2007年高考数学试题江西卷(文科)

合集下载

2007年江西高考数学样卷附答案

2007年江西高考数学样卷附答案

绝密★启用前.........................试卷类型:A2007年江西高考数学样卷:附答案......数.学(4-1)(文理合卷)考试范围:高一数学。

第一轮复习用卷.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.共150分,考试时间120分钟.统.分.卡第I 卷 (选择题.共60分)注意事项:1.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不得答在试题卷上.2.答题前,请认真阅读答题卡上“注意事项”.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集U = R ,A =10xx ⎧⎫<⎨⎬⎩⎭,则U A =(..). A .10x x ⎧⎫>⎨⎬⎩⎭.B.{x | x > 0}.C.{x | x ≥0}. D.1x x ⎧⎨⎩≥0⎭⎬⎫ 答案:C. {}A |0,U x x C A =<∴={x | x ≥0},故选C.2.是“函数ax ax y 22sin cos -=的最小正周期为π”的 (.. ).A .充分不必要条件.B .必要不充分条件.C .充要条件.D .既不充分也不必要条件 3.不等式||(13)0x x ->的解集是(..).A .1(,)3-∞..B .1(,0)(0,)3-∞⋃..C .1(,)3+∞.. D .1(0,)3答案:B .||(13)0x x ->(13)01(,0)(9,).03x x ->⎧⇔⇔-∞⎨≠⎩故选B.4. 下列命题中为真命题的是( ). A.命题“若x >y ,则y x >”的逆命题 B.命题“x > 1,则12>x ”的否命题C.命题“若x = 1,则022=-+x x ”的否命题D.命题“若x x >2,则1>x ”的逆否命题答案:A .5.(文科做)在各项都为正数的等比数列{}n a 中,首项31=a ,前三项和为21,则 =++543a a a ( ).A . 33..B . 72..C . 84...D . 189.(理科做) 在数列1,2,2,3,3,3,4,4,4,4,……中,第25项为 (.. ). A .25 B .6 C .7 D .8 答案:(文)C .易知()3,211121==++aqq a ,故q =2或q =—3(舍),=++543a a a ()843212=++a a a q . .(理)对于(1)2n n +中,当n =6时,有6721,2⨯=所以第25项是7. 6.设非零向量a 、b 、c ,若a b c p abc=++,那么p 的取值范围为(..).A .[0,1]..B .[0,2]C .[0,3]D .[1,2]答案:C 分别是单位向量,故p 的取值范围为[0,3] . 7.设两个非零向量12,e e 不共线,若12ke e +与12e ke +也不共线,则实数k 的取值范围为 ( ).A .(,)-∞+∞.....B .(,1)(1,)-∞-⋃-+∞.C .(,1)(1,)-∞⋃+∞...D .(,1)(1,1)(1,)-∞-⋃-⋃+∞ 8.(文科做)若()⎪⎭⎫⎝⎛+=4cos πx x f ,则( ). A .()()()110f f f >-> ..B .()()()110->>f f fC .()()()101->>f f f..D .()()()101f f f >>-(理科做)曲线)4cos()4sin(2ππ-+=x x y 和直线21=y 在y 轴右侧的交点按横坐标从小到大依次记为P 1,P 2,P 3,…,则|P 2P 4|等于(..).A .π ..B .2π .C .3π ...D .4π 答案:(文)D .画出函数()⎪⎭⎫⎝⎛+=4cos πx x f 的图像易发现()()()1,0,1f f f -的大小关系..(理)A. ∵)4cos()4sin(2ππ-+=x x y =2sin()sin()1cos(2)1sin 2442x x x x πππ++=-+=+, ∴根据题意作出函数图象即得.选A .9.右图为函数log n y m x =+ 的图象,其中m ,n 为常数,则下列结论正确的是(..).A .m < 0 , n >1.....B .m > 0 , n > 1..C .m > 0 , 0 < n <1...D . m < 0 , 0 < n < 1答案:D.当x =1时,y =m ,由图形易知m <0, 又函数是减函数,所以0<n <1,故选D. 10.(文科做)若ABC ∆的内角B满足sin cos 0,sin tan 0,B B B B +>->则角A 的取值范 围为(..). A . ⎪⎭⎫ ⎝⎛4,0π B . ⎪⎭⎫ ⎝⎛2,4ππ.. C . ⎪⎭⎫ ⎝⎛43,2ππ D . ⎪⎭⎫⎝⎛ππ,43 (理科做) 已知,αβ都是锐角,且sin αβαβ==+=则(.. ). A .4π... B. 34π....C.344ππ或... D. 54π答案:(文)C.由ABC ∆的内角满足sin tan 0B B ->,易得cos B<0,∴B为钝角,取23B π=代入sin cos 0B B +>,显然满足.故选C .(理)B.解法1.,cos 510αβ==依题意得 sin 0),2,.42423,. B.24y x πππππαβππαβπαβ=∴<<<<<+<∴+=且在(,是单调增函数则故选解法2.,cos αβ==依题意得c o s (<0,0<+<.αβαβαβπ∴+=∴,都是锐角, y =c o s x (0,)3.4ππαβ而在内是单调减函数,所以,+= 11.一水池有2个进水口,1 个出水口,进出水速度如图甲、乙所示. 某天0点到6点,该 水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③ 4点到6点不进水不出水.则一定能确定正确的论断是.A .①.....B .①②........C .①③.......D .①②③ 12.某城市各类土地单位面积租金y (万元)与该地段离开市中心的距离x (km)关系如图所示,其中l 1表示商业用地,l 2表示工业用地,l 3表示居住用地,该市规划局将单位面积租金最高定为标准规划用地,应将工业用地划在A .与市中心距离分别为3km 和5km 的圆环区域 ..内B .与市中心距离分别为1km 和4km 的圆环形区域内 C .与市中心距离为5km 的区域外 D .与市中心距离为5km 的区域内第Ⅱ卷 (非选择题.共90分)二、填空题:(本大题共4个小题,每小题4分,共16分,把答案写在横线上). 13.0sin168sin 72sin102sin198+=..... . 答案:12. 0000sin168sin 72sin102sin198+=00000sin12cos18cos12sin18sin30+=1.2=14.已知i , j 为互相垂直的单位向量,a = i – 2j , b = i + λj ,且a 与b 的夹角为锐角,则实数λ的取值范围是..... . 答案:),2()2,(21---∞. 1cos 2.2θθλλ==⇒<≠-由是锐角得且15.(文科做) 若一个函数的定义域是),(+∞-∞,值域是),2(+∞,请写出此函数 的一个解析式...(只要写出一个满足条件的函数即可).(理科做)已知函数()f x ,对任意实数,m n 满足()()(),f m n f m f n +=⋅且 (1)(0f a a =≠则()f n =.....()n N +∈.16.(文科做)有一列数a 1=1,以后各项a 2,a 3,a 4…法则如下:如果a n -2为自然数且前面未写出过,则写a n +1=a n -2,否则就写a n +1=a n +3,由此推 算a 6的值应是..... .(理科做)符号[]x 表示不超过x 的最大整数,如[][]208.1,3-=-=π,定义函数{}[]x x x -=,那么下列命题中正确的序号是.....(1)函数{}x 的定义域为R ,值域为[]1,0;. (2)方程{}21=x ,有无数解; (3)函数{}x 是周期函数;........ (4)函数{}x 是增函数.答案:(文科)6. 以题意得, 21323134,3437,a a a a =+=+==+=+=43542725,23,a a a a =-=-==-=65333 6.a a =+=+=(理科)(2)、(3).三、解答题:本大题共6小题,满分74分,解答应写出文字说明,证明过程或演算步骤. .17.(文科做)已知等比数列{}n x 的各项为不等于1的正数,数列{}n y 满足)1,0(log 2≠>=a a x y na n ,y 4=17, y 7=11(1)证明:{}n y 为等差数列;(2)问数列{}n y 的前多少项的和最大,最大值为多少? (理科做)已知数列{}n a 的前n 项的和().2212+∈-=N n n n s n 数列{}n b 满足 ().1++∈=N n a a b nn n(1)判断数列{}n a 是否为等差数列,并证明你的结论; (2)求数列{}n b 中最大项和最小项.18.平面向量)1,2(),1,5(),7,1(===,点M 为直线OP 上的一个动点. (1)当⋅取最小值,求OM 的坐标;(2)当点M 满足(1)的条件和结论时,求AMB ∠的余弦值. 19.已知p:()x f1-是()x x f 31-=的反函数,且().21<-a f... q:集合(){},,0122R x x a x x A ∈=+++={}0>=x x B ,且φ=B A .求实数a 的取值范围,使p 、q 中有且只有一个为真命题. 20.已知函数1tan x 2x )x (f 2-θ⋅+=,x ∈[3-,3],θ∈(2π-,2π). (1)当θ=6π-时,求函数f (x)的最大值与最小值; (2)求θ的取值范围,使y = f (x)在区间[-1,3]上是单调函数; (3)判断函数f (x)的奇偶性,并证明你的结论. 答案:(1)当6π-=θ时, 1x 332x )x (f 2--==34)33x (2-- …………1分 ∵]33[x ,-∈,∴33x =时,)x (f 的最小值为34-;3x -=时,)x (f 的最大值为4 ………3分 (2)函数θ--θ+=22tan 1)tan x ()x (f 图象的对称轴θ-=tan x .……………4分 ∵)x (f y =在区间[-1,3]上是单调函数, ∴1tan -≤θ-或3tan ≥-θ,即1tan ≥θ或3tan -≤θ,.………… 6分∴θ的取值范围是)24[]32(πππ-π-,, 。

2007年全国统一高考数学试卷(文科)(全国卷一)及答案

2007年全国统一高考数学试卷(文科)(全国卷一)及答案

2007年全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设S={x|2x+1>0},T={x|3x﹣5<0},则S∩T=()A.∅B.C.D.2.(5分)α是第四象限角,cosα=,则sinα=()A.B.C.D.3.(5分)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向4.(5分)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.5.(5分)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种B.48种C.96种D.192种6.(5分)下面给出的四个点中,位于表示的平面区域内的点是()A.(0,2) B.(﹣2,0)C.(0,﹣2)D.(2,0)7.(5分)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.8.(5分)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.49.(5分)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件10.(5分)函数y=2cos2x的一个单调增区间是()A.B.C.D.11.(5分)曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D.12.(5分)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8二、填空题(共4小题,每小题5分,满分20分)13.(5分)从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为.14.(5分)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=.15.(5分)正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的体积为.16.(5分)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.三、解答题(共6小题,满分80分)17.(10分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA (Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.18.(12分)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获的利润不超过650元的概率.19.(12分)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.20.(12分)设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.21.(12分)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.22.(12分)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P (Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.2007年全国统一高考数学试卷(文科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2007•全国卷Ⅰ)设S={x|2x+1>0},T={x|3x﹣5<0},则S∩T=()A.∅B.C.D.【分析】集合S、T是一次不等式的解集,分别求出再求交集.【解答】解:S={x|2x+1>0}={x|x>﹣},T={x|3x﹣5<0}={x|x<},则S∩T=,故选D.2.(5分)(2007•全国卷Ⅰ)α是第四象限角,cosα=,则sinα=()A.B.C.D.【分析】根据同角的三角函数之间的关系sin2+cos2α=1,得到余弦的值,又由角在第四象限,确定符号.【解答】解:∵α是第四象限角,∴sinα=,故选B.3.(5分)(2007•全国卷Ⅰ)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向【分析】根据向量平行垂直坐标公式运算即得.【解答】解:∵向量,,得,∴⊥,故选A.4.(5分)(2007•全国卷Ⅰ)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.【分析】根据焦点坐标求得c,再根据离心率求得a,最后根据b=求得b,双曲线方程可得.【解答】解.已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则c=4,a=2,b2=12,双曲线方程为,故选A.5.(5分)(2007•全国卷Ⅰ)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种B.48种C.96种D.192种【分析】根据题意,先分析甲,有C42种,再分析乙、丙,有C43•C43种,进而由乘法原理计算可得答案.【解答】解;根据题意,甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,有C42种,乙、丙各选修3门,有C43•C43种,则不同的选修方案共有C42•C43•C43=96种,故选C.6.(5分)(2007•全国卷Ⅰ)下面给出的四个点中,位于表示的平面区域内的点是()A.(0,2) B.(﹣2,0)C.(0,﹣2)D.(2,0)【分析】本题考查的是不等式所表示的平面区域内点所满足的条件的问题,解决此问题只需将点代入验证即可【解答】解:将四个点的坐标分别代入不等式组,解可得,满足条件的是(0,﹣2),故选C.7.(5分)(2007•全国卷Ⅰ)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.【分析】先通过平移将两条异面直线平移到同一个起点B,得到的锐角∠A1BC1就是异面直线所成的角,在三角形中A1BC1用余弦定理求解即可.【解答】解.如图,连接BC1,A1C1,∠A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA1=2a,∴A1B=C1B=a,A1C1=a,∠A1BC1的余弦值为,故选D.8.(5分)(2007•全国卷Ⅰ)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.4【分析】因为a>1,函数f(x)=log a x是单调递增函数,最大值与最小值之分别为log a2a、log a a=1,所以log a2a﹣log a a=,即可得答案.【解答】解.∵a>1,∴函数f(x)=log a x在区间[a,2a]上的最大值与最小值之分别为log a2a,log a a,∴log a2a﹣log a a=,∴,a=4,故选D9.(5分)(2008•上海)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g (x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件【分析】本题主要是抽象函数奇偶性的判断,只能根据定义,而要否定奇偶性,一般用特值.【解答】解.若“f(x),g(x)均为偶函数”,则有f(﹣x)=f(x),g(﹣x)=g (x),∴h(﹣x)=f(﹣x)+g(﹣x)=f(x)+g(x)=h(x),∴“h(x)为偶函数”,而反之取f(x)=x2+x,g(x)=2﹣x,h(x)=x2+2是偶函数,而f(x),g(x)均不是偶函数”,故选B10.(5分)(2007•全国卷Ⅰ)函数y=2cos2x的一个单调增区间是()A.B.C.D.【分析】要进行有关三角函数性质的运算,必须把三角函数式变为y=Asin(ωx+φ)的形式,要先把函数式降幂,降幂用二倍角公式.【解答】解:函数y=2cos2x=1+cos2x,由﹣π+2kπ≤2x≤2kπ,解得﹣π+kπ≤x≤kπ,k为整数,∴k=1即有它的一个单调增区是,故选D.11.(5分)(2007•全国卷Ⅰ)曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D.【分析】(1)首先利用导数的几何意义,求出曲线在P(x0,y0)处的切线斜率,进而得到切线方程;(2)利用切线方程与坐标轴直线方程求出交点坐标(3)利用面积公式求出面积.【解答】解:若y=x3+x,则y′|x=1=2,即曲线在点处的切线方程是,它与坐标轴的交点是(,0),(0,﹣),围成的三角形面积为,故选A.12.(5分)(2007•全国卷Ⅰ)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8【分析】先根据抛物线方程求出焦点坐标和准线方程,进而可得到过F且斜率为的直线方程然后与抛物线联立可求得A的坐标,再由AK⊥l,垂足为K,可求得K的坐标,根据三角形面积公式可得到答案.【解答】解:∵抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A(3,2),AK⊥l,垂足为K(﹣1,2),∴△AKF的面积是4故选C.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅰ)从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为0.25.【分析】由题意知本题是一个统计问题,需要用样本的概率估计总体中位于这个范围的概率,试验发生包含的事件数时20,袋装食盐质量在497.5g~501.5g之间的可以数出有5,利用概率公式,得到结果.【解答】解:从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g~501.5g之间的概率约为P==0.25.故答案为:0.2514.(5分)(2007•全国卷Ⅰ)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=3x(x∈R).【分析】由题意推出f(x)与函数y=log3x(x>0)互为反函数,求解即可.【解答】解.函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x 对称,则f(x)与函数y=log3x(x>0)互为反函数,f(x)=3x(x∈R)故答案为:3x(x∈R)15.(5分)(2007•全国卷Ⅰ)正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的体积为.【分析】先确定球心位置,再求球的半径,然后可求球的体积.【解答】解:正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的球心恰好是底面ABCD的中心,球的半径是1,体积为.故答案为:16.(5分)(2007•全国卷Ⅰ)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.【分析】先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为三、解答题(共6小题,满分80分)17.(10分)(2007•全国卷Ⅰ)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.【分析】(1)根据正弦定理将边的关系化为角的关系,然后即可求出角B的正弦值,再由△ABC为锐角三角形可得答案.(2)根据(1)中所求角B的值,和余弦定理直接可求b的值.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)根据余弦定理,得b2=a2+c2﹣2accosB=27+25﹣45=7.所以,.18.(12分)(2007•全国卷Ⅰ)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获的利润不超过650元的概率.【分析】(1)3位购买该商品的顾客中至少有1位采用一次性付款的对立事件是3位顾客中无人采用一次性付款,根据独立重复试验公式得到3位顾客中无人采用一次性付款的概率,再根据对立事件的公式得到结论.(2)3位顾客每人购买1件该商品,顾客的付款方式为一次性付款和分期付款,且购买该商品的3位顾客中有1位采用分期付款,根据互斥事件的公式得到结果.【解答】解:(Ⅰ)记A表示事件:“3位顾客中至少1位采用一次性付款”,则表示事件:“3位顾客中无人采用一次性付款”.P()=(1﹣0.6)3=0.064,.(Ⅱ)记B表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.B0表示事件:“购买该商品的3位顾客中无人采用分期付款”.B1表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则B=B0+B1.P(B0)=0.63=0.216,P(B1)=C31×0.62×0.4=0.432.P(B)=P(B0+B1)=P(B0)+P(B1)=0.216+0.432=0.648.19.(12分)(2007•全国卷Ⅰ)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.【分析】解法一:(1)作SO⊥BC,垂足为O,连接AO,说明SO⊥底面ABCD.利用三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,设AD∥BC,连接SE.说明∠ESD为直线SD与平面SBC所成的角,通过,求出直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,通过证明,推出SA⊥BC.(Ⅱ).与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC 的法向量,利用α与β互余.通过,,推出直线SD与平面SBC所成的角为.【解答】解法一:(1)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥底面ABCD.因为SA=SB,所以AO=BO,又∠ABC=45°,故△AOB为等腰直角三角形,AO⊥BO,由三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,依题设AD∥BC,故SA⊥AD,由,,.又,作DE⊥BC,垂足为E,则DE⊥平面SBC,连接SE.∠ESD为直线SD与平面SBC所成的角.所以,直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥平面ABCD.因为SA=SB,所以AO=BO.又∠ABC=45°,△AOB为等腰直角三角形,AO⊥OB.如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,因为,,又,所以,,.S(0,0,1),,,,所以SA⊥BC.(Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,,所以,直线SD与平面SBC所成的角为.20.(12分)(2007•全国卷Ⅰ)设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.【分析】(1)依题意有,f'(1)=0,f'(2)=0.求解即可.(2)若对任意的x∈[0,3],都有f(x)<c2成立⇔f(x)max<c2在区间[0,3]上成立,根据导数求出函数在[0,3]上的最大值,进一步求c的取值范围.【解答】解:(Ⅰ)f'(x)=6x2+6ax+3b,因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.即解得a=﹣3,b=4.(Ⅱ)由(Ⅰ)可知,f(x)=2x3﹣9x2+12x+8c,f'(x)=6x2﹣18x+12=6(x﹣1)(x﹣2).当x∈(0,1)时,f'(x)>0;当x∈(1,2)时,f'(x)<0;当x∈(2,3)时,f'(x)>0.所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.因为对于任意的x∈[0,3],有f(x)<c2恒成立,所以9+8c<c2,解得c<﹣1或c>9,因此c的取值范围为(﹣∞,﹣1)∪(9,+∞).21.(12分)(2007•全国卷Ⅰ)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.【分析】(Ⅰ)设{a n}的公差为d,{b n}的公比为q,根据等比数列和等差数列的通项公式,联立方程求得d和q,进而可得{a n}、{b n}的通项公式.(Ⅱ)数列的通项公式由等差和等比数列构成,进而可用错位相减法求得前n项和S n.【解答】解:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,则依题意有q>0且解得d=2,q=2.所以a n=1+(n﹣1)d=2n﹣1,b n=q n﹣1=2n﹣1.(Ⅱ),,①S n=,②①﹣②得S n=1+2(++…+)﹣,则===.22.(12分)(2007•全国卷Ⅰ)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.【分析】(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,由此可以证出.(Ⅱ)设BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),由题意知|BD|=再求出|AC|=,由此可以求出四边形ABCD的面积的最小值.【解答】证明:(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,所以,.(Ⅱ)(ⅰ)当BD的斜率k存在且k≠0时,BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),则,|BD|=;因为AC与BD相交于点P,且AC的斜率为,所以,|AC|=.四边形ABCD的面积•|BD||AC|=.当k2=1时,上式取等号.(ⅱ)当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4.综上,四边形ABCD的面积的最小值为.。

2007年高考文科数学试题及参考答案(江西卷)

2007年高考文科数学试题及参考答案(江西卷)

遂宁市安居育才中学初二物理浮力复习导学案浮力(P59------76)班级 姓名 小组 一、基础知识回顾:(每空2分,共100分。

这部分我得到 分,加油!) (一)流体压强与流速的关系伯努利原理的内容是:流体流动时,流速大的地方 ;流速小的地方 。

升力的形成:机翼横截面的形状为上方弯曲,下方近似于直线。

上方的空气要比下方的空气行走较长的距离。

机翼上方的空气流动比下方要快,压强变小;与其相对,机翼下方的空气流动较慢,压强较大。

这一压强差使飞机获得竖直向上的升力或举力。

(二)浮力1、浮力的定义:一切浸入液体(气体)的物体都受到液体(气体)对它 的力 叫浮力。

2、浮力方向: ,施力物体: . 3、浮力产生的原因(实质): 。

4、通过探究实验:浸在液体中的物体,所受浮力的大小与 和物体 有关,而与物体的 、 等均无关。

5、阿基米德原理:(1)内容: 。

(2)公式表示:F 浮 = G 排 = 从公式中可以看出:液体对物体的浮力与液体的 和物体 有关,而与物体的质量、体积、重力、形状 、浸没的深度等均无关。

(3)适用条件:液体(或气体) 6、物体的浮沉条件:(1) 请根据示意图完成下空。

填状态: 填大小: F 浮 G F 浮 G F 浮 G F 浮 G 填大小 : ρ液 ρ物 ρ液 ρ物 ρ液 ρ物 ρ液 ρ物 (2)说明:① 密度均匀的物体悬浮(或漂浮)在某液体中,若把物体切成大小不等的两块,则大块、小块都 。

②一物体漂浮在密度为ρ的液体中,若露出体积为物体总体积的1/3,则物体密度为 ρ ③ 悬浮与漂浮的比较相同: F 浮 = G不同:悬浮ρ液 ρ物 ;V 排 V 物 。

漂浮ρ液 ρ物;V 排 V 物 ④判断物体浮沉(状态)有两种方法:比较 或比较 。

⑤ 冰或冰中含有木块、蜡块、等密度小于水的物体,冰化为水后液面 ,冰中含有铁块、石块等密大于水的物体,冰化为水后液面 。

6、漂浮问题“五规律”:(历年中考频率较高)规律一:物体漂浮在液体中,所受的浮力 它受的重力; 规律二:同一物体在不同液体中漂浮 ,所受浮力 ;规律三:同一物体在不同液体里漂浮,在密度大的液体里浸入的体积 ; 规律四:漂浮物体浸入液体的体积是它总体积的几分之几,物体密度就是液体密度的几分之几; 规律五:将漂浮物体全部浸入液体里,需加的竖直向下的外力等于液体对物体增大的浮力。

2007年高考文科数学试题及答案(全国卷1)

2007年高考文科数学试题及答案(全国卷1)

如果事件 A、B 相互独立,那么 P(A·B)=P(A)·P(B)
如果事件 A 在一次试验中发生的概率是 P,那么 n 次独立重复试验中事件 A 恰好发生 k 次的概率
C
1 n
pk
(1
p) nk
(k
0,1,2,
球的表面积公式 S 4R 2 其中 R 表示球的半径
球的体积公式
一、选择题
V 4 R3 3
1.a 是第四象限角, tan 5 ,则 sin 12
A. 1 5
B. 1 5
2.设 a 是实数,且 a 1 i 是实数,则 a= 1i 2
A. 1 2
B.1
3.已知向量 a=(-5,6),b=(6,5),则 a 与 b
n)
其中 R 表示球的半径
C. 5 13
C. 3 2
2.社会主义本质理论对探索怎样建设3.社19会57主年义2月具,有毛重在要《的关实于践正意确义处。理社人会民主内义2.社部本科会矛质学主盾理的义的论1本本问的.邓质质题提小是的》出平创科讲,提新学话为出,内中我“创涵提们邓社新。出寻始小会的邓(找终平主关小1一代坚义)键平种表持的我2在对能.1中把科本国人社9够国发学质社5才会从4先展社,会年,主更进作会是主,人义深生为主解义毛才本层产执义放制在的质次1力政理生度《成所.认社1的兴论产还论长作.识发会发国和力刚十靠的社展主展的实,刚大教概会才义要第践发建关坚育括主是本求一的展立系2持。,义硬质、,要基生,》以人一,道理发大务本产还重发才方从理论展力是成力没要展资面而,把才促由果,有讲社的源强为把我是进中,消完话会办是调四中发们(硬先国抓灭全中主法第必、国展对2道进共住剥建提三义解一)须科的生社理生产“削立出、经决资采解学社产会,产党什,(代济前源取放技会力主是力的么消还1表基进。从和术主作义)对的执是除不中础科低发是义1为的吧社3发政社两完9国基的学级展.第建发社认二国5会展地会极全先本问技到6生一设展会识、内主,年位主分巩进建题术高产生在才主提发外义是底所义化固生立,实级力产改是义高1展一时中我决,的邓产的是力9,力革硬建到是切间5国定怎最思小力同实和国另3开道设了党积经共对的样终想年平的时行国家一放理的一执极验产农,建达。1一发,改民资方中2,根个政因教党业是设到(月再展我革教本面探是本新兴素训站、对社共2,强要国开育主指索)适任的国都的在手一执会同毛调求的放水义出出第创应务科在的调深时工、政主富1泽,政以平的4了一三造.时,学社第动刻坚代.业发规义裕东中一治来,过2解条节性代符水会一起总持前.和展律”。关社 国个领我始度放发、地主合平阶要来结社列资才认这”于会 社公域们终形和展社提题马。级务为。会,本是识个1总主 会有也党是式发更会9出变克社二关中主保硬的根8路义 主制发的衡。展快主了化思会6、系国义持道深本3线基 义占生一年量所生、义社.的主社发解用工现理化问的本 基主了条,综谓产人的会需义会生决和业金商,题1完制 本体重主邓合国力民根主要基本.主变事所平化向业也,1整度 制,大要小国家的享本9义。本质义化业有方建的是深5的度一变经平力资手受社任原理6本的服问法设根社对刻表确 的个化验年提和本段到会 1务理论第质同务题进与本会党揭一.述立 确共,。出社主社和社主基,的二理时的行社体主实示、:, 立同确苏“会义会目会3义本是提节论,基关改会现义了社.从为 ,富立共社文,社主的主一改矛巩出、的我本键造主和改其社会中当 使裕了二会明就会义。义、造盾固,对重国方是。义根造所会之华代 占,中十主程是主基建中的和和为第社要针这改本基承主一人中 世这国大义度在义本设国基两发进一会意。靠不造要本担义本民国 界是共以财的国基制内成特本类展一节主义的(自仅同求完的本质共一 人我产后富重家本度涵果色完矛社步、义主2己保时。成历质理和切 口们党毛属要直)制的包最伴社成盾会推中本要的证并,史论国发 四必领泽于标接正度确括大随会,的主进国质矛发了举标第的这成展 分须导东人志控确的立(,着主是学义改特理盾展2社。志五需是提立进 之坚的提民。制处确是1.能社义我说采制革色论也。会实着章要对)出,步 一持人出,和理立中够会建国,取度开社的发的践中。马把到奠 的民要社支经,国社充经设强积的放会提生稳证国克解社定 东民“会配济是历会分济道调极必和主出了定明历思放会了 方主以下建4广史主体制路要引然社义变,.史主和主把制 大专苏义的设大上义现度初严导要会二建化而党上义发义对度 国政为的资和劳最的出和步经格、求主设。且坚长的展改企基 进党的鉴致本社动深本对社探济区逐。义确道人极持达重生造业础 入在根社”富主会人刻质资会索结分步现立路民大社数产基的。 了过本会,是义发民最和本经的构过代社的对的会千发力逐本改社渡原主探全经展真伟根主济理发正渡化会初于促主年展概步完造会时则义索民济中正大本义结论生确的建新主步经进义的,括实成和主期。基自共的成任优构成了处方设中义探济了改阶对为现,对义总本己同国一为社务越的果根理式提国基索文社造级于国这人制 社路政的致家系国会性根本两。供的本化会与剥建家是的度 会线治道富资列家变一的本变类中了成制迅主社削设的一改的 ,第制路。本重的革、道变化不国强立度速义会制中社个造建 这三主度。社大主,社路化,同这大,的发事主度国的会过结立 是节要。会义关人也会,1社性场的标重展业义的特本主.渡合极 世、内人主有系解和是主奠我会质巨思志大的的工结(色质义时起大 界社容民义初。决社2义定国主的大想着意需发业束3社0。工期来地 社(会被民原级了会基)世了社义矛而武我义要展化,会(业。,提 会2主概则和3在生本把纪理会经盾深器国同),同实主2化党把高 主对义括专,高一产制资中)论的济,刻。新经遵改总时现义新是在对了 义手制为政第级个资度本国强基阶成在特的通民济循革之并了具民党这资工 运二七度“实一形以料的主又调础级分新别社过主文自4过,举由有主在个本人 动、届 业在一质是式农的.(初义一消,关已民是它会(没主化愿于和的新重主过过主阶 史新社二 的中化上发之民主1步工次灭开系占主要是变4收义不互集平方民(大)义渡渡义级 上民会中 社国三已展)分为人确商划剥阔也绝主正中革官能利中改针主3的用社时时工和 又主全 会的改成生坚。主立)业时削了发对义确国,僚命满、的造,主理和会期期商广 一主义会确”为产持初题正者代,广2生优革处革不资阶足典计解对义论平的.的业大 个义改提立。无,积级资的确改的消阔了势命理命仅√本段人型划决于向和赎五总总搞劳 历革造出 改“产第极形本、分造历除前根,理人的没中而民示体了在社3实买种路路糟动 史命的使 造一阶二领式主落(.析成史两景本社论民具有国形基需党范制诸深会践的经线线成人 性理历中 ,化级是导的义后√ 1农为巨极。的会内体对革成本要的和如刻主意)方济的和为民 的论史国 党”专共、工的中村自变分邓主指部实生命的结建国初实的义积法成主总自的 伟是经“ 和即政同稳家商半国的食。化小义导矛际产在走社束状设家步现社的。极改分体任食积 大以验稳 政社;致步资业殖社革阶其们平。公下盾出力一农会和况。帮构社会转引造—。务其极 胜一毛步 府会人富前本的民会命级力吐对1有,。发的个村主社之加助想会变导资—要.,力性 利、泽地 采主民。进农社地第的必和出社制中(,发以包义会间强的,变革农本社从是的和 。适东由 取义代”的业会半二阶须社了会已国3不展农围的主党原要革中社民主会根)要社创合为农 了工表这方是、主封节级走层会最主成共拘造民城国义矛的则求与保会组义主本从在会造中主业 积大段针国手义建、构农状主终义为产泥成为市营改盾建,2中经持主织工义上全一主性国要极化会话,家工改的.社成村况义达本我党武于破主、经造,设以央济社义起商性改体个义。特代转 领,制成采对业造东会主包,劳到质国领装已��

2007年普通高等学校招生全国统一考试江西卷

2007年普通高等学校招生全国统一考试江西卷

2007年普通高等学校招生全国统一考试(江西卷)(数学文)参考答案一、选择题1.B 2.B 3.A 4.D 5.A 6.D 7.B 8.B 9.C 10.C 11.A 12.C 二、填空题13.1 14.7 15.(14), 16.A ,B ,C 三、解答题17.解:(1)因为01c <<,所以2c c <; 由29()8f c =,即3918c +=,12c =. (2)由(1)得411122()211x x x f x x -⎧⎛⎫+0<< ⎪⎪⎪⎝⎭=⎨1⎛⎫⎪+< ⎪⎪2⎝⎭⎩,,≤由()18f x >+得, 当102x <<时,解得142x <<, 当112x <≤时,解得1528x <≤,所以()18f x >+的解集为58x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭. 18.解:(1)将0x =,y =2cos()y x ωθ=+中得cos θ=, 因为π02θ≤≤,所以π6θ=. 由已知πT =,且0ω>,得2π2π2T πω===. (2)因为点π02A ⎛⎫ ⎪⎝⎭,,00()Q x y ,是PA的中点,02y =.所以点P的坐标为0π22x ⎛-⎝. 又因为点P 在π2cos 26y x ⎛⎫=+⎪⎝⎭的图象上,且0ππ2x ≤≤,所以05πcos 462x ⎛⎫-=⎪⎝⎭, 07π5π19π4666x -≤≤,从而得05π11π466x -=或05π13π466x -=, 即02π3x =或03π4x =.19.解:分别记甲、乙两种果树成苗为事件1A ,2A ;分别记甲、乙两种果树苗移栽成活为事件1B ,2B ,1()0.6P A =,2()0.5P A =,1()0.7P B =,2()0.9P B =. (1)甲、乙两种果树至少有一种成苗的概率为1212()1()10.40.50.8P A A P A A +=-=-⨯=;(2)解法一:分别记两种果树培育成苗且移栽成活为事件A B ,, 则11()()0.42P A P A B ==,22()()0.45P B P A B ==. 恰好有一种果树培育成苗且移栽成活的概率为()0.420.550.580.450.492P AB AB +=⨯+⨯=.解法二:恰好有一种果树栽培成活的概率为11211221221212()0.492P A B A A B A B A A B A A B B +++=.20. 解法一:(1)证明:作1OD AA ∥交11A B 于D ,连1C D . 则11OD BB CC ∥∥, 因为O 是AB 的中点,所以1111()32OD AA BB CC =+==.则1ODC C 是平行四边形,因此有1OC C D ∥,1C D ⊂平面111C B A ,且OC ⊄平面111C B A则OC ∥面111A B C .112CA(2)解:如图,过B 作截面22BA C ∥面111A B C ,分别交1AA ,1CC 于2A ,2C , 作22BH A C ⊥于H ,因为平面22A BC ⊥平面11AAC C ,则BH ⊥面11AAC C . 连结AH ,则BAH ∠就是AB 与面11AAC C 所成的角.因为BH =,AB =sin BH BAH AB ==∠.AB 与面11AAC C所成的角为arcsin10BAH =∠. (3)因为2BH =,所以222213B AAC C AA C C V S BH -=. 1121(12)23222=+=. 1112211111212A B C A BC A B C V S BB -===△. 所求几何体的体积为221112232B AAC C A B C A BC V V V --=+=. 解法二:(1)证明:如图,以1B 为原点建立空间直角坐标系,则(014)A ,,,(002)B ,,,(103)C ,,,因为O 是AB 的中点,所以1032O ⎛⎫ ⎪⎝⎭,,, 1102OC ⎛⎫=- ⎪⎝⎭,,,易知,(001)n =,,是平面111A B C 的一个法向量. 由0OC n =且OC ⊄平面111A B C 知OC ∥平面111A B C . (2)设AB 与面11AAC C 所成的角为θ. 求得1(004)A A =,,,11(110)AC =-,,. 设()m x y z =,,是平面11AAC C 的一个法向量,则由11100A A m A C m ⎧=⎪⎨=⎪⎩得0z x y=⎧⎨-=⎩, 1x取1x y ==得:(110)m =,,. 又因为(012)AB =--,, 所以,cos m <,m AB AB m AB>==-sin θ=所以AB 与面11AAC C 所成的角为arcsin . (3)同解法一21.解:(1)由已知条件得112113n n n a a a --⎛⎫== ⎪⎝⎭,因为67320073<<,所以,使2007n a ≥成立的最小自然数8n =. (2)因为223211234213333n n nT -=-+-+-,…………① 2234212112342123333333n n n n nT --=-+-++-,…………② +①②得:2232124111121333333n n n nT -=-+-+--2211231313nn n -=-+ 22333843n nn --=所以22223924163n n nnT +--=.22.解:(1)在12PF F △中,122F F =22221212121242cos 2()4sin d d d dd d d d θθ=+-=-+212()44d d λ-=-12d d -=2的常数)故动点P 的轨迹C 是以1F ,2F 为焦点,实轴长2a =的双曲线.方程为2211x y λλ-=-. (2)方法一:在1AF B △中,设11AF d =,22AF d =,13BF d =,24BF d =. 假设1AF B △为等腰直角三角形,则12343421323422πsin 4d d a d d a d d d d d d λ⎧⎪-=⎪-=⎪⎪=+⎨⎪=⎪⎪=⎪⎩①②③④⑤ 由②与③得22d a =,则1343421)d a d d d a a=⎧⎪=⎨⎪=-=⎩ 由⑤得342d d λ=,21)2a λ=(8)2λλ--=,(01)λ=,故存在1217λ-=方法二:(1)设1AF B △为等腰直角三角形,依题设可得21212212122πsin π81cos 4πsin 24AF AF AF AF BF BF BF BF λλλλ⎧⎧===⎪⎪⎪⎪-⇒⎨⎨⎪⎪=⎪=⎪⎩⎩所以12121πsin 1)24AF F S AF AF λ==△,121212BF F S BF BF λ==△. 则1(2AF B S λ=△.①由1212221AF F BF F S AF S BF ==△△,可设2BF d =,则21)AF d =,1(2BF AB d ==.则122211(222AF B S AB d ==△.②由①②得2(22d λ+=.③根据双曲线定义122BF BF a -==1)d +=平方得:221)4(1)d λ=-.④由③④消去d可解得,(01)λ=,故存在1217λ-=。

2007年高考数学试题汇编

2007年高考数学试题汇编

2007年高考数学试题汇编——排列、组合、二项式1.(全国Ⅰ卷理科第10题)的展开式中,常数项为15,则n= ( D )A.3 B.4 C.5 D.6【解答】的展开式中,常数项为15,则,所以n可以被3整除,当n=3时,,当n=6时,,选D。

2.(全国Ⅰ卷文科第5题)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( C )A.36种 B.48种 C.96种 D.192种【解答】甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有种,选C。

3.(全国Ⅱ卷理科第10题)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有( B)A.40种 B.60种 C.100种 D.120种【解答】从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有种,选B。

4.(全国Ⅱ卷文科第10题)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( D)A.10种 B.20种 C.25种 D.32种【解答】5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有25=32种,选D。

5.(北京理科第5题)记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( B )A.1440种B.960种C.720种D.480种【解答】5名志愿者先排成一排,有种方法,2位老人作一组插入其中,且两位老人有左右顺序,共有=960种不同的排法,选B。

6.(北京文科第5题)某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( A )A.个B.个C.个D.个【解答】某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有个,选A。

2007年高考文科数学试题及参考答案(江西卷)

2007年高考文科数学试题及参考答案(江西卷)

苏教版一年级语文下册归类复习(二)◆成语填空:(1)形容欢乐、喜庆、热闹的场面的成语(例如:奥运会、过年、国庆):欢声()动、欣喜若狂、载歌载舞、灯()辉煌(2)形容()(季节)美丽的景色的成语:春暖()()、春()满园、春()()媚、()意盎然(3)形容遇到困难()的成语:精卫填()、愚()移()、()折不()、勇()直()(4)形容母亲与孩子之间深厚亲情的成语:骨肉至亲、痛痒()、情()似()、()重如()(5)告诉我们学习方法的成语:循()渐()、()浅()深、()积()累、温()知新(6)告诉我们只要坚持植树,荒山就能长满树木的成语:()山)野、绿叶成()、天()日()、树()根()(7)请用成语形容《蚂蚁和蝈蝈》中的蝈蝈:(),必有近忧请用成语形容《蚂蚁和蝈蝈》中的蚂蚁:()、()(8)请用成语赞美司马光的优秀品质:临危不惧、()、从容不迫、()◆.谚语(1)告诉我们要珍惜时间的谚语:①一日之计在于晨,()。

②(),寸金难买寸光阴。

(2)有关()知识的谚语:①()霞不出门,()霞行千里。

②()先唱歌,有雨也()。

(3)告诉我们团结就是力量的谚语:①众人一条心,()变成()。

②()不成线,独木不成()。

◆按课文内容填空◆儿歌:1、()人从,()人众。

众人一条心,()变成()。

2、二木(),三木()。

()不成线,独木不成()。

3、天气(),池水()。

小(),大()。

飞来飞去捉蚊虫。

4、小(),开电(),拿起锤子修板凳。

眼睛()着(),锤子敲不停。

()当,当当(),妈妈夸他爱劳动。

5、一把把伞,一朵朵(),花儿不怕()吹,花儿不怕()打。

花儿涌向校园,校园开满鲜花。

《伞花》(郝静华)6、()像弹簧,看你强不强。

你强它就(),你弱它就()。

(告诉我们在困难面前,只要有勇气,有决心,就可以战胜它)7、《三字经》:()不琢,不成器。

()不学,不知义。

(告诉我们学习非常重要)◆课文1、我喜爱的体育运动有_________、_________、_________。

2007年普通高等学校招生全国统一考试数学卷(江西文)含答案

2007年普通高等学校招生全国统一考试数学卷(江西文)含答案

2007年普通高等学校招生全国统一考试(江西卷)文科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页,共150分.第I 卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致. 2.第I 卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第II 卷用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回. 参考公式: 如果事件A B ,互斥,那么 球的表面积公式 如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式 如果事件A 在一次试验中发的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率()(1)k kn k n n P k C P P -=-其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}01M =,,{}012345I =,,,,,,则I M 为( ) A.{}01,B.{}2345,,,C.{}02345,,,,D.{}12345,,,,2.函数5tan(21)y x =+的最小正周期为( ) A.π4B.π2C.πD.2π3.函数1()lg 4xf x x -=-的定义域为( ) A.(14),B.[14),C.(1)(4)-∞+∞,,D.(1](4)-∞+∞,, 4.若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A.3-B.13-C.3D.135.设2921101211(1)(21)(2)(2)(2)x x a a x a x a x ++=+++++++,则01211a a a a ++++的值为( )A.2- B.1- C.1 D.2 6.一袋中装有大小相同,编号分别为12345678,,,,,,,的八个球,从中有放回...地每次取一个球,共取2次,则取得两个球的编号和不小于...15的概率为( ) A.132B.164C.332D.3647.连接抛物线24x y =的焦点F 与点(10)M ,所得的线段与抛物线交于点A ,设点O 为坐标原点,则三角形OAM 的面积为( )A.1-B.32C.1+D.32+8.若π02x <<,则下列命题正确的是( ) A.2sin πx x < B.2sin πx x > C.3sin πx x <D.3sin πx x >9.四面体ABCD 的外接球球心在CD 上,且2CD =,AD =在外接球面上两点A B ,间的球面距离是( ) A.π6B.π3C.2π3D.5π610.设32:()21p f x x x mx =+++在()-∞+∞,内单调递增,4:3q m ≥,则p 是q 的( )A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件11.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为1h ,2h ,3h ,4h ,则它们的大小关系正确的是( )A.2h >3h C.3h >1h12.设椭圆22221(0)x y a b a b +=>>的离心率为1e 2=,右焦点为(0)F c ,,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,( )A.必在圆222x y +=上 B.必在圆222x y +=外 C.必在圆222x y +=内D.以上三种情形都有可能2007年普通高等学校招生全国统一考试(江西卷)文科数学 第II 卷注意事项: 第II 卷2页,须要黑色墨水签字笔在答题卡上书写作答,若在试卷题上作答,答案无效.二、填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上. 13.在平面直角坐标系中,正方形OABC 的对角线OB 的两端点分别为(00)O ,,(11)B ,,则AB AC =.14.已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++=.15.已知函数()y f x =存在反函数1()y f x -=,若函数(1)y f x =+的图象经过点(31),,则函数1()y fx -=的图象必经过点.16.如图,正方体1AC 的棱长为1,过点作平面1A BD 的垂线,垂足为点H .有下列四个命题A.点H 是1A BD △的垂心 B.AH 垂直平面11CB DC.二面角111C B D C --D.点H 到平面1111A B C D 的距离为34其中真命题的代号是 .(写出所有真命题的代号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数21(0)()21(1)x c cx x c f x c x -+<<⎧⎪=⎨⎪+<⎩ ≤满足29()8f c =.(1)求常数c 的值; (2)解不等式()18f x >+. 18.(本小题满分12分)如图,函数π2cos()(00)2y x x >ωθωθ=+∈R ,,≤≤的图象与y轴相交于点(0,且该函数的最小正周期为π. (1)求θ和ω的值;(2)已知点π02A ⎛⎫ ⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是PA的中点,当02y =,0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值. 19.(本小题满分12分)栽培甲、乙两种果树,先要培育成苗..,然后再进行移栽.已知甲、乙两种果树成苗..的概率分别为0.6,0.5,移栽后成活..的概率分别为0.7,0.9. (1)求甲、乙两种果树至少有一种果树成苗..的概率; (2)求恰好有一种果树能培育成苗..且移栽成活..的概率. 20.(本小题满分12分)右图是一个直三棱柱(以111A B C 为底面)被一平面所截得到的几何体,截面为ABC .已知11111A B B C ==,11190A B C ∠=,14AA =,12BB =,13CC =.(1)设点O 是AB 的中点,证明:OC ∥平面111A B C ; (2)求AB 与平面11AAC C 所成的角的大小; (3)求此几何体的体积. 21.(本小题满分12分)设{}n a 为等比数列,11a =,23a =. (1)求最小的自然数n ,使2007n a ≥; (2)求和:212321232n nn T a a a a =-+--. 22.(本小题满分14分)设动点P 到点1(10)F -,和2(10)F ,的距离分别为1d 和2d ,122F PF θ=∠,且存在常数(01)λλ<<,使得212sin d d θλ=.(1)证明:动点P 的轨迹C 为双曲线,并求出C的方程;(2)如图,过点2F 的直线与双曲线C的右支交于A B ,两点.问:是否存在λ,使1F AB △是以点B 为直角顶点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由.2007年普通高等学校招生全国统一考试(江西文)参考答案一、选择题1.B 2.B 3.A 4.D 5.A 6.D 7.B 8.B 9.C 10.C 11.A 12.C 二、填空题13.1 14.7 15.(14), 16.A ,B ,C 三、解答题17.解:(1)因为01c <<,所以2c c <; 由29()8f c =,即3918c +=,12c =. (2)由(1)得411122()211x x x f x x -⎧⎛⎫+0<< ⎪⎪⎪⎝⎭=⎨1⎛⎫⎪+< ⎪⎪2⎝⎭⎩,,≤由()18f x >+得, 当102x <<时,解得142x <<, 当112x <≤时,解得1528x <≤,所以()18f x >+的解集为58x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭. 18.解:(1)将0x =,y =2cos()y x ωθ=+中得cos θ=, 因为π02θ≤≤,所以π6θ=. 由已知πT =,且0ω>,得2π2π2T πω===. (2)因为点π02A ⎛⎫ ⎪⎝⎭,,00()Q x y ,是PA的中点,02y =. 所以点P的坐标为0π22x ⎛-⎝.又因为点P 在π2cos 26y x ⎛⎫=+⎪⎝⎭的图象上,且0ππ2x ≤≤,所以05πcos 46x ⎛⎫-= ⎪⎝⎭, 07π5π19π4666x -≤≤,从而得05π11π466x -=或05π13π466x -=, 即02π3x =或03π4x =.19.解:分别记甲、乙两种果树成苗为事件1A ,2A ;分别记甲、乙两种果树苗移栽成活为事件1B ,2B ,1()0.6P A =,2()0.5P A =,1()0.7P B =,2()0.9P B =. (1)甲、乙两种果树至少有一种成苗的概率为1212()1()10.40.50.8P A A P A A +=-=-⨯=;(2)解法一:分别记两种果树培育成苗且移栽成活为事件A B ,, 则11()()0.42P A P A B ==,22()()0.45P B P A B ==. 恰好有一种果树培育成苗且移栽成活的概率为()0.420.550.580.450.492P AB AB +=⨯+⨯=.解法二:恰好有一种果树栽培成活的概率为11211221221212()0.492P A B A A B A B A A B A A B B +++=.20.解法一:(1)证明:作1OD AA ∥交11A B 于D ,连1C D . 则11OD BB CC ∥∥, 因为O 是AB 的中点, 所以1111()32OD AA BB CC =+==. 则1ODC C 是平行四边形,因此有1OC C D ∥,1C D ⊂平面111C B A ,且OC ⊄平面111C B A则OC ∥面111A B C .(2)解:如图,过B 作截面22BA C ∥面111A B C ,分别交1AA ,1CC 于2A ,2C , 作22BH A C ⊥于H ,因为平面22A BC ⊥平面11AAC C ,则BH ⊥面11AAC C .连结AH ,则BAH ∠就是AB 与面11AAC C 所成的角.因为BH =,AB =sin BH BAH AB ==∠.AB 与面11AAC C所成的角为arcsin10BAH =∠. (3)因为2BH =,所以222213B AAC C AA C C V S BH -=. 1121(12)23222=+=. 1112211111212A B C A BC A B C V S BB -===△. 所求几何体的体积为221112232B AAC C A B C A BC V V V --=+=. 解法二:(1)证明:如图,以1B 为原点建立空间直角坐标系,则(014)A ,,,(002)B ,,,(103)C ,,,因为O 是AB 的中点,所以1032O ⎛⎫ ⎪⎝⎭,,, 1102OC ⎛⎫=- ⎪⎝⎭,,,易知,(001)n =,,是平面111A B C 的一个法向量. 由0OC n =且OC ⊄平面111A B C 知OC ∥平面111A B C . (2)设AB 与面11AAC C 所成的角为θ. 求得1(004)A A =,,,11(110)AC =-,,. 设()m x y z =,,是平面11AAC C 的一个法向量,则由11100A A m A C m ⎧=⎪⎨=⎪⎩得00z x y =⎧⎨-=⎩, 取1x y ==得:(110)m =,,. 又因为(012)AB =--,,所以,cos m <,10m AB AB m AB>==-sin θ=所以AB 与面11AAC C 所成的角为arcsin 10. (3)同解法一21.解:(1)由已知条件得112113n n n a a a --⎛⎫== ⎪⎝⎭,因为67320073<<,所以,使2007n a ≥成立的最小自然数8n =. (2)因为223211234213333n n nT -=-+-+-,…………① 2234212112342123333333n n n n nT --=-+-++-,…………② +①②得:2232124111121333333n n n nT -=-+-+--所以22223924163n n nnT +--=. 22.解:(1)在12PF F △中,122F F =12d d -=2的常数)故动点P 的轨迹C 是以1F ,2F 为焦点,实轴长2a =的双曲线.方程为2211x y λλ-=-. (2)方法一:在1AF B △中,设11AF d =,22AF d =,13BF d =,24BF d =. 假设1AF B △为等腰直角三角形,则 由②与③得22d a =,则1343421)da d d d a a=⎧⎪=⎨⎪=-=⎩ 由⑤得342d d λ=,(8)2λλ--=,故存在1217λ-=方法二:(1)设1AF B △为等腰直角三角形,依题设可得所以12121πsin 1)24AF F S AF AF λ==△,121212BF F S BF BF λ==△. 则1(2AFB S λ=△.① 由1212221AF F BF F S AF S BF ==△△,可设2BF d =,则21)AF d =,1(2BF AB d ==. 则122211(222AF B S AB d ==△.② 由①②得2(22d λ+=.③根据双曲线定义122BF BF a -==1)d +=平方得:221)4(1)d λ=-.④由③④消去d可解得,(01)λ=, 故存在1217λ-=。

2007年江西省高考数学试卷(文科)

2007年江西省高考数学试卷(文科)

2007年江西省高考数学试卷(文科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)若集合{0M =,1},{0I =,1,2,3,4,5},则I M 为( ) A .{0,1} B .{2,3,4,5} C .{0,2,3,4,5} D .{1,2,3,4,5}2.(5分)函数5tan(21)y x =+的最小正周期为( ) A .4πB .2π C .π D .2π3.(5分)函数1()4xf x lg x -=-的定义域为( ) A .(1,4)B .[1,4)C .(-∞,1)(4⋃,)+∞D .(-∞,1](4,)+∞4.(5分)若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A .3- B .13-C .3D .135.(5分)设2921101211(1)(21)(2)(2)(2)x x a a x a x a x ++=+++++⋯++,则01211a a a a +++⋯+的值为( )A .2-B .1-C .1D .26.(5分)一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为( ) A .132B .164C .332D .3647.(5分)连接抛物线24x y =的焦点F 与点(1,0)M 所得的线段与抛物线交于点A ,设点O 为坐标原点,则三角形OAM 的面积为( )A .1-B .32C .1+D .32+8.(5分)若02x π<<,则下列命题正确的是( ) A .2sin x x π<B .2sin x x π>C .3sin x x π<D .3sin x x π>9.(5分)四面体ABCD 的外接球球心在CD 上,且2CD =,ABA ,B 间的球面距离是( )A .6π B .3π C .23π D .56π 10.(5分)设32:()21p f x x x mx =+++在(,)-∞+∞内单调递增,函数2:()43q g x x x m =-+不存在零点则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件11.(5分)四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为1h ,2h ,3h ,4h ,则它们的大小关系正确的是( )A .214h h h >>B .123h h h >>C .324h h h >>D .241h h h >>12.(5分)设椭圆22221(0,0)x y a b a b +=>>的离心率12e =,右焦点(,0)F c ,方程20ax bx c +-=的两个根分别为1x ,2x ,则点1(P x ,2)x 在( ) A .圆222x y +=内 B .圆222x y +=上 C .圆222x y +=外D .以上三种情况都有可能二、填空题(共4小题,每小题4分,满分16分)13.(4分)在平面直角坐标系中,正方形OABC 的对角线OB 的两端点分别为(0,0)O ,(1,1)B ,则AB AC = .14.(4分)已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++= . 15.(4分)已知函数()y f x =存在反函数1()y f x -=,若函数(1)y f x =+的图象经过点(3,1),则函数1()y f x -=的图象必经过点 .16.(4分)如图,正方体1AC 的棱长为1,过点A 作平面1A BD 的垂线,垂足为点H .有下列四个命题:A .点H 是△1A BD 的垂心;B .AH 垂直平面11CB D ;C .二面角111C BD C --的正切值为2;D .点H 到平面1111A B C D 的距离为34其中真命题的代号是.(写出所有真命题的代号)三、解答题(共6小题,满分74分)17.(12分)已知函数21(0)()21(1)x c cx x c f x c x -+<<⎧⎪=⎨⎪+<⎩满足29()8f c =.(1)求常数c 的值; (2)解不等式2()18f x >+. 18.(12分)如图,函数2cos()(,0)2y x x R πωθθ=+∈的图象与y 轴交于点(0,3),且在该点处切线的斜率为2-. (1)求θ和ω的值;(2)已知点(,0)2A π,点P 是该函数图象上一点,点0(Q x ,0)y 是PA 的中点,当032y =,0[,]2x ππ∈时,求0x 的值.19.(12分)栽培甲、乙两种果树,先要培育成苗,然后再进行移栽.已知甲、乙两种果树成苗的概率分别为0.6,0.5,移栽后成活的概率分别为0.7,0.9. (1)求甲、乙两种果树至少有一种果树成苗的概率;(2)求恰好有一种果树能培育成苗且移栽成活的概率.20.(12分)如图是一个直三棱柱(以111A B C 为底面)被一平面所截得到的几何体,截面为ABC .已知11111A B B C ==,11190A B C ∠=︒,14AA =,12BB =,13CC =.(1)设点O 是AB 的中点,证明://OC 平面111A B C ; (2)求二面角1B AC A --的大小; (3)求此几何体的体积.21.(12分)设{}n a 为等比数列,11a =,23a =. (1)求最小的自然数n ,使2007n a ; (2)求和:212321232n nnT a a a a =-+-⋯-. 22.(14分)设动点P 到点1(1,0)F -和2(1,0)F 的距离分别为1d 和2d ,122F PF θ∠=,且存在常数(01)λλ<<,使得212sin d d θλ=.(1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)如图,过点2F 的直线与双曲线C 的右支交于A ,B 两点.问:是否存在λ,使△1F AB 是以点B 为直角顶点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由.2007年江西省高考数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)若集合{0M =,1},{0I =,1,2,3,4,5},则I M 为( ) A .{0,1} B .{2,3,4,5} C .{0,2,3,4,5} D .{1,2,3,4,5}【解答】解:集合{0M =,1},{0I =,1,2,3,4,5}, {2I M ∴=,3,4,5},故选:B .2.(5分)函数5tan(21)y x =+的最小正周期为( ) A .4πB .2π C .π D .2π【解答】解:||2T ππω==, 故选:B .3.(5分)函数1()4xf x lg x -=-的定义域为( ) A .(1,4)B .[1,4)C .(-∞,1)(4⋃,)+∞D .(-∞,1](4,)+∞【解答】解:由对数的真数10(1)(4)04xx x x ->⇒--<-,14x ∴<<. 故选:A .4.(5分)若tan 3α=,4tan 3β=,则tan()αβ-等于( ) A .3-B .13-C .3D .13【解答】解:tan 3α=,4tan 3β=∴43tan tan 13tan()41tan tan 3133αβαβαβ---===++⨯. 故选:D . 5.(5分)设2921101211(1)(21)(2)(2)(2)x x a a x a x a x ++=+++++⋯++,则01211a a a a +++⋯+的值为( )A .2-B .1-C .1D .2 【解答】解:令21x +=,所以1x =-,将1x =-代入2921101211(1)(21)(2)(2)(2)x x a a x a x a x ++=+++++⋯++得2901211[(1)1](21)a a a a -+-+=+++⋯+;012112(1)2a a a a ∴+++⋯+=⨯-=-. 所以选A6.(5分)一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为( ) A .132B .164C .332D .364【解答】解:由分步计数原理知 从有8个球的袋中有放回地取2次, 所取号码共有8864⨯=种,其中(7,8),(8,7),(8,8)和不小于15的有3种,∴所求概率为364P =. 故选:D .7.(5分)连接抛物线24x y =的焦点F 与点(1,0)M 所得的线段与抛物线交于点A ,设点O 为坐标原点,则三角形OAM 的面积为( )A .1-B .32C .1+D .32+【解答】解:抛物线24x y =的焦点F 为(0,1)且(1,0)M , 所以直线FM 所在的直线方程为1x y +=, 与抛物线方程联立有214x y x y +=⎧⎨=⎩,解得13y =-23y =+,因为点A 是线段FM 与抛物线24x y =的交点,所以点A 的纵坐标为3-所以131(322OAM S ∆=⨯⨯-=故选:B .8.(5分)若02x π<<,则下列命题正确的是( ) A .2sin x x π<B .2sin x x π>C .3sin x x π<D .3sin x x π>【解答】解:12131,,626362x sinx πππππ=⇒=⨯=⨯=取右边, 显然A 、C 、D 不正确, 故选:B .9.(5分)四面体ABCD 的外接球球心在CD 上,且2CD =,AB A ,B 间的球面距离是( )A .6πB .3π C .23π D .56π 【解答】解:由球心在CD 上,且2CD =,得球的半径1R =,121,23OA OB COS AOB AOB π==⇒∠=-⇒∠=.∴23l R πθ==. 故选:C .10.(5分)设32:()21p f x x x mx =+++在(,)-∞+∞内单调递增,函数2:()43q g x x x m =-+不存在零点则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件【解答】解:()f x 在(,)-∞+∞内单调递增, 则()0f x '在(,)-∞+∞上恒成立, 即2340x x m ++在(,)-∞+∞上恒成立, 即△116120m =-,即43m ; ()g x 不存在零点,则△216120m =-<,即43m >. 故p 成立q 不一定成立,q 成立p 一定成立,故p 是q 的必要不充分条件. 故选:B .11.(5分)四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为1h ,2h ,3h ,4h ,则它们的大小关系正确的是( )A .214h h h >>B .123h h h >>C .324h h h >>D .241h h h >>【解答】解:观察图形可知体积减少一半后剩余酒的高度最高为2h ,最低为4h , 故选:A .12.(5分)设椭圆22221(0,0)x y a b a b +=>>的离心率12e =,右焦点(,0)F c ,方程20ax bx c +-=的两个根分别为1x ,2x ,则点1(P x ,2)x 在( ) A .圆222x y +=内 B .圆222x y +=上 C .圆222x y +=外 D .以上三种情况都有可能【解答】解:12b x x a +=-,12c x x a=- 222212121222()2b acx x x x x x a ++=+-=122c e a c a ==∴=22223b a c c =-=所以2222122347244c c x x c ++==<所以在圆内 故选:A .二、填空题(共4小题,每小题4分,满分16分)13.(4分)在平面直角坐标系中,正方形OABC 的对角线OB 的两端点分别为(0,0)O ,(1,1)B ,则AB AC = 1 .【解答】解:(0,1)(1,1)0(1)111AB AC =-=⨯-+⨯=. 故答案为:114.(4分)已知等差数列{}n a 的前n 项和为n S ,若1221S =,则25811a a a a +++= 7 . 【解答】解:由题意得1121211271221,22a a S a a +=⨯=⇒+=,2581177722a a a a +++=+=. 故答案是715.(4分)已知函数()y f x =存在反函数1()y f x -=,若函数(1)y f x =+的图象经过点(3,1),则函数1()y f x -=的图象必经过点 (1,4) . 【解答】解析:若函数(1)y f x =+的图象经过点(3,1), 则有1(31)f f =+⇒(4)11f -=⇒(1)4=. 所以函数1()y f x -=的图象必经过点(1,4). 故答案为:(1,4).16.(4分)如图,正方体1AC 的棱长为1,过点A 作平面1A BD 的垂线,垂足为点H .有下列四个命题: ABCA .点H 是△1A BD 的垂心;B .AH 垂直平面11CB D ;C .二面角111C BD C --的正切值为2;D .点H 到平面1111A B C D 的距离为34其中真命题的代号是.(写出所有真命题的代号)【解答】解:因为三棱锥1A A BD -是正三棱锥,故顶点A 在底面的射影是底面中心,A 正确;面1//A BD 面11CB D ,而AH 垂直平面1A BD ,所以AH 垂直平面11CB D ,B 正确; 连接11111A C B D O COC =⇒∠即为二面角111C B D C --的平面角,tan 22α=C 正确;对于D ,连接1AC ,1AC ⇒⊥面1A BD ,故点H 是1AC的三等分点,故点H 到平面1111A B C D 的距离为12233AA ⨯=.从而D 错.则应填ABC .三、解答题(共6小题,满分74分)17.(12分)已知函数21(0)()21(1)x c cx x c f x c x -+<<⎧⎪=⎨⎪+<⎩满足29()8f c =.(1)求常数c 的值; (2)解不等式2()18f x >+. 【解答】解(1)依题意01c <<, 2c c ∴<,29()8f c =,12c =(2)由(1)得4111022()12112x x x f x x -⎧+<<⎪⎪=⎨⎪+<⎪⎩由2()18f x >+得 当102x <<时,121128x +>+∴2142x <<当112x <时,422118x -+>+,∴1528x < 综上所述:2548x << 2()18f x ∴>+的解集为25{|}48x x << 18.(12分)如图,函数2cos()(,0)2y x x R πωθθ=+∈的图象与y 轴交于点(0,3),且在该点处切线的斜率为2-. (1)求θ和ω的值;(2)已知点(,0)2A π,点P 是该函数图象上一点,点0(Q x ,0)y 是PA 的中点,当032y =,0[,]2x ππ∈时,求0x 的值.【解答】解:(1)将0x =,3y =代入函数2cos()y x ωθ=+得3cos θ=,因为02πθ,所以6πθ=.又因为2sin()y x ωωθ'=-+,0|2x y ='=-,6πθ=,所以2ω=,因此2cos(2)6y x π=+.(2)因为点(,0)2A π,0(Q x ,0)y 是PA 的中点,0y =所以点P 的坐标为0(22x π-.又因为点P 在2cos(2)6y x π=+的图象上,所以05cos(4)6x π-=因为02x ππ,所以075194666x πππ-, 从而得0511466x ππ-=或0513466x ππ-=. 即023x π=或034x π=. 19.(12分)栽培甲、乙两种果树,先要培育成苗,然后再进行移栽.已知甲、乙两种果树成苗的概率分别为0.6,0.5,移栽后成活的概率分别为0.7,0.9. (1)求甲、乙两种果树至少有一种果树成苗的概率; (2)求恰好有一种果树能培育成苗且移栽成活的概率. 【解答】解:(1)分别记甲、乙两种果树成苗为事件1A ,2A ; 1()0.6P A =,2()0.5P A =,1()0.7P B =,2()0.9P B =.∴甲、乙两种果树至少有一种成苗的概率为1212()1()10.40.50.8P A A P A A +=-=-⨯=;(2)分别记甲、乙两种果树苗移栽成活为事件1B ,2B , 分别记两种果树培育成苗且移栽成活为事件A ,B , 则P (A )11()0.42P A B ==,P (B )22()0.45P A B ==.恰好有一种果树培育成苗且移栽成活的概率为()0.420.550.580.450.492P AB AB +=⨯+⨯=. 20.(12分)如图是一个直三棱柱(以111A B C 为底面)被一平面所截得到的几何体,截面为ABC .已知11111A B B C ==,11190A B C ∠=︒,14AA =,12BB =,13CC =.(1)设点O 是AB 的中点,证明://OC 平面111A B C ;(2)求二面角1B AC A --的大小; (3)求此几何体的体积.【解答】(1)证明:作1//OD AA 交11A B 于D ,连1C D . 则11////OD BB CC . 因为O 是AB 的中点,所以1111()32OD AA BB CC =+==.则1ODC C 是平行四边形,因此有1//OC C D .1C D ⊂平面111C B A 且OC ⊂/平面111C B A , 则//OC 面111A B C .(2)如图,过B 作截面22//BA C 面111A B C ,分别交1AA ,1CC 于2A ,2C . 作22BH A C ⊥于H ,连CH .因为1CC ⊥面22BA C ,所以1CC BH ⊥,则BH ⊥平面1A C . 又因为5AB =,2BC =2223AC AB BC AC ==+.所以BC AC ⊥,根据三垂线定理知CH AC ⊥,所以BCH ∠就是所求二面角的平面角. 因为2BH =,所以1sin 2BH BCH BC ∠==,故30BCH ∠=︒, 即:所求二面角的大小为30︒. (3)因为2BH ,所以222211121(12)233222B AAC C AA C C V S BH -==+=.1112211111212A B C A BC A B C V SBB -===. 所求几何体体积为221112232B AAC C A B C A BC V V V --=+=.21.(12分)设{}n a 为等比数列,11a =,23a =. (1)求最小的自然数n ,使2007n a ; (2)求和:212321232n nnT a a a a =-+-⋯-. 【解答】解:(1)由已知条件得11211()3n n n a a a --==, 因为67320073<<,所以,使2007n a 成立的最小自然数8n =.(2)因为223211234213333n n n T -=-+-+⋯-,①2234212112342123333333n n n n nT --=-+-+⋯+-②,①+②得:2222321222114111122333831133333334313n n n n n n n n n n T ----=-+-+⋯--=-=+.所以22223924163n n nnT +--=. 22.(14分)设动点P 到点1(1,0)F -和2(1,0)F 的距离分别为1d 和2d ,122F PF θ∠=,且存在常数(01)λλ<<,使得212sin d d θλ=.(1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)如图,过点2F 的直线与双曲线C 的右支交于A ,B 两点.问:是否存在λ,使△1F AB 是以点B 为直角顶点的等腰直角三角形?若存在,求出λ的值;若不存在,说明理由.【解答】解:(1)在△12PF F 中,22221212121212||42cos2()4sin F F d d d d d d d d θθ==+-=-+212()44d d λ-=-∴12||d d -=(小于2的常数)故动点P 的轨迹C 是以1F ,2F为焦点,实轴长2a =方程为2211x y λλ-=-.(2)在△1AF B 中,设11||AF d =,22||AF d =,13||BF d =,24||BF d =. 假设△1AF B为等腰直角三角形,则123434213234224d d a d d a d d d d d d sin πλ-=⎧⎪-=⎪⎪=+⎪⎨=⎪⎪⎪=⎪⎩①②③④⑤由②与③得22d a =,则1343421)d ad d d a a=⎧⎪=⎨⎪=-=⎩ 由⑤得342d d λ=,21)2a λ=,(8)2λλ--=,(0,1)λ=故存在λ=。

2007年高考文科数学试题及参考答案(江西卷)

2007年高考文科数学试题及参考答案(江西卷)

家庭装修注意事项1.鞋柜的隔板不要做到头,留一点空间好让鞋子的灰能漏到最底层,水槽和燃气灶上方装灯。

定卫生间地漏的位置时一定要先想好,量好尺寸。

地漏最好位于砖的一边,如果在砖的中间位置的话,无论砖怎么样倾斜,地漏都不会是最低点。

2.卫生间、空调插座均设计开关。

特别是卫生间电热水器,以一双级开关带一插为宜。

3.关于面砖阳角部分的处理方法,归根到底是看工人的水平。

如果泥水工工人水平不错,而且磨瓷砖的工具比较好的话,就应该毫不犹豫的选择磨45度角的做法。

从效果上来看,只要磨的好,磨45度角的阳角做法,是最漂亮的!4.排好水管后的水管加压测试也是非常重要的。

测试时,大家一定要在场,而且测试时间至少在30分钟以上,条件许可的,最好一个小时。

5.塑钢门的时候一定要算好塑钢门门框凸出墙壁的尺寸,使得最后门框和贴完瓷片的墙壁是平的,这样既美观,又好做卫生。

6.木工的包门套和泥工的贴瓷砖也是要配合的,包门套的时候,要考虑下面的地面(门的两边地面的任何一面)是否还要贴瓷砖或者其他水泥砂浆找平的事情。

7.床垫下方和床板一定要透气。

床板一般用杉木板最好。

8.做油漆尽量多用纸胶带。

9.买灯具要注意:一般尽量选用玻璃、不锈钢、铜或者木制(架子)的不要买什么镀层啊、什么漆啊之类的,容易掉色。

10.脸盆尽量用陶瓷盆,玻璃盆难搞卫生。

11.水电改造要自己计划好,要求他们按直线来开曹。

自己看着他们画线,全按画的线开曹。

每一项都要自己验收才行。

12.防水一定要做好,一定要试水。

13.很多施工中口头上的协议成了结帐时被宰的缺口,一定要写成白纸黑字,增减的项目都一定要把价格问清,写出来。

14.地面如果装地板,地面均要重新做水泥层重新抹平。

15.厨房门,还是要装修的木工做木制的吊轨门为好。

16.客厅里尽量多地装电源插头。

17.洗手间的淋浴外还是要做隔断。

不能图省事拉一个浴帘了事,实际很不方便。

18.做门与门框的材料要选木纹细致的材料。

19.在安装橱柜前一定要确认你家的水路是否ok。

2007年高考数学试题(江西理)含答案

2007年高考数学试题(江西理)含答案

2007年普通高等学校招生全国统一考试(江西卷)理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.化简224(1)ii ++的结果是( )A.2i +B.2i -+C.2i -D.2i --2.321lim 1x x x x →--( )A.等于0B.等于1C.等于3D.不存在3.若πtan 34α⎛⎫-= ⎪⎝⎭,则cot α等于( ) A.2-B.12-C.12D.24.已知n展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于( )A.4 B.5C.6D.75.若π02x <<,则下列命题中正确的是( ) A.3sin πx x < B.3sin πx x >C.224sin πx x < D.224sin πx x >6.若集合{}012M =,,,{}()210210N x y x y x y x y M =-+--∈,≥且≤,,,则N 中元素的个数为( )A.9 B.6C.4D.27.如图,正方体1AC 的棱长为1,过点A 作平面1A BD 的垂线,垂足为点H ,则以下命题中,错误..的命题是( ) A.点H 是1A BD △的垂心 B.AH 垂直平面11CB D C.AH 的延长线经过点1C111BD.直线AH 和1BB 所成角为45o8.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为1h ,2h ,3h ,4h ,则它们的大小关系正确的是( )A.214h h h >> B.123h h h >>C.324h h h >>D.241h h h >>9.设椭圆22221(0)x y a b a b +=>>的离心率为1e 2=,右焦点为(0)F c ,,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,( )A.必在圆222x y +=内 B.必在圆222x y +=上 C.必在圆222x y +=外D.以上三种情形都有可能10.将一骰子连续抛掷三次,它落地时向上的点数依次..成等差数列的概率为( ) A.19B.112C.115D.11811.设函数()f x 是R 上以5为周期的可导偶函数,则曲线()y f x =在5x =处的切线的斜率为( ) A.15-B.0C.15D.512.设2:()e ln 21xp f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2007年普通高等学校招生全国统一考试(江西卷)理科数学 第II 卷注意事项:第II 卷2页,须用黑色墨水签字笔在答题卡上书写作答.若在试卷题上作答,答案无效.二、填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上. 13.设函数24log (1)(3)y x x =+-≥,则其反函数的定义域为.14.已知数列{}n a 对于任意*p q ∈N ,,有p q p q a a a ++=,若119a =,则36a = .15.如图,在ABC △中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =u u u r u u u u r ,AC nAN =u u u r u u u r,则m n +的值为.16.设有一组圆224*:(1)(3)2()k C x k y k k k -++-=∈N .下列四个命题:A.存在一条定直线与所有的圆均相切 B.存在一条定直线与所有的圆均相交 C.存在一条定直线与所有的圆均不.相交 D.所有的圆均不.经过原点 其中真命题的代号是 .(写出所有真命题的代号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数21(0)()2(1)x c cx x c f x k c x -+<<⎧⎪=⎨⎪+<⎩≤在区间(01),内连续,且29()8f c =.(1)求实数k 和c 的值; (2)解不等式()18f x >+. 18.(本小题满分12分)如图,函数π2cos()(0)2y x x ωθθ=+∈R ,≤≤的图象与y轴交于点(0,且在该点处切线的斜率为2-. (1)求θ和ω的值;(2)已知点π02A ⎛⎫⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是PA的中点,当02y =,0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值. 19.(本小题满分12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75. (1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望. 20.(本小题满分12分)右图是一个直三棱柱(以111A B C 为底面)被一平面所截得到的几何体,截面为ABC .已知11111A B B C ==,11190A B C ∠=o ,14AA =,12BB =,13CC =.(1)设点O 是AB 的中点,证明:OC ∥平面111A B C ; (2)求二面角1B AC A --的大小; (3)求此几何体的体积. 21.(本小题满分12分)设动点P 到点(10)A -,和(10)B ,的距离分别为1d 和2d ,2APB θ∠=,且存在常数(01)λλ<<,使得212sin d d θλ=.(1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)过点B 作直线双曲线C 的右支于M N ,两点,试确定λ的范围,使OM ON =0u u u u r u u u rg,其中点O 为坐标原点. 22.(本小题满分14分)设正整数数列{}n a 满足:24a =,且对于任何*n ∈N ,有11111122111n n n na a a a n n ++++<<+-+. (1)求1a ,3a ;(3)求数列{}n a 的通项n a .2007年普通高等学校招生全国统一考试(江西卷)理科数学参考答案一、选择题 1.C 2.B3.A 4.C 5.D 6.C 7.D8.A9.A10.B11.B 12.B11y二、填空题 13.[5)+,∞ 14.4 15.2 16.B D ,三、解答题17.解:(1)因为01c <<,所以2c c <, 由29()8f c =,即3918c +=,12c =. 又因为4111022()1212x x x f x k x -⎧⎛⎫+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+< ⎪⎪⎝⎭⎩≤在12x =处连续,所以215224f k -⎛⎫=+=⎪⎝⎭,即1k =. (2)由(1)得:4111022()12112x x x f x x -⎧⎛⎫+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+< ⎪⎪⎝⎭⎩≤由()1f x >+得,当102x <<12x <<. 当112x <≤时,解得1528x <≤,所以()18f x >+的解集为58x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭. 18.解:(1)将0x =,y =2cos()y x ωθ=+得cos θ=因为02θπ≤≤,所以6θπ=. 又因为2sin()y x ωωθ'=-+,02x y ='=-,6θπ=,所以2ω=, 因此2cos 26y x π⎛⎫=+⎪⎝⎭. (2)因为点02A π⎛⎫ ⎪⎝⎭,,00()Q x y ,是PA的中点,02y =, 所以点P的坐标为022x π⎛-⎝.又因为点P 在2cos 26y x π⎛⎫=+ ⎪⎝⎭的图象上,所以05cos 462x π⎛⎫-= ⎪⎝⎭. 因为02x ππ≤≤,所以075194666x πππ-≤≤, 从而得0511466x ππ-=或0513466x ππ-=. 即023x π=或034x π=.19.解:分别记甲、乙、丙经第一次烧制后合格为事件1A ,2A ,3A , (1)设E 表示第一次烧制后恰好有一件合格,则123123123()()()()P E P A A A P A A A P A A A =++g g g g g g 0.50.40.60.50.60.60.50.40.40.38=⨯⨯+⨯⨯+⨯⨯=.(2)解法一:因为每件工艺品经过两次烧制后合格的概率均为0.3p =, 所以~(30.3)B ξ,, 故30.30.9E np ξ==⨯=.解法二:分别记甲、乙、丙经过两次烧制后合格为事件A B C ,,,则()()()0.3P A P B P C ===,所以3(0)(10.3)0.343P ξ==-=,2(1)3(10.3)0.30.441P ξ==⨯-⨯=, 2(2)30.30.70.189P ξ==⨯⨯=, 3(3)0.30.027P ξ===.于是,()10.44120.18930.0270.9E ξ=⨯+⨯+⨯=. 20.解法一:(1)证明:作1OD AA ∥交11A B 于D ,连1C D .则11OD BB CC ∥∥. 因为O 是AB 的中点, 所以1111()32OD AA BB CC =+==. 则1ODC C 是平行四边形,因此有1OC C D ∥.11A 21C D ⊂平面111C B A 且OC ⊄平面111C B A ,则OC ∥面111A B C .(2)如图,过B 作截面22BA C ∥面111A B C ,分别交1AA ,1CC 于2A ,2C . 作22BH A C ⊥于H ,连CH .因为1CC ⊥面22BA C ,所以1CC BH ⊥,则BH ⊥平面1A C .又因为AB =BC =222AC AB BC AC =⇒=+.所以BC AC ⊥,根据三垂线定理知CH AC ⊥,所以BCH ∠就是所求二面角的平面角.因为2BH =,所以1sin 2BH BCH BC ==∠,故30BCH =o ∠, 即:所求二面角的大小为30o.(3)因为2BH =,所以22221111(12)3322B AAC C AA C C V S BH -==+=g g .1112211111212A B C A BC A B C V S BB -===g g △.所求几何体体积为221112232B AAC C A B C A BC V V V --=+=.解法二:(1)如图,以1B 为原点建立空间直角坐标系,则(014)A ,,,(002)B ,,,(103)C ,,,因为O 是AB 的中点,所以1032O ⎛⎫ ⎪⎝⎭,,, 1102OC ⎛⎫=- ⎪⎝⎭u u u r ,,.易知,(001)n =r,,是平面111A B C 的一个法向量. 因为0OC n =u u u r rg,OC ⊄平面111A B C ,所以OC ∥平面111A B C . (2)(012)AB =--u u u r ,,,(101)BC =u u u r,,,1x设()m x y z =u r,,是平面ABC 的一个法向量,则则0AB m =u u u r u r g ,0BC m =u u u r u r g 得:200y z x z --=⎧⎨+=⎩取1x z =-=,(121)m =-u r,,. 显然,(110)l =r,,为平面11AAC C 的一个法向量.则cos m l m l m l===u r r u r r g u r r g ,,结合图形可知所求二面角为锐角. 所以二面角1B AC A --的大小是30o. (3)同解法一.21.解法一:(1)在PAB △中,2AB =,即222121222cos 2d d d d θ=+-,2212124()4sin d d d d θ=-+,即122d d -==<(常数),点P 的轨迹C 是以A B ,为焦点,实轴长2a =的双曲线.方程为:2211x y λλ-=-. (2)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即2111101λλλλλ-=⇒+-=⇒=-,因为01λ<<,所以λ=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得:2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦, 由题意知:2(1)0k λλ⎡⎤--≠⎣⎦,所以21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x k λλλλ--+=--. 于是:22212122(1)(1)(1)k y y k x x k λλλ=--=--.因为0OM ON =u u u u r u u u rg,且M N ,在双曲线右支上,所以2121222122212(1)0(1)121011231001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>⎪⎪⎪+-+>⇒⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩.由①②知,1223λ<≤. 解法二:(1)同解法一(2)设11()M x y ,,22()N x y ,,MN 的中点为00()E x y ,. ①当121x x ==时,221101MB λλλλλ=-=⇒+-=-,因为01λ<<,所以12λ=; ②当12x x ≠时,22110222211111MN x y x k y x y λλλλλλ⎧-=⎪⎪-⇒=⎨-⎪-=⎪-⎩g . 又001MN BE y k k x ==-.所以22000(1)y x x λλλ-=-; 由2MON π=∠得222002MN x y ⎛⎫+= ⎪⎝⎭,由第二定义得2212()222MN e x x a ⎛⎫+-⎡⎤= ⎪⎢⎥⎣⎦⎝⎭220001(1)21x x x λλ==+---. 所以222000(1)2(1)(1)y x x λλλλ-=--+-.于是由22000222000(1)(1)2(1)(1)y x x y x x λλλλλλλ⎧-=-⎪⎨-=--+-⎪⎩得20(1)23x λλ-=- 因为01x >,所以2(1)123λλ->-,又01λ<<,解得:1223λ<<.由①②知1223λ<≤.22.解:(1)据条件得1111112(1)2n n n n n n a a a a ++⎛⎫+<++<+ ⎪⎝⎭① 当1n =时,由21211111222a a a a ⎛⎫+<+<+ ⎪⎝⎭,即有1112212244a a +<+<+,解得12837a <<.因为1a 为正整数,故11a =. 当2n =时,由33111126244a a ⎛⎫+<+<+ ⎪⎝⎭, 解得3810a <<,所以39a =.(2)方法一:由11a =,24a =,39a =,猜想:2n a n =.下面用数学归纳法证明.1o 当1n =,2时,由(1)知2n a n =均成立; 2o 假设(2)n k k =≥成立,则2k a k =,则1n k =+时由①得221111112(1)2k k k k a ka k ++⎛⎫+<++<+ ⎪⎝⎭ 2212(1)(1)11k k k k k k a k k k +++-⇒<<-+- 22212(1)1(1)(1)11k k k a k k k ++⇒+-<<+++-因为2k ≥时,22(1)(1)(1)(2)0k k k k k +-+=+-≥,所以(]22(1)011k k +∈+,. 11k -≥,所以(]1011k ∈-,. 又1k a +∈*N ,所以221(1)(1)k k a k +++≤≤. 故21(1)k a k +=+,即1n k =+时,2n a n =成立. 由1o ,2o知,对任意n ∈*N ,2n a n =.(2)方法二:由11a =,24a =,39a =,猜想:2n a n =.下面用数学归纳法证明.1o 当1n =,2时,由(1)知2n a n =均成立;2o 假设(2)n k k =≥成立,则2k a k =,则1n k =+时 由①得221111112(1)2k k k k a ka k ++⎛⎫+<++<+ ⎪⎝⎭ 即21111(1)122k k k k k a k a k+++++<+<+ ② 由②左式,得2111k k k k k a +-+-<,即321(1)k k a k k k +-<+-,因为两端为整数, 则3221(1)1(1)(1)k k a k k k k k +-+--=+-≤.于是21(1)k a k ++≤ ③ 又由②右式,22221(1)21(1)1k k k k k k k k a k k +++-+-+<=. 则231(1)(1)k k k a k k +-+>+.因为两端为正整数,则2431(1)1k k k a k k +-+++≥, 所以4321221(1)11k k k k a k k k k k +++=+--+-+≥. 又因2k ≥时,1k a +为正整数,则21(1)k a k ++≥ ④据③④21(1)k a k +=+,即1n k =+时,2n a n =成立.由1o ,2o 知,对任意n ∈*N ,2n a n =.。

2007年高考数学江西理科(详细解答)

2007年高考数学江西理科(详细解答)

2007年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至4页,共150分.第I 卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致. 2.第I 卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第II 卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效. 3.考试结束,监考员将试题卷、答题卡一并收回. 参考公式: 如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率()(1)k k n kn n P k C P P -=-其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.化简224(1)ii ++的结果是( ) A.2i + B.2i -+ C.2i - D.2i --2.321lim1x x xx →--( )A.等于0B.等于1C.等于3D.不存在3.若πtan 34α⎛⎫-=⎪⎝⎭,则cot α等于( ) A.2- B.12- C.12D.24.已知n展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于( ) A.4 B.5 C.6 D.75.若π02x <<,则下列命题中正确的是( )A.3sin πx x < B.3sin πx x > C.224sin πx x < D.224sin πx x >6.若集合{}012M =,,,{}()210210N x y x y x y x y M =-+--∈,≥且≤,,,则N 中元素的个数为( )A.9 B.6 C.4 D.27.如图,正方体1AC 的棱长为1,过点A 作平面1A B D 的垂线,垂足为点H ,则以下命题中,错误..的命题是( ) A.点H 是1A BD △的垂心 B.A H 垂直平面11C B D C.A H 的延长线经过点1C D.直线A H 和1B B 所成角为458.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为1h ,2h ,3h ,4h ,则它们的大小关系正确的是( )A.214h h h >> B.123h h h >>C.324h h h >>D.241h h h >>9.设椭圆22221(0)xya b a b+=>>的离心率为1e 2=,右焦点为(0)F c ,,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,( )A.必在圆222x y +=内 B.必在圆222x y +=上 C.必在圆222x y +=外D.以上三种情形都有可能10.将一骰子连续抛掷三次,它落地时向上的点数依次..成等差数列的概率为( ) A.19B.112C.115D.11811.设函数()f x 是R 上以5为周期的可导偶函数,则曲线()y f x =在5x =处的切线的斜率为( )A.15-B.0C.15D.512.设2:()e ln 21xp f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的( )A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件2007年普通高等学校招生全国统一考试(江西卷)理科数学 第II 卷注意事项:第II 卷2页,须用黑色墨水签字笔在答题卡上书写作答.若在试卷题上作答,答案无效. 二、填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上. 13.设函数24log (1)(3)y x x =+-≥,则其反函数的定义域为 .11B14.已知数列{}n a 对于任意*p q ∈N ,,有p q p q a a a ++=,若119a =,则36a =.15.如图,在A B C △中,点O 是B C 的中点,过点O 的直线分别交直线A B ,A C 于不同的两点M N ,,若A B m A M = ,AC n AN =,则m n +的值为 . 16.设有一组圆224*:(1)(3)2()k C x k y k k k -++-=∈N .下列四个命题:A.存在一条定直线与所有的圆均相切 B.存在一条定直线与所有的圆均相交 C.存在一条定直线与所有的圆均不.相交 D.所有的圆均不.经过原点 其中真命题的代号是.(写出所有真命题的代号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数21(0)()2(1)x ccx x c f x k c x -+<<⎧⎪=⎨⎪+<⎩≤在区间(01),内连续,且29()8f c =.(1)求实数k 和c 的值; (2)解不等式()18f x >+.18.(本小题满分12分)如图,函数π2cos()(0)2y x x ωθθ=+∈R ,≤≤的图象与y轴交于点(0,且在该点处切线的斜率为2-.(1)求θ和ω的值;(2)已知点π02A ⎛⎫⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是P A的中点,当02y =0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值.19.(本小题满分12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75.(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望. 20.(本小题满分12分)右图是一个直三棱柱(以111A B C 为底面)被一平面所截得到的几何体,截面为ABC .已知11111A B B C ==,11190A B C ∠=,14AA =,12BB =,13C C =.(1)设点O 是A B 的中点,证明:O C ∥平面111A B C ; (2)求二面角1B AC A --的大小;C(3)求此几何体的体积. 21.(本小题满分12分) 设动点P 到点(10)A -,和(10)B ,的距离分别为1d 和2d ,2A P B θ∠=,且存在常数(01)λλ<<,使得212sin d d θλ=.(1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)过点B 作直线双曲线C 的右支于M N ,两点,试确定λ的范围,使OM ON =0,其中点O 为坐标原点. 22.(本小题满分14分)设正整数数列{}n a 满足:24a =,且对于任何*n ∈N ,有11111122111n n n na a a a n n ++++<<+-+.(1)求1a ,3a ;(3)求数列{}n a 的通项n a .y2007年普通高等学校招生全国统一考试(江西卷)理科数学参考答案1.化简224(1)i i ++=2422i i i+=-,选C 。

2007年高考真题试卷江西卷数学文科参考答案

2007年高考真题试卷江西卷数学文科参考答案

2007年普通高等学校招生全国统一考试(江西文)参考答案一、选择题1.B 2.B 3.A 4.D 5.A 6.D 7.B 8.B 9.C 10.C 11.A 12.C 二、填空题13.1 14.7 15.(14), 16.A ,B ,C 三、解答题17.解:(1)因为01c <<,所以2c c <; 由29()8f c =,即3918c +=,12c =. (2)由(1)得411122()211x x x f x x -⎧⎛⎫+0<< ⎪⎪⎪⎝⎭=⎨1⎛⎫⎪+< ⎪⎪2⎝⎭⎩,,≤由()18f x >+得, 当102x <<时,解得142x <<, 当112x <≤时,解得1528x <≤,所以()1f x >+的解集为58x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭. 18.解:(1)将0x =,y =2cos()y x ωθ=+中得cos θ=, 因为π02θ≤≤,所以π6θ=. 由已知πT =,且0ω>,得2π2π2T πω===. (2)因为点π02A ⎛⎫ ⎪⎝⎭,,00()Q x y ,是PA的中点,02y =. 所以点P的坐标为0π22x ⎛-⎝. 又因为点P 在π2cos 26y x ⎛⎫=+⎪⎝⎭的图象上,且0ππ2x ≤≤,所以05πcos 46x ⎛⎫-= ⎪⎝⎭,07π5π19π4666x -≤≤,从而得05π11π466x -=或05π13π466x -=, 即02π3x =或03π4x =.19.解:分别记甲、乙两种果树成苗为事件1A ,2A ;分别记甲、乙两种果树苗移栽成活为事件1B ,2B ,1()0.6P A =,2()0.5P A =,1()0.7P B =,2()0.9P B =. (1)甲、乙两种果树至少有一种成苗的概率为1212()1()10.40.50.8P A A P A A +=-=-⨯=;(2)解法一:分别记两种果树培育成苗且移栽成活为事件A B ,, 则11()()0.42P A P A B ==,22()()0.45P B P A B ==. 恰好有一种果树培育成苗且移栽成活的概率为()0.420.550.580.450.492P AB AB +=⨯+⨯=.解法二:恰好有一种果树栽培成活的概率为11211221221212()0.492P A B A A B A B A A B A A B B +++=.20.解法一:(1)证明:作1OD AA ∥交11A B 于D ,连1C D . 则11OD BB CC ∥∥, 因为O 是AB 的中点,所以1111()32OD AA BB CC =+==.则1ODC C 是平行四边形,因此有1OC C D ∥,1C D ⊂平面111C B A ,且OC ⊄平面111C B A则OC ∥面111A B C .(2)解:如图,过B 作截面22BA C ∥面111A B C ,分别交1AA ,1CC 于2A ,2C , 作22BH A C ⊥于H ,因为平面22A BC ⊥平面11AAC C ,则BH ⊥面11AAC C .连结AH ,则BAH ∠就是AB 与面11AAC C 所成的角.112CA因为2BH =,AB =sin 10BH BAH AB ==∠. AB 与面11AAC C所成的角为arcsin10BAH =∠ (3)因为2BH =,所以222213B AA C C AA C C V S BH -=.1121(12)2322=+=. 1112211111212A B C A BC A B C V S BB -===△. 所求几何体的体积为221112232B AAC C A B C A BC V V V --=+=. 解法二:(1)证明:如图,以1B 为原点建立空间直角坐标系,则(014)A ,,,(002)B ,,,(103)C ,,,因为O 是AB 的中点,所以1032O ⎛⎫ ⎪⎝⎭,,,1102OC ⎛⎫=- ⎪⎝⎭,,,易知,(001)n =,,是平面111A B C 的一个法向量. 由0OC n =且OC ⊄平面111A B C 知OC ∥平面111A B C . (2)设AB 与面11AAC C 所成的角为θ. 求得1(004)A A =,,,11(110)AC =-,,. 设()m x y z =,,是平面11AAC C 的一个法向量,则由11100A A m A C m ⎧=⎪⎨=⎪⎩得0z x y =⎧⎨-=⎩,取1x y ==得:(110)m =,,. 又因为(012)AB =--,, 所以,cos m <,10m AB ABm AB>==-sin 10θ=. 1x所以AB 与面11AAC C所成的角为arcsin 10. (3)同解法一21.解:(1)由已知条件得112113n n n a a a --⎛⎫== ⎪⎝⎭,因为67320073<<,所以,使2007n a ≥成立的最小自然数8n =. (2)因为223211234213333n n nT -=-+-+-,…………① 2234212112342123333333n n n n nT --=-+-++-,…………② +①②得:2232124111121333333n n n nT -=-+-+--221123313nn n -=-+ 22333843n nn --= 所以22223924163n n nnT +--=.22.解:(1)在12PF F △中,122FF =22221212121242cos2()4sin d d dd d d d d θθ=+-=-+212()44d d λ-=-12d d -=2的常数)故动点P 的轨迹C 是以1F ,2F 为焦点,实轴长2a =的双曲线.方程为2211x y λλ-=-. (2)方法一:在1AF B △中,设11AF d =,22AF d =,13BF d =,24BF d =. 假设1AF B △为等腰直角三角形,则12343421323422πsin 4d d a d d a d d d d d d λ⎧⎪-=⎪-=⎪⎪=+⎨⎪=⎪⎪=⎪⎩①②③④⑤ 由②与③得22d a =,则1343421)d a d d d a a=⎧⎪=⎨⎪=-=⎩ 由⑤得342d d λ=,21)2a λ=(8)2λλ--=,12(01)17λ-=,故存在λ=方法二:(1)设1AF B △为等腰直角三角形,依题设可得21212212122πsin π81cos4πsin 24AF AF AF AF BF BF BF BF λλλλ⎧⎧===⎪⎪⎪⎪-⇒⎨⎨⎪⎪=⎪=⎪⎩⎩所以12121πsin 1)24AF FS AF AF λ==△,121212BF F S BF BF λ==△.则1(2AF B S λ=△.①由1212221AF F BF F S AF S BF ==△△,可设2BF d =,则21)AF d =,1(2BF AB d ==.则122211(222AF B S AB d ==△.②由①②得2(22d λ=.③根据双曲线定义122BF BF a -==可得,1)d =.平方得:221)4(1)d λ=-.④由③④消去d 可解得,12(01)17λ-=∈,故存在1217λ-=。

2007年(全国卷II)(含答案)高考文科数学

2007年(全国卷II)(含答案)高考文科数学

2007年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分) 1.cos330= ( )A .12B .12-C .32D .32-2.设集合{1234}{12}{24}U A B ===,,,,,,,,则()U A B = ð( ) A .{2}B .{3}C .{124},,D .{14},3.函数sin y x =的一个单调增区间是( )A .ππ⎛⎫- ⎪44⎝⎭,B .3ππ⎛⎫ ⎪44⎝⎭,C .3π⎛⎫π ⎪2⎝⎭,D .32π⎛⎫π ⎪2⎝⎭,4.下列四个数中最大的是( ) A .2(ln 2) B .ln(ln 2)C .ln 2D .ln 25.不等式203x x ->+的解集是( ) A .(32)-, B .(2)+∞, C .(3)(2)-∞-+∞ ,, D .(2)(3)-∞-+∞ ,,6.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( )A .23B .13C .13-D .23-7.已知三棱锥的侧棱长的底面边长的2倍,则侧棱与底面所成角的余弦值等于( ) A .36B .34C .22D .328.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .49.把函数e x y =的图像按向量(23)=,a 平移,得到()y f x =的图像,则()f x =( ) A .e 2x +B .e 2x -C .2e x -D .2e x +10.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( ) A .10种B .20种C .25种D .32种11.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A .13B .33C .12D .3212.设12F F ,分别是双曲线2219y x +=的左、右焦点.若点P 在双曲线上,且120PF PF =,则12PF PF += ( )A .10B .210C .5D .25二、填空题:本大题共4小题,每小题5分,共20分.13.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .14.已知数列的通项52n a n =-+,则其前n 项和n S = .15.一个正四棱柱的各个顶点在一个直径为2cm 的球面上.如果正四棱柱的底面边长为1cm ,那么该棱柱的表面积为 cm 2.16.821(12)1x x ⎛⎫++ ⎪⎝⎭的展开式中常数项为 .(用数字作答)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)设等比数列{}n a 的公比1q <,前n 项和为n S .已知34225a S S ==,,求{}n a 的通项公式.18.(本小题满分12分)在ABC△中,已知内角Aπ=3,边23BC=.设内角B x=,周长为y.(1)求函数()y f x=的解析式和定义域;(2)求y的最大值.19.(本小题满分12分)从某批产品中,有放回地抽取产品二次,每次随机抽取1件,假设事件A:“取出的2件产品中至多有1件是二等品”的概率()0.96P A=.(1)求从该批产品中任取1件是二等品的概率p;(2)若该批产品共100件,从中任意抽取2件,求事件B:“取出的2件产品中至少有一件二等品”的概率()P B.20.(本小题满分12分)如图,在四棱锥S ABCD-中,底面ABCD为正方形,侧棱SD⊥底面ABCD E F,,分别为AB SC,的中点.(1)证明EF∥平面SAD;(2)设2SD DC=,求二面角A EF D--的大小.A EB CF SD21.(本小题满分12分)在直角坐标系xOy 中,以O 为圆心的圆与直线:43=-y x 相切 (1)求圆O 的方程(2)圆O 与x 轴相交于A 、B 两点,圆内的动点P 使|P A |、|PO |、|PB |成等比数列,求PA PB ∙的取值范围。

2007年高考试题——数学理(江西卷)

2007年高考试题——数学理(江西卷)

绝密★启用前2007年普通高等学校招生全国统一考试(江西卷)理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷l 至2页,第Ⅱ卷3至4页,共150分.第Ⅰ卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致. 2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:如果事件A 、B 互斥,那么 球的表面积公式 P (A +B )=P (A )+P (B ) S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径 P (A·B )=P (A )·P (B ) 球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 V =34πR 3n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径 P n (k )=C k n P k(1一P )kn -一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.化简2)1(42i i ++的结果是A .2+iB .-2+iC .2-iD .-2-i2.1lim 231--→x x x xA .等于0B .等于lC .等于3D .不存在 3.若3)4tan(=-απ,则cot α等于A .-2B .21-C .21D .24.已知(x +33x)n 展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于A .4B .5C .6D .7 5.若0<x <2π,则下列命题中正确的是A .sin x <x π3B .sin x >x π3 C .sin x <224x π D .sin x >224x π6.若集合012|),{(},2,1,0{≥+-==y x y x N M 且M y x y x ∈≤--,,012},则N 中元素的个数为 A .9B .6C .4D .27.如图,正方体AC 1的棱长为1,过点A 作平面A 1BD 的垂线,垂足为点H .则以下命题中,错误..的命题是 A .点H 是△A 1BD 的垂心 B .AH 垂直平面CB 1D 1 C .AH 的延长线经过点C 1D .直线AH 和BB 1所成角为45°8.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示.盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h 1,h 2,h 3,h 4,则它们的大小关系正确的是A .h 2>h 1>h 4B .h 1>h 2>h 3C .h 3>h 2>h 4D .h 2>h 4>h 19.设椭圆)0(12222>>b a by a x =+的离心率为e =21,右焦点为F (c ,0),方程ax 2+bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2)A .必在圆x 2+y 2=2内B .必在圆x 2+y 2=2上C .必在圆x 2+y 2=2外D .以上三种情形都有可能10.将一个骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为 A .91B .121C .151D .18111.设函数f (x )是R 上以5为周期的可导偶函数,则曲线y =f (x )在x =5处的切线的斜率为 A .-51 B .0C .51D .512.设12ln )(:2++++=mx x x e x f p x在(0,+∞)内单调递增,5:-≥m q ,则p 是q的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件绝密★启用前2007年普通高等学校招生全国统一考试(江西卷)理科数学第Ⅱ卷注意事项:第Ⅱ卷2页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效. 二.填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上. 13.设函数y =4+log 2(x -1)(x ≥3),则其反函数的定义域为 . 14.已知数列{a n }对于任意p ,q ∈N *,有a p +a q =a p +q ,若a 1=91,则a 36= . 15.如图,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线 AB 、AC 于不同的两点M 、N ,若AN n AC AM m AB ==,,则m +n 的值 为 .16.设有一组圆)(2)3()1(:*422N k k k y k x C k ∈=-++-.下列四个命题:A .存在一条定直线与所有的圆均相切B .存在一条定直线与所有的圆均相交C .存在一条定直线与所有的圆均不.相交D .所有的圆均不.经过原点 其中真命题的代号是 .(写出所有真命题的代号)三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知函数⎪⎩⎪⎨⎧≤++=-)1(2)0(1)(2<<<x c kc x cx x f c x在区间(0,1)内连续,且89)(2=c f .(1)求实数k 和c 的值;(2)解不等式182)(+>x f18.(本小题满分12分)如图,函数)20,)(cos(2πθθω≤≤∈+=R x x y 的图象与y 轴交于点(0,3),且在该点处切线的斜率为一2.(1)求θ和ω的值; (2)已知点A (2π,0),点P 是该函数图象上一点,点Q (x 0,y 0)是P A 的中点,当y 0=23,x 0∈[2π,π]时,求x 0的值.19.(本小题满分12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5, 0.6, 0.4.经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75. (1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望. 20.(本小题满分12分)右图是一个直三棱柱(以A 1B 1C 1为底面)被一平面所截得到 的几何体,截面为ABC .已知A 1B 1=B 1C 1=l ,∠A l B l C 1=90°, AA l =4,BB l =2,CC l =3.(1)设点O 是AB 的中点,证明:OC ∥平面A 1B 1C 1; (2)求二面角B —AC —A 1的大小; (3)求此几何体的体积. 21.(本小题满分12分)设动点P 到点A (-l ,0)和B (1,0)的距离分别为d 1和d 2, ∠APB =2θ,且存在常数λ(0<λ<1=,使得d 1d 2 sin 2θ=λ.(1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程; (2)过点B 作直线交双曲线C 的右支于M 、N 两点,试确定λ的范围,使OM ·ON =0,其中点 O 为坐标原点.22.(本小题满分14分)设正整数数列{a n }满足:a 2=4,且对于任何n ∈N *,有n n n n a n n a a a 1211111211++-++++<<.(1)求a 1,a 3;(2)求数列{ a n }的通项a n .参考答案一、选择题 1.C 2.B3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.B11.B 12.B 二、填空题 13.[5)+,∞ 14.4 15.2 16.B D ,三、解答题17.解:(1)因为01c <<,所以2c c <,由29()8f c =,即3918c +=,12c =. 又因为4111022()1212x x x f x k x -⎧⎛⎫+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+< ⎪⎪⎝⎭⎩≤在12x =处连续,所以215224f k -⎛⎫=+=⎪⎝⎭,即1k =.(2)由(1)得:4111022()12112x x x f x x -⎧⎛⎫+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+< ⎪⎪⎝⎭⎩≤由()1f x >得,当102x <<12x <<. 当112x <≤时,解得1528x <≤,所以()1f x >+的解集为58x ⎫⎪<<⎬⎪⎭.18.解:(1)将0x =,y =2cos()y x ωθ=+得cos θ=, 因为02θπ≤≤,所以6θπ=. 又因为2sin()y x ωωθ'=-+,02x y ='=-,6θπ=,所以2ω=, 因此2cos 26y x π⎛⎫=+⎪⎝⎭. (2)因为点02A π⎛⎫ ⎪⎝⎭,,00()Q x y ,是PA的中点,0y =, 所以点P的坐标为022x π⎛-⎝. 又因为点P 在2cos 26y x π⎛⎫=+ ⎪⎝⎭的图象上,所以05cos 46x π⎛⎫-= ⎪⎝⎭ 因为02x ππ≤≤,所以075194666x πππ-≤≤, 从而得0511466x ππ-=或0513466x ππ-=. 即023x π=或034x π=.19.解:分别记甲、乙、丙经第一次烧制后合格为事件1A ,2A ,3A , (1)设E 表示第一次烧制后恰好有一件合格,则)()()()(321321321A A A p A A A A A A P E P ⋅⋅+⋅⋅+⋅⋅=0.50.40.60.50.60.60.50.40.40.38=⨯⨯+⨯⨯+⨯⨯=.(2)解法一:因为每件工艺品经过两次烧制后合格的概率均为0.3p =,所以~(30.3)B ξ,, 故30.30.9E np ξ==⨯=.解法二:分别记甲、乙、丙经过两次烧制后合格为事件A B C ,,,则()()()0.3P A P B P C ===,所以3(0)(10.3)0.343P ξ==-=,2(1)3(10.3)0.30.441P ξ==⨯-⨯=, 2(2)30.30.70.189P ξ==⨯⨯=, 3(3)0.30.027P ξ===.于是,()10.44120.18930.0270.9E ξ=⨯+⨯+⨯=. 20.解法一:(1)证明:作1OD AA ∥交11A B 于D ,连1C D .则11OD BB CC ∥∥. 因为O 是AB 的中点, 所以1111()32OD AA BB CC =+==. 则1ODC C 是平行四边形,因此有1OC C D ∥.1C D ⊂平面111C B A 且OC ⊄平面111C B A ,则OC ∥面111A B C .(2)如图,过B 作截面22BA C ∥面111A B C ,分别交1AA ,1CC 于2A ,2C .作22BH A C ⊥于H ,连CH .因为1CC ⊥面22BA C ,所以1CC BH ⊥,则BH ⊥平面1AC .又因为AB =BC =,222AC AB BC AC =⇒=+.所以BC AC ⊥,根据三垂线定理知CH AC ⊥,所以BCH ∠就是所求二面角的平面角.11A 2因为BH =,所以1sin 2BH BCH BC ==∠,故30BCH =∠, 即:所求二面角的大小为30.(3)因为BH =,所以1221.21222)21(2131311111221112222=⋅=⋅==⋅⋅+⋅=⋅=∆--BB S V BH S V C B A BC A C B A C C AA C C AA B所求几何体体积为221112232B AAC C A B C A BC V V V --=+=. 解法二:(1)如图,以1B 为原点建立空间直角坐标系,则(014)A ,,,(002)B ,,,(103)C ,,,因为O 是AB 的中点,所以1032O ⎛⎫ ⎪⎝⎭,,1102OC ⎛⎫=- ⎪⎝⎭,,.易知,(001)n =,,是平面111A B C 的一个法向量.因为0=⋅n OC ,OC ⊄平面111A B C ,所以OC ∥平面111A B C . (2)(012)AB =--,,,(101)BC =,,,设()m x y z =,,是平面ABC 的一个法向量,则 则0,0=⋅=⋅m BC m AB 得:20y z x z --=⎧⎨+=⎩取1x z =-=,(121)m =-,,.显然,(110)l =,,为平面11AAC C 的一个法向量. 则2362021,cos =⨯++=>=<l m , 结合图形可知所求二面角为锐角.1x所以二面角1B AC A --的大小是30. (3)同解法一.21.解法一:(1)在PAB △中,2AB =,即222121222cos 2d d d d θ=+-,2212124()4sin d d d d θ=-+,即12d -=<(常数), 点P 的轨迹C 是以A B ,为焦点,实轴长2a =的双曲线.方程为:2211x y λλ-=-.(2)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即2111101λλλλλ-=⇒+-=⇒=-,因为01λ<<,所以λ=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得:2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦, 由题意知:2(1)0k λλ⎡⎤--≠⎣⎦,所以21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x k λλλλ--+=--.于是:22212122(1)(1)(1)k y y k x x kλλλ=--=--. 因为0=⋅ON OM ,且M N ,在双曲线右支上,所以2121222122212(1)0(1)2101131001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>⎪⎪⎪+-+>⇒⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩.23λ<. 解法二:(1)同解法一(2)设11()M x y ,,22()N x y ,,MN 的中点为00()E x y ,.①当121x x ==时,221101MB λλλλλ=-=⇒+-=-,因为01λ<<,所以λ=; ②当12x x ≠时,002222212111111y x k y x y x MN ⋅-=⇒⎪⎪⎩⎪⎪⎨⎧=--=--λλλλλλ. 又001MN BE y k k x ==-.所以22000(1)y x x λλλ-=-; 由2MON π=∠得222002MN x y ⎛⎫+= ⎪⎝⎭,由第二定义得2212()222MN e x x a ⎛⎫+-⎡⎤= ⎪⎢⎥⎣⎦⎝⎭220001(1)21x x x λλ=-=+---. 所以222000(1)2(1)(1)y x x λλλλ-=--+-.于是由22000222000(1)(1)2(1)(1)y x x y x x λλλλλλλ⎧-=-⎪⎨-=--+-⎪⎩得20(1)23x λλ-=-因为01x >,所以2(1)123λλ->-,又01λ<<,23λ<<23λ<. 22.解:(1)据条件得1111112(1)2n nn n n n a a a a ++⎛⎫+<++<+ ⎪⎝⎭ ① 当1n =时,由21211111222a a a a ⎛⎫+<+<+ ⎪⎝⎭,即有1112212244a a +<+<+, 解得12837a <<.因为1a 为正整数,故11a =. 当2n =时,由33111126244a a ⎛⎫+<+<+ ⎪⎝⎭, 解得3810a <<,所以39a =.(2)方法一:由11a =,24a =,39a =,猜想:2n a n =.下面用数学归纳法证明. 1当1n =,2时,由(1)知2n a n =均成立; 2假设(2)n k k =≥成立,则2k a k =,则1n k =+时 由①得221111112(1)2k k k k a ka k ++⎛⎫+<++<+ ⎪⎝⎭ 2212(1)(1)11k k k k k k a k k k +++-⇒<<-+- 22212(1)1(1)(1)11k k k a k k k ++⇒+-<<+++- 因为2k ≥时,22(1)(1)(1)(2)0k k k k k +-+=+-≥,所以(]22(1)011k k +∈+,. 11k -≥,所以(]1011k ∈-,. 又1k a +∈*N ,所以221(1)(1)k k a k +++≤≤.故21(1)k a k +=+,即1n k =+时,2n a n =成立.由1,2知,对任意n ∈*N ,2n a n =.(2)方法二:由11a =,24a =,39a =,猜想:2n a n =.下面用数学归纳法证明. 1当1n =,2时,由(1)知2n a n =均成立; 2假设(2)n k k =≥成立,则2k a k =,则1n k =+时 由①得221111112(1)2k k k k a ka k ++⎛⎫+<++<+ ⎪⎝⎭ 即21111(1)122k k k k k a k a k+++++<+<+ ② 由②左式,得2111k k k k k a +-+-<,即321(1)k k a k k k +-<+-,因为两端为整数,则3221(1)1(1)(1)k k a k k k k k +-+--=+-≤.于是21(1)k a k ++≤ ③ 又由②右式,22221(1)21(1)1k k k k k k k k a k k+++-+-+<=. 则231(1)(1)k k k a k k +-+>+.因为两端为正整数,则2431(1)1k k k a k k +-+++≥, 所以4321221(1)11k k k k a k k k k k +++=+--+-+≥. 又因2k ≥时,1k a +为正整数,则21(1)k a k ++≥ ④ 据③④21(1)k a k +=+,即1n k =+时,2n a n =成立. 由1,2知,对任意n ∈*N ,2n a n =.。

2007年江西高考数学试题评析

2007年江西高考数学试题评析

1.补集. 1.周期函数.
1.函数.2.不等式的解法. 1. 两角和与的正弦、余弦、正切、余切. 1. 二项展开式的性质. 1.随机事件的概率.2.互斥事件有一个发生的 概率. 1.抛物线的简单几何性质. 1. 正弦函数、余弦函数的图像和性质. 1.球. 1.充分条件和必要条件.2.利用导数研究函数 单调性和极值. 1.创新意识. 1.椭圆及其标准方程.2.椭圆的简单几何性 质.
二、2007年江西数学试卷各题平均分(表2)
文 题号 13-16 17 18 19 20 21 22 平均分 8.25 5.6 5.54 5.95 3.98 2.78 0.85 科 难度系数 0.52 0.47 0.46 0.50 0.33 0.23 0.06 平均分 10.66 7.18 7.21 7.06 6.2 1.67 3.1 理 科 难度系数 0.66 0.60 0.60 0.59 0.52 0.14 0.22
(4)较难的解答题采用分步设问, 分步给分的设计方法。试卷中后 面的几个解答题往往较难,为了 降低难度,试卷采用分步设问的 办法使其逐步深入,这样即可化 解试题难度,又能合理区分不同 层次的考生.
2.试卷突出理性思维,倡导通性通法
数学思想方法是对数学知识的最高 层次的概括与提炼,是适用于中学数学 全部内容的通法,是高考的核心.转化 与化归的思想、函数与方程的思想、数 形结合的思想、分类与整合的思想,解 析法、数学归纳法、换元法、割补法、 配方法等等是考查的重点;如:理科的 第5题、第6题、第10题、第17题、第20 题、第21题、第22题.文科第8题、第 17题、第20题等.
三、试卷考点分布(表3)
文 科 题号 考 1 2 3 4 5 6 7 8 9 10 11 12
⊕ ⊗

2007年高考数学试题(江西理)含答案

2007年高考数学试题(江西理)含答案

2007年普通高等学校招生全国统一考试(江西卷)理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.化简224(1)ii ++的结果是( )A.2i +B.2i -+C.2i -D.2i --2.321lim 1x x x x →--( )A.等于0B.等于1C.等于3D.不存在3.若πtan 34α⎛⎫-= ⎪⎝⎭,则cot α等于( ) A.2-B.12-C.12D.24.已知n展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于( )A.4 B.5C.6D.75.若π02x <<,则下列命题中正确的是( ) A.3sin πx x < B.3sin πx x >C.224sin πx x < D.224sin πx x >6.若集合{}012M =,,,{}()210210N x y x y x y x y M =-+--∈,≥且≤,,,则N 中元素的个数为( )A.9 B.6C.4D.27.如图,正方体1AC 的棱长为1,过点A 作平面1A BD 的垂线,垂足为点H ,则以下命题中,错误..的命题是( ) A.点H 是1A BD △的垂心 B.AH 垂直平面11CB D C.AH 的延长线经过点1C111BD.直线AH 和1BB 所成角为45o8.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示,盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为1h ,2h ,3h ,4h ,则它们的大小关系正确的是( )A.214h h h >> B.123h h h >>C.324h h h >>D.241h h h >>9.设椭圆22221(0)x y a b a b +=>>的离心率为1e 2=,右焦点为(0)F c ,,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,( )A.必在圆222x y +=内 B.必在圆222x y +=上 C.必在圆222x y +=外D.以上三种情形都有可能10.将一骰子连续抛掷三次,它落地时向上的点数依次..成等差数列的概率为( ) A.19B.112C.115D.11811.设函数()f x 是R 上以5为周期的可导偶函数,则曲线()y f x =在5x =处的切线的斜率为( ) A.15-B.0C.15D.512.设2:()e ln 21xp f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2007年普通高等学校招生全国统一考试(江西卷)理科数学 第II 卷注意事项:第II 卷2页,须用黑色墨水签字笔在答题卡上书写作答.若在试卷题上作答,答案无效.二、填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上. 13.设函数24log (1)(3)y x x =+-≥,则其反函数的定义域为.14.已知数列{}n a 对于任意*p q ∈N ,,有p q p q a a a ++=,若119a =,则36a = .15.如图,在ABC △中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =u u u r u u u u r ,AC nAN =u u u r u u u r,则m n +的值为.16.设有一组圆224*:(1)(3)2()k C x k y k k k -++-=∈N .下列四个命题:A.存在一条定直线与所有的圆均相切 B.存在一条定直线与所有的圆均相交 C.存在一条定直线与所有的圆均不.相交 D.所有的圆均不.经过原点 其中真命题的代号是 .(写出所有真命题的代号)三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数21(0)()2(1)x c cx x c f x k c x -+<<⎧⎪=⎨⎪+<⎩≤在区间(01),内连续,且29()8f c =.(1)求实数k 和c 的值; (2)解不等式()18f x >+. 18.(本小题满分12分)如图,函数π2cos()(0)2y x x ωθθ=+∈R ,≤≤的图象与y轴交于点(0,且在该点处切线的斜率为2-. (1)求θ和ω的值;(2)已知点π02A ⎛⎫⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是PA的中点,当02y =,0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值. 19.(本小题满分12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75. (1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望. 20.(本小题满分12分)右图是一个直三棱柱(以111A B C 为底面)被一平面所截得到的几何体,截面为ABC .已知11111A B B C ==,11190A B C ∠=o ,14AA =,12BB =,13CC =.(1)设点O 是AB 的中点,证明:OC ∥平面111A B C ; (2)求二面角1B AC A --的大小; (3)求此几何体的体积. 21.(本小题满分12分)设动点P 到点(10)A -,和(10)B ,的距离分别为1d 和2d ,2APB θ∠=,且存在常数(01)λλ<<,使得212sin d d θλ=.(1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)过点B 作直线双曲线C 的右支于M N ,两点,试确定λ的范围,使OM ON =0u u u u r u u u rg,其中点O 为坐标原点. 22.(本小题满分14分)设正整数数列{}n a 满足:24a =,且对于任何*n ∈N ,有11111122111n n n na a a a n n ++++<<+-+. (1)求1a ,3a ;(3)求数列{}n a 的通项n a .2007年普通高等学校招生全国统一考试(江西卷)理科数学参考答案一、选择题 1.C 2.B3.A 4.C 5.D 6.C 7.D8.A9.A10.B11.B 12.B11y二、填空题 13.[5)+,∞ 14.4 15.2 16.B D ,三、解答题17.解:(1)因为01c <<,所以2c c <, 由29()8f c =,即3918c +=,12c =. 又因为4111022()1212x x x f x k x -⎧⎛⎫+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+< ⎪⎪⎝⎭⎩≤在12x =处连续,所以215224f k -⎛⎫=+=⎪⎝⎭,即1k =. (2)由(1)得:4111022()12112x x x f x x -⎧⎛⎫+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+< ⎪⎪⎝⎭⎩≤由()1f x >+得,当102x <<12x <<. 当112x <≤时,解得1528x <≤,所以()18f x >+的解集为58x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭. 18.解:(1)将0x =,y =2cos()y x ωθ=+得cos θ=因为02θπ≤≤,所以6θπ=. 又因为2sin()y x ωωθ'=-+,02x y ='=-,6θπ=,所以2ω=, 因此2cos 26y x π⎛⎫=+⎪⎝⎭. (2)因为点02A π⎛⎫ ⎪⎝⎭,,00()Q x y ,是PA的中点,02y =, 所以点P的坐标为022x π⎛-⎝.又因为点P 在2cos 26y x π⎛⎫=+ ⎪⎝⎭的图象上,所以05cos 462x π⎛⎫-= ⎪⎝⎭. 因为02x ππ≤≤,所以075194666x πππ-≤≤, 从而得0511466x ππ-=或0513466x ππ-=. 即023x π=或034x π=.19.解:分别记甲、乙、丙经第一次烧制后合格为事件1A ,2A ,3A , (1)设E 表示第一次烧制后恰好有一件合格,则123123123()()()()P E P A A A P A A A P A A A =++g g g g g g 0.50.40.60.50.60.60.50.40.40.38=⨯⨯+⨯⨯+⨯⨯=.(2)解法一:因为每件工艺品经过两次烧制后合格的概率均为0.3p =, 所以~(30.3)B ξ,, 故30.30.9E np ξ==⨯=.解法二:分别记甲、乙、丙经过两次烧制后合格为事件A B C ,,,则()()()0.3P A P B P C ===,所以3(0)(10.3)0.343P ξ==-=,2(1)3(10.3)0.30.441P ξ==⨯-⨯=, 2(2)30.30.70.189P ξ==⨯⨯=, 3(3)0.30.027P ξ===.于是,()10.44120.18930.0270.9E ξ=⨯+⨯+⨯=. 20.解法一:(1)证明:作1OD AA ∥交11A B 于D ,连1C D .则11OD BB CC ∥∥. 因为O 是AB 的中点, 所以1111()32OD AA BB CC =+==. 则1ODC C 是平行四边形,因此有1OC C D ∥.11A 21C D ⊂平面111C B A 且OC ⊄平面111C B A ,则OC ∥面111A B C .(2)如图,过B 作截面22BA C ∥面111A B C ,分别交1AA ,1CC 于2A ,2C . 作22BH A C ⊥于H ,连CH .因为1CC ⊥面22BA C ,所以1CC BH ⊥,则BH ⊥平面1A C .又因为AB =BC =222AC AB BC AC =⇒=+.所以BC AC ⊥,根据三垂线定理知CH AC ⊥,所以BCH ∠就是所求二面角的平面角.因为2BH =,所以1sin 2BH BCH BC ==∠,故30BCH =o ∠, 即:所求二面角的大小为30o.(3)因为2BH =,所以22221111(12)3322B AAC C AA C C V S BH -==+=g g .1112211111212A B C A BC A B C V S BB -===g g △.所求几何体体积为221112232B AAC C A B C A BC V V V --=+=.解法二:(1)如图,以1B 为原点建立空间直角坐标系,则(014)A ,,,(002)B ,,,(103)C ,,,因为O 是AB 的中点,所以1032O ⎛⎫ ⎪⎝⎭,,, 1102OC ⎛⎫=- ⎪⎝⎭u u u r ,,.易知,(001)n =r,,是平面111A B C 的一个法向量. 因为0OC n =u u u r rg,OC ⊄平面111A B C ,所以OC ∥平面111A B C . (2)(012)AB =--u u u r ,,,(101)BC =u u u r,,,1x设()m x y z =u r,,是平面ABC 的一个法向量,则则0AB m =u u u r u r g ,0BC m =u u u r u r g 得:200y z x z --=⎧⎨+=⎩取1x z =-=,(121)m =-u r,,. 显然,(110)l =r,,为平面11AAC C 的一个法向量.则cos m l m l m l===u r r u r r g u r r g ,,结合图形可知所求二面角为锐角. 所以二面角1B AC A --的大小是30o. (3)同解法一.21.解法一:(1)在PAB △中,2AB =,即222121222cos 2d d d d θ=+-,2212124()4sin d d d d θ=-+,即122d d -==<(常数),点P 的轨迹C 是以A B ,为焦点,实轴长2a =的双曲线.方程为:2211x y λλ-=-. (2)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即2111101λλλλλ-=⇒+-=⇒=-,因为01λ<<,所以λ=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得:2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦, 由题意知:2(1)0k λλ⎡⎤--≠⎣⎦,所以21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x k λλλλ--+=--. 于是:22212122(1)(1)(1)k y y k x x k λλλ=--=--.因为0OM ON =u u u u r u u u rg,且M N ,在双曲线右支上,所以2121222122212(1)0(1)121011231001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>⎪⎪⎪+-+>⇒⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩.由①②知,1223λ<≤. 解法二:(1)同解法一(2)设11()M x y ,,22()N x y ,,MN 的中点为00()E x y ,. ①当121x x ==时,221101MB λλλλλ=-=⇒+-=-,因为01λ<<,所以12λ=; ②当12x x ≠时,22110222211111MN x y x k y x y λλλλλλ⎧-=⎪⎪-⇒=⎨-⎪-=⎪-⎩g . 又001MN BE y k k x ==-.所以22000(1)y x x λλλ-=-; 由2MON π=∠得222002MN x y ⎛⎫+= ⎪⎝⎭,由第二定义得2212()222MN e x x a ⎛⎫+-⎡⎤= ⎪⎢⎥⎣⎦⎝⎭220001(1)21x x x λλ==+---. 所以222000(1)2(1)(1)y x x λλλλ-=--+-.于是由22000222000(1)(1)2(1)(1)y x x y x x λλλλλλλ⎧-=-⎪⎨-=--+-⎪⎩得20(1)23x λλ-=- 因为01x >,所以2(1)123λλ->-,又01λ<<,解得:1223λ<<.由①②知1223λ<≤.22.解:(1)据条件得1111112(1)2n n n n n n a a a a ++⎛⎫+<++<+ ⎪⎝⎭① 当1n =时,由21211111222a a a a ⎛⎫+<+<+ ⎪⎝⎭,即有1112212244a a +<+<+,解得12837a <<.因为1a 为正整数,故11a =. 当2n =时,由33111126244a a ⎛⎫+<+<+ ⎪⎝⎭, 解得3810a <<,所以39a =.(2)方法一:由11a =,24a =,39a =,猜想:2n a n =.下面用数学归纳法证明.1o 当1n =,2时,由(1)知2n a n =均成立; 2o 假设(2)n k k =≥成立,则2k a k =,则1n k =+时由①得221111112(1)2k k k k a ka k ++⎛⎫+<++<+ ⎪⎝⎭ 2212(1)(1)11k k k k k k a k k k +++-⇒<<-+- 22212(1)1(1)(1)11k k k a k k k ++⇒+-<<+++-因为2k ≥时,22(1)(1)(1)(2)0k k k k k +-+=+-≥,所以(]22(1)011k k +∈+,. 11k -≥,所以(]1011k ∈-,. 又1k a +∈*N ,所以221(1)(1)k k a k +++≤≤. 故21(1)k a k +=+,即1n k =+时,2n a n =成立. 由1o ,2o知,对任意n ∈*N ,2n a n =.(2)方法二:由11a =,24a =,39a =,猜想:2n a n =.下面用数学归纳法证明.1o 当1n =,2时,由(1)知2n a n =均成立;2o 假设(2)n k k =≥成立,则2k a k =,则1n k =+时 由①得221111112(1)2k k k k a ka k ++⎛⎫+<++<+ ⎪⎝⎭ 即21111(1)122k k k k k a k a k+++++<+<+ ② 由②左式,得2111k k k k k a +-+-<,即321(1)k k a k k k +-<+-,因为两端为整数, 则3221(1)1(1)(1)k k a k k k k k +-+--=+-≤.于是21(1)k a k ++≤ ③ 又由②右式,22221(1)21(1)1k k k k k k k k a k k +++-+-+<=. 则231(1)(1)k k k a k k +-+>+.因为两端为正整数,则2431(1)1k k k a k k +-+++≥, 所以4321221(1)11k k k k a k k k k k +++=+--+-+≥. 又因2k ≥时,1k a +为正整数,则21(1)k a k ++≥ ④据③④21(1)k a k +=+,即1n k =+时,2n a n =成立.由1o ,2o 知,对任意n ∈*N ,2n a n =.。

2007年江西高考数学模拟试卷及参考答案(

2007年江西高考数学模拟试卷及参考答案(

2007年江西高考数学模拟试卷及参考答案(文科卷5)总分:150分 时量:120分钟一、选择题 :1.设全集U={0,1,2,3,4},集合A={0,2,4},B={0,1,3},则( ) (A )A ∪C U B=U (B )CUA ∩B=∅ (C )C U A ∩C U B=U (D )C U A ∩C U B=∅2.已知函数y=f(x)的反函数为f -1(x)=2x+1,则f(1)等于( ) (A )0 (B )1 (C )-1 (D )43.在等比数列{a n }中,a 1+a 2=1,a 3+a 4=9,那么a 4+a 5等于( ) (A )27 (B )-27 (C )81或-36 (D )27或-274.在△ABC 中,∠A=60°,b=1,这个三角形的面积为3,则ABC 外接圆的直径是( )(A )3392 (B )3326 (C )33 (D )2295.[x]表示不超过x 的最大整数,(例如[5.5]=5,[-5.5]=-6),则不等式[x]2-5[x]+6≤0的解集是( )(A )(2,3) (B )[)4,2 (C )[2,3] (D )[2,4]6.抛物线y 2=4x 按向量e 平移后的焦点坐标为(3,2),则平移后的抛物线的顶点坐标为( ) (A )(4,2) (B )(2,2) (C )(-2,-2) (D )(2,3)7.线段AB 的端点A 、B 到面a 的距离分别是30cm 和50cm ,则线段AB 中点M 到平面a 的距离为( )(A )40cm (B )10cm (C )80cm (D )40cm 或10cm8.已知映射f :A →B ,其中A=B=R ,对应法则f :y=-22x +2x+1,对于实数K ∈B ,在集中A 中不存在原象,则k 的取值范围是( )(A )k>1 (B )k ≥1 (C )k<1 (D )k ≤19.圆x 2+y 2-2x -6y+9=0关于直线x -y -1=0对称的曲线方程为( )(A )x 2+y 2+2x+6y+9=0 (B )x 2+y 2-8x+15=0(C )x 2+y 2-6x -2y+9=0 (D )x 2+y 2-8x -15=0 2x (x ≤1)10.已知函数f(x)= ,则函数y=f(1-x)的图象是( ) 21log x (x>1)二、填空题11.已知函数f(x)=2x x -2,则使得数列)()(+∈⎭⎬⎫⎩⎨⎧+N n q pn n f 成等差数列的非零常数p 与q 所满足的关系式为 .12.已知向量a = e 1-e 2,b = 4 e 1+ 3 e 2,其中 e 1 =(0,1), e 2=(0, 1) ,则 a 与 b 的夹角的余弦值等于 。

2007年全国统一高考数学试卷(文科)(全国卷ⅰ)

2007年全国统一高考数学试卷(文科)(全国卷ⅰ)

2007年全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设S={x|2x+1>0},T={x|3x﹣5<0},则S∩T=()A.∅B.C.D.2.(5分)α是第四象限角,cosα=,则sinα=()A.B.C.D.3.(5分)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向4.(5分)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.5.(5分)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种B.48种C.96种D.192种6.(5分)下面给出的四个点中,位于表示的平面区域内的点是()A.(0,2) B.(﹣2,0)C.(0,﹣2)D.(2,0)7.(5分)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.8.(5分)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.49.(5分)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件10.(5分)函数y=2cos2x的一个单调增区间是()A.B.C.D.11.(5分)曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D.12.(5分)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8二、填空题(共4小题,每小题5分,满分20分)13.(5分)从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499~.14.(5分)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=.15.(5分)正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的体积为.16.(5分)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.三、解答题(共6小题,满分80分)17.(10分)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获的利润不超过650元的概率.19.(12分)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.20.(12分)设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.21.(12分)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.22.(12分)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.2007年全国统一高考数学试卷(文科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2007•全国卷Ⅰ)设S={x|2x+1>0},T={x|3x﹣5<0},则S∩T=()A.∅B.C.D.【分析】集合S、T是一次不等式的解集,分别求出再求交集.【解答】解:S={x|2x+1>0}={x|x>﹣},T={x|3x﹣5<0}={x|x<},则S∩T=,故选D.2.(5分)(2007•全国卷Ⅰ)α是第四象限角,cosα=,则sinα=()A.B.C.D.【分析】根据同角的三角函数之间的关系sin2+cos2α=1,得到余弦的值,又由角在第四象限,确定符号.【解答】解:∵α是第四象限角,∴sinα=,故选B.3.(5分)(2007•全国卷Ⅰ)已知向量,,则与()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向【分析】根据向量平行垂直坐标公式运算即得.【解答】解:∵向量,,得,∴⊥,故选A.4.(5分)(2007•全国卷Ⅰ)已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则双曲线方程为()A.B.C.D.【分析】根据焦点坐标求得c,再根据离心率求得a,最后根据b=求得b,双曲线方程可得.【解答】解.已知双曲线的离心率为2,焦点是(﹣4,0),(4,0),则c=4,a=2,b2=12,双曲线方程为,故选A.5.(5分)(2007•全国卷Ⅰ)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种B.48种C.96种D.192种【分析】根据题意,先分析甲,有C42种,再分析乙、丙,有C43•C43种,进而由乘法原理计算可得答案.【解答】解;根据题意,甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,有C42种,乙、丙各选修3门,有C43•C43种,则不同的选修方案共有C42•C43•C43=96种,故选C.6.(5分)(2007•全国卷Ⅰ)下面给出的四个点中,位于表示的平面区域内的点是()A.(0,2) B.(﹣2,0)C.(0,﹣2)D.(2,0)【分析】本题考查的是不等式所表示的平面区域内点所满足的条件的问题,解决此问题只需将点代入验证即可【解答】解:将四个点的坐标分别代入不等式组,解可得,满足条件的是(0,﹣2),故选C.7.(5分)(2007•全国卷Ⅰ)如图,正棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为()A.B.C.D.【分析】先通过平移将两条异面直线平移到同一个起点B,得到的锐角∠A1BC1就是异面直线所成的角,在三角形中A1BC1用余弦定理求解即可.【解答】解.如图,连接BC1,A1C1,∠A1BC1是异面直线A1B与AD1所成的角,设AB=a,AA1=2a,∴A1B=C1B=a,A1C1=a,∠A1BC1的余弦值为,故选D.8.(5分)(2007•全国卷Ⅰ)设a>1,函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为,则a=()A.B.2 C.D.4【分析】因为a>1,函数f(x)=log a x是单调递增函数,最大值与最小值之分别为log a2a、log a a=1,所以log a2a﹣log a a=,即可得答案.【解答】解.∵a>1,∴函数f(x)=log a x在区间[a,2a]上的最大值与最小值之分别为log a2a,log a a,∴log a2a﹣log a a=,∴,a=4,故选D9.(5分)(2008•上海)f(x),g(x)是定义在R上的函数,h(x)=f(x)+g (x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A.充要条件B.充分而不必要的条件C.必要而不充分的条件D.既不充分也不必要的条件【分析】本题主要是抽象函数奇偶性的判断,只能根据定义,而要否定奇偶性,一般用特值.【解答】解.若“f(x),g(x)均为偶函数”,则有f(﹣x)=f(x),g(﹣x)=g (x),∴h(﹣x)=f(﹣x)+g(﹣x)=f(x)+g(x)=h(x),∴“h(x)为偶函数”,而反之取f(x)=x2+x,g(x)=2﹣x,h(x)=x2+2是偶函数,而f(x),g(x)均不是偶函数”,10.(5分)(2007•全国卷Ⅰ)函数y=2cos2x的一个单调增区间是()A.B.C.D.【分析】要进行有关三角函数性质的运算,必须把三角函数式变为y=Asin(ωx+φ)的形式,要先把函数式降幂,降幂用二倍角公式.【解答】解:函数y=2cos2x=1+cos2x,由﹣π+2kπ≤2x≤2kπ,解得﹣π+kπ≤x≤kπ,k为整数,∴k=1即有它的一个单调增区是,故选D.11.(5分)(2007•全国卷Ⅰ)曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D.【分析】(1)首先利用导数的几何意义,求出曲线在P(x0,y0)处的切线斜率,进而得到切线方程;(2)利用切线方程与坐标轴直线方程求出交点坐标(3)利用面积公式求出面积.【解答】解:若y=x3+x,则y′|x=1=2,即曲线在点处的切线方程是,它与坐标轴的交点是(,0),(0,﹣),围成的三角形面积为,故选A.12.(5分)(2007•全国卷Ⅰ)抛物线y2=4x的焦点为F,准线为l,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是()A.4 B.C.D.8【分析】先根据抛物线方程求出焦点坐标和准线方程,进而可得到过F且斜率为的直线方程然后与抛物线联立可求得A的坐标,再由AK⊥l,垂足为K,可求得K的坐标,根据三角形面积公式可得到答案.【解答】解:∵抛物线y2=4x的焦点F(1,0),准线为l:x=﹣1,经过F且斜率为的直线与抛物线在x轴上方的部分相交于点A(3,AK⊥l,垂足为K(﹣1,2),∴△AKF的面积是4故选C.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2007•全国卷Ⅰ)从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499~.【分析】~【解答】解:从自动打包机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g):492496494495498497501502504496 497503506508507492496500501499~14.(5分)(2007•全国卷Ⅰ)函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x对称,则f(x)=3x(x∈R).【分析】由题意推出f(x)与函数y=log3x(x>0)互为反函数,求解即可.【解答】解.函数y=f(x)的图象与函数y=log3x(x>0)的图象关于直线y=x 对称,则f(x)与函数y=log3x(x>0)互为反函数,f(x)=3x(x∈R)故答案为:3x(x∈R)15.(5分)(2007•全国卷Ⅰ)正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的体积为.【分析】先确定球心位置,再求球的半径,然后可求球的体积.【解答】解:正四棱锥S﹣ABCD的底面边长和各侧棱长都为,点S、A、B、C、D都在同一个球面上,则该球的球心恰好是底面ABCD的中心,球的半径是1,体积为.故答案为:16.(5分)(2007•全国卷Ⅰ)等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.【分析】先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.【解答】解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为三、解答题(共6小题,满分80分)17.(10分)(2007•全国卷Ⅰ)设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA(Ⅰ)求B的大小;(Ⅱ)若,c=5,求b.【分析】(1)根据正弦定理将边的关系化为角的关系,然后即可求出角B的正弦值,再由△ABC为锐角三角形可得答案.(2)根据(1)中所求角B的值,和余弦定理直接可求b的值.【解答】解:(Ⅰ)由a=2bsinA,根据正弦定理得sinA=2sinBsinA,所以,由△ABC为锐角三角形得.(Ⅱ)根据余弦定理,得b2=a2+c2﹣2accosB=27+25﹣45=7.所以,.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获的利润不超过650元的概率.【分析】(1)3位购买该商品的顾客中至少有1位采用一次性付款的对立事件是3位顾客中无人采用一次性付款,根据独立重复试验公式得到3位顾客中无人采用一次性付款的概率,再根据对立事件的公式得到结论.(2)3位顾客每人购买1件该商品,顾客的付款方式为一次性付款和分期付款,且购买该商品的3位顾客中有1位采用分期付款,根据互斥事件的公式得到结果.【解答】解:(Ⅰ)记A表示事件:“3位顾客中至少1位采用一次性付款”,则表示事件:“3位顾客中无人采用一次性付款”.P(3.(Ⅱ)记B表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.B0表示事件:“购买该商品的3位顾客中无人采用分期付款”.B1表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则B=B0+B1.P(B03P(B1)=C31×2×P(B)=P(B0+B1)=P(B0)+P(B1+19.(12分)(2007•全国卷Ⅰ)四棱锥S﹣ABCD中,底面ABCD为平行四边形,侧面SBC⊥底面ABCD,已知∠ABC=45°,AB=2,BC=2,SA=SB=.(Ⅰ)证明:SA⊥BC;(Ⅱ)求直线SD与平面SBC所成角的大小.【分析】解法一:(1)作SO⊥BC,垂足为O,连接AO,说明SO⊥底面ABCD.利用三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,设AD∥BC,连接SE.说明∠ESD为直线SD与平面SBC所成的角,通过,求出直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,通过证明,推出SA⊥BC.(Ⅱ).与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC 的法向量,利用α与β互余.通过,,推出直线SD与平面SBC所成的角为.【解答】解法一:(1)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥底面ABCD.因为SA=SB,所以AO=BO,又∠ABC=45°,故△AOB为等腰直角三角形,AO⊥BO,由三垂线定理,得SA⊥BC.(Ⅱ)由(Ⅰ)知SA⊥BC,依题设AD∥BC,故SA⊥AD,由,,.又,作DE⊥BC,垂足为E,则DE⊥平面SBC,连接SE.∠ESD为直线SD与平面SBC所成的角.所以,直线SD与平面SBC所成的角为.解法二:(Ⅰ)作SO⊥BC,垂足为O,连接AO,由侧面SBC⊥底面ABCD,得SO⊥平面ABCD.因为SA=SB,所以AO=BO.又∠ABC=45°,△AOB为等腰直角三角形,AO⊥OB.如图,以O为坐标原点,OA为x轴正向,建立直角坐标系O﹣xyz,因为,,又,所以,,.S(0,0,1),,,,所以SA⊥BC.(Ⅱ),.与的夹角记为α,SD与平面ABC所成的角记为β,因为为平面SBC的法向量,所以α与β互余.,,所以,直线SD与平面SBC所成的角为.20.(12分)(2007•全国卷Ⅰ)设函数f(x)=2x3+3ax2+3bx+8c在x=1及x=2时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对任意的x∈[0,3],都有f(x)<c2成立,求c的取值范围.【分析】(1)依题意有,f'(1)=0,f'(2)=0.求解即可.(2)若对任意的x∈[0,3],都有f(x)<c2成立⇔f(x)max<c2在区间[0,3]上成立,根据导数求出函数在[0,3]上的最大值,进一步求c的取值范围.【解答】解:(Ⅰ)f'(x)=6x2+6ax+3b,因为函数f(x)在x=1及x=2取得极值,则有f'(1)=0,f'(2)=0.即解得a=﹣3,b=4.(Ⅱ)由(Ⅰ)可知,f(x)=2x3﹣9x2+12x+8c,f'(x)=6x2﹣18x+12=6(x﹣1)(x﹣2).当x∈(0,1)时,f'(x)>0;当x∈(1,2)时,f'(x)<0;当x∈(2,3)时,f'(x)>0.所以,当x=1时,f(x)取得极大值f(1)=5+8c,又f(0)=8c,f(3)=9+8c.则当x∈[0,3]时,f(x)的最大值为f(3)=9+8c.因为对于任意的x∈[0,3],有f(x)<c2恒成立,所以9+8c<c2,解得c<﹣1或c>9,因此c的取值范围为(﹣∞,﹣1)∪(9,+∞).21.(12分)(2007•全国卷Ⅰ)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.【分析】(Ⅰ)设{a n}的公差为d,{b n}的公比为q,根据等比数列和等差数列的通项公式,联立方程求得d和q,进而可得{a n}、{b n}的通项公式.(Ⅱ)数列的通项公式由等差和等比数列构成,进而可用错位相减法求得前n项和S n.【解答】解:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,则依题意有q>0且解得d=2,q=2.所以a n=1+(n﹣1)d=2n﹣1,b n=q n﹣1=2n﹣1.(Ⅱ),,①S n=,②①﹣②得S n=1+2(++…+)﹣,则===.22.(12分)(2007•全国卷Ⅰ)已知椭圆的左右焦点分别为F1、F2,过F1的直线交椭圆于B、D两点,过F2的直线交椭圆于A、C两点,且AC⊥BD,垂足为P(Ⅰ)设P点的坐标为(x0,y0),证明:;(Ⅱ)求四边形ABCD的面积的最小值.【分析】(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,由此可以证出.(Ⅱ)设BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),由题意知|BD|=再求出|AC|=,由此可以求出四边形ABCD的面积的最小值.【解答】证明:(Ⅰ)椭圆的半焦距,由AC⊥BD知点P在以线段F1F2为直径的圆上,故x02+y02=1,所以,.(Ⅱ)(ⅰ)当BD的斜率k存在且k≠0时,BD的方程为y=k(x+1),代入椭圆方程,并化简得(3k2+2)x2+6k2x+3k2﹣6=0.设B(x1,y1),D(x2,y2),则,|BD|=;因为AC与BD相交于点P,且AC的斜率为,所以,|AC|=.四边形ABCD的面积•|BD||AC|=.当k2=1时,上式取等号.(ⅱ)当BD的斜率k=0或斜率不存在时,四边形ABCD的面积S=4.综上,四边形ABCD的面积的最小值为.参与本试卷答题和审题的老师有:wdlxh;涨停;wkqd;wsj1012;danbo7801;blue;minqi5;wukexing;qiss;zhwsd;吕静;zlzhan(排名不分先后)菁优网2017年2月4日。

2007年普通高等学校招生全国统一考试数学(理)(江西卷).doc

2007年普通高等学校招生全国统一考试数学(理)(江西卷).doc

2007年普通高等学校招生全国统一考试数学(理)(江西卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷l至2页,第Ⅱ卷3至4页,共150分.第Ⅰ卷考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回.参考公式:如果事件A、B互斥,那么P(A+B)=P(A)+P(B)球的表面积公式:S=4πR2其中R表示球的半径如果事件A、B相互独立,那么P(A·B)=P(A)·P(B)球的体积公式V=πR3其中R表示球的半径如果事件A在一次试验中发生的概率是P,那么n次独立重复试验中恰好发生k次的概率P n(k)=C P(1一P)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.化简的结果是A.2+i B.-2+i C.2-i D.-2-i2.A.等于0 B.等于l C.等于3 D.不存在3.若tan(一α)=3,则cot α等于A.-2 B.-C. D.2 4.已知(+)n展开式中,各项系数的和与其各项二项式系数的和之比为64,则n等于A.4 B.5 C.6D.75.若0<x<,则下列命题中正确的是A.sin x< B.sin x> C.sin x< D.sin x>6.若集合M={0,l,2},N={(x,y)|x-2y+1≥0且x-2y-1≤0,x,y ∈M},则N中元素的个数为A.9 B.6 C.4D.27.如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H.则以下命题中,错.误.的命题是A.点H是△A1BD的垂心B.AH垂直平面CB1D1C.AH的延长线经过点C1 D.直线AH和BB1所成角为45°8.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示.盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的高度从左到右依次为h1,h2,h3,h4,则它们的大小关系正确的是A.h2>h1>h4 B.h1>h2>h3C.h3>h2>h4D.h2>h4>h19.设椭圆的离心率为e=,右焦点为F(c,0),方程ax2+bx-c=0的两个实根分别为x1和x2,则点P(x1,x2)A.必在圆x2+y2=2内B.必在圆x2+y2=2上C.必在圆x2+y2=2外D.以上三种情形都有可能10.将一个骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为A.B.C.D .11.设函数f(x)是R上以5为周期的可导偶函数,则曲线y=f(x)在x=5处的切线的斜率为A.-B.0 C.D.5 12.设p:f(x)=e x+In x+2x2+mx+l在(0,+∞)内单调递增,q:m≥-5,则p是q的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件第Ⅱ卷注意事项:第Ⅱ卷2页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.二.填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上.13.设函数y=4+log2(x-1)(x≥3),则其反函数的定义域为.14.已知数列{a n}对于任意p,q ∈N*,有a p+a q=a p+q,若a1=,则a36=.15.如图,在△ABC中,点O是BC的中点,过点O的直线分别交直线AB、AC于不同的两点M、N,若= m,=n,则m+n的值为.16.设有一组圆C k:(x-k+1)2+(y-3k)2=2k4 (k∈N*).下列四个命题:A.存在一条定直线与所有的圆均相切B.存在一条定直线与所有的圆均相交C.存在一条定直线与所有的圆均不.相交D.所有的圆均不.经过原点其中真命题的代号是.(写出所有真命题的代号) 三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知函数在区间(0,1)内连续,且.(1)求实数k和c的值;(2)解不等式18.(本小题满分12分)如图,函数y=2cos(ωx+θ) (x∈R,0≤θ≤)的图象与y轴交于点(0,),且在该点处切线的斜率为一2.(1)求θ和ω的值;(2)已知点A(,0),点P是该函数图象上一点,点Q(x0,y0)是PA的中点,当y0=,x∈[,π]时,求x0的值.19.(本小题满分12分)某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,两次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5, 0.6, 0.4.经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75.(1)求第一次烧制后恰有一件产品合格的概率;(2)经过前后两次烧制后,合格工艺品的个数为ξ,求随机变量ξ的期望.20.(本小题满分12分)如图是一个直三棱柱(以A1B1C1为底面)被一平面所截得到的几何体,截面为ABC.已知A1B1=B1C1=l,∠A l B l C1=90°, AA l=4,BB l=2,CC l=3.(1)设点O是AB的中点,证明:OC∥平面A1B1C1;(2)求二面角B—AC—A1的大小;(3)求此几何体的体积.21.(本小题满分12分)设动点P到点A(-l,0)和B(1,0)的距离分别为d1和d2,∠APB=2θ,且存在常数λ(0<λ<1),使得d1d2 sin2θ=λ.(1)证明:动点P的轨迹C为双曲线,并求出C的方程;(2)过点B作直线交双曲线C的右支于M、N两点,试确定λ的范围,使·=0,其中点O为坐标原点.有22.(本小题满分14分)设正整数数列{a n}满足:a2=4,且对于任何n∈N*,Array.(1)求a1,a3;(2)求数列{ a n }的通项a n .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007年普通高等学校招生全国统一考试(江西卷)
文科数学
本试卷分第I卷(选择题)和第II卷(非选择题)两部分.第I卷1至2页,第II卷3至4页,共150分.
第I卷
考生注意:
1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第II卷用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.
3.考试结束,监考员将试题卷、答题卡一并收回.
参考公式:
如果事件互斥,那么球的表面积公式
如果事件相互独立,那么其中表示球的半径
球的体积公式
如果事件在一次试验中发的概率是,那么
次独立重复试验中恰好发生次的概率
其中表示球的半径
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,
只有一项是符合题目要求的.
1.若集合,,则为()
A.B.C.D.
解析:=,选B.
2.函数的最小正周期为()
A.B.C.D.
解析:选B.
3.函数的定义域为()
A.B.C.D.
解析:选A.
4.若,,则等于()
A.B.C.D.
解析:所以选D.
5.设,
则的值为()
A.B.C.D.
解析:令=1,右边为;左边把代入
,选A.
6.一袋中装有大小相同,编号分别为的八个球,从中有放回
...地每次取一个球,
共取2次,则取得两个球的编号和不小于
...15的概率为()
A.B.C.D.
解析:从中有放回地取2次,所取号码共有8*8=64种,其中和不小于15的有3种,分别是(7,8),(8,7),(8,8),故所求概率为选D.
7.连接抛物线的焦点与点所得的线段与抛物线交于点,
设点为坐标原点,则三角形的面积为()
A.B.C.D.
解析:线段所在直线方程与抛物线交于则:
,选B.
8.若,则下列命题正确的是()
A.B.C.D.
解析:显然A、C、D不正确,选B. 9.四面体的外接球球心在上,且,,
在外接球面上两点间的球面距离是()
A.B.C.D.
解析:由球心在上,且,得球的半径R=1,
选C.
10.设在内单调递增,,则是的()
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件
解析:在内单调递增,则在上恒成立。

;反之,,在内单调递增,选C.
11.四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、杯口半径相等的圆口酒杯,如图所示. 盛满酒后他们约定:先各自饮杯中酒的一半.设剩余
酒的高度从左到右依次为,,,,则它们的大小关系正确的是()
A.B.C.D.
解析:观察图形可知体积减少一半后,下部越细剩余酒的高度越高,
最高为,最低为,应有. 选A.
12.设椭圆的离心率为,右焦点为,方程的两个实根分别为和,则点()
A.必在圆上B.必在圆外
C.必在圆内D.以上三种情形都有可能
解析:由=得a=2c,b=,所以,所以点到圆心(0,0)的距离为

所以点P在圆内,选C.
第II卷
注意事项:
第II卷2页,须要黑色墨水签字笔在答题卡上书写作答,若在试卷题上作答,答案无效.
二、填空题:本大题共4小题,每小题4分,共16分.请把答案填在答题卡上.13.在平面直角坐标系中,正方形的对角线的两端点
分别为,,则

解析:
14.已知等差数列的前项和为,若,则.
解析:由题意得
15.已知函数存在反函数,若函数的图象经过点,则函数的图象必经过点.
解析:若函数的图象经过点,则有
所以函数的图象必经过点.
16.如图,正方体的棱长为1,过点A作平面的垂线,垂足为点.有下列四个命题
A.点是的垂心B.垂直平面
C.二面角的正切值为
D.点到平面的距离为
其中真命题的代号是.(写出所有真命题的代号)
解析:因为三棱锥A—是正三棱锥,故顶点A在底面的射映是底面中心,A正确;
面∥面,而AH垂直平面,所以AH垂直平面,B正确;
连接即为二面角的平面角,
C正确; 对于D, 连接面,故点是
的三等分点,故点到平面的距离为从而D错.
则应填A,B,C.
三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)
已知函数满足.
(1)求常数的值;
(2)解不等式.
解:(1)因为,所以;由,即,.
(2)由(1)得
由得,
当时,解得,
当时,解得,
所以的解集为.
18.(本小题满分12分) 如图,函数
的图象与
轴相交于点

且该函数的最小正周期为. (1)求和的值; (2)已知点
,点
是该函数图象上一点,点

的中点,当

时,求
的值.
解:(1)将,代入函数中得,
因为
,所以. 由已知
,且
,得

(2)因为点,是的中点,.
所以点的坐标为.
又因为点在的图象上,且,所以,
,从而得
或,



19.(本小题满分12分)
栽培甲、乙两种果树,先要培育成苗..,然后再进行移栽.已知甲、乙两种果树成苗.. 的概率分别为

,移栽后成活..
的概率分别为,.
(1)求甲、乙两种果树至少有一种果树成苗..的概率; (2)求恰好有一种果树能培育成苗..且移栽成活..的概率. 解:分别记甲、乙两种果树成苗为事件

;分别记甲、乙两种果树苗移栽成活
为事件


,,


(1)甲、乙两种果树至少有一种成苗的概率为

(2)解法一:分别记两种果树培育成苗且移栽成活为事件,
则,.
恰好有一种果树培育成苗且移栽成活的概率为

解法二:恰好有一种果树栽培成活的概率为

20.(本小题满分12分)
右图是一个直三棱柱(以为底面)被一平面所截得到的几何体,截面为.已知,,,,.
(1)设点是的中点,证明:平面;
(2)求与平面所成的角的大小;
(3)求此几何体的体积.
解法一:
(1)证明:作交于,连.
则,
因为是的中点,
所以.
则是平行四边形,因此有,
平面,且平面
则面.
(2)解:如图,过作截面面,分别交,于,,
作于,
因为平面平面,则面.
连结,则就是与面所成的角.
因为,,所以.
与面所成的角为.
(3)因为,所以.


所求几何体的体积为.
解法二:
(1)证明:如图,以
为原点建立空间直角坐标系,则



因为是的中点,所以,

易知,是平面
的一个法向量. 由且平面

平面

(2)设与面
所成的角为.
求得
,.
设是平面的一个法向量,则由得,
取得:

又因为
所以,

则.
所以与面所成的角为.
(3)同解法一
21.(本小题满分12分)
设为等比数列,,.
(1)求最小的自然数,使;
(2)求和:.
解:(1)由已知条件得,
因为,所以,使成立的最小自然数.
(2)因为,…………①
,…………②
得:。

所以.
22.(本小题满分14分)
设动点到点和的距离分别为和,,且存在常数,使得.
(1)证明:动点的轨迹为双曲线,并求出的方程;
(2)如图,过点的直线与双曲线的右支
交于两点.问:是否存在,使
是以点为直角顶点的等腰直角三角形?
若存在,求出的值;若不存在,说明理由.
解:(1)在中,
(小于的常数)
故动点的轨迹是以,为焦点,实轴长的双曲线.
方程为.
(2)方法一:在中,设,,,.假设为等腰直角三角形,则
由②与③得,

由⑤得,
,,
故存在满足题设条件.
方法二:(1)设为等腰直角三角形,依题设可得
11 /
11 所以,. 则.① 由,可设, 则,. 则.② 由①②得.③ 根据双曲线定义可得,. 平方得:.④ 由③④消去可解得, 故存在满足题设条件.。

相关文档
最新文档