2019版中考数学一轮复习 第7课时 一元一次不等式(组)教案
《一元一次不等式组的解法 》 教案精品 2022年数学
9.3 一元一次不等式组第1课时 一元一次不等式组的解法1.理解一元一次不等式组及其解集的概念; 2.掌握一元一次不等式组的解法;(重点)3.会利用数轴表示一元一次不等式组的解集.(难点)一、情境导入你能列出上面的不等式并将其解集在数轴上表示出来吗? 二、合作探究探究点一:在数轴上表示不等式组的解集不等式组⎩⎪⎨⎪⎧x <3,x ≥1的解集在数轴上表示为( )解析:把不等式组中每个不等式的解集在数轴上表示出来,它们的公共局部是1≤x <3.应选C.方法总结:利用数轴确定不等式组的解集,如果不等式组由两个不等式组成,其公共局部在数轴上方应当是有两根横线穿过.探究点二:解一元一次不等式组解以下不等式组,并把它们的解集在数轴上表示出来:(1)⎩⎪⎨⎪⎧2x -3≥1,x +2<2x ; (2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,x 4≥x -13.解析:先求出不等式组中每一个不等式的解集,再求它们的公共局部.解:(1)⎩⎪⎨⎪⎧2x -3≥1,①x +2<2x .②解不等式①,得x ≥2,解不等式②,得x >2.所以这个不等式组的解集为x >2.将不等式组的解集在数轴上表示如下:(2)⎩⎪⎨⎪⎧3〔x +2〕>x +8,①x 4≥x -13.②解不等式①,得x >1,解不等式②,得x ≤4. 所以这个不等式组的解集是1<x ≤4. 将不等式组的解集在数轴上表示如下:方法总结:解一元一次不等式组的一般步骤:先分别求出不等式组中每一个不等式的解集,并把它们的解集在数轴上表示出来,然后利用数轴确定这几个不等式解集的公共局部.也可利用口诀确定不等式组的解集:大大取较大,小小取较小,大小小大中间找,大大小小无处找.探究点三:求不等式组的特殊解求不等式组⎩⎪⎨⎪⎧2-x ≥0,x -12-2x -13<13的整数解.解析:分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x 的整数值即可.解:⎩⎪⎨⎪⎧2-x ≥0,①x -12-2x -13<13.②解不等式①,得x ≤2,解不等式②,得x >-3.故此不等式组的解集为-3<x ≤2,x 的整数解为-2,-1,0,1,2.方法总结:求不等式组的特殊解时,先解每一个不等式,求出不等式组的解集,然后根据题目要求确定特殊解.确定特殊解时也可以借助数轴.探究点四:根据不等式组的解集求字母的取值范围假设不等式组⎩⎪⎨⎪⎧x +a ≥0,1-2x >x -2无解,那么实数a 的取值范围是( )A .a ≥-1B .a <-1C .a ≤1D .a ≤-1解析:解第一个不等式得x ≥-a ,解第二个不等式得x <1.因为不等式组无解,所以-a ≥1,解得a ≤-1.应选D.方法总结:根据不等式组的解集求字母的取值范围,可按以下步骤进行:①解每一个不等式,把解集用数字或字母表示;②根据条件即不等式组的解集情况,列出新的不等式.这时一定要注意是否包括边界点,可以进行检验,看有无边界点是否满足题意;③解这个不等式,求出字母的取值范围.三、板书设计一元一次不等式组⎩⎪⎨⎪⎧概念解法不等式组的解集⎩⎪⎨⎪⎧利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的根底之上,解不等式组时,先解每一个不等式,再确定各个不等式的解集的公共局部.教学中可以把利用数轴与利用口诀确定不等式组的解集结合起来,互相验证15.1.2 分式的根本性质1.通过类比分数的根本性质,说出分式的根本性质,并能用字母表示.(重点) 2.理解并掌握分式的根本性质和符号法那么.(难点)3.理解分式的约分、通分的意义,明确分式约分、通分的理论依据.(重点) 4.能正确、熟练地运用分式的根本性质,对分式进行约分和通分.(难点)一、情境导入中国古代的数学论著中就有对“约分〞的记载,如?九章算术?中就曾记载“约分术〞,并给出了详细的约分方法,这节课我们就来学习分式化简的相关知识,下面先来探索分式的根本性质.二、合作探究探究点一:分式的根本性质【类型一】 利用分式的根本性质对分式进行变形以下式子从左到右的变形一定正确的选项是( )A.a +3b +3=a b B.a b =acbcC.3a 3b =a bD.a b =a 2b2 解析:A 中在分式的分子与分母上同时加上3不符合分式的根本性质,故A 错误;B 中当c =0时不成立,故B 错误;C 中分式的分子与分母同时除以3,分式的值不变,故C 正确;D 中分式的分子与分母分别乘方,不符合分式的根本性质,故D 错误;应选C.方法总结:考查分式的根本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.【类型二】 不改变分式的值,将分式的分子、分母中各项系数化为整数不改变分式0.2x +12+0.5x的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A.2x +12+5xB.x +54+x C.2x +1020+5x D.2x +12+x解析:利用分式的根本性质,把0.2x +12+0.5x 的分子、分母都乘以10得2x +1020+5x .应选C.方法总结:观察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需根据分式的根本性质让分子和分母同乘以某一个数即可.【类型三】 分式的符号法那么不改变分式的值,使以下分式的分子和分母都不含“-〞号. (1)-3b 2a ;(2)5y -7x 2;(3)-a -2b 2a +b. 解析:在分子的符号,分母的符号,分式本身的符号三者当中同时改变其中的两个,分式的值不变.解:(1)原式=-3b 2a ;(2)原式=-5y 7x 2;(3)原式=-a +2b 2a +b.方法总结:这类题目容易出现的错误是把分子的符号,分母的项的符号,特别是首项的符号当成分子或分母的符号.探究点二:最简分式、分式的约分和通分 【类型一】 判定分式是否是最简分式以下分式是最简分式的是( ) A.2a 2+a ab B.6xy 3aC.x 2-1x +1D.x 2+1x +1解析:A 中该分式的分子、分母含有公因式a ,那么它不是最简分式.错误;B 中该分式的分子、分母含有公因数3,那么它不是最简分式.错误;C 中分子为(x +1)(x -1),所以该分式的分子、分母含有公因式(x +1),那么它不是最简分式.错误;D 中该分式符合最简分式的定义.正确.应选D.方法总结:最简分式的标准是分子,分母中不含公因式.判断的方法是把分子、分母分解因式,并且观察有无公因式.【类型二】 分式的约分约分:(1)-5a 5bc 325a 3bc 4;(2)x 2-2xyx 3-4x 2y +4xy 2. 解析:先找分子、分母的公因式,然后根据分式的根本性质把公因式约去. 解:(1)-5a 5bc 325a 3bc 4=5a 3bc 3〔-a 2〕5a 3bc 3·5c =-a25c; (2)x 2-2xy x 3-4x 2y +4xy 2=x 〔x -2y 〕x 〔x -2y 〕2=1x -2y. 方法总结:约分的步骤:(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.【类型三】 分式的通分通分: (1)b 3a 2c 2,c -2ab ,a5cb 3; (2)1a 2-2a ,a a +2,1a 2-4. 解析:确定最简公分母再通分.解:(1)最简公分母为30a 2b 2c 2,b 3a 2c 2=10b 430a 2b 3c 2,c -2ab =-15ab 3c 330a 2b 3c 2,a 5cb 3=6a 3c30a 2b 3c2;(2)最简公分母为a (a +2)(a -2),1a 2-2a =a 2+2a a 〔a +2〕〔a -2〕,aa +2=a 3-2a 2a 〔a +2〕〔a -2〕,1a 2-4=aa 〔a +2〕〔a -2〕.方法总结:通分的一般步骤:(1)确定分母的最简公分母.(2)用最简公分母分别除以各分母求商.(3)用所得到的商分别乘以分式的分子、分母,化成同分母的分式.三、板书设计分式的根本性质1.分式的根本性质:分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变.2.符号法那么:分式的分子、分母及分式本身,任意改变其中两个符号,分式的值不变;假设只改变其中一个的符号或三个全变号,那么分式的值变成原分式值的相反数.本节课的流程比拟顺畅,先探究分式的根本性质,然后顺势探究分式变号法那么.在每个活动中,都设计了具有启发性的问题,对各个知识点进行分析、归纳总结、例题示范、方法指导和变式练习.一步一步的来完成既定目标.整个学习过程轻松、愉快、和谐、高效.。
第8章《一元一次不等式》单元教案
第8章一元一次不等式8.1认识不等式1.能够从现实问题中抽象出不等式,理解不等式的意义,会根据给定条件列不等式.2.正确理解“非负数”、“不小于”等数学术语.3.理解不等式的解的意义,能举出一个不等式的几个解并且会检验一个数是否是某个不等式的解.重点理解并会用不等式表达数学量之间的关系,知道不等式的解的意义.难点不等号的准确应用;不等式的解.一、创设情境,问题引入问题:世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元.某班有27名少先队员去世纪公园进行活动.当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票.但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?那么,究竟李敏的提议对不对呢?是不是真的“浪费”呢?二、探索问题,引入新知同学们的探索过程如下:买27张票,付款:5×27=135(元);买30张票,付款:4×30=120(元).显然 120<135.这就是说,买30张票比买27张票付款要少,表面上看是“浪费”了3张票,而实际上节省了.思考:(1)我们只用120元就买了30张票,买30张票,我们不仅省钱,而且多买了票,那么剩下的3张票如何处理呢?(2)买30张票比买27张票付的款还要少,这是不是说任何情况下都是多买票反而花钱少?(3)至少要有多少人去参观,多买票反而合算呢?能否用数学知识来解决?设有x人要进世纪公园,如果x≥30,显然按实际人数买票,每张票只要付4元.如果x<30,那么:按实际人数买票x张,要付款5x(元),买30张票,要付款4×30=120(元),如果买30张票合算,那么应有120<5x.现在的问题就是:x取哪些数值时,上式成立?前面已经算过,当x=27时,上式成立.让我们再取一些值试一试,将结果填入课本P51页的表格中.由上表可见,当x=________时,不等式120<5x成立.也就是说,少于30人时,至少要有________人进公园时,买30张票反而合算.像上面出现的120<135,x<30,120<5x那样用不等号“<”或“>”表示不等关系的式子,叫做不等式.不等式120<5x中含有未知数x.能使不等式成立的未知数的值,叫做不等式的解.【例1】判断下列各式哪些是等式,哪些是不等式.(1)4<5;(2)x2+1>0;(3)x<2x-5;(4)x=2x+3;(5)3a2+a;(6)a2+2a≥4a-2.分析:根据不等式的定义对各小题进行逐一判断即可.解:(1)4<5是不等式;(2)x2+1>0是不等式;(3)x<2x-5是不等式;(4)x=2x+3是方程;(5)3a2+a是代数式;(6)a2+2a≥4a-2是不等式.故(1),(2),(3),(6)是不等式.点评:熟知用不等号连结的式子叫不等式是解答此题的关键.【例2】 用适当的符号表示下列关系: (1)x 的13与x 的2倍的和是非正数; (2)一枚炮弹的杀伤半径不小于300米;(3)三件上衣与四条长裤的总价钱不高于268元;(4)明天下雨的可能性不小于70%;(5)小明的身体不比小刚轻.分析:(1)非正数用“≤0”表示;(2),(4)不小于就是大于等于,用“≥”来表示;(3)不高于就是等于或低于,用“≤”表示;(5)不比小刚轻,就是与小刚一样重或者比小刚重.用“≥”表示. 解:(1)13x +2x≤0; (2)设炮弹的杀伤半径为r ,则应有r≥300;(3)设每件上衣为a 元,每条长裤是b 元,应有3a +4b≤268;(4)用P 表示明天下雨的可能性,则有P≥70%;(5)设小明的体重为a 千克,小刚的体重为b 千克,则应有a≥b. 点评:一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:>,<,≤,≥,≠.三、巩固练习1.给出下面5个式子:①3>0;②4x+3y≠0;③x=3;④x-1;⑤x+2≤3,其中不等式有( )A .2个B .3个C .4个D .5个2.学校组织同学们春游,租用45座和30座两种型号的客车,若租用45座客车x 辆,租用30座客车y 辆,则不等式“45x +30y≥500”表示的实际意义是( )A .两种客车总的载客量不少于500人B .两种客车总的载客量不超过500人C .两种客车总的载客量不足500人D .两种客车总的载客量恰好等于500人3.x 与y 的平方和一定是非负数,用不等式表示为________.4.下列各数:0,-3,3,4,-0.5,-20 ,-0.4中,________是方程x +3=0的解;________是不等式x +3>0的解;________是不等式2x +3<x 的解.5.用不等式表示. (1)x 的23与5的差小于1; (2)x 与6的和大于9;(3)8与y 的2倍的和是正数;(4)a 的3倍与7的差是负数; (5)x 的3倍大于或等于1;(6)x 与5的和不小于0.四、小结与作业小结通过本节课的学习你有什么收获?取得了哪些经验教训?还有哪些问题需要请教?作业1.教材第52页“习题8.1”中第1,2 题.2.完成练习册中本课时练习.本节教学过程中,始终通过师生互动,鼓励学生积极思考,努力探索,合作交流,关注学生能否发现问题,提出问题,能否敢于发表自己的见解,吸取正确的见解;关注学生学习过程中表现的学习习惯、个性品质、情感态度等. 通过游戏、分组竞赛等激发学生的积极性,培养团队精神.通过例题和闯关游戏,检测学生学习情况,及时反馈调节;通过不同层次的变式题,评价各层学生的学习效果,增强学习信心.留给学生思考、探究的时间和空间.对学生回答是否正确、全面都给予及时的肯定和鼓励,时刻注意激发学习内驱力,确保学生学得更多、更快、更好!总之,本节教学既贴近生活,又超越生活,既努力从生活中来,又努力到生活中去,实现了:生活世界、数学世界、教学世界的融会贯通!8.2 解一元一次不等式8.2.1 不等式的解集1.使学生掌握不等式的解集的概念,以及什么是解不等式.2.使学生能够借助数轴将不等式的解集直观地表示出来,初步理解数形结合的思想.重点1.认识不等式的解集的概念.2.将不等式的解集表示在数轴上.难点不等式的解集的概念.一、创设情境,问题引入问题1:已知有理数m,n的位置在数轴上如图所示,用不等号填空.(1)n-m______0;(2)m+n______0;(3)m-n______0; (4)n+1______0;(5)m·n______0; (6)m+1______0.问题2:下列各数中,哪些是不等式x+2>5的解?哪些不是?-3,-2,-1,0,1.5,3,3.5,5,7二、探索问题,引入新知在上面问题2中,我们发现3.5,5,7都是不等式x+2>5的解.由此可以看出,不等式x+2>5有许多个解.进而看出,大于3的每一个数都是不等式x+2>5的解,而不大于3的每一个数都不是不等式x+2>5的解.由此可见,不等式x+2>5的解有无限多个,它们组成一个集合,称为不等式x+2>5的解集.结论:一个不等式的所有解,组成这个不等式的解的集合,简称为这个不等式的解集;求不等式的解集的过程,叫做解不等式.不等式x+2>5的解集,可以表示成x>3,它也可以在数轴上直观地表示出来,如图所示.同样,如果某个不等式的解集为x≤-2,也可以在数轴上直观地表示出来,如图所示.观察讨论:这两条折线所指的方向为什么不同?它们有什么规律吗?数轴上空心的圆点和实心的圆点是什么意义?结论:不等式的解集在数轴上可直观地表示出来,但应注意不等号的类型,小于在左边,大于在右边.当不等号为“>”“<”时用空心圆圈,当不等号为“≥”“≤”时用实心圆圈.【例1】在数轴上表示下列不等式的解集:(1)x<-2;(2)x≥1;分析:(1)在-2处用空心圆点,折线向左即可;(2)在1处用实心圆点,折线向右即可.解:(1)如图所示:(2)如图所示:点评:熟知实心圆点与空心圆点的区别是解答此题的关键.【例2】在数轴上表示不等式-4≤x<1的解集,并写出其整数解.分析:根据“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线,可得答案.解:在数轴上表示不等式-4≤x<1的解集,如图:整数解为:-4,-3,-2,-1,0.点评:不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.三、巩固练习1.方程3x=6的解有________个,不等式3x<6的解有________个.2.在数轴上表示下列不等式的解集.(1)x>-4;(2)x≤3.5;(3)-2.5<x≤4.3.请用不等式表示如图的解集.(1)(2)(3)(4)(5)四、小结与作业小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第61页“习题8.2”中第2,3题.2.完成练习册中本课时练习.本节课属于一节概念课,按照“情境诱导—学生自学—展示归纳—巩固练习”的步骤进行.但从教学中来看,部分学生不会自学,个别学生不积极参与到小组活动之中.通过本节课的教学让我深深认识到,作为一名数学教师,要想让自己的学生出类拔萃,一定要在平时培养学生的自学习惯,自学能力,表达能力,教师要舍得时间,不能急躁.8.2.2不等式的简单变形1.通过本节的学习让学生在自主探索的基础上,联系方程的基本变形得到不等式的基本性质.2.掌握一次不等式的变形求解一元一次不等式基本方法.3.体会一元一次不等式和方程的区别与联系.重点掌握不等式的三条基本性质.难点正确应用不等式的三条基本性质进行不等式变形.一、创设情境、复习引入复习等式的基本性质一:在等式的两边都________或________同一个________或________,等式仍然成立.等式的基本性质二:在等式的两边都________或________同一个________,等式仍然成立.不等式有哪些基本性质?解一元一次方程有哪些基本步骤呢?一元一次不等式的解与方程的解是不是步骤类似呢?二、探索问题,引入新知在解一元一次方程时,我们主要是对方程进行变形.在研究解不等式时,我们同样应先探究不等式的变形规律.如图,一个倾斜的天平两边分别放有重物,其质量分别为a和b(显然a>b),如果在两边盘内分别加上等量的砝码c,那么盘子仍然像原来那样倾斜(即a+c>b+c).结论:不等式的性质1:如果a>b,那么a+c>b+c,a-c>b-c.这就是说,不等式的两边都加上(或减去)同一个数或同一个整式,不等式的方向不变.思考:不等式的两边都乘以(或除以)同一个不为零的数,不等号的方向是否也不变呢?试一试:将不等式7>4两边都乘以同一个数,比较所得的数的大小,用“<”,“>”或“=”填空:7×3________4×3,7×2________4×2,7×1________4×1,7×0________4×0,7×(-1)________4×(-1),7×(-2)________4×(-2),7×(-3)________4×(-3),……从中你能发现什么?结论:不等式的性质2:如果a>b ,并且c>0,那么ac>bc.不等式的性质3:如果a>b ,并且c<0,那么ac<bc.这就是说,不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式两边都乘以(或除以)同一个负数,不等号的方向改变.与解方程一样,解不等式的过程,就是要将不等式变形成x>a 或x<a 的形式.【例1】 根据不等式的基本性质,把下列不等式化成“x>a”或“x <a”的形式:(1)4x >3x +5;(2)-2x <17.分析:(1)根据不等式的性质1:两边都减3x ,可得答案;(2)根据不等式的性质3:不等式的两边都除以-2,可得答案. 解:(1)两边都减3x ,得x >5; (2)两边都除以-2,得x >-172. 点评:不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.【例2】 根据不等式性质解下列不等式.(1)x +3>5; (2)-23x <50; (3)5x +5<3x -2.分析:根据不等式的基本性质对各不等式进行逐一分析解答即可. 解:(1)根据不等式性质1,不等式两边都减3,不等号的方向不变,得x +3-3>5-3,即x >2; (2)根据不等式性质2,不等式两边都乘以-32,不等号的方向改变,得-23x×(-32)>50×(-32),即x >-75; (3)根据不等式性质1,2,不等式两边同时减去(5+3x),然后除以2,不等号的方向不变,得(5x +5-5-3x)÷2<(3x -2-5-3x)÷2,即x <-72. 点评:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.三、巩固练习1.已知实数a ,b 满足a +1>b +1,则下列选项错误的是( ) A .a >b B .a +2>b +2C .-a <-bD .2a >3b2.若3x >-3y ,则下列不等式中一定成立的是( )A .x +y >0B .x -y >0C .x +y <0D .x -y <0 3.如果a <b ,则12-3a________12-3b(用“>”或“<”填空). 4.判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若 b -3a <0,则b <3a ;________(2)如果-5x >20,那么x >-4;________(3)若a >b ,则 ac 2>bc 2;________(4)若ac 2>bc 2,则a >b ;________(5)若a >b ,则 a(c 2+1)>b(c 2+1); (6)若a >b >0,则1a <1b .________ 5.指出下列各式成立的条件: (1)由mx <n ,得x >n m ; (2)由a <b ,得m 2a <m 2b ;(3)由a >-2,得a 2≤-2a.四、小结与作业小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第58页“练习”.2.完成练习册中本课时练习.让学生参与知识的形成过程的学习,有利于培养学生动手实践,积极探索的科学学习方法,有利于培养学生的良好学习习惯和严谨的学习态度,有利于发展学生的直觉思维、形象思维和逻辑思维能力,有利于培养学生的独立钻研、相互交流和共同协作的科学态度,符合新课标的思想.8.2.3 解一元一次不等式第1课时 一元一次不等式的解法1.掌握一元一次不等式的概念.2.体会解不等式的步骤,体会数学学习中比较和转化的作用.3.用数轴表示解集,启发学生对数形结合思想的进一步理解和掌握.重点掌握一元一次不等式的解法.难点掌握一元一次不等式的解法.一、创设情境、复习引入1.不等式的三条基本性质是什么?2.一个方程是一元一次方程的三个条件是什么?3.解一元一次方程的一般步骤是什么?二、探索问题,引入新知让同学们观察下列不等式: ①x-7≥2;②3x<2x +1;③13x≤5;④-4x >8.它们有什么共同点?你能借鉴一元一次方程给它下个定义吗? 结论:只含有一个未知数,且含未知数的式子是整式,未知数的次数是1.像这样的不等式叫做一元一次不等式.我们再来解一些一元一次不等式. 【例1】 下列各式:(1)-x≥5;(2)y -3x <0;(3)x π+5<0;(4)x 2+x≠3;(5)3x +3≤3x;(6)x +2<0是一元一次不等式的有哪些? 分析:利用一元一次不等式的定义判断即可. 解:(1)-x≥5,是;(2)y -3x <0,不是;(3)x π+5<0,是;(4)x 2+x≠3,不是;(5)3x +3≤3x,不是;(6)x +2<0,是.如何来解一元一次不等式呢?【例2】 解不等式,并把解集在数轴上表示出来:(1)2(5x +3)≤x-3(1-2x); (2)1+x 3>5-x -22. 分析:(1)先去括号,然后通过移项、合并同类项,化未知数系数为1解不等式;(2)先去分母,然后通过移项、合并同类项,化未知数系数为1解不等式.解:(1)去括号,得:10x +6≤x-3+6x ,移项、合并同类项,得:3x≤-9,系数化为1,得:x≤-3;表示在数轴上为:(2)去分母,得:6+2x >30-3x +6,移项、合并同类项,得:5x >30,系数化为1,得:x >6.表示在数轴上为:点评:需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.结论:解一元一次不等式的步骤:1.去括号,去分母;2.利用不等式的性质移项;3.合并同类项;4.系数化为1.三、巩固练习1.下列各式中,一元一次不等式是( ) A .x ≥5x B .2x >1-x 2 C .x +2y <1 D .2x +1≤3x2.不等式x +1≥2的解集在数轴上表示正确的是( )3.若(m +1)x |m|+2>0是关于x 的一元一次不等式,则m =________.4.不等式组m(x -5)>2m -10的解集是x >m ,则m 的值是________.5.解不等式2(x +6)≥3x-18,并将其解集在数轴上表示出来.6.解不等式2x +13-5x -12≥-1,并把它的解集在数轴上表示出来. 四、小结与作业小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.作业1教材第61页“习题8.2”中第1,4 题.2.完成练习册中本课时练习.在教学过程中,由于通过简单的类比解方程,学生很快掌握了解不等式的方法,而且对比起方程,不等式题目的形式较简单,计算量不大,所以能引起学生的兴趣.但是部分学生在作业中存在以下问题:由于没有结合不等式的性质,认真分析解方程与解不等式的区别:在两边同时乘以或者除以负数时,不等号忘记改变方向.第2课时 列一元一次不等式解决实际问题1.会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题.2.通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系.重点寻找实际问题中的不等关系,建立数学模型.难点弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式.一、创设情境,问题引入在“科学与艺术”知识竞赛的预选赛中共有20道题,对于每一道题,答对得10分,答错或不答扣5分,总得分不少于80分者通过预选赛.育才中学有25名学生通过了预选赛,通过者至少答对了多少道题?有哪些可能的情形.二、探索问题,引入新知讨论:(1)试解决这个问题(不限定方法).你是用什么方法解决的?有没有其他方法?与你的同伴讨论和交流一下.(2)如果利用不等式的知识解决这个问题,在得到不等式的解集以后,如何给出原问题的答案?应该如何表述?分析:如果用不等式,必须找出不等关系.根据题意可知,答对题的得分减去答错题的扣分大于或等于80分.所以这个问题的关键是表示出答对的题数和答错或不答的题数.解:设通过者答对了x道题,答错或不答的题有(20-x)道,根据题意可得,10x-5(20-x)≥80,解得:x≥12,所以,通过者至少要答对12道题.你能类比列一元一次方程解决实际问题的方法,总结出列不等式解决实际问题的步骤吗?结论:用一元一次不等式解决实际问题的步骤:(1)审题,找出不等关系; (2)设未知数;(3)列出不等式;(4)求出不等式的解集; (5)找出符合题意的值; (6)作答.【例1】学校准备用2000元购买名著和词典作为艺术节奖品,其中名著每套65元,词典每本40元,现已购买名著20套,问最多还能买词典多少本?分析:先设未知数,设还能买词典x本,根据名著的总价+词典的总价≤2000,列不等式,解出即可,并根据实际意义写出答案.解:设还能买词典x本,根据题意得:20×65+40x≤2000,40x≤700,x ≤70040,x ≤1712.答:最多还能买词典17本. 【例2】 某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?分析:(1)设甲队胜了x 场,则负了(10-x)场,根据每队胜一场得2分,负一场得1分,利用甲队在初赛阶段的积分为18分,进而得出等式求出答案;(2)设乙队在初赛阶段胜a 场,根据积分超过15分才能获得参赛资格,进而得出答案.解:(1)设甲队胜了x 场,则负了(10-x)场,根据题意可得:2x +10-x =18,解得:x =8,则10-x =2.答:甲队胜了8场,则负了2场;(2)设乙队在初赛阶段胜a 场,根据题意可得:2a +(10-a)>15,解得:a >5.答:乙队在初赛阶段至少要胜6场.点评:正确表示出球队的得分是解题关键.三、巩固练习1.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买( )A .16个B .17个C .33个D .34个2.甲、乙两人从相距24 km 的A 、B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度( )A .小于8 km /hB .大于8 km /hC .小于4 km /hD .大于4 km /h3.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为________元/千克.4.某工人计划在15天内加工408个零件,最初三天中每天加工24个.问以后每天至少加工多少个零件,才能在规定的时间内超额完成任务?四、小结与作业小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第61页“习题8.2”中第6 ,7 题.2.完成练习册中本课时练习.本节课是在学习不等式的概念、性质及其解法和运用一元一次方程(或方程组)解决实际问题等知识的基础上,利用不等式解决实际问题.这既是对已学知识的运用和深化,又为今后在解决实际问题中提供另一种有效的解决途径.通过实际问题的探究,让学生学会列一元一次不等式,解决具有不等关系的实际问题.经历由实际问题转化为数学问题的过程,掌握利用一元一次不等式解决问题的基本过程.促进学生的数学思维意识,从而使学生乐于接触社会环境中的数学信息,愿意谈论某些数学话题,能够在数学活动中发挥积极作用.同时向学生渗透由特殊到一般、类比、建模和分类考虑问题的思想方法.8.3一元一次不等式组第1课时解一元一次不等式组1.了解一元一次不等式组及其解集的概念.2.探索不等式组的解法及其步骤.重点1.一元一次不等式组的概念,会用数轴表示一元一次不等式组解集的情况.2.一元一次不等式组的解法.难点一元一次不等式组的解法.一、创设情境,问题引入1.解下列不等式,并把解集在数轴上表示出来.(1)3x>1-x ;(2)6x -7<2-4x.2.问题:用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,那么需要多少时间能将污水抽完?二、探索问题,引入新知对问题2的分析:设需要x 分钟能将污水抽完,那么总的抽水量为30x 吨,由题意可知30x≥1200,并且30x≤1500.在这个实际问题中,未知量x 应同时满足这两个不等式,我们把这两个一元一次不等式合在一起,就得到一个一元一次不等式组:⎩⎪⎨⎪⎧30x≥1200 ①,30x ≤1500 ②,分别求这两个不等式的解集,得⎩⎪⎨⎪⎧x≥40x≤50 在同一数轴上表示出这两个不等式的解集,可知其公共部分是40和50之间的数(包括40和50),记作40≤x≤50.这就是所列不等式组的解集.所以,需要40到50分钟能将污水抽完.结论:不等式组中几个不等式的解集的公共部分,叫做这个不等式组的解集.解一元一次不等式组,通常可以先分别求出不等式组中每一个不等式的解集,再求出它们的公共部分,利用数轴可以帮我们得到一元一次不等式组的解集.探究:设a ,b 是已知实数,且a >b ,在数轴上表示下列不等式组的解集. (1)⎩⎪⎨⎪⎧x>a ,x>b ;(2)⎩⎪⎨⎪⎧x<a ,x<b ;(3)⎩⎪⎨⎪⎧x<a ,x>b ;(4)⎩⎪⎨⎪⎧x>a ,x<b. 解:(1)解集为:x>a (2)解集为:x<b (3)解集为:b<x<a (4)无解结论:皆大取大,皆小取小,大小小大取中间,大大小小是无解. 【例1】 下列不等式组:①⎩⎪⎨⎪⎧x>-2,x<3;②⎩⎪⎨⎪⎧x>0,x +2>4;③⎩⎪⎨⎪⎧x 2+1<x ,x 2+2>4;④⎩⎪⎨⎪⎧x +3>0,x<-7;⑤⎩⎪⎨⎪⎧x +1>0,y -1<0.其中是一元一次不等组的有哪些? 分析:根据一元一次不等式组的定义,只含一个未知数且有两个或两个以上的不等式,不等式中的未知数相同,并且未知数的最高次数是一次,对各选项判断后再计算个数即可.解:根据一元一次不等式组的定义,①②④都只含有一个未知数,并且未知数的最高次数是1,所以都是一元一次不等式组;③含有一个未知数,但未知数的最高次数是2,⑤含有两个未知数,所以②⑤都不是一元一次不等式组.故有①②④三个一元一次不等式组.【例2】 解不等式组,并把解集在数轴上表示出来. (1)⎩⎪⎨⎪⎧1-3x≤5-x ,4-5x>-x ; (2)⎩⎪⎨⎪⎧3(x -2)≥x -4,2x +13>x -1. 分析:先求出每个不等式的解集,根据不等式的解集找出不等式组的解集即可. 解:(1)⎩⎪⎨⎪⎧1-3x≤5-x ①,4-5x>-x ②, 由①得:x≥-2,由②得:x <1,∴不等式组的解集为:-2≤x<1.如图,在数轴上表示为:(2)∵解不等式3(x -2)≥x-4得:x≥1,解不等式2x +13>x -1得:x <4,∴不等式组的解集是1≤x <4,在数轴上表示不等式组的解集是:. 【例3】 若关于x 的一元一次不等式组⎩⎪⎨⎪⎧x -a>0,1-x>x -1无解,求a 的取值范围.分析:先求出各不等式的解集,再与已知解集相比较求出a 的取值范围. 解:由x -a >0得,x >a ;由1-x >x -1得,x <1,∵此不等式组的解集是空集,∴a ≥1.故答案为:a≥1.点评:熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.三、巩固练习1.将不等式组⎩⎪⎨⎪⎧2x -6≤0,x +4>0的解集表示在数轴上,下面表示正确的是( )2.解集如图所示的不等式组为( )A .⎩⎨⎪⎧x>-1x≤2B .⎩⎪⎨⎪⎧x≥-1x>2C .⎩⎪⎨⎪⎧x≤-1x<2D .⎩⎪⎨⎪⎧x>-1x<2 3.若关于x 的一元一次不等式组⎩⎪⎨⎪⎧2x -1>3(x -2),x<m 的解是x <5,则m 的取值范围是( ) A .m ≥5 B .m >5C .m ≤5D .m <5 4.若不等式组⎩⎪⎨⎪⎧1+x>a ,2x -4≤0有解,则a 的取值范围是________. 5.解不等式组,并把解集表示在数轴上. (1)⎩⎪⎨⎪⎧x -23+3<x -1,1-3(x +1)≥6-x ; (2)⎩⎪⎨⎪⎧2x -1≥0,3x +1>0,3x -2<0.四、小结与作业小结 先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第65页“习题8.3”中第1,2 题.2.完成练习册中本课时练习.教学“不等式组的解集”时,用数形结合的方法,通过借助数轴找出公共部分解出解集,这是最容易理解的方法,也是最适用的方法.用“皆大取大,皆小取小,大小小大取中间,大大小小是无解”求解不等式,我认为减轻学生的学习负担,有易于培养学生的数形结合能力.在教学中我要求学生在解不等式(组)时,一定要通过画数轴,求出不等式的解集,建立数形结合的数学思想.第2课时 列一元一次不等式组解决实际问题。
2023年中考数学一轮复习之必考点题型全归纳与分层精练-一元一次不等式(组)(解析版)
专题10一元一次不等式(组)【专题目录】技巧1:一元一次不等式组的解法技巧技巧2:一元一次不等式的解法的应用技巧3:含字母系数的一元一次不等式(组)的应用【题型】一、不等式的性质【题型】二、不等式(组)的解集的数轴表示【题型】三、求一元一次不等式的特解的方法【题型】四、确定不等式(组)中字母的取值范围【题型】五、求一元一次方程组中的待定字母的取值范围【题型】六、一元一次不等式的应用【考纲要求】1、了解不等式(组)有关的概念,理解不等式的基本性质;2、会解简单的一元一次不等式(组);并能在数轴上表示出其解集.3、能列出一元一次不等式(组)解决实际问题.【考点总结】一、一元一次不等式(组)不等式或组不等式的基本性质(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变(2)不等式的两边都乘(或除以)同一个正数,不等号的方向不变(3)不等式的两边都乘(或除以)同一个负数,不等号的方向改变解法①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数化为1.在①至⑤步的变形中,一定要注意不等号的方向是否需要改变.一元一次不等式组定义一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.解法先求出各个不等式的解再确定其公共部分,即为原不等式组的解集。
四种不等式组(a<b)解集图示口诀【注意】1.不等式的解与不等式的解集的区别与联系:1)不等式的解是指满足这个不等式的未知数的某个值。
2)不等式的解集是指满足这个不等式的未知数的所有的值。
3)不等式的所有解组成了这个不等式的解集,不等式的解集中包括这个不等式的每一个解。
2.用数轴表示不等式的解集:大于向右,小于向左,有等号画实心圆点,无等号画空心圆图。
2.列不等式或不等式组解决实际问题,要注意抓住问题中的一些关键词语,如“至少”“最多”“超过”“不低于”“不大于”“不高于”“大于”“多”等.这些都体现了不等关系,列不等式时,要根据关键词准确地选用不等号.另外,对一些实际问题的分析还要注意结合实际.3.列不等式(组)解应用题的一般步骤:(1)审题;(2)设未知数;(3)找出能够包含未知数的不等量关系;(4)列出不等式(组);(5)求出不等式(组)的解;(6)在不等式(组)的解中找出符合题意的值;(7)写出答案(包括单位名称).【技巧归纳】基本不等式组的解集⎩⎨⎧≥≥b x a x x ≥b 大大取大⎩⎨⎧≤≤b x a x x ≤a 小小取小⎩⎨⎧≤≥bx a x a ≤x ≤b 大小小大中间找⎩⎨⎧≥≤b x a x 无解大大小小解不了技巧1:一元一次不等式组的解法技巧【类型】一、解普通型的一元一次不等式组12x <6,-2≤0的解集,在数轴上表示正确的是()2.解不等式组,并把解集表示在数轴上.(x +2),①+15>0.②【类型】二、解连写型的不等式组3.满足不等式组-1<2x -13≤2的整数的个数是()A .5B .4C .3D .无数4.若式子4-k 的值大于-1且不大于3,则k 的取值范围是____________.5.用两种不同的方法解不等式组-1<2x -13【类型】三、“绝对值”型不等式转化为不等式组求解.6.解不等式|3x -12|≤4.【类型】四、“分式”型不等式转化为不等式组求解7.解不等式3x -62x +1<0.参考答案1.C2.解:由①得,x≥-1.由②得,x <45.∴不等式组的解集为-1≤x <45.表示在数轴上,如图所示.3.B 4.1≤k <55.解:方法1解不等式①,得x>-1.解不等式②,得x≤8.所以不等式组的解集为-1<x≤8.方法2:-1<2x -13≤5,-3<2x -1≤15,-2<2x≤16,-1<x≤8.6.分析:由绝对值的知识|x|<a(a >0),可知-a <x <a.解:由|3x -12|≤4,得-4≤3x -12≤4.-4,①②解不等式①,得x≥-73.解不等式②,得x≤3.所以原不等式的解集为-73≤x≤3.点拨:7.解:∵3x -62x +1<0,∴3x -6与2x +1异号.即:-6>0,+1<0或<0,+1>0.解(Ⅰ)>2,<-12.∴此不等式组无解.解(Ⅱ)<2,>-12.∴此不等式组的解集为-12<x <2.∴原不等式的解集为-12<x <2.技巧2:一元一次不等式的解法的应用【类型】一、直接解不等式1.解下列不等式,并把它们的解集在数轴上表示出来.(1)x >13x -2;(2)4x -13-x >1;(3)x +13≥2(x +1).2.下面解不等式的过程是否正确?如不正确,请找出开始错误之处,并改正.解不等式:4-3x 3-1<7+5x 5.解:去分母,得5(4-3x)-1<3(7+5x).①去括号,得20-15x -1<21+15x.②移项,合并同类项,得-30x <2.③系数化为1,得x >-115.④【类型】二、解含字母系数的一元一次不等式3.解关于x 的不等式ax -x -2>0.【类型】三、解与方程(组)的解综合的不等式4.当m 取何值时,关于x 的方程23x -1=6m +5(x -m)的解是非负数?5+3y =10,-3y =2的解满足不等式ax +y >4,求a 的取值范围.【类型】四、解与新定义综合的不等式6.定义新运算:对于任意实数a ,b ,都有a ★b =a(a -b)+1,等式右边是通常的加法、减法及乘法运算,比如:2★5=2×(2-5)+1=-5.(1)求(-2)★3的值;(2)若3★x 的值小于13,求x 的取值范围,并在数轴上表示出来.【类型】五、解与不等式的解综合的不等式7.已知关于x 的不等式3x -m ≤0的正整数解有四个,求m 的取值范围.8.关于x 的两个不等式①3x +a 2<1与②1-3x>0.(1)若两个不等式的解集相同,求a 的值;(2)若不等式①的解都是②的解,求a 的取值范围.参考答案1.解:(1)x>13x-2,23x>-2,x>-3.这个不等式的解集在数轴上的表示如图所示.(2)4x-13-x>1,4x-1-3x>3,x> 4.这个不等式的解集在数轴上的表示如图所示.(3)x+13≥2(x+1),x+1≥6x+6,-5x≥5,x≤-1.2.解:第①步开始错误,应该改成:去分母,得5(4-3x)-15<3(7+5x).去括号,得20-15x-15<21+15x.移项,合并同类项,得-30x<16.系数化为1,得x>-8 15 .3.解:移项,合并同类项得,(a-1)x>2,当a-1>0,即a>1时,x>2a-1;当a-1=0,即a=1时,x无解;当a-1<0,即a<1时,x<2a-1.4.解:解方程得x =-313(m +1),由题意得-313(m +1)≥0,解得m ≤-1.5.解:2x +3y =10,-3y =2,=2,=2.代入不等式得2a +2>4.所以a >1.6.解:(1)(-2)★3=-2×(-2-3)+1=-2×(-5)+1=10+1=11.(2)∵3★x <13,∴3(3-x)+1<13,去括号,得9-3x +1<13,移项,合并同类项,得-3x <3,系数化为1,得x >-1.在数轴上表示如图所示.7.解:解不等式得x ≤m 3,由题意得4≤m 3<5,解得12≤m <15.方法规律:已知一个不等式的解集满足特定要求,求字母参数的取值范围时,我们可先解出这个含字母参数的不等式的解集,然后根据题意列出一个(或几个)关于字母参数的不等式,从而可求出字母参数的取值范围.8.解:(1)由①得x <2-a 3,由②得x <13,由两个不等的解集相同,得2-a 3=13,解得a =1.(2)由不等式①的解都是②的解,得2-a 3≤13,解得a ≥1.技巧3:含字母系数的一元一次不等式(组)的应用【类型】一、与方程组的综合问题1.已知实数x ,y 同时满足三个条件:①x -y =2-m ;②4x -3y =2+m ;③x >y.那么实数m 的取值范围是()A .m >-2B .m <2C .m <-2D .m >22+y =-7-a ,-y =1+3a的解中,x 为非正数,y 为负数.(1)求a 的取值范围;(2)化简|a -3|+|a +2|.3.在等式y =ax +b 中,当x =1时,y =-3;当x =-3时,y =13.(1)求a ,b 的值;(2)当-1<x <2时,求y 的取值范围.【类型】二、与不等式(组)的解集的综合问题题型1:已知解集求字母系数的值或范围4.已知不等式(a -2)x >4-2a 的解集为x <-2,则a 的取值范围是__________.5-a <1,-2b >3的解集为-1<x <1,求(b -1)a +1的值.题型2:已知整数解的情况求字母系数的值或取值范围6>2,<a 的解集中共有5个整数,则a 的取值范围为()A .7<a ≤8B .6<a ≤7C .7≤a <8D .7≤a ≤87-a ≥0,-b <0的整数解是1,2,3,求适合这个不等式组的整数a ,b 的值.题型3:已知不等式组有无解求字母系数的取值范围8-1>0,-a <0无解,则a 的取值范围是__________.91<a ①,+5>x -7②有解,求实数a 的取值范围.参考答案1.B2.解:(1)=-3+a ,=-4-2a.∵x 为非正数,y 3+a ≤0,4-2a <0,解得-2<a ≤3.(2)∵-2<a ≤3,即a -3≤0,a +2>0,∴原式=3-a +a +2=5.3.解:(1)将x =1时,y =-3;x =-3时,y =13代入y =ax +b +b =-3,3a +b =13,=-4,=1.(2)由y =-4x +1,得x =1-y 4.∵-1<x <2,∴-1<1-y 4<2,解得-7<y <5.4.a <25.-a <1.①,-2b >3.②,解①得x <a +12;解②得x >2b +3.根据题意得a +12=1,且2b +3=-1,解得a =1,b =-2,则(b -1)a +1=(-3)2=9.6.A7.解:解不等式组得a 2≤x <b 3.∵不等式组仅有整数解1,2,3,∴0<a 2≤1,3<b 3≤4.解得0<a ≤2,9<b ≤12.∵a,b为整数,∴a=1,2,b=10,11,12. 8.a≤19.+1<a①,+5>x-7②,解不等式①得x<a-1.解不等式②得x>-6.∵不等式组有解,∴-6<x<a-1,则a-1>-6,a>-5.【题型讲解】【题型】一、不等式的性质例1、若a>b,则下列等式一定成立的是()A.a>b+2B.a+1>b+1C.﹣a>﹣b D.|a|>|b|【答案】B【分析】利用不等式的基本性质判断即可.【详解】A、由a>b不一定能得出a>b+2,故本选项不合题意;B、若a>b,则a+1>b+1,故本选项符合题意;C、若a>b,则﹣a<﹣b,故本选项不合题意;D、由a>b不一定能得出|a|>|b|,故本选项不合题意.故选:B.【题型】二、不等式(组)的解集的数轴表示例2、不等式组20240xx+>⎧⎨-≤⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】C【解析】解不等式x+2>0,得:x>-2,解不等式2x-4≤0,得:x≤2,则不等式组的解集为-2<x≤2,将解集表示在数轴上如下:故选C.【题型】三、求一元一次不等式的特解的方法例3、不等式12x-≤的非负整数解有()A.1个B.2个C.3个D.4个【答案】D【详解】解:12x-≤,解得:3x≤,则不等式12x-≤的非负整数解有:0,1,2,3共4个.故选:D.【题型】四、确定不等式(组)中字母的取值范围例4、若不等式组130x abx->⎧⎨+≥⎩的解集是﹣1<x≤1,则a=_____,b=_____.【答案】-2-3【详解】解:由题意得:130 x abx->⎧⎨+≥⎩①②解不等式①得:x>1+a,解不等式②得:x≤3 b-不等式组的解集为:1+a<x≤3b- 不等式组的解集是﹣1<x≤1,∴..1+a=-1,3b-=1,解得:a=-2,b=-3故答案为:-2,-3.【题型】五、求一元一次方程组中的待定字母的取值范围例5、若不等式组841x x x m +<-⎧⎨>⎩的解集是x >3,则m 的取值范围是().A .m >3B .m≥3C .m≤3D .m <3【答案】C【解析】详解:841x x x m +<-⎧⎨>⎩①②,解①得,x>3;解②得,x>m ,∵不等式组841x x x m +<-⎧⎨>⎩的解集是x>3,则m ⩽3.故选:C.【题型】六、一元一次不等式的应用例6、某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为()A .13B .14C .15D .16【答案】C【分析】根据竞赛得分10=⨯答对的题数(5)+-⨯未答对的题数,根据本次竞赛得分要超过120分,列出不等式即可.【详解】解:设要答对x 道.10(5)(20)120x x +-⨯->,10 1005 120x x -+>,15 220x >,解得:443x >,根据x 必须为整数,故x 取最小整数15,即小华参加本次竞赛得分要超过120分,他至少要答对15道题.故选C .一元一次不等式(组)(达标训练)一、单选题1.若m n >,则下列不等式一定成立的是().A .2121m n -+>-+B .1144m n ++>C .m a n b+>+D .am an-<-【答案】B【分析】根据不等式的性质解答.不等式的性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A 、∵m >n ,∴-2m <-2n ,则-2m +1<-2n +1,故该选项不成立,不符合题意;B 、∵m >n ,∴m +1>n +1,则1144m n ++>,故该选项成立,符合题意;C 、∵m >n ,∴m +a >n +a ,不能判断m +a >n +b ,故该选项不成立,不符合题意;D 、∵m >n ,当a >0时,-am <-an ;当a <0时,-am >-an ;故该选项不成立,不符合题意;故选:B .【点睛】本题考查了不等式的性质,掌握不等式的基本性质是解答本题的关键.2.北京2022冬奥会吉祥物“冰墩墩”和“雪容融”受到大家的喜爱,某网店出售这两种吉祥物礼品,售价如图所示.小明妈妈一共买10件礼品,总共花费不超过900元,如果设购买冰墩墩礼品x 件,则能够得到的不等式是()A .100x +80(10﹣x )>900B .100+80(10﹣x )<900C .100x +80(10﹣x )≥900D .100x +80(10﹣x )≤900【答案】D【分析】设购买冰墩墩礼品x 件,则购买雪容融礼品(10﹣x )件,根据“冰墩墩单价×冰墩墩个数+雪容融单价×雪容融个数≤900”可得不等式.【详解】解:设购买冰墩墩礼品x 件,则购买雪容融礼品(10﹣x )件,根据题意,得:100x +80(10﹣x )≤900,故选:D .【点睛】本题主要考查由实际问题抽象出一元一次不等式,解题的关键是理解题意,找到其中蕴含的不等关系.3.不等式组3050x x +>⎧⎨-≤⎩的解是()A .3x >-B .5x ≤C .35x -<≤D .无解【答案】C 【分析】先求出每个不等式的解集,再结合起来即可得到不等式组的解集.【详解】由30x +>得:3x >-由50x -≤得:5x ≤∴35x -<≤故选C【点睛】本题考查一元一次方程组的求解,掌握方法是关键.4.不等式3﹣x <2x +6)A .x <1B .x >1C .x <﹣1D .x >﹣1【答案】D【分析】根据一元一次不等式的解法,移项、合并同类项、系数化1求解即可.【详解】解:326x x -<+,移项得362x x -<+,合并同类项得33x -<,系数化1得1x >-,∴不等式326x x -<+的解集是1x >-,故选:D .【点睛】本题考查一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解决问题的关键.5.在数轴上表示不等式1x >-的解集正确的是()A.B.C.D.【答案】A【分析】根据不等式解集的表示方法依次判断.【详解】解:在数轴上表示不等式x>−1的解集的是A.故选:A.【点睛】此题考查了在数轴上表示不等式的解集,正确掌握不等式解集的表示方法,区分实心点与空心点,是解题的关键.二、填空题6.超市用1200元钱批发了A,B两种西瓜进行销售,两种西瓜的批发价和零售价如下表所示,若计划将这批西瓜全部售完后,所获利润率不低于40%,则该超市至少批发A种西瓜__________kg.名称A B批发价(元/kg)43零售价(元/kg)64【答案】120【分析】设批发A种西瓜x kg,根据“利润率不低于40%”列出不等式,求解即可.【详解】解:设批发A种西瓜x kg,则(6-4)x+120043x-×(4-3)≥1200×40%,解得x≥120.答:该超市至少批发A种西瓜120kg.故答案为:120.【点睛】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的不等关系,列不等式求解.7.不等式2103x--<的解集为____.【答案】5x <【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1;本题可以采用去括号、移项、合并同类项即可求解.【详解】解:去分母,得:230x --<,移项,得:23x <+,合并同类项,得:5x <.∴不等式的解集为:5x <.故答案为:5x <.【点睛】本题考查了解一元一次不等式.严格遵循解不等式的基本步骤是关键,尤其需要注意∶不等式两边都乘以或除以同一个负数时,不等号方向改变;在数轴上表示不等式的解集要注意实心点和空心点的区别.三、解答题8.解不等式组:()36,3121,x x x x ≤-⎧⎨+>-⎩并将解集在数轴上表示.【答案】3x ≥,数轴表示见解析【详解】解:解不等式36x x -≤,得:3x ≥,解不等式312(1)x x +>-,得:3x >-,∵3x ≥与3x >-的公共部分为3x ≥,∴不等式组的解集是:3x ≥.在数轴上表示解集如下:【点睛】本题考查了一元一次不等式组,熟练掌握一元一次不等式组解集的求解方法是解题关键.一元一次不等式(组)(提升测评)1.2022年北京冬季奥运会开幕式于2022年2月4日20:00在国家体育馆举行,嘉淇利用相关数字做游戏:①画一条数轴,在数轴上用点A ,B ,C 分别表示﹣20,2022,﹣24,如图1所示;②将这条数轴在点A 处剪断,点A 右侧的部分称为数轴I ,点A 左侧的部分称为数轴Ⅱ;③平移数轴Ⅱ使点A 位于点B 的正下方,如图2所示;④扩大数轴Ⅱ的单位长度至原来的k 倍,使点C 正上方位于数轴I 的点A 左侧.则整数k 的最小值为()A .511B .510C .509D .500【答案】A 【分析】根据题意可得k ⋅AC AB >,列出不等式,求得最小整数解即可求解.【详解】解:依题意,4AC =,2042AB =∵扩大数轴Ⅱ的单位长度至原来的k 倍,使点C 正上方位于数轴I 的点A 左侧,∴k ⋅AC AB >,即42042k >,解得15102k >, k 为正整数,∴k 的最小值为511,故选A .【点睛】本题考查了数轴上两点距离,一元一次不等式的应用,根据题意得出k ⋅AC AB >是解题的关键.2.不等式12<32x x -⎛⎫ ⎪⎝⎭的解在数轴上表示正确的是()A .B .C .D .【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得不等式的解集,继而可得答案.【详解】解:去括号,得:21<3x x -,移项,得:3+2<1x x -,合并同类项,得:<1x -,系数化为1,得>1x -,在数轴上表示为:故选:A .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3.已知实数a ,b ,c 满足2a c b +=,112a c b +=.则下列结论正确的是()A .若0a b >>,则0c b >>B .若1ac =,则1b =±C .a ,b ,c 不可能同时相等D .若2a =,则28b c=【答案】B【分析】A.根据0a b >>,则11a b <,根据112a c b +=,得出c b <;B.根据112a c b+=,得出()2ac b a c =+,把2a c b +=代入得:21b ac ==,即可得出答案;C.当a b c ==时,可以使2a c b +=,112a c b +=,即可判断出答案;D.根据解析B 可知,22b ac c ==,即可判断.【详解】A.∵0a b >>,∴11a b<,∵112a c b+=,∴11c b,∴c b <,故A 错误;B.∵112a c b +=,即2a c ac b+=,∴()2ac b a c =+,把2a c b +=代入得:222ac b =,21b ac ∴==,解得:1b =±,故B 正确;C.当a b c ==时,可以使2a c b +=,112a c b+=,∴a ,b ,c 可能同时相等,故C 错误;D.根据解析B 可知,2b ac =,把2a =代入得:22b c =,故D 错误.故选:B .【点睛】本题主要考查了分式的化简,等式基本性质和不等式的基本性质,熟练掌握不等式的基本性质和等式的性质,是解题的关键.4.若数a 使关于x 的分式方程1133x a x x ++=--有非负整数解,且使关于y 的不等式组3212623y y y y a++⎧⎪⎨⎪≥-⎩>至少有3个整数解,则符合条件的所有整数a 的和是()A .﹣5B .﹣3C .0D .2【答案】D 【分析】解不等式组,根据题意确定a 的范围;解出分式方程,根据题意确定a 的范围,根据题意计算即可.【详解】解:3212623y y y y a ++⎧⎪⎨⎪≥-⎩>①②,解不等式①得:y >﹣8,解不等式②得:y ≤a ,∴原不等式组的解集为:﹣8<y ≤a ,∵不等式组至少有3个整数解,∴a ≥﹣5,1133x a x x++=--,去分母得∶1﹣x ﹣a =x ﹣3,解得:x 42a -=,∵分式方程有非负整数解,∴x ≥0(x 为整数)且x ≠3,∴42a -为非负整数,且42a -≠3,∴a ≤4且a ≠﹣2,∴符合条件的所有整数a 的值为:﹣4,0,2,4,∴符合条件的所有整数a 的和是:2,故选:D .【点睛】本题考查的是分式方程的解法、一元一次不等式组的解法,掌握解分式方程、一元一次不等式组的一般步骤是解题的关键.5.已知三个实数a 、b 、c ,满足325a b c ++=,231a b c +-=,且0a ≥、0b ≥、0c ≥,则37+-a b c 的最小值是()A .111-B .57-C .37D .711【答案】B【分析】由两个已知等式3a +2b +c =5和2a +b ﹣3c =1.可用其中一个未知数表示另两个未知数,然后由条件:a ,b ,c 均是非负数,列出c 的不等式组,可求出未知数c 的取值范围,再把m =3a +b ﹣7c 中a ,b 转化为c ,即可得解.【详解】解:联立方程组325231a b c a b c ++=⎧⎨+-=⎩,解得,73711a c b c=-⎧⎨=-⎩,由题意知:a ,b ,c 均是非负数,则07307110c c c ≥⎧⎪-≥⎨⎪-≥⎩,解得37711c ≤≤,∴3a +b ﹣7c=3(﹣3+7c )+(7﹣11c )﹣7c=﹣2+3c ,当c =37时,3a+b ﹣7c 有最小值,即3a+b ﹣7c =﹣2+3×37=﹣57.故选:B .【点睛】此题主要考查代数式求值,考查的知识点相对较多,包括不等式的求解、求最大值最小值等,另外还要求有充分利用已知条件的能力.二、填空题6.一元二次方程x 2+5x ﹣m =0有两个不相等的实数根,则m 的取值范围是_____.【答案】254m >-## 6.25m >-##164m >-【分析】由方程有两个不相等的实数根结合根的判别式,可得254()0m =-->Δ,进行计算即可得.【详解】解:根据题意得254()0m =-->Δ,解得,254m >-,故答案为:254m >-.【点睛】本题考查了根的判别式,解题的关键是掌握根的判别式并认真计算.7.若关于x 的分式方程232x m x -=-的解是非负数,则m 的取值范围是________.【答案】m ≤6且m ≠4【分析】先求得分式方程的解,利用已知条件列出不等式,解不等式即可求解.【详解】解:关于x 的分式方程232x m x -=-的解为:x =6−m ,∵分式方程有可能产生增根2,∴6−m ≠2,∴m ≠4,∵关于x 的分式方程232x m x -=-的解是非负数,∴6−m ≥0,解得:m ≤6,综上,m 的取值范围是:m ≤6且m ≠4.故答案为:m ≤6且m ≠4.【点睛】本题主要考查了分式方程的解,解一元一次不等式,解分式方程一定要注意有可能产生增根的情况,这是解题的关键.三、解答题8.2022年4月16日,神舟十三号载人飞船返回舱成功着陆,三名航天员平安归来,神舟十三号任务取得圆满成功.飞箭航模店看准商机,推出了“神舟”和“天宫”模型.已知每个“神舟”模型的成本比“天宫”模型多10元,同样花费100元,购进“天宫”模型的数量比“神舟”模型多5个.(1)“神舟”和“天宫”模型的成本各多少元?(2)飞箭航模店计划购买两种模型共200个,且每个“神舟”模型的售价为30元,“天宫”模型的售价为15元.设购买“神舟”模型a 个,销售这批模型的利润为w 元.①求w 与a 的函数关系式(不要求写出a 的取值范围);②若购进“神舟”模型的数量不超过“天宫”模型数量的13,则购进“神舟”模型多少个时,销售这批模型可以获得最大利润?最大利润是多少?【答案】(1)“天宫”模型成本为每个10元,“神舟”模型每个20元(2)①51000w a =+②购进“神舟”模型50个时,销售这批模型可以获得最大利润,最大利润为1250元【分析】(1.(2)①设“神舟”模型a 个,则“天宫”模型为200a -()个,根据利润关系即可表示w 与a 的关系式.②根据购进“神舟”模型的数量不超过“天宫”模型数量的13,即可找到a 的取值范围,利用一次函数性质即可求解.(1)解:设“天宫”模型成本为每个x 元,则“神舟”模型成本为每个10x +()元.依题意得100100510x x =++.解得10x =.经检验,10x =是原方程的解.答:“天宫”模型成本为每个10元,“神舟”模型每个20元;(2)解:① “神舟”模型a 个,则“天宫”模型为200a -()个.()()()3020151020051000w a a a ∴=-+--=+.② 购进“神舟”模型的数量不超过“天宫”模型数量的13.()12003a a ∴≤-.解得:50a ≤.51000w a =+ .50k =>.()max 5055010001250a w ∴==⨯+=当时,元.即:购进“神舟”模型50个时,销售这批模型可以获得利润.最大利润为1250元.【点睛】本题考查了分式方程、一次函数的性质,关键在于找到等量关系,建立方程,不等式,函数模型.9.解不等式组:3(2)821+1<52x x x x --≥--⎧⎪⎨⎪⎩【答案】1x ≥-【分析】先分别求出两个一元一次不等式的解集,然后根据“同大取大、同小取小,小大大小取中间、大大小小找不到”即可求解.【详解】解:3(2)821+1<52x x x x --≥--⎧⎪⎨⎪⎩①②,解不等式①,得1x ≥-,解不等式②,得>7x -,∴该不等式组的解集为1x ≥-.【点睛】本题主要考查了解一元一次不等式组,理解并掌握求不等式组的原则“同大取大、同小取小,小大大小取中间、大大小小找不到”是解题的关键.。
中考数学复习 一元一次不等式(组)及应用
“≠”连接而成的式子.
2.解集:一般地,一个含有未知数的不等式的所有
的解,组成这个不等式的解集.
如果a>b,那么a±c>b±c
3.性质如果a>b,c>0,那么ac>bc或ac>bc
如果a>b,c<0,那么ac
①_<_bc或ac
②_<_bc
第1部分 第二单元 方程(组)与不等式(组)
二、一元一次不等式 一元一次不等式
第二单元 方程(组)与不等式(组)
课时 8 一元一次不等式(组)及应用
CONTENTS
目 录
课前自测 知识梳理 知识过关
第1部分 第二单元 方程(组)与不等式(组)
课前自测
1.已知a>b,则下列不等式中不正确的是( C )
A.4a>4b
B.a+4>b+4
C.-4a>-4b
D.a-4>b-4
第1部分 第二单元 方程(组)与不等式(组)
第1部分 第二单元 方程(组)与不等式(组)
广东中考
1.(2013广东)已知实数a,b,若a>b,则下列结论 正确的是( D )
A.a-5<b-5 B.2+a<2+b C.a3<b3 D.3a>3b
第1部分 第二单元 方程(组)与不等式(组)
2.(2018广东)不等式3x-1≥x+3的解集是( D )
(1)求商场销售A,B两种型号计算器的销售价格分别 是多少元?(利润=销售价格-进货价格)
(2)商场准备用不多于2 500元的资金购进A,B两种 型号计算器共70台,问最少需要购进A型号的计算器多 少台?
第1部分 第二单元 方程(组)与不等式(组)
解:(1)设 A 种型号计算器的销售价格是 x 元,B 种
考点07 一元一次不等式(组)及其应用-备战2023届中考数学一轮复习考点梳理(解析版)
考点07 一元一次不等式(组)及其应用中考数学中,一元一次不等式(组)的解法及应用时有考察,其中,不等式基本性质和一元一次不等式(组)解法的考察通常是以选择题或填空题的形式出题,还通常难度不大。
而对其简单应用,常会和其他考点(如二元一次方程组、二次函数等)结合考察,此时难度上升,需要小心应对。
对于一元一次不等式中含参数问题,虽然难度系数上升,但是考察几率并不大,复习的时候只需要兼顾即可!一、不等式的基本性质二、一元一次不等式(组)的解法三、求不等式(组)中参数的值或范围四、不等式(组)的应用考向一:不等式的基本性质【易错警示】1.若a >b ,则下列不等式中,错误的是( )A .3a >3bB .﹣<﹣C .4a ﹣3>4b ﹣3D .ac 2>bc 2【分析】根据不等式的性质进行一一判断.【解答】解:A 、在不等式a >b 的两边同时乘以3,不等式仍成立,即3a >3b ,故本选项正确;B 、在不等式a >b 的两边同时除以﹣3,不等号方向改变,即﹣<﹣,故本选项正确;C 、在不等式a >b 的两边同时先乘以4、再减去3,不等式仍成立,4a ﹣3>4b ﹣3,故本选项正确;D 、当c =0时,该不等式不成立,故本选项错误.故选:D .2.已知x <y ,下列式子不成立的是( )A .x +1<y +1B .x <y +100C .﹣2022x <﹣2022yD .【分析】根据不等式的性质判断即可.【解答】解:A 、在不等式x =y 的两边同时加上1得x +1<y +1,原变形成立,故此选项不符合题意;B 、在不等式x <y 的两边同时加上100得x +100<y +100,原变形成立,故此选项不符合题意;C 、在不等式x <y的两边同时乘以﹣2022得﹣2022x >﹣2022y ,原变形不成立,故此选项符合题意;D 、在不等式x <y 的两边同时除以2022得x <y ,原变形成立,故此选项不符合题意;故选:C .3.若x>y,且(a+3)x<(a+3)y,求a的取值范围 a<﹣3 .【分析】根据题意,在不等式x>y的两边同时乘以(a+3)后不等号改变方向,根据不等式的性质3,得出a+3<0,解此不等式即可求解.【解答】解:∵x>y,且(a+3)x<(a+3)y,∴a+3<0,则a<﹣3.故答案为:a<﹣3.4.已知3x﹣y=1,且x≤3,则y的取值范围是 y≤8 .【分析】根据3x﹣y=1求出x=,根据x≤3得出≤3,再根据不等式的性质求出不等式的解集即可.【解答】解:∵3x﹣y=1,∴3x=1+y,∴x=,∵x≤3,∴≤3,∴1+y≤9,∴y≤8,即y的取值范围是y≤8,故答案为:y≤8.5.已知a,b,c为三个非负实数,且满足,若W=3a+2b+5c,则W的最大值为 130 .【分析】将方程组两个方程相加,得到3a+5c=130﹣4b,整体替换可得W=130﹣2b,再由b的取值范围即可求解.【解答】解:,①+②,得3a+4b+5c=130,可得出a=10﹣,c=20﹣,∵a,b,c为三个非负实数,∴a =10﹣≥0,c =20﹣≥0,∴0≤b ≤20,∴W =3a +2b +5c =2b +130﹣4b =130﹣2b ,∴当b =0时,W =130﹣2b 的最大值为130,故答案为:130.考向二:一元一次不等式(组)的解法1. 一元一次不等式的解法2. 一元一次不等式(组)的解法①按照一元一次不等式的解法解出每个不等式的解集②依据数轴取各不等式解集的公共部分一元一次不等式组解法及解集的四种情况无解大大小小则无解1.不等式3(2﹣x)>x+2的解在数轴上表示正确的是( )A.B.C.D.【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.【解答】解:∵3(2﹣x)>x+2,∴6﹣3x>x+2,﹣3x﹣x>2﹣6,﹣4x>﹣4,x<1,故选:C.2.在平面直角坐标系中,点A(a,2)在第二象限内,则a的取值可以是( )A.1B.﹣C.0D.4或﹣4【分析】根据第二象限内点的坐标特点列出关于a的不等式,求出a的取值范围即可.【解答】解:∵点A(a,2)是第二象限内的点,∴a<0,四个选项中符合题意的数是,故选:B.3.关于x的方程ax=2x﹣7的解为负数,则a的取值范围是 a>2 .【分析】先解方程得到x=,根据题意得到<0,所以2﹣a<0,然后解不等式即可.【解答】解:解方程ax=2x﹣7的得x=,∵方程ax=2x﹣7的解为负数,∴<0,∴2﹣a<0,解得a>2,即a的取值范围为a>2.故答案为:a>2.4.已知x>2是关于x的不等式x﹣3m+1>0的解集,那么m的值为 1 .【分析】先把m看作常数,求出不等式的解集,再根据不等式解集为x>2,建立关于m的方程,求解即可.【解答】解:x﹣3m+1>0x>3m﹣1,∵x>2 是关于x的不等式x﹣3m+1>0 的解集,∴3m﹣1=2,解得:m=1,故答案为:1.5.若关于的不等式﹣ax>bx﹣b(ab≠0)的解集为x>,则关于x的不等式3bx<ax﹣b的解集是 x>﹣1 .【分析】根据已知不等式的解集,即可确定的值以及a+b的符号,进而求得a=2b,进一步求得b<0,从而解不等式即可.【解答】解:移项,得:(a+b)x<b,根据题意得:a+b<0且=,即3b=a+b,则a=2b,又a+b<0,即3b<0,则b<0,则关于x的不等式3bx<ax﹣b化为:3bx<2bx﹣b,解得x>﹣1.故答案为:x>﹣1.6.解下列不等式,并将解集在数轴上表示出来.(1)﹣x+19≥2(x+5);(2).【分析】(1)先去括号,再移项、合并同类项,把x的系数化为1,再把不等式的解集在数轴上表示出来即可;(2)不等式两边都乘12去分母后,去括号,移项合并,将x系数化为1,求出解集,表示在数轴上即可.【解答】解:(1)﹣x+19≥2(x+5),去括号,得)﹣x+19≥2x+10,移项,得﹣x﹣2x≥10﹣19,合并同类项,得﹣3x≥﹣9,系数化为1,得x≤3.将解集在数轴上表示为:(2),去分母,得3(x+4)﹣12<4(4x﹣13),去括号,得3x+12﹣12<16x﹣52,移项,得3x﹣16x<﹣52﹣12+12,合并同类项,得﹣13x<﹣52,系数化为1,得x>4.解集在数轴上表示为:7.关于x的方程5x﹣2k=6+4k﹣x的解是负数,求字母k的值.【分析】解方程得出x=k+1,根据方程的解为负数得出关于k的不等式,解之可得.【解答】解:解方程5x﹣2k=6+4k﹣x得x=k+1,∵方程的解是负数,∴k+1<0,∴k<﹣1.8.不等式组的解集在数轴上表示为( )A.B.C.D.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后在数轴上表示出其解集即可.【解答】解:,解不等式①,得:x≥1,解不等式②,得:x≥2,故原不等式组的解集是x≥2,其解集在数轴上表示如下:,故选:C.9.对于任意实数x,我们用{x}表示不小于x的最小整数.如:{2.7}=3,{2022}=2022,{﹣3.14}=﹣3,若{2x+3}=﹣2,则x的取值范围是( )A.B.C.D.【分析】根据{x}表示不小于x的最小整数,可得﹣3<2x+3≤﹣2,然后进行计算即可解答.【解答】解:∵{2x+3}=﹣2,∴﹣3<2x+3≤﹣2,∴﹣6<2x≤﹣5,∴﹣3<x≤﹣,故选:D.10.不等式组的解集是 x<3 .【分析】先求出每个一元一次不等式的解集,再求出它们的公共部分即为不等式组的解集.【解答】解:,解①得:x≤8,解②得:x<3,∴不等式组的解集为x<3.故答案为:x<3.11.解不等式(组),并把解集在数轴上表示出来:(1)2(x﹣1)+2<3x;(2).【分析】(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:(1)∵2(x﹣1)+2<3x,∴2x﹣2+2<3x,∴2x﹣3x<2﹣2,∴﹣x<0,则x>0,将解集表示在数轴上如下:(2)解不等式3x﹣(x﹣2)≥6,得:x≥2,解不等式x+1>,得:x<4,则不等式组的解集为2≤x<4,将不等式组的解集表示在数轴上如下:考向三:求不等式组中参数的值或范围方法步骤总结:①解出不等式(组)的解集——用含参数的表达式表示;②根据题目要求,借助数轴,确定参数表达式的范围,必在两个相邻整数之间;③由空心、实心判断参数两边边界哪边可以取“=”,哪边不能取“=”。
初中数学《一元一次不等式和一元一次不等式组》单元教学设计以及思维导图
一元一次不等式和一元一次不等式组
主题单元学习目标
知识与技能:
1、经历将一些实际问题抽象成不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效数学模型进一步发展符号感。
2、能够根据具体问题中的大小关系了解不等式的意义。
3、掌握不等式的基本性质。
4、理解不等式组的解及解集的含义,会解简单的一元一次不等式并能在数轴上表示一元一次不等式的解集,会解一元一次不等式组并会在数轴上确定其解集,初步体会数形结合的思想。
其他:纸、笔
学习活动设计
活动一、
如下图,正方形的边长和圆的直径都是acm。
1、如果要使正方形的周长不大于25cm,那么 a 应满足怎样的关系式?
2、如果要使圆的周长不小于100cm,那么a 应满足怎样的关系式?
3、当 a= 8 时,正方形和圆的周长哪个大?a = 12 呢?
4、你能得到什么猜想?改变a的取值再试一试。
观察由上述问题得到的关系式,它们有什么共同特点?
由4a 4a4a≤25, πa ≥100 ,3x+5>240得,这些关系式都是用不等号连接的式子.由此
一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式
活动二、。
八年级一元一次不等式(教师讲义带答案).
第四章一元一次不等式(组)考点一、不等式的概念(3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法考点二、不等式基本性质(3-5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;考点三、一元一次不等式(6--8分)1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1考点四、一元一次不等式组(8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。
北师大版2019-2020八年级数学下册第二章 一元一次不等式与一元一次不等式组章末复习课件(共60张)
章末复习
解 解不等式组, 得xx≤≥b4,.5. 由题意知原不等式组有解, 所以原不等式 组的解集为4.5≤x≤b, 如图2-Z-2所示, 将x≥4.5表示在数轴上. 由整数解 有3个, 可知整数解为5, 6, 7.结合图形可知7≤b<8.
章末复习
链接1 [南宁中考]若m>n, 则下列不等式正确的是( ).
解析 ①分别求出两个不等式的解集;②求两个不等式解集的公共部分; ③在两个不等式解集的公共部分中确定整数解.
章末复习
解:解不等式 3x-1<x+5,得 x<3. 解不等式x-2 3<x-1,得 x>-1. ∴不等式组的解集为-1<x<3,它的整数解为 0,1,2.
章末复习
专题三 根据不等式(组)的解集确定字母的值(取值范围)
分析 由题意可得不等关系:购买乒乓球的花费+购买球拍的花≤200元, 由此可列不等式解决问题.
章末复习
解 设购买 x个球拍. 根据题意, 得1.5×20+22x≤200.
解这个不等式,
得x≤
8 711
. 因为x取整数,
所以x的最大值为7.
故孔明应该买7个球拍.
章末复习
相关题4 为加强中小学生安全和禁毒教育, 某校组织了“防溺水、 交通安全、禁毒”知识竞赛, 为奖励在竞赛中表现优异的班级, 学校准备从体育用品商场一次性购买若干个足球和篮球(每个足 球的价格相同, 每个篮球的价格相同). 已知购买1个足球和1个篮 球共需159元;1个足球的价格比1个篮球的价格的2倍少9元. (1)足球和篮球的单价各是多少? (2)根据学校实际情况, 需一次性购买足球和篮球共20个, 但要求 购买足球和篮球的总费用不超过1550元, 学校最多可以购买多少 个足球?
人教版初中数学七年级下册第9章一元一次不等式(组)含参专题——有、无解问题(专题课)教案
人教版初中数学七年级下册第九章一元一次不等式(组)含参专题——有、无解问题(专题课)教案核心素养:1.使学生加深对一元一次不等式组和它的解集的理解,会用数轴确定含参数的一元一次不等式组的参数范围;2.培养学生探究、独立思考的学习习惯,感受数形结合的作用,熟悉并掌握数形结合的思想方法,提高分析问题和解决的能力;3.提升学生之间合作与交流以及对问题的探讨能力,从中发现数学的乐趣.【教学重难点】重点:含参一元一次不等式组的分类解法难点:1.一元一次不等式中字母参数的讨论2.一元一次不等式中运用数轴分析参数的范围【教学过程】1.问题引导 合作交流出示问题:请同学们解下列两个不等式(1)x-2m<0,(2)x+m >3并思考m 的取值范围. 同学们不难得出不等式(1)的解为x <2m ;(2)的解为x >3-m.引导分析m 的取值范围. 师引导,生回答:任意实数.[问题1]如果将上述两个不等式联立成不等式组⎩⎨⎧>+<-302m x m x ,你能确定不等式组的解集吗? 师提示学生画数轴 ,问:能画几种情况[问题2]如果这个不等式组无解,你能确定m 的取值范围吗?(学生分组讨论)(借助数轴)师生一起分析:如果不等式组无解,则2m <3-m ,解得m <1。
确定一下“<”要不要添加“=”(这是参数取值问题中的难点)学生借助数轴讨论.师生总结:2m 和3-m 在两个不等式的解中都不包含,所以2m 可以等于3-m ,即m ≤1.2.变式拓展 强化理解变式1:若不等式组⎩⎨⎧⋅⋅⋅⋅⋅>+⋅⋅⋅≤-②①302m x m x 无解,这时m 的取值会有变化吗?解不等式①得x ≤2m 解不等式②得x >3-m(学生分组探究)引导:虽然第一个不等式“<”改成“≤”通过数轴可以看到由于和第二个不等式的解集不包含3-m ,所以2m ≤3-m ,m 的取值范围仍然是m ≤1.变式2:如果不等式组变化为⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x ,这时m 的取值又会有改变吗?(学生分组探究)由于两个不等式都含有等号,这时2m 和3-m 可能是公共点,而要想使不等式组无解,2m 和3-m 不能重合,只能2m <3-m ,所以m 不能等于1,即m <1.3.问题反转[问题3]如果不等式组⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x 有解,怎样确定 m 的取值范围?把两个不等式的解集在数轴上表示出,同学们观察数轴 ,不难得出要想使不等式组有解,只要2m ≥3-m ,即m ≥1这样两个不等式的解集有公共部分,不等式组有解,所以m 的取值范围m ≥14.方法小结 归纳步骤解含参一元一次不等式(组)有、无解问题时注意掌握四个步骤:一解 .解不等式组,用参数分别表示出两个不等式的解集;二画.借助数轴进行视觉观察,画出有无解的情况;三验:验证端点取舍判断等号是否可取;四:列出不等式,确定取值范围5,拓展演练 题型再变[问题4]下面这种类型的一元一次不等式组如何确定字母参数取值范围?例:已知不等式组⎩⎨⎧⋅⋅⋅-<⋅⋅⋅⋅⋅⋅⋅⋅≥-②①22-10x x a x 的解集是x >1,求a 的取值范围?学生分组解出每个不等式的解集:解①得:x ≥a 解②得:x >1因为不等式的解集是x >1,(学生分组探讨):a 的位置在数轴上应该在哪个位置? 分析得出:a 在数轴上的位置应该在1的左侧.把不等式组的解集在数轴上表示出来:即a <1,[思考3]a 可不可以等于1?因为a=1时不等式组的解集仍然是x >1.所以a 可以等于1,即a 的取值范围a ≤15.基础过关1.若不等式组⎩⎨⎧≤≥-m x x 062 无解,求m 的取值范围? 2.若不等式组⎩⎨⎧>+<--xx a x x 422)2(3有解,求a 的取值范围?3.若不等式组⎩⎨⎧+>+<+1137m x x x 的解集是x >3,求m 的取值范围?。
高考数学一轮复习第七章不等式推理与证明1二元一次不等式与简单的线性规划问题课件新人教A版22
标函数的几何意义是斜率问题还是距离问题,依据几何意义可求得
最值.
-27考点1
考点2
考点3
对点训练 2(1)(2020 河北唐山二模)已知 x,y 满足约束条件
- + 2 ≥ 0,
-2 + 1 ≤ 0,则 z=x-y 的最大值为( B )
包括
标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应_____
实线
边界直线,则把边界直线画成
.
(2)因为对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)
代入Ax+By+C,所得的符号都 相同
,所以只需在此直线的同
一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的 符号 即
-1 ≤ 0,
- + 1 ≥ 0
为( D )
A.-5
B.1
C.2
D.3
(2)如图,阴影部分表示的区域可用二元一次不等式组表示
+ -1 ≥ 0,
为 -2 + 2 ≥. 0
-17考点1
考点2
考点3
+ -1 ≥ 0,
解析: (1)不等式组 -1 ≤ 0,
所围成的平面区域如图所示.
3
3
7
A.1
B.
C.
D.
2
4
4
- ≥ 0,
2 + ≤ 2,
(2)若不等式组
表示的平面区域是一个三角形,则
≥ 0,
+ ≤
a 的取值范围是( D )
含参数的一元一次不等式组讲课教案
自主学习
1. 不等式 x ? 4 ? 2(1? x) 的解集为 x ? 2 .
2. 问题1中不等式的解集表示在数轴上为( B )
A
B
C
D
3. 问题1 中不等式非负的整数解为 0 ,1 .
类型1:系数含参数的一元一次不等式
问题1 :求关于x 的一元一次不等式 mx ? 2的解集.
不等式式 x ? a(x ? a )
分析: (1)如果 m ? 0,那么 x ? 2 m
(2)如果 m ? 0,那么 x ? 2 m
练习
1. 已知a ? 3 ,求不等式 2 xa? x ??2
0 的解集.
x
?
2 2?a
变式
1. 关于x 的不等式 (3 ? a )x ?
求a 的范围.
2
的解集为 x ?
问题3 :关于x 的不等式组
?5? 2x ? ?1
? ?
x
?
a
?
0
无解,
求a 的取值范围.
变
式:关于x 的不等式组
?2x ??3 x
? ?
3x a?
? 5
3
有解,
求a 的取值范围.
a? 4
类型2:已知不等式组的特殊解,确定参数取值范围
问题1 :关于x 的不等式组
?x? m ? 0
? ?7
?
2
x
?
1
?x?a ? 0 ??? 2x ? 2 ?
?6
的解集为
x
?
4
求a 的取值范围.
练习
1 :关于x 的不等式组
?x
? ?
x
? ?
2 ?m
专题10 一元一次不等式(组)(课件)2023年中考数学一轮复习(全国通用)
1. 一元一次不等式的定义:不等式中只含有一个未知数,未知数的次数是1,且不 等式的两边都是整式,这样的不等式叫做一元一次不等式.
2. 一元一次不等式的解法: 一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将未知项的 系数化为1.
知识点2:一元一次不等式及其解法
典型例题
知识点3:一元一次不等式组及其解法
知识点梳理
3. 解不等式组:求不等式组的解集的过程,叫做解不等式组.
4. 一元一次不等式组的解法: (1)分别求出不等式组中各个不等式的解集; (2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.
知识点3:一元一次不等式组及其解法
知识点梳理
5. 解集在数轴上的表示(令a>b):
典型例题
【例8】(2022•聊城)关于x,y的方程组
2x y x 2 y
2k k
3
的解中x与y的和不小于5,
则k的取值范围为( )
A.k≥8 B.k>8 C.k≤8 D.k<8
【解答】解:把两个方程相减,可得x+y=k-3, 根据题意得:k-3≥5, 解得:k≥8. 所以k的取值范围是k≥8. 故选:A.
知识点4:一元一次不等式(组)的实际应用
典型例题
【解答】解:(1)设生产A产品x件,B产品y件,
根据题意,得
100x 75y 8250 (120 100)x (100 75) y 2350
.
解这个方程组,得
x 30
y
70
,
所以,生产A产品30件,B产品70件.
知识点4:一元一次不等式(组)的实际应用
知识点梳理
知识点1:不等式及其性质
5. 不等式基本性质:
人教版中考数学第一轮复习第二章方程与不等式
第二章 方程与不等式第七讲 一次方程(组)【基础知识回顾】一、 等式的概念及性质:1、等式:用“=”连接表示 关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减) 所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以 (除数不为0)所得结果仍是等式 即:若a=b,那么a c= ,若a=b (c≠o )那么a c= 【名师提醒:①用等式性质进行等式变形,必须注意“都”,不能漏项②等式两边都除以一个数或式时必须保证它的值 】二、方程的有关概念:1、含有未知数的 叫做方程2、使方程左右两边相等的 的值,叫做方程的解4、一个方程两边都是关于未知数的 ,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是 的 方程叫做一元一次方程,一元一次方程一般可以化成 的形式。
2、解一元一次方程的一般步骤:1。
2。
3。
4。
5。
【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意。
】四、二元一次方程组及解法:1、 解二元一次方程组的基本思路是: ;2.解方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解 2、二元一次方程组的解应写成 五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【重点考点例析】 一、选择题1.一元一次方程2x=4的解是( )A .x=1 B .x=2 C .x=3 D.x=4x=ay=b 的形式2.已知方程组2535x yx y+=⎧⎨+=⎩,则x+y的值为()A.-1 B.0 C.2 D.3A.4150048000x yx y+=⎧⎨+=⎩B.4150068000x yx y+=⎧⎨+=⎩C.1500468000x yx y+=⎧⎨+=⎩D.1500648000x yx y+=⎧⎨+=⎩二、填空题12.方程组31x yx y+=⎧⎨-=⎩的解是.13.若方程组7353x yx y+=⎧⎨-=-⎩,则3(x+y)-(3x-5y)的值是.14.湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人,如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.设敬老院有x位老人,依题意可列方程为.15.某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价元.三、解答题20.解方程组128 x yx y=+⎧⎨+=⎩.21.解方程组251x yx y+=⎧⎨-=⎩.【基础知识回顾】一、一元二次方程的定义:1、一元二次方程:含有个未知数,并且未知数最高次数是2的方程2、一元二次方程的一般形式:其中二次项是一次项是,是常数项【名师提醒:1、在一元二次方程的一般形式要特别注意强调a≠0这一条件2、将一元二次方程化为一般形式时要按二次项、一次项、常数项排列,并一般首项为正】二、一元二次方程的常用解法:1、直接开平方法:如果ax 2 =b 则X 2 = X1= X2=2、配方法:解法步骤:①、化二次项系数为即方程两边都二次项系数,②、移项:把项移到方程的边③、配方:方程两边都加上把左边配成完全平方的形式④、解方程:若方程右边是非负数,则可用直接开平方法解方程3、公式法:如果方程ax 2+bx+c=0(a≠0) 满足b 2-4ac≥0,则方程的求根公式为4、因式分解法:一元二次方程化为一般形式后,如果左边能分解因式,即产生A.B=0的形式,则可将原方程化为两个方程,即、从而得方程的两根【名师提醒:一元二次方程的四种解法应根据方程的特点灵活选用,较常用到的是法和法】三、一元二次方程根的判别式关于X的一元二次方程ax 2+bx+c=0(a≠0)根的情况由决定,我们把它叫做一元二次方程根的判别式,一般用符号表示①当时,方程有两个不等的实数根②当时,方程看两个相等的实数根方程有两个实数跟,则③当时,方程没有实数根【名师提醒:在使用根的判别式解决问题时,如果二次项系数中含有字母一定要保证二次项系数】四、一元二次方程根与系数的关系:关于X的一元二次方程ax 2 +bx+c=0(a±0)有两个根分别为X1、X2则x1+x2 = x1x2 =【重点考点例析】一、选择题1.方程x2-5x=0的解是()A.x1=0,x2=-5 B.x=5 C.x1=0,x2=5 D.x=0 2.已知关于x的方程x2-kx-6=0的一个根为x=3,则实数k的值为()A.1 B.-1 C.2 D.-23.已知b<0,关于x的一元二次方程(x-1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根4.一元二次方程2x2-5x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定5.已知一元二次方程:①x2+2x+3=0,②x2-2x-3=0.下列说法正确的是()A.①②都有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解6.已知关于x的一元二次方程x2+2x-a=0有两个相等的实数根,则a的值是()A.4 B.-4 C.1 D.-17.若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k>1 C.k=1 D.k≥08.若关于x的方程x2-4x+m=0没有实数根,则实数m的取值范围是()A.m<-4 B.m>-4 C.m<4 D.m>49.关于x的一元二次方程(a-1)x2-2x+3=0有实数根,则整数a的最大值是()A.2 B.1 C.0 D.-110.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x-6=-4 B.x-6=4 C.x+6=4 D.x+6=-4 11.用配方法解方程x2-2x-1=0时,配方后得的方程为()A.(x+1)2=0 B.(x-1)2=0 C.(x+1)2=2 D.(x-1)2=2二、填空题三、解答题21.选择适当的方法解下列方程:(1)27(23)28x -=; (2)223990y y--= (3)221x +=; (4)2(21)3(21)20x x ++++= 23.关于x 的一元二次方程为(m-1)x 2-2mx+m+1=0.(1)求出方程的根;(2)m 为何整数时,此方程的两个根都为正整数?24.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?25.要建一个面积为150m 2的长方形养鸡场,为了节约材料,鸡场的一边靠着原有的一条墙,墙长为am ,另三边用竹篱笆围成,如图,如果篱笆的长为35m ,(1)求鸡场的长与宽各为多少?(2)题中墙的长度a 对题目的解起着怎样的作用?第九讲 分式方程【基础知识回顾】一、分式方程的概念分母中含有 的方程叫做分式方程【名师提醒:分母中是否含有未知数是区分分式方程和整式方程的根本依据】二、分式方程的解法:1、解分式方程的基本思路是 把分式方程转化为整式方程:即分式方程 ﹥整式方程2、解分式方程的一般步骤:①、 ②、 ③、3、增根:转化 去分母 A B D E F在进行分式方程去分母的变形时,有时可能产生使原方程分母为 的根称为方程的增根。
人教版中考数学专题课件:一元一次不等式(组)
考 点 聚 焦
考点1 不等式及基本性质
不等式 用不等号(>、≥、<、≤或≠)表示不等关系的式子 的概念 叫做不等式. 性质 1:不等式的两边都加上(或减去)同一个数或 不变 ; 同一个整式,不等号的方向________ 不等式 性质 2: 不等式的两边都乘以(或除以)同一个正数, 的基本 不等号的方向________ 不变 ; 性质 性质 3: 不等式的两边都乘以(或除以)同一个负数, 不等号的方向__________. 改变
皖考解读
考点聚焦
皖考探究
当堂检测
一元一次不等式(组)
考点4 一元一次不等式(组)的应用
1.审清题意,指出不等关系; 列不等式(组) 2.设定未知数; 解应用题的 3.列出不等式(组); 步骤 4.解不等式(组); 5.答.
皖考解读
考点聚焦
皖考探究
当堂检测
一元一次不等式(组)
皖 考 探 究
探究一 不等式的概念及性质
命题角度: 1.一元一次不等式的概念; 2.一元一次不等式的解法.
皖考解读
考点聚焦
皖考探究
当堂检测
一元一次不等式(组)
例 2 [2013· 凉山州] 已知 x=3 是关于 x 的不等式 3x ax+2 2x - > 的解,求 a 的取值范围. 2 3
解 析
式的解法.
本题考查了方程的解的概念和一元一次不等
皖考解读
考点聚焦
皖考探究
当堂检测
一元一次不等式(组)
考点3 一元一次不等式组的解法
1. 一 元 一 次 不 等 式 组 : 由 几 个 含 有 同一个未知数 的一元一次不等式组成的不 ______________ 一元一次等 等式组. 式组的相不 2.一元一次不等式组的解集:一元一次不等 公共部分 关概念 式组中各个不等式的解集的__________. 3.解不等式组:求一元一次不等式组解集的 过程.
中考数学点对点-一元一次不等式(组)及其应用(解析版)
专题13 一元一次不等式(组)及其应用专题知识点概述1.不等式的定义:用不等号“<”“>”“≤”“≥”表示不相等关系的式子叫做不等式。
2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
一个含有未知数的不等式的所有解,组成这个不等式的解集。
3.一元一次不等式的定义:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
4.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
5.不等式的性质:性质1:不等式的两边都加上(或减去)同一个数,不等号的方向不变。
性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
6.一元一次不等式的解法的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1.7.一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
8.求不等式组解集的规律:不等式解集在数轴上的表示方法:含≥或≤,用实心圆点,含>或<用空心圆圈。
不等式组的解集有四种情况:若a>b,(1)当x ax b>⎧⎨>⎩时,•则不等式的公共解集为x>a;(2)x ax b<⎧⎨>⎩时,不等式的公共解集为b<x<a;(3)x ax b<⎧⎨<⎩时,不等式的公共解集为x<b;(4)当x ax b>⎧⎨<⎩时,不等式组无解.9.中考出现一元一次不等式(组)试题类型总结:类型一:一元一次不等式的解集问题。
类型二:一元一次不等式组无解的情况。
类型三:明确一元一次不等式组的解集求范围。
类型四:一元一次不等式组有解求未知数的范围。
类型五:一元一次不等式组有整数解求范围。
第7章一元一次不等式及不等式期末复习教学案
第七章 一元一次不等式及不等式组期末复习教学案【知识要点】、1.不等式: 式子叫做不等式。
2.表示不等式关系的符号及其意义.(1)“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能说明两个量谁大谁小; (2)“>”读作“大于”,它表示其左边的数比右边的数大; (3)“<”读作“小于”,它表示其左边的数比右边的数小;(4)“≥”读作“大于或等于”,其意义是指左边的数不小于右边的数; (5)“≤”读作“小于或等于”,其意义是指左边的数不大于右边的数;3.(1)不等式的解:能使不等式成立的未知数的值叫做 ;(2)不等式的解集:一个含有未知数的不等式的解的全集叫做 ; (3)解不等式:求不等式解集的过程叫做 . 4. 不等式解集的表示方法(1)用不等式表示:不等式的解集是一个范围,这个范围可以用一个最简单的不等式来表示.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,要注意一是定方向,二是定边界点,大于向右画,小于向左画;无等于号时边界点处画空心圆圈,有等于号时边界点处用实心圆点表示一定要注意不等号“ >” ,“ < ”与“ ≥" “≤”在数轴上画法的区别.5.等式的解与不等式的解集的联系与区别.(1)联系: ; (2)区别: .6.不等式的性质.(重点)不等式的性质 1 :不等式的两边 ,不等号的方向不变.不等式的性质 2 :不等式的两边都乘以(或除以)同一个正数,不等号的方向 ;不等式的两边都乘以(或除以)同一个负数,不等号的方向 .7.一元一次不等式 (重点):(1)只含一个未知数,并且未知数的最高次数是1系数不等于0不等式,叫做 . (2)一元一次不等式的一般形式为:b ax+>0或b ax +<0(0≠a )8. 叫做一元一次不等式组。
叫做这个不等式组的解集。
9.一元一次方程与一次函数、二元一次方程(组)与一次函数的联系.(重点)(1)任何一元一次方程都可以转化为)0,(0≠=+a b a bax 为常数,的形式,所以解一元一次方程可以转化为当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线b ax y +=,确定它与x 轴的交点的横坐标的值.(2)二元一次方程与一次函数的联系.若k ,b表示常数且k ≠0,则b kx y =-为二元一次方程,有无数个解,将其变形可得b kx y +=,将 x ,y 看作自变量、因变量,则b kx y +=是一次函数.事实上,以方程b kx y =-的解为坐标的点组成的图象与一次函数b kx y +=的图象相同.(3)二元一次方程组与一次函数的联系.二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 解一可以看作是两个一次函数1111b cx b a y +-=和2222b cx b a y +-=图像的交点.11.一元一次不等式与一次函数的联系. (重点)(1)任何一个一元一次不等式都可以转化为b ax+>0或b ax+<0(a ,b为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数的值大(小)于0时,求自变量的取值范围. (2)一次函数b kx y +=与一元一次方程0=+b kx 和一元一次不等式的关系:函数b kx y +=的图象在x 轴上方的点所对应的自变量x 的值,即为不等式b kx+>0的解集;在x 轴上的点所对应的自变量x 的值,即为方程0=+b kx 的解;在x 轴下方的点所对应的自变量x 的值,即为不等式b kx +<0的解集.【典型例题】【例1】下列式子中哪些是不等式?(1)x+y=y+x (2)-4>-6 (3)x ≠5 (4)x +2>5 (5)3x<y (6)2a -b 解:是不等式的是: (填序号) 【例2】用不等式表示下列关系。
人教版初中数学中考复习 一轮复习 —一元一次不等式(组)解法及含字母(参数)问题
8
4
.
解:(2)去分母,得:8﹣(7x﹣1)>2(3x﹣2),
去括号,得:8﹣7x+1>6x﹣4,
移项,得:﹣7x﹣6x>﹣4﹣1﹣8,
合并同类项,得:﹣13x>﹣13,
系数化1,得:x<1.
考点二:解不等式(组)并在数轴上表示解(集)
5.(2021•武汉)解不等式组
2x x 1 ① 4x 10 x 1 ②
考点一:不等式的性质
C 1.(2021•常德)若a>b,下列不等式不一定成立的是( )
A.a﹣5>b﹣5
B.﹣5a<﹣5b
C. a b
cc
D.a+c>b+c
考点一:不等式的性质
2.(2021•临沂)已知a>b,下列结论:①a2>ab;②a2>b2;③若b<0,
A 则a+b<2b;④若b>0,则 1 1 ,其中正确的个数是( ) ab
性质3:不等式两边同时乘或除同一个负数,不等号的。方向改变
知识点梳理:
二、一元一次不等式(组)及其解法
一元一次不等 含有一个未知数,未知数的次数是
1
式定义
的不等式
解一元一次不 等式的步骤
去分母→去括号→移项→合并同类项→系数化为1
一元一次 一般地,关于同一个未知数的几个一元一次不等式合在一起,
不等式组 就组成一个一元一次不等式组
3.(2021•南京)解不等式1+2(x﹣1)≤3,并在数轴上表示解集. 解: 1+2(x﹣1)≤3, 去括号,得1+2x﹣2≤3. 移项、合并同类项,得2x≤4. 化系数为1,得x≤2.
表示在数轴上为:
考点二:解不等式(组)并在数轴上表示解(集)
Hale Waihona Puke 4.(2021•泰安)(2)解不等式: 1- 7x 1 3x 2
(完整word版)第11章一元一次不等式与一元一次不等式组教案及单元备课
4、议一议:
1. 讨论下列式子的正确与错误.
(1)如果 a<b,那么 a+c<b+c;
(2)如果 a<b,那么 a-c<b-c;
(3)如果 a<b,那么 ac<bc; 2.设 a>b,用“<”或“>”号填空.
(4)如果 a<b,且 c≠0,那么 a > b . cc
(1)a+1 b+1;
(2)a-3 b-3;
教学重点 掌握简单的一元一次不等式的解法,并能将解集在数轴上表示出来。
教学难点 一元一次不等式的解法。
教法、学法
分析
自主探究与小组合作交流相结合.
媒体使用 和选择
教学过程
二次备课
1、 创设情境,引入新课
(1) 不等式的三条基本性质是什么?
(2) 运用不等式基本性质把下列不等式化成 x>a 或 x<a 的形式。
(1)a-3 b-3; (2) a
b;
22
5b;
(5)当 a>0,b 0 时,ab>0;
(7)当 a<0,b 0 时,ab>0;
三、课堂小结:
(3)-4a -4b; (4)5a
(6)当 a>0,b (8)当 a<0,b
0 时,ab<0; 0 时,ab<0.
四、作业:
板书设计
2.不等式的基本性质
教学反思
(3)3a 3b;
(4) a
b;
4
4
(5)- a 7
- b ; (6)-a -b. 7
5、变式训练:
1.根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:
(1)x-2<3;
(2)6x<5x-1; (3) 1 x>5; 2
(4)-4x>3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019版中考数学一轮复习第7课时一元一次不等式(组)教案
课题一元一次不等式(组)复备人教学时间
教学目标:
1.了解不等式的性质,能应用不等式的性质解答问题。
2.了解不等式(组)、解集等基本概念,会解一元一次不等式(组),会把
解集表示在数轴上。
教学重点:会解一元一次不等式(组),会把解集表示在数轴上。
教学难点:会解一元一次不等式(组),会把解集表示在数轴上。
教学方法:自主探究合作交流讲练结合
教学媒体:电子白板
【教学过程】:
一.知识梳理
1.不等式的性质:
(1)若,
a b
>则a c
±____b c
±;
(2)若,
a b
>①当c>0时,ac___bc;②当0
c<时,ac___bc。
2.不等式组中所有不等式的解集的______________叫做不等式组的解集。
3.求_______________解集的过程叫做解不等式组。
4.借助数轴求不等式解集:
若,
a b
>
x a
x b
⎧
⎨
⎩
>
>
x a
x b
⎧
⎨
⎩
<
<
x a
x b
⎧
⎨
⎩
<
>
x a
x b
⎧
⎨
⎩
>
<
∴
∴∴∴
界点相同情况:
x a
x a
≥
⎧
⎨
≤
⎩
x a
x a
⎧
⎨
≤
⎩
>x a
x a
⎧
⎨
⎩
>
<
x a
x a
⎧
⎨
≥
⎩
>x a
x a
⎧
⎨
≤
⎩
<
∴∴∴∴∴
5.列不等式(组)解决实际问题的关键是找出题中的不等关系
在解答与不等式(组)的解集相关问题时,要充分借助于数轴帮助思考。
二、典型例题
1.不等式(组)的解集
(1)(xx遵义)不等式1
1
3+
>
-x
x的解集在数轴上表示为()
复备栏
(2)(xx 南京)不等式组⎩⎨⎧2x +1>-12x +1 < 3
的解集是 . 2.解不等式(组)
(1)(xx 扬州)解不等式组⎪⎩⎪⎨⎧->--≥22
15143x x x x ,并把它的解集在数轴上表示出来
(2)(xx•天水)不等式组
的所有整数解是 .
3.含字母系数的不等式(组)
(1)(xx•南通)关于x 的不等式x ﹣b >0恰有两个负整数解,则b 的取值范围是( )
A .﹣3<b <﹣2
B .﹣3<b≤﹣2
C .﹣3≤b≤﹣2
D .﹣3≤b <﹣2 (2)若不等式组1++91+112
3x a x x ⎧⎪+⎨≥-⎪⎩<有解,则实数a 的取值范围是( ) A .-36a < B .-36a ≤ C .-36a > D .-36a ≥
(3)(xx 扬州)已知x=2是不等式)23)(5(+--a ax x ≤0的解,且x=1不是这
个不等式的解,则实数a 的取值范围是 ( )
A 、1>a
B 、a ≤2
C 、a <1≤2
D 、1≤a ≤2
4.不等式的应用
某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.
(1) 求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)
(2) 商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?
三、中考预测
1.不等式组的最大整数解为()A.8 B.6 C.5 D.4 2.解不等式组:,并把解集在数轴上表示出来.
四、反思总结
1.本节课你复习了哪些内容?
2.通过本节课的学习,你还有哪些困难?。