§2.3-恰当方程与积分因子-常微分方程课件-高教社
常微分方程§2.3恰当方程与积分因子
在某些复杂系统中,恰当方程和积分因子可以用来描述系统的动态行为, 并预测未来的发展趋势。
05 实例分析
实例一:简单的一阶恰当方程与积分因子
总结词
通过简单的一阶恰当方程,理解积分因子的概念和作用。
详细描述
一阶恰当方程的形式为dy/dx=f(x,y),其中f(x,y)是x和y的有理函数。求解这类方程时,可以 通过引入积分因子M(x,y)的方法,将方程转化为一个全微分方程,从而简化求解过程。
形式简单
恰当方程的形式相对简单,未知函数的各阶导数都包 含在方程的右边。
可解性
由于最高阶导数的系数不为零,恰当方程可以通过解 代数方程来求解。
应用广泛
恰当方程在数学、物理、工程等领域有广泛的应用。
恰当方的判别方法
导数项系数不为零
在微分方程中,如果最高阶导数 的系数不为零,则该微分方程可 能是恰当方程。
实例三:实际问题的恰当方程与积分因子应用
总结词
通过实际问题的恰当方程,了解 积分因子的实际应用价值和意义。
详细描述
在实际问题中,许多物理、工程 和经济领域的问题都可以转化为 恰当方程的形式。通过引入积分 因子,可以简化问题求解过程, 提高求解效率。
实例展示
例如,在经济学中研究商品价格的变化时, 经常会遇到类似“商品的需求量D与价格p和 消费者的收入I有关,需求量D对价格的导数 Ddp与需求弹性有关”的问题。通过引入积 分因子并转化为全微分方程,可以更方便地 研究商品价格的变化规律和趋势。
02
[2] 丁同仁, 李承治. 常微分方程教程(第二版)[M]. 北京: 高 等教育出版社, 2004.
03
第五讲常微分方程PPT课件
5. 求lim x0
1 cos x
.
1
6.
求
lim
xe
x e
xe
.
7.
设
y
x2
sin
1 x
,
x 0,
存在. 0,
x 0,
求y 0
8. 计算积分
x3 dx.
1 x2
并讨l论im y x x0
是否
第37页/共47页
综合练习
9. 计算下列积分.
1
arctan x
x dx;
2
ln x 1 x2 dx.
任给有理数a,
函数
f(x)满足 f
x
x
0
f
a t dt 1,
求
f(x).
练 (2008年高数二)
求微分方程
d2y dx 2
dy dx
0
的通解.
第26页/共47页
3.掌握二阶常系数非齐次线性微分方程的解法 二阶常系数非齐次线性微分方程:
ay by cy f x
的通解为
y Y x y* x
y 4 y 0 的通解.
例: 求齐次方程
4
d2x dt 2
20
dx dt
25 x
0
的通解.
例: 求初值问题
y 4 y 29 y 0
y
x0
0
,
y
x0
15
的解.
第25页/共47页
练 (2006年高数二)
微分方程
y 4 y 5 y 0 的通解为___________
练 (2007年高数一)
第16页/共47页
二阶齐次线性方程解的结构
《高等数学》课件第6章 常微分方程
由此可见,只要r满足代数方程r2prq0函数yerx 就是微分方程的解
方程r2prq0叫做微分方程ypyqy0的特征方程 其根称为特征根
p2—4q>0 p2—4q=0 p2—4q<0
有两个不相等的实根 r1、r2 有两个相等的实根 r1r2
有一对共轭复根 r1, 2 i
2、f(x)=eαx[Pl(x)cosβx+Pn(x)sinβx]型 特解可设为
y*xkeαx[Rm(1) (x)cosβxRm(2) (x)sinβx] 其中Rm (1) (x), Rm (2) (x)是m次多项式设Pl(x) 和 Pn(x) 较高次为m 次,根据α±iβ 不是特征方程的根或是 特征方程的根, k 分别取0 ,1.
两边积分
dy g( y)
f
(x)dx
c
得出通解
G(y) F(x) C
1 的某一原函数 f (x)的某一原函数 ( y)
二、一阶线性微分方程
一阶线性微分方程 y p(x)y q(x)
其中p(x) , q(x)是 x的己知函数.其特点是未知函数 y及 其导数 y' 都是一次的(即线性的).
这是关于变量 y 和未知函数p(y)的一阶微分方程, 设其通解p= φ(x,C1) , 即y' = φ(x,C1) ,分离变量并积分得
dy
( y,C1) x C2
第四节 二阶常系数线性微分方程
一、二阶常系数线性微分方程解的性质
形如y''+ py' + qy = 0的方程(其中p, q为常数) ,称 为二阶常系数齐次线性微分方程.
y c(x)e p(x)dx
常微分方程-恰当方程.ppt
例3 验证方程 (cos x sin x xy2 )dx y(1 x2 )dy 0,
是恰当方程,并求它满足初始条件y(0)=2的解.
解:这里M (x, y) cos x sin x xy2, N (x, y) y(1 x2 ),
M (x, y) 2xy N (x, y) ,
y
x
故所给方程是恰当方程. 把方程重新“分项组合”得
下面证明(7)的右端与 x无关, 即对x的偏导数常等于零
事实上
x
[N
y
M
(x, y)dx] N
x x
[
y
M
(
x,
y)dx]
N x
[ y x
M (x,
y)dx]
N x
M y
0.
于是, (7)右端的确只含有 y,积分之得
(
y)
[N
y
M
(
x,
y)dx]dy,
故
u(
x,
y)
M
(x,
y)dx
du u dx u dy x y
如果我们恰好碰见了方程
u(x, y) dx u(x, y) dy 0
x
y
就可以马上写出它的隐式解
u(x, y) c.
1 恰当方程的定义
定义1 若有函数u(x, y), 使得
du(x, y) M (x, y)dx N(x, y)dy
则称微分方程
M (x, y)dx N(x, y)dy 0, (1)
由于 2u 和 2u 都是连续的 ,从而有 2u 2u ,
yx xy
yx xy
故
M (x, y) N (x, y) .
y
x
《常微分方程》全套课件(完整版)
例1 物体下落问题 设质量为m的物体,在时间t=0时,在距
地面高度为H处以初始速度v(0) = v0垂直地面 下落,求ss此物体下落时距离与时间的关系.
有恒等式
因此,令
,则有
因此,所谓齐次方程,实际上就是方程(1.9)的右端函数 是一个关于变元x,y的零次齐次式.
如果我们把齐次方程称为第一类可化为变量分离的方程,那么我们 下面要介绍第二类这种方程.
1.3.2 第二类可化为变量可分离的方程 形如 (1.30) 的方程是第二类可化为变量可分离的方程.其中, 显然,方程(1.30)的右端函数,对于x,y并不
是方程(1.5)在区间(-1,+1)
上的解,其中C是任意常数.又方程(1.5)有两个明显
的常数解y =±1,这两个解不包含在上述解中.
3. 函数
是方程(1.6)在区间(-∞,
+∞)上的解,其中和是独立的任意常数.
4. 函数
是方程(1.7)在区间(-
∞,+∞)上的解,其中和是独立的任意常数.
这里,我们仅验证3,其余留给读者完成.事实上,
(1.13)
显然,方程(1.4)是一阶线性方程;方程(1.5)是一阶非线性方程;方程 (1.6)是二阶线性方程;方程(1.7)是二阶非线性方程.
通解与特解
微分方程的解就是满足方程的函数,可定义如下.
定义1.1 设函数 在区间I上连续,且有直
到n阶的导数.如果把
代入方程(1.11),得到在
区间I上关于x的恒等式,
高等数学 常微分方程PPT课件
【解法】需经过变量代换化为一阶线性微分方程.
除方程两边 , 得
yn d y P( x) y1n Q( x) dx
令 z y1n , 则 dz (1 n) yn d y
dx
dx
dz (1 n) P( x) z (1 n)Q( x) (关于z , x的一阶线性方程) dx
特征方程法
待 定
特征方程的根 及其对应项
系
数
法 f(x)的形式及其
特解形式
高阶方程 可降阶方程
线性方程 解的结构
定理1;定理2 定理3;定理4
欧拉方程
第4页/共35页
微分方程解题思路
一阶方程
作 变 换
降 阶
高阶方程
分离变量法 全微分方程 常数变易法
作变换 积分因子
非非 变全 量微 可分
分方 离程
特征方程法
[提示](1)
原方程化为
令u=xy,得 (2) 将方程改写为
d u u ln u (分离变量方程) dx x
d y 1 y y3 (贝努里方程) d x 2x ln x 2x
令 z y2
第17页/共35页
【例3】 识别下列一阶微分方程的类型,并求解
1)
【解】
y y x
①可分离变量的微分方程
u e P( x)d x P( x) ue P( x)d x P( x) u e P( x)d x Q( x)
即 两端积分得
非齐பைடு நூலகம்方程
dy P(x) y Q(x)
dx
u Q(
对应齐次方程通解
x
)
e
P( x)d
y
x
dx
常微分方程常见形式及解法课件PPT
2021/3/10
11
谢谢观看
2021/3/10
12
常微分方程常见形式及解法
2021/3/10
知行1301 13275001
毕文彬
1
微分方程指描述未知函数的导数与自变量之间的关系 的方程。微分方程的解是一个符合方程的函数。而在 初等数学的代数方程,其解是常数值。 常微分方程(ODE)是指一微分方程的未知数是单一 自变数的函数。最简单的常微分方程,未知数是一个 实数或是复数的函数,但未知数也可能是一个向量函 数或是矩阵函数,后者可对应一个由常微分方程组成 的系统。微分方程的表达通式是:
非齐次一阶常系数线性微分方程:
齐次二阶线性微分方程:
描述谐振子的齐次二阶常系数线性微分方程:
非齐次一阶非线性微分方程:
描述长度为L的单摆的二阶非线性微分方程:
3
2021/3/10
微分方程的解
微分方程的解通常是一个函数表达式(含一 个或多个待定常数,由初始条件确定)。例如 : dy/dx=sinx, 的解是 y=-cosx+C, 其中C是待定常数; 例如,如果知道 y=f(π)=2, 则可推出 C=1, 而可知 y=-cosx+1,
4
简易微分方程的求解方法
01
一阶线性常微分方程
02
二阶常系数齐次常微分方程
2021/3/10
5
01 一阶线性常微分方程
对于一阶线性常微分方程,常用的方法是常 数变易法: 对于方程:
可知其通解:
然后将这个通解代回到原式中,即可求出 C(x)的值
2021/3/10
6
02 二阶常系数齐次常微分方程
对于二阶常系数齐次常微分方程,常 用方法是求出其特征方程的解 对于方程: 可知其通解: 其特征方程: 根据其特征方程,判断根的分布情况 ,然后得到方程的通解 一般的通解形式为(在r1=r2的情况下):
第三节恰当方程和积分因子
两端同乘以 1 ,此时原方程化为恰当方程。 2
y
(1)、 定义:对于一般非恰当微分方程(3.1),如果存在连续可微 的函数
( x ,y ) 0,使得方程
( x , y ) M ( x , y ) d xx ( , y ) N ( x , y ) d y 0
是y的任意可微函数。下面的任务是如何选择 h(y) 使得由(3.5)表 示的函数 u(x ,y) 满足(3.2)中的第二个等式。今在(3.5)中,对y 求微分,并应用积分对参数y的微分法则,有
u ( x , y ) ( , y ) d h ( y )( 3 . 5 ) M
x x 0
有时候根据判别条件(3.4),确认所给方程是恰当方 程后,并不需要按照上述的一般方法来求恰当方程的
通解,通常用观察法凑微分的方法求恰当方程的通解
是比较方便的,即采取将原方程重新分组的办法,先
把那些本身已经构成全微分的项分去,再把剩下的项
凑成全微分,这样就容易求出恰当方程的通解了(见 前例2)。所以,在使用这种方法时,熟记下面的二元 函数的全微分公式是有益的。
M ( x , y ) d x N ( x , y ) d y 0( 2 . 4 2 )
1、恰当方程的定义 定义:设给定方程
M ( x , y ) d x N ( x , y ) d y 0 ( 3 . 1 )
其中 M ( x, y ) 和 N ( x , y ) 是在平面上某区域 D 内的已知连续函 M ( x , y ) 和 N ( x , y ) 不同时为零。如 数,且在 D内的每一点处, 果方程(3.1 )的左端是某一个已知函数 u ( x , y ) 的全微分, 即 M ( x ,) y d x N ( x ,) y d y d u
3-12 -恰当方程与积分因子
2.3 恰当方程与积分因子方法(Exact differential equation and method ofintegrating factor )[教学内容] 1. 认识恰当方程,如何判定恰当方程; 2.介绍如何求解恰当方程; 3. 介绍什么叫积分因子; 4. 介绍如何寻找积分因子;5. 积分因子一些性质.[教学重难点] 重点是会判定和求解恰当方程,难点是如何寻找方程的积分因子 [教学方法] 自学1、4;讲授2、3 课堂练习 [考核目标]1. 熟练判定一个一阶方程是否为恰当方程;2. 会求解恰当方程;3. 知道积分因子的概念;4. 会寻找积分因子,并求解方程.1. 一阶微分形式的原函数存在性及其求法sin(3y)e y)u(x ,2x =的全微分为cos(3y)dy 3e sin(3y)dx 2e dy u dx u du 2x 2x y x +=+=,我们称u(x, y)为一阶微分形式cos(3y)dy 3e sin(3y)dx 2e 2x2x+的一个原函数,并不是任一微分形式都有原函数的,例如dy xy dx 2x +。
《数学分析》下册P228定理21.12给出了如何判定dy y)Q(x,dx y)P(x,+是否存在原函数充要条件,这里P(x, y), Q(x, y)在单连通区域D 内具有一阶连续偏导数.例33. 判定一阶微分形式y)dy cos (x y)dx sin (2x ++是否为某个函数u(x, y)的全微分,如果是,求出它的原函数u(x, y).解:记 y) cos (x y)Q(x, ,y)sin (2x y)P(x,=+=, 易见P(x, y)和Q(x, y)在单连通区域2R 内具有一阶连续偏导数,且0xPx Q =∂∂-∂∂,(格林公式:⎰⎰⎰-=+D y x L )dxdy P (Q Qdy Pdx =0即积分路径无关). 因此由定理21.12知,y)dy cos (x y)dx sin (2x ++恰是某个函数u(x, y)的全微分.求函数u(x, y)方法一、由y)P(x ,u x =知,C(y)y sin x x y)dx P(x,y)u(x,2++==⎰.再由y)Q(x ,u y =知,y cos x (y)' C y cos x y)(x ,u y =+=,即1C C(y) 0,(y)' C ==(常数). 特别地,取0C 1=,得到一个原函数为 12C y sin x x y)u(x ,++=.求原函数方法二、由定理21.12知,y)dy cos (x y)dx sin (2x ++曲线积分与路径无关性且⎰+=t)(s,(0,0)y)dy Q(x,y)dx P(x, t)u(s,. 特别地,取折线段OA: y=0, s x 0≤≤;t y 0 s, x :AB ≤≤=,则t cos s s ydy cos s 2x dx Qdy Pdx Qdy Pdx t)u(s,2ts 0ABOA+=+=+++=⎰⎰⎰⎰.将自变量(s, t)换为(x, y)得到,y cos x x y)u(x ,2+=.练习28. 判定一阶微分形式)dy y -2x y -(x )dx y -2x y (x 2222++是否为某个函数u(x, y)的全微分,如果是,求出它的原函数u(x, y).2. 恰当方程(Exact equation)的概念及其解法 (1)设一阶方程为y)N(x ,y)M(x ,dx dy -=,其中M(x,y), N(x, y)在单连通区域内具有一阶连续偏导数,改写为对称形式(*)0y)dy N(x,y)dx M(x,=+. 如果y)dy N(x,y)dx M(x,+恰好为某个函数u(x, y)的全微分,则称方程(*)为恰当方程. (2)恰当方程y)dy N(x,y)dx M(x,+的解法:Step (a) 求出一阶微分形式一个原函数u(x, y),则0Ndy Mdx y)du(x,=+=;Step(b) 由一个二元函数两个偏导数都为零知,该二元函数为常函数. 于是,有C y)u(x,=, 这就是恰当方程的通积分.例34. Use the method of exact equations to solve 1dxdyy cot 2x -=⋅⋅. Solution First, we rearrange the equation as 0dy y cot dx x2=+. Let y cot y)N(x, ,x2y)M(x,==, 在0x ≠的单连通区域内,000y M x N =-=∂∂-∂∂(Test for exactness ), 因此0dy y cot dx x2=+为恰当方程.Assume that u(x, y) is a antiderivative(原函数) ofdy y cot dx x 2+, then N u M,u y x ==. (a) Integrating the first equality, we get ⎰+==C(y)2ln x dx x2y)u(x,.(b) Differentiating the above equality, we get ysin y cos dy dCy,cot (y)' C y)(x ,u y ===. (c) Integrating the above equality, we get⎰⎰=dy ysin ycos dC(y), |y sin |ln C(y)=. So u(x, y)=|y sin x |ln 2and general integral (通积分) of equation is 12C |y sin x |ln =. 例35. 求解下列方程02y)dy e (x dx e yy=++.Solution Let 2y x e y)N(x , ,e y)M(x ,yy +==. First, we apply the test for exactness (恰当方程判定方法):0e e M N y y y x =-=-. So equation is exact equation.Assume u(x, y) is an antiderivative of M d x+ N d y , then N u M,u y x ==. (a) Integrating the first equality: u(x, y)=C(y)e x dx e y y +=⎰.(b) Differentiating the above equality: 2y (y)' C 2y,xe (y)' C e u y y y =+=+=. (c) Integrating the 2ydy dC =, we get 2y C(y)=.So u(x, y) =2y y e x +, and general integral of equation is C ~y e x 2y =+.作业29. Determine which of the following equations is exact. Solve those that are exact. (a) 0)dy y (x )dx x (y 33=++-; (b) y)dx cos x cos (e )dy x e y sin (sin x yy+=-. 作业30. For each of the following equations, find the value of n for which the equation is exact. Then solve the equation for that value of n.(a) 0y)dy x (x y)dx n x (x y 2322=+++; (b) 0dy e n x )dx ey (x 2xy 2xy=++.3. 积分因子(Integrating Factor )如果一个方程是恰当方程,则它的求解过程是程序化的. 但并不是任一个方程都是恰当的,那么能否通过某种操作或等价变换使得它化为恰当方程呢? 尝试如下: 例36. 求解0x )dy y (x ydx 2=-+.解:记x )y (x y)N(x , y,y)M(x ,2-==,则验证0112x y M N y x ≠--=-. 即原方程不是恰当的. 但是在原方程两边乘以0x 1y)μ(x,2≠=,则新方程为0)dy x1(y dx x y 2=-+. 此时222x x )y (x y)(x ,N ~ ,x y y)(x ,M ~-==,有0x1x 1M ~N ~22y x =-=-. 新方程是恰当方程. 记u(x, y)为dy N ~dx M ~+一个原函数,则N ~u ,M ~u y x ==. (a) 对第一个等式两边积分得到:⎰+-==C(y)xydx x y y)u(x,2; (b) 对上式两边关于y 求导得到:y dydC y,(y)' C ,x 1y (y)C'x 1u y ==-=+-=. (c) 对ydy dC =两边积分得到:2y C(y)2=. 于是2y x y y)u(x ,2+-=.因此,原方程的通积分为12C 2y x y y)u(x ,=+-=. 注解37. 这里有几个问题需要回答:(1)方程0Ndy Mdx =+和乘以因子y)μ(x,后所得新方程0dy N ~dx M ~=+是否等解?如果不等解,那么问题出在哪?(2)如何寻找方程一个积分因子,使之成为恰当方程?关于问题(1)的回答是如果因子0y)μ(x,≠,则两方程等价;否则可能不等价.(上课听讲!) 关于问题(2)的回答:研究如果0Ndy Mdx =+两边乘以因子y)μ(x,所得方程0dy N ~μdx μM =+为恰当方程,则y)μ(x,需要满足什么条件?0)()(=∂∂-∂∂yM x N μμ,(**)y x y x M N M N μμμ+-=-)(,这是一个偏微分方程,由此确定出y)μ(x,难度不低于原常微分方程. 现作如下简化假定:情形一:y)μ(x,只是x 的函数,于是方程(**)简化为x y x N M N μμ-=-)(,反过来检验N )μM (N y x --是否只为变量x 的方程,若是,求解NM N dx d y x μμ)(--=,得到⎰=--dxNM N yx ey)μ(x,.情形二:y)μ(x,只是y 的函数,于是方程(**)简化为y y x M M N μμ=-)(,反过来检验M)μM (N y x -是否只为变量y 的方程,若是,求解M)μM (N dy d μy x -=,得到⎰=-dyMM N yx ey)μ(x,.例38. (1) 寻找方程0x )dy y (x ydx 2=-+的积分因子.(2) 寻找方程02x ydx )dy y (3x 22=--的积分因子,并求解该方程.解:记x y x y)N(x , y,y)M(x ,2-==,则1)-x (x y N 1),2(x y 112x y M N y x =-=--=-,于是,x2NM N yx -=--恰好为x 的函数,因此,所求积分因子为2dx x 2x 1e y)μ(x ,=⎰=-.由例36知,原方程通积分为原方程的通积分为12C 2y x y y)u(x ,=+-=.另一方面,注意到2x 1y)μ(x,=没有定义的点x=0,易验证,x=0也是方程的解. (上课听讲!) (2) 记22y -3x y)N(x , 2x y,y)M(x ,=-=,2x y M 8x ,2x 6x M N y x -==+=-,于是,y 4MM N yx -=-恰好为y 的函数,因此,所求积分因子为4dy y 4y1e y)μ(x,=⎰=-.0dy y)y (3x dx y 2x 0,dx y 2x y dy y )y (3x 42234422=-+-=--. 记u(x, y)为方程左端一个原函数,则C(y)yx dx y 2x y)u(x ,323+-=-=⎰; 24242y y 1y 3x (y)C'y x 3y)(x ,u -=+=,解得y 1C(y)=, 于是u(x, y)=y 1y x 32+-.所求通积分为132C y1y x y)u(x ,=+-=.另一方面,注意到4y1y)μ(x ,=没有定义的点y=0,易验证,y=0也是方程的解. (上课听讲!) 作业31. Solve each of the following differential equations by finding integrating factor. (1) 0x y)dy (x 1)dx (x y 2=-+-;(2) 0y)dy csc 2y y cot (e dx e xx=++; (3)教材P60 习题 2(1)、(9)4. 更多关于积分因子知识和方法(1)积分因子是二元函数情形:(a )0dy x dx y =-,0|)yx|d(ln y x dy x dx y ==-;(b )0dy x dx y =-,0)yxd(arctan y x dy x dx y 22==+-.(2)设齐次方程0y)dy N(x,y)dx M(x,=+,当0yN xM ≠+时,有积分因子yN x M 1μ+=,并运用之来求解yx yx dx dy -+=.解:(a )回忆:若R t y),M(x ,t ty)M(tx ,k∈∀=,则称y)M(x,为k 次齐次函数. 若M(x,y)和N(x,y)都为k 次齐次函数,则称方程y)N(x ,y)M(x ,dx dy -=为齐次方程.假定M(x, y)满足连续可微条件对y)M(x ,t ty)M(tx ,k=关于t 求导得到,y)M(x,kt ty)(tx,yM ty)(tx,xM 1k y x -=+,令t=1得到恒等式y)M(x ,k y)(x ,yM y) (x ,x M y x =+,类似地,y)N(x ,k y)(x ,yN y) (x ,x N y x =+.(b )考察0yN x M y)dy N(x ,y)dx M(x ,=++,经计算得到=+∂∂-+∂∂)yNx M y)M(x ,(y )yN x M y)N(x ,(x2y y y x x x yN)(x M )MyN N (x M yN)(x M M )N yN x M (M yN)(x M N +++++-++-+=0yN)(x M NM k M N k yN)(x M )NyM (x M )M yN x (N 22y x y x =+-=++-+=. 因此新方程为恰当方程.(c )考察方程yx y x dx dy -+=,改写为0y)dy (x -y)dx (x =-+. 取22y x 1y)x y(y)x (x 1μ+=+-++=,则新方程为0y x y)dy(x -y)dx (x 22=+-+. 分组为0y x x )dy -ydx (ydy)(x dx 22=+++,0yx x )dy-ydx (y x ydy)(x dx 2222=++++, 即0y x x )dy -ydx ()y 2(x )y d(x 222222=++++,0)x y (arctan d )y ln(x d 2122=++.所求的通积分为x yarctan 22e C ~y x =+.另一方面22y x 1μ+=没有定义的只有(0, 0)点,因此原方程没有其他的解.(3)思考教材P61 习题10,并求解0y)dy (x x)dx (y =++-.(参见教材P38例7) 解:方程为恰当方程,因此由习题10结论知,C x 2x y y C,y)y(x x )x (y 22=-+=++-为方程的通积分.(4)思考教材P61习题9,自行阅读丁同仁、李承治《常微分方程教程》P47定理6和P48例题2,完成教材P61 习题2(11) .。
恰当方程与积分因子doc
§2.3 恰当方程与积分因子1、恰当方程的定义 将一阶微分方程 (,)dyf x y dx= 写成微分的形式(,)0f x y dx dy -= 把,x y 平等看待,对称形式的一阶微分方程的一般式为(,)(,)0M x y dx N x y dy += (2.43)假设(,),(,)M x y N x y 在某区域G 内是,x y 的连续函数,而且具有连续的一阶偏导数. 如果存在可微函数(,)u x y ,使得(,)(,)du M x y dx N x y dy =+ (2.44)即 (,), (,)u u M x y N x y x y∂∂==∂∂ (2.45)则称方程(2.43)为恰当方程,或称全微分方程.在上述情形,方程(2.43)可写成(,)0du x y ≡,于是 (,)u x y C ≡就是方程(2.43)的隐式通解,这里C 是任意常数(应使函数有意义). 2、 恰当方程的判定准则定理1设(,),(,)M x y N x y 在某区域G 内连续可微,则方程(2.43)是恰当方程的充要条件是, (,)M Nx y G y x∂∂=∈∂∂ (2.46)而且当(2.46)成立时,相应的原函数可取为 00(,)(,)(,)xyx y u x y M s y ds N x t dt =+⎰⎰(2.47)或者也可取为0(,)(,)(,)yxy x u x y N x t dt M s y ds =+⎰⎰(2.48)其中00(,)x y G ∈是任意取定的一点.证明 先证必要性.因为(2.43)是恰当方程,则有可微函数(,)u x y 满足(2.45), 又知(,),(,)M x y N x y 是连续可微的,从而有22M u u Ny y x x y x∂∂∂∂===∂∂∂∂∂∂ 下面证明定理的充分性,即由条件(2.46),寻找函数(,)u x y ,使其适合方程(2.45).从(2.47)可知(,)uN x y y∂=∂ 000000(,)(,) =(,)(,) =(,)(,)(,)yy yx y y y y u M x y N x t dt x x M x y N x t dtM x y M x t dt M x y ∂∂=+∂∂++=⎰⎰⎰即(2.45)成立,同理也可从(2.48)推出(2.45).例1. 解方程21()02x xydx dy y++=(2.49)解 这里21, =()2x M xy N y=+,则y x M x N ==,所以(2.49)是恰当方程.因为N 于0y =处无意义,所以应分别在0y >和0y <区域上应用定理2.3,可按任意一条途径去求相应的原函数(,)u x y .先选取00(,)(0,1)x y =,代入公式(2.47)有 22011()ln 22xyx x u xdx dy y y y =++=+⎰⎰再选取00(,)(0,1)x y =-,代入公式(2.47)有22011()()ln()22xyx x u x dx dy y y y -=-++=+-⎰⎰可见不论0y >和0y <,都有2ln ||2x u y y =+ 故方程的通解为2ln ||2x y y C +=. 3、恰当方程的解法上述定理已给出恰当方程的解法,下面给出恰当方程的另两种常用解法. 解法1. 已经验证方程为恰当方程,从(,)x u M x y =出发,有2(,)(,)()()2x u x y M x y dx y y y φφ≡+=+⎰ (2.50)其中()y φ为待定函数,再利用(,)y u N x y =,有221()22x x y y φ'+=+ 从而1()y yφ'= 于是有 ()ln ||y y φ=只需要求出一个(,)u x y ,因而省略了积分常数.把它代入(2.50)便得方程的通解为2ln ||2x u y y C =+= 解法2. 分项组合的方法对(2.49)式重新组合变为21()02x xydx dy dy y++= 于是 2()ln ||02x d y d y += 从而得到方程的通解为 2ln ||2x y y C += 4、积分因子的定义及判别对于微分形式的微分方程(,)(,)0M x y dx N x y dy +=(2.43)如果方程(2.43)不是恰当方程,而存在连续可微的函数(,)0x y μμ=≠,使得(,)(,)0M x y dx N x y dy μμ+= (2.51)为一恰当方程,即存在函数(,)v x y ,使(,)(,)M x y dx N x y dy dv μμ+≡则称(,)x y μ是方程(2.43)的积分因子.此时(,)v x y C =是(2.51)的通解,因而也就是(2.43)的通解.如果函数(,),(,)M x y N x y 和(,)x y μ都是连续可微的,则由恰当方程的判别准则知道,(,)x y μ为(2.43)积分因子的充要条件是M Ny xμμ∂∂=∂∂ 即 ()M NNM x y y xμμμ∂∂∂∂-=-∂∂∂∂ (2.52)5、积分因子的求法方程(2.52)的非零解总是存在的,但这是一个以μ为未知函数的一阶线性偏微分方程,求解很困难,我们只求某些特殊情形的积分因子. 定理2 设(,),(,)M M x y N N x y ==和(,)x y ϕϕ=在某区域内都是连续可微的,则方程(2.43) 有形如((,))x y μμϕ=的积分因子的充要条件是:函数(,)(,)(,)(,)(,)(,)y x x y M x y N x y N x y x y M x y x y ϕϕ--(2.53)仅是(,)x y φ的函数,此外,如果(2.53)仅是(,)x y φ的函数((,))f f x y ϕ=,而()()G u f u du =⎰,则函数((,))G x y e ϕμ=(2.54)就是方程(2.43)的积分因子.证明 因为如果方程(2.43)有积分因子()μμϕ=,则由(2.52)进一步知()()d M N N M d x y y xμϕϕμϕ∂∂∂∂-=-∂∂∂∂ 即y x x yM N d d N M μϕμϕϕ-=- 由()μμϕ=可知左端是ϕ的函数,可见右端y x x yM N N M ϕϕ--也是ϕ的函数,即()y x x yM N f N M ϕϕϕ-=-,于是,有()d f d μϕϕμ=, 从而 ()()f d G e e ϕϕϕμ⎰==反之,如果(2.53)仅是ϕ的函数,即()y x x yM N f N M ϕϕϕ-=-,则函数(2.54)是方程(2.52)的解.事实上,因为()()()()G x y y x NM N M f e M N x yϕμμϕϕϕμ∂∂-=-=-∂∂ 因此函数(2.54)的确是方程(2.43)的积分因子.为了方便应用这个定理,我们就若干特殊情形列简表如下:例2.解22(31)()0y xy dx xy x dy -++-=解 这里2231,M y xy N xy x =-+=-,注意y x M N y x -=-所以方程不是恰当的,但是1y xM N Nx-=它仅是依赖与x ,因此有积分因子1dxx e x μ⎰≡=给方程两边乘以因子x μ=得到2223(3)()0xy x y x dx x y x dy -++-=从而可得到隐式通解22321122u x y x y x C ≡-+= 例3. 解方程2()(1)0xy y dx xy y dy ++++=解 这里2,1M xy y N xy y =+=++方程不是恰当的.但是1y xM N My-=-- 它有仅依赖于y 的积分因子11dyy eyμ-⎰≡=方程两边乘以积分因子1y μ=得到 1()(1)0x y dx x dy y++++= 从而可得到隐式通解21ln ||2u x xy y y C ≡+++= 另外,还有特解0y =.它是用积分因子乘方程时丢失的解.例4. 解方程 223(2)()0y x y d x x y x d y +++= 解 这里2232,M y x y N xy x =+=+,不是恰当方程.设想方程有积分因子()x y αβμμ=,其中α,β是待定实数.于是2112111()(2)y xM N y x x N y M x y y x x y x y αβαβαβαβαβαβ----⋅=⋅=--+-只须取3,2αβ==.由上述简表知原方程有积分因子32x y μ=从而容易求得其通解为:446313u x y x y C ≡+=六、积分因子的其他求法以例4为例,方程的积分因子也可以这样来求:把原方程改写为如下两组和的形式:223()(2)0y dx xydx x ydx x dy +++=前一组有积分因子11yμ=,并且 21()()y dx xydy d xy y+= 后一组有积分因子21xμ=,并且 2321(2)()x ydx x dy d x y x+= 设想原方程有积分因子211()()xy x y y xαβμ== 其中α,β是待定实数.容易看出只须3,2αβ==,上述函数确实是积分因子,其实就是上面找到一个.例5. 解方程 1212()()()()0M x M y dx N x N y dy += 其中1M ,2M ,1N ,2N 均为连续函数.解 这里12()()M M x M y =,12()()N N x N y =.写成微商形式就形式上方程是变量可分离方程,若有0y 使得20()0M y =,则0y y =是此方程的解;若有0x 使得10()0N x =,则0x x =是此方程的解;若21()()0M y N x ≠,则有积分因子211()()M y N x μ=并且通解为1212()()()()M x N y u dx dy N x M y ≡+⎰⎰例6、试用积分因子法解线性方程(2.28).解 将(2.28)改写为微分方程[()()]0P x y Q x dx dy +-= (2.55)这里()(),1M P x y Q x N =+=-,而()M Ny xP x N∂∂-∂∂=- 则线性方程只有与x 有关的积分因子()P x dxe μ-⎰= 方程(2.55)两边乘以()P x dxe μ-⎰=,得()()()()()0P x dx P x dx P x dxxP x e ydx e dy Q x e dx ---⎰⎰⎰-+=(2.56)(2.56)为恰当方程,又分项分组法()()()()0P x dx P x dxd ye Q x e dx --⎰⎰-=因此方程的通解为()()()P x dx P x dxye Q x e dx c --⎰⎰-=⎰即()()[()]P x dxP x dxy e Q x e dx c -⎰⎰=+⎰与前面所求得的结果一样.注:积分因子一般不容易求得可以先从求特殊形状的积分因子开始,或者通过观察法进行“分项分组”法求得积分因子.。
常微分方程课件
常微分方程课件常微分方程是数学中的一个重要分支,它研究的是描述自然现象中变化规律的方程。
在物理、生物、经济等领域中,常微分方程都有着广泛的应用。
本文将介绍常微分方程的基本概念、解的存在唯一性以及一些常见的解法方法。
一、常微分方程的基本概念常微分方程是描述未知函数及其导数之间关系的方程。
一般形式为dy/dx = f(x, y),其中y是未知函数,f(x, y)是已知函数。
常微分方程可以分为一阶和高阶两类。
一阶常微分方程只涉及到一阶导数,而高阶常微分方程则涉及到高阶导数。
二、解的存在唯一性对于一阶常微分方程dy/dx = f(x, y),解的存在唯一性定理告诉我们,在一定条件下,该方程存在唯一的解。
这一定理的证明通常基于柯西-利普希茨定理,该定理表明如果f(x, y)在某个区域内连续且满足利普希茨条件,那么解是存在且唯一的。
三、常见的解法方法1. 可分离变量法:当方程可以写成dy/dx = g(x)h(y)的形式时,我们可以通过分离变量的方式将方程化简成两个可积分的方程,然后分别对x和y进行积分得到解。
2. 线性方程:形如dy/dx + p(x)y = q(x)的一阶线性方程可以通过积分因子法求解。
通过找到一个合适的积分因子,将方程变换为(d(xy)/dx) = r(x),然后对两边进行积分得到解。
3. 齐次方程:对于形如dy/dx = f(y/x)的齐次方程,我们可以通过变量替换y =vx将方程转化为可分离变量的形式,然后进行积分得到解。
4. 变量代换法:当方程形式复杂或者无法直接求解时,我们可以通过适当的变量代换将方程化简为更简单的形式,然后再进行求解。
四、应用举例常微分方程在各个领域都有着广泛的应用。
以生物学为例,常微分方程可以用来描述生物种群的增长和衰减规律,从而帮助我们研究生物种群的动态变化。
在经济学中,常微分方程可以用来描述经济模型中的供需关系、市场价格等因素的变化规律,从而帮助我们预测和分析经济现象。
《常微分方程》PPT课件
dxx((tt)) kdt G(y)F(x)C
G(y)
F(x)
P(x) dx
例3 (细菌繁殖模型)在一个理想的环境中,细胞的
繁殖率与细菌的数目成正比,假设t 0时细菌的数
目为 x(t,) 求系统的细菌繁殖规律。
解: 设 t示在 时x(t刻) 细菌数目,依题意有
t 时y, r k
两边积分
f(x)dx
《常微分方程》PPT课件
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
6.1 微分方程的根本概念
几何问题 引例
物理问题 微分方程的根本概念
zxy
2. zaxbyc型方程
作变换 dy abf(z) dx
d y(xy)2 dx 例8. 求方程 n1,令zy1n y 的通解
2
arctan(xy)xC 解:令 则 r y(t) krky0 en y0
得方程通解为 VlnV dV lnVadt
将 代回ቤተ መጻሕፍቲ ባይዱ原方程通解 y(t)krrky0 en y0
例1 一曲线通过点(1,2),且在该曲线上任意点
。 dz
dx
2处1y 的ddyx 切线斜率为2x,求这曲线的方程
解: 设所求曲线方程为 y = y(x) , 那么有如下关系
式:
r1,2b2ba24ac
①
yx12
②
由 ① 得 y2xdxyf(y) (C为任意常数)
由 ② 得 C = 1, 因此所求曲线方程为 yx21.
dy f (x)g( y) dx
常微分方程课件
在经济中的应用
描述经济现象:通过常微分方程描述经济现象的变化趋势和规律 预测经济走势:利用常微分方程对经济走势进行预测和分析 优化资源配置:通过常微分方程找到最优的资源配置方案,提高经济效益 制定经济政策:利用常微分方程分析政策对经济的影响,制定合理的经济政策
在生物与工程中的应用
描述种群增长模型
常微分方程是描述函数随时间变化的数学模型。 常微分方程的性质包括解的存在性、唯一性和连续依赖性。 解的存在性是指对于给定的初值问题,存在至少一个解。 唯一性是指对于给定的初值问题,存在唯一的解。
分类与表示方法
线性微分方程: 形如y' = px + q的方程,其中p 和q是常数
非线性微分方程: 形如y' = f(y)的 方程,其中f(y) 是一个关于y的 函数
一阶微分方程: 只含有一个自变 量和一个导数的 微分方程
高阶微分方程: 含有多个自变量 和多个导数的微 分方程
求解方法简介
分离变量法 变量代换法 欧拉方法 龙格-库塔方法
03 一阶常微分方程
一阶线性微分方程
定义:形如 y'=f(x)g(y)的 一阶微分方程, 其中f和g都是
可导函数。
求解方法:通 过变量分离法、 积分因子法、 公式法等求解。
感谢您的观看
汇报人:
分岔与混沌
分岔:当系统的参数发生变化时,系统的定性行为发生突然改变的现象。 混沌:在确定性非线性系统中,由于对初值的高度敏感性而产生的复杂运动状态。 举例:Lorenz 方程。 应用:天气预报、生态学、经济学等。
定性理论的应用与限制
应用领域:物理学、生物学、经济学等 解决实际问题:解释自然现象、预测未来趋势等 限制:定性理论无法处理某些复杂系统或非线性问题 未来研究方向:如何克服定性理论的局限性,拓展其应用范围
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解因
M y, N y x, M 1, N 1
y
x
• 方程不是恰当方程。
方法1 M N
• • •
因
y x 2
M
y
只与
方程有积分因子为
于是以 μ 乘方程两边得
y
有关,
(y) e
2 y
d
y
1 y2
1dx y
1d y
y
xd y y2
ydx xd y y2
dy y
x y
ln
y
0
• 得通解
d ( ye P(x) d x ) Q(x)e P(x) d x d x
• 得通解
即 ye P(x)d x Q(x)e P(x)d x d x c
y e P(x)d x Q(x)e P(x)d x d x c
例5 解方程 d y x dx y
1
x y
2
( y 0)
4y2
y
• 偏积分 x 第一式得 u x3 3x2 y2 ( y)
• 上式对 y 偏微分,由第二式有
• 于是
d(y) 4y3
dy
u 6x2 y d( y) 6x2 y 4 y3
y
dy
例1 解方程 (续)
(3x2 6xy2 ) d x (6x2 y 4 y2 ) d y 0
(2) 分项组合全微分方法
• 将恰当方程的各项分项组合成全微分形式 • 简单二元函数的全微分:
y d x x d y d(xy),
y
d
x xd y2
y
d
x y
yd
x x2
xd
y
d
y x
,
ydx xd y xy
d ln
x y
ydx x2
xd y2
y
d
arctg
y x
,
ydx xdy x2 y2
•
d(y) 4y3
dy
解得
(y) y4
• 从而全微方式为 u x3 3x2 y2 y4
• 方程的通解为
x3 3x2 y2 y4 c
其中 c 为任意常数。 • 亦可直接引用全微方公式求解
M
(
x,
y)
d
x
N
(x,
y)
y
M
(
x,
y)
d
x
d
y
x3 3x2 y2 (6x2 y 4 y3 6x2 y) d y x3 3x2 y2 y4 c
x ln y c y
方法2 方程 yd x (y x)d y 0
• 方程改写为
ydx xd y yd y
• 显然方程有积分因子为
其中 c 为任意常数。
cos
x
d
x
1 y
d
y
1 y
d
x
x y2
d
y
d sin
x
d ln
y
yd
x xd y2
y
d sin x d ln
y
d
x y
d
sin
x
ln
y
x y
0
(3)积分因子
• 积分因子定义:微分方程 M d x N d y 0
• 如存在连续可微函数 (x, y) 使得 M d x N d y du
N
• 此时积分因子为 (x) e (x)dx • 同样,
(y)形式的积分因子的充分必要条件:
M N
y x ) e( y)dy
例4 试用积分因子法 解线性微分方程
d y P(x) y Q(x) dx
解 方程改写为 [P(x)y Q(x)] d x d y 0
则称 (x, y)为方程 M d x N d y 0的积分因子。
• 同一方程可以有不同的积分因子。
• (x, y) 为积分因子的充分必要条件:
(M ) (N) 即
y
x
N
x
M
y
M y
N x
(4) 单变量积分因子 (x)、(y)
• (x) 形式的积分因子的充分必要条件:
M N
y x (x)
§2.3 恰当方程与积分因子
(1) 恰当方程 (2) 分项组合全微分方法 (3) 积分因子 (4) 单变量积分因子
(x)、( y)
(1) 恰当方程
•
将一阶微分方程
dy dx
=
M(x,y)
N(x,y写) 成对称形式
M (x, y)d x N(x, y)d y 0
如方程右端恰可表为某函数 u(x,y) 的全微分:
解 方程改写为
xd x yd y x2 y2 d x
1 d(x2 y2 ) x2 y2 d x 2
• 显然方程有积分因子为 x2 y2
于是
d(x2 y2 ) d x 2 x2 y2
• 通解为
x2 y2 x c
•或
y2 c(c 2x)
例6 解方程 yd x (y x)d y 0
•有
M P(x)y Q(x), N 1
M N y x P(x)
•
方程有积分因子 为
(x) e P(x)d x
N
• 于是
P(x)e P(x) d x y d x e P(x) d xdy Q(x)e P(x) d x d x
y d e P(x) d x e P(x) d x d y Q(x)e P(x) d x d x
1 2
d
ln
x x
y y
例1 解方程 (3x2 6xy2 )d x (6x2 y 4y2)d y 0
解 这里
M 3x2 6xy2 , N 6x2 y 4 y2
•有
M 12xy, N 12xy
y
x
• 方程是恰当方程。
• 求 u 使其满足
u x
M
3x2
6 xy 2
u
N
6x2 y
例2 用“分项组合”方法求解例1
解 重组
(3x2 6xy2 ) d x (6x2 y 4 y2 ) d y 3x2 d x 4 y2 d y 6xy2 d x 6x2 y d y d x3 d y4 (3y2 d x2 3x2 d y2 ) d x3 d y4 3d(x2 y2 ) d(x3 y4 3x2 y2 ) 0
M (x, y)d x N(x, y)d y du(x, y)
则称方程为恰当方程。
• 恰当方程的通解为u(x,y)=c
•
方程为恰当方程的充分必要条件为 M N
此时有
y x
u
M
(x,
y)
d
x
N
(
x,
y)
y
M
(
x,
y)
d
x
d
y
• 这里积分式 M(x, y)d x 是 x 的偏积分,
把 y 视为常量对 x 进行积分。
• 即得方程的通解 x3 3x2 y2 y4 c 其中 c 为任意常数。
例3 求解 cos x
1 y
d
x
1 y
x y2
d
y
0
解因
M cos x 1 , y
N
1 y
x y2
,
M y
1 y2
N x
方程是恰当方程。 • 用“分项组合”方法重组
• 即得方程的通解
sin x ln y x c y