD都是等腰直角三角形∴∠CAB=∠ABD= 45°,BD AB BC=2BC=2AC∴AC∥BD又∵G为BD的中点,∴BD=2DG,∴AC=DG,AC∥DG∴四边形ACGD为平行四边形;(2)BE=CD,理由如下∵△AEC和△ABD都是等腰直角三角形AE=AC,AB=AD∠EAB=∠EAC+∠CAB=90°+45°=135°,∠CAD=∠DAB+∠BAC=90°+45°=135°,∴∠EAB=∠CAD,在△DAC与△BAE中,AD AB CAD EAB AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△DAC ≌△BAE ,∴BE =CD ;(3) ∵△DAC ≌△BAE∴∠AEB=∠ACD又∵∠EAC=90°∴∠EFC=∠DFB=90°∴ △DBF 是直角三角形∵BC,∴BD根据勾股定理得CD, ∴11••22CD BF BC BD = ∴12=12•∴BF∴EF =BE -BF =CD -BF【点睛】本题主要考查了等腰直角三角形的性质,平行四边形和全等三角形的判定及性质定理,综合运用各种定理是解答此题的关键.6.(1)BD ⊥CF ,CF=BC-CD ;(2)CF=BC+CD ,见解析;(3)①CF=CD−BC ,②等腰三角形,见解析【分析】(1)先说明△ABC 是等腰直角三角形,利用SAS 即可证明△BAD ≌△CAF ,从而证得CF ⊥BD 、CF=BD ,又 BD+CD=BC, CF=BC-CD ;(2)先利用SAS 即可证得△BAD ≌△CAF ,从而证得BD=CF ,即可得到CF-CD=BC ; (3)①与(2)同理可得BD=CF ,然后结合图形可得CF=CD-BC ;②先根据等腰直角三角形的性质得到∠ABC=∠ACB=45°,再根据邻补角的定义求出∠ABD=135°,再根据同角的余角相等求出∠BAD=∠CAF ,然后利用“边角边”证明△BAD ≌△CAF ,得∠ACF=∠ABD ,求出∠FCD=90°,然后根据直角三角形斜边上的中线等于斜边的一半求出OC=12DF ,再根据正方形的对角线相等求出OC=OA ,从而得到△AOC 是等腰三角形.【详解】(1)解:∵∠B4C=90°,AB=AC∴∠ABC=∠ACB=45°∵四边形ADEF是正方形∴AD=AF,∠DAF=90°∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°∴∠BAD=∠CAF在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS),∴BD=CF,∠ABD=∠ACF=45°∴∠FCB=∠ACF+ ∠ACB=90°,即CF⊥BC∵BD+CD=BC∴CF+CD=BC;故答案为:BD⊥CF,CF=BC-CD;(2)证明:∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=∠BAC+∠DAC,∠CAF=∠DAF+∠DAC,∴∠BAD=∠CAF,在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS),∴BD=CF,∵BD=BC+CD,∴CF=BC+CD;(3)①与(2)同理可得,BD=CF,所以,CF=CD−BC;②∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,则∠ABD=180∘−45°=135°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAF+∠CAF=90°,∠DAF=∠BAD+∠BAF=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD=180°−45°=135°,∴∠FCD=∠ACF−∠ACB=90°,则△FCD为直角三角形,∵正方形ADEF中,O为DF中点,∴OC=12DF,∵在正方形ADEF中,OA=12AE,AE=DF,∴OC=OA,∴△AOC是等腰三角形.【点睛】本题考查了四边形的综合题,正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、等腰三角形的判定以及同角的余角相等的性质,在(1)证明三角形全等得到思路并推广到(2)(3)是解答本题的关键.7.(1)见解析;(2)FH+FE=2DF,理由见解析;(3)2 2【分析】(1)如图1中,证明△AFB≌△DGA(AAS)可得结论.(2)结论:FH+FE=2DF.如图2中,过点D作DK⊥AE于K,DJ⊥BF交BF的延长线于J,证明四边形DKFJ是正方形,可得结论.(3)如图3中,取AD的中点J,连接PJ,延长JP交CD于R,过点P作PT⊥CD于T,PK⊥AD于K.设PT=b.证明△KPJ是等腰直角三角形,推出点P在线段JR上运动,求出JR即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵DG⊥AE,AE⊥BH,∴∠AFB=∠DGH=90°,∴∠FAB+∠DAG=90°,∠DAG+∠ADG=90°,∴∠BAF=∠ADG,∴△AFB≌△DGA(AAS),∴AF=DG,BF=AG,∴BF-DG=AG-AF=FG.(2)结论:FH+FE=2DF.理由:如图2中,过点D作DK⊥AE于K,DJ⊥BF交BF的延长线于J,∵四边形ABCD是正方形,∴∠BAD=∠ADE=90°,AB=AD,∵AE⊥BH,∴∠AFB=90°,∴∠DAE+∠EAB=90°,∠EAB+∠ABH=90°,∴∠DAE=∠ABH,∴△ABH≌△DAE(ASA),∴AH=AE,∵DE=EC=12CD,CD=AD,∴AH=DH,∴DE=DH,∵DJ⊥BJ,DK⊥AE,∴∠J=∠DKE=∠KFJ=90°,∴四边形DKFJ是矩形,∴∠JDK=∠ADC=90°,∴∠JDH=∠KDE,∵∠J=∠DKE=90°,∴△DJH≌△DKE(AAS),∴DJ=DK,JH=EK,∴四边形DKFJ是正方形,∴FK=FJ=DK=DJ,∴2FJ,∴2DF;(3)如图3中,取AD的中点J,连接PJ,延长JP交CD于R,过点P作PT⊥CD于T,PK⊥AD于K.设PT=b.∵△ABH ≌△DAE ,∴AH=DE ,∵∠EDH=90°,HP=PE ,∴PD=PH=PE ,∵PK ⊥DH ,PT ⊥DE ,∴∠PKD=∠KDT=∠PTD=90°,∴四边形PTDK 是矩形,∴PT=DK=b ,PK=DT ,∵PH=PD=PE ,PK ⊥DH ,PT ⊥DE ,∴DH=2DK=2b ,DE=2DT ,∴AH=DE=1-2b ,∴PK=12DE=12-b , JK=DJ-DK=12-b , ∴PK=KJ ,∵∠PKJ=90°,∴∠KJP=45°,∴点P 在线段JR 上运动,∵2DJ=22, ∴点P 的运动轨迹的长为22. 【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,轨迹等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数解决问题,属于中考压轴题.8.(1)5EF =;(2)见解析;(3)5BE =【分析】(1)先用SAS 证ABG ≌ADF ,可得AG=AF ,∠BAG=∠DAF ,又可证∠EAG=∠EAF ,故可用SAS 证GAE ≌FAE ,EF=GE ,即EF 长度可求;(2)在DF 上取一点G ,使得DG=BE , 连接AG ,先用SAS 证ABE ≌ADG ,可得AE=AG ,∠BAE=∠DAG ,又可证∠EAF=∠GAF ,故可用SAS 证AEF ≌AGF ,可得EF=GF ,且DG=BE ,故EF=DF-DG=DF-BE ;(3)在线段DF 上取BE=DG ,连接AG ,求证∠ABE=∠ADC ,即可用SAS 证ABE ≌ADG ,可得AE=AG ,∠BAE=∠DAG ,又可证∠EAF=∠GAF ,故可用SAS 证AEF ≌AGF ,可得EF=GF ,设BE=x ,则CE= 7+x ,EF=18-x ,根据勾股定理:222CE CF =EF +,即可求得BE 的长度.【详解】解:(1)证明:如图1所示,在正方形ABCD 中,AB=AD ,∠BAD=90°, 在ABG 和ADF 中,AB=AD ABG=ADF BG=DF ⎧⎪∠∠⎨⎪⎩∴ABG ≌ADF (SAS ),∴AG=AF ,∠BAG=∠DAF ,又∵∠DAF+∠FAB=∠FAB+∠BAG=90°,且∠EAF=45°,∴∠EAG=∠FAG-∠EAF=45°=∠EAF , 在GAE 和FAE 中,AG=AF GAE=FAE AE=AE ⎧⎪∠∠⎨⎪⎩∴GAE ≌FAE (SAS ),∴EF=GE=GB+BE=2+3=5;(2)如下图所示,在DF 上取一点G ,使得DG=BE , 连接AG ,∵四边形ABCD 是正方形,故AB=AD ,∠ABE=∠ADG=90°, 在ABE 和ADG 中,AB=AD ABE=ADG=90BE=DG ⎧⎪∠∠︒⎨⎪⎩∴ABE ≌ADG (SAS ),∴AE=AG ,∠BAE=∠DAG ,∵∠BAG+∠DAG=90°,故∠BAG+∠BAE=90°,∵∠EAF=45°,故∠GAF=45°,∠EAF=∠GAF=45°, 在AEF 和AGF 中,AE=AG EAF=GAF=45AF=AF ⎧⎪∠∠︒⎨⎪⎩∴AEF ≌AGF (SAS ),∴EF=GF ,且DG=BE ,∴EF=DF-DG=DF-BE ;(3)BE=5,如下图所示,在线段DF 上取BE=DG ,连接AG ,∵∠BAD=∠BCD=90°,故∠ABC+∠ADC=180°,且∠ABC+∠ABE=180°,∴∠ABE=∠ADC , 在ABE 和ADG 中,AB=AD ABE=ADG BE=DG ⎧⎪∠∠⎨⎪⎩∴ABE ≌ADG (SAS ),∴AE=AG ,∠BAE=∠DAG ,∵∠BAG+∠DAG=90°,故∠BAG+∠BAE=90°,∵∠EAF=45°,故∠GAF=45°,∠EAF=∠GAF=45°, 在AEF 和AGF 中,AE=AG EAF=GAF=45AF=AF ⎧⎪∠∠︒⎨⎪⎩∴AEF ≌AGF (SAS ),∴EF=GF ,设BE=x ,则CE=BC+BE =7+x ,EF=GF=DC+CF-DG= DC+CF-BE=18-x ,在直角三角形ECF 中,根据勾股定理:222CE CF =EF +,即:222(7+x)5=(18-x)+,解得x=5,∴BE=x=5.【点睛】本题主要考察了全等三角形的证明及性质、勾股定理,解题的关键在于添加辅助线,找出全等三角形,并用对应边/对应角相等的定理,解决该题.9.(1)12;(2)2S 1=36 +S 2.【分析】(1)根据已知条件证得四边形ABOC 是正方形,在点B 左侧取点G ,连接AG ,使AG=AE ,利用HL 证得Rt △ABG ≌Rt △ACE ,得到∠GAB=∠EAC,GB=CE ,再利用45DAE ︒∠=证得△GAD ≌△EAD ,得到DE=GB+BD ,由此求得DOE ∆的周长;(2) 在OB 上取点F ,使AF=AE ,根据HL 证明Rt △ABF ≌Rt △ACE ,得到∠FAE=∠ABC=90︒,再证明△ADE ≌△ADF ,利用面积相加关系得到四边形AEDF 的面积=S △ACE +S 四边形ACOF +S △ODE ,根据三角形全等的性质得到2S △ADE =S 正方形ABOC +S △OD E ,即可得到2S △ADE =36 +S △ODE .【详解】(1)∵点A 的坐标为(6,6)-,AB x ⊥轴,AC y ⊥轴,∴AB=BO=AC=OC=6,∴四边形ABOC 是菱形,∵∠BOC=90︒,∴四边形ABOC 是正方形,在点B 左侧取点G ,连接AG ,使AG=AE ,∵四边形ABOC 是正方形,∴AB=AC ,∠ABG=∠ACE=90︒,∴Rt △ABG ≌Rt △ACE ,∴∠GAB=∠EAC,GB=CE ,∵∠BAE+∠EAC=90︒,∴∠GAB+∠BAE=90︒,即∠GAE=90︒,∵45DAE ︒∠=∴∠GAD=45DAE ︒∠=,又∵AD=AD,AG=AE ,∴△GAD ≌△EAD ,∴DE=GD=GB+BD,∴DOE ∆的周长=DE+OD+OE=GB+BD+OD+OE=OB+OC=6+6=12(2)2S1=36 +S2,理由如下:在OB上取点F,使AF=AE,∵AB=AC,∠ABF=∠ACE=90︒,∴Rt△ABF≌Rt△ACE,∴∠BAF=∠CAE,∴∠FAE=∠ABC=90︒,∵∠DAE=45︒,∴∠DAF=∠DAE=45︒,∵AD=AD,∴△ADE≌△ADF,∵四边形AEDF的面积=S△ACE+S四边形ACOF+S△ODE,∴2S△ADE=S正方形ABOC+S△OD E,∴2S△ADE=36 +S△ODE.即:2S1=36 +S2【点睛】此题考查三角形全等的判定及性质,根据题中的已知条件证得三角形全等,即可利用性质得到边长相等,面积相等的关系,(2)中需根据面积的加减关系进行推导,这是此题的难点.10.(1)①详见解析;②详见解析;(2)当BE≠DF时,(BE+DF)2+EF2=2AB2仍然成立,理由详见解析;(3)62PD=-【分析】(1)①连接ED、BF,证明四边形BEDF是平行四边形,根据平行四边形的性质证明;②根据正方形的性质、勾股定理证明;(2)过D作DM⊥BE交BE的延长线于M,连接BD,证明四边形EFDM是矩形,得到EM=DF,DM=EF,∠BMD=90°,根据勾股定理计算;(3)过P作PE⊥PD,过B作BELPE于E,根据(2)的结论求出PE,结合图形解答.【详解】(1)证明:①连接ED、BF,∵BE∥DF,BE=DF,∴四边形BEDF是平行四边形,∴BD、EF互相平分;②设BD交EF于点O,则OB=OD=12BD,OE=OF=12EF.∵EF⊥BE,∴∠BEF=90°.在Rt△BEO中,BE2+OE2=OB2.∴(BE+DF)2+EF2=(2BE)2+(2OE)2=4(BE2+OE2)=4OB2=(2OB)2=BD2.在正方形ABCD中,AB=AD,BD2=AB2+AD2=2AB2.∴(BE+DF)2+EF2=2AB2;(2)解:当BE≠DF时,(BE+DF)2+EF2=2AB2仍然成立,理由如下:如图2,过D作DM⊥BE交BE的延长线于M,连接BD.∵BE∥DF,EF⊥BE,∴EF⊥DF,∴四边形EFDM是矩形,∴EM=DF,DM=EF,∠BMD=90°,在Rt△BDM中,BM2+DM2=BD2,∴(BE+EM)2+DM2=BD2.即(BE+DF)2+EF2=2AB2;(3)解:过P作PE⊥PD,过B作BE⊥PE于E,则由上述结论知,(BE+PD)2+PE2=2AB2.∵∠DPB=135°,∴∠BPE=45°,∴∠PBE=45°,∴BE=PE.∴△PBE是等腰直角三角形,∴BP2BE,2+2PD=6,∴2BE+2PD=6,即BE+PD=6,∵AB=4,∴(6)2+PE2=2×42,解得,PE=2∴BE=2∴PD=6﹣2.【点睛】本题考查的是正方形的性质、等腰直角三角形的性质以及勾股定理的应用,正确作出辅助性、掌握正方形的性质是解题的关键.。