15章不等式与不等式组(上交)

合集下载

[高一数学]不等式知识点归纳与总结

[高一数学]不等式知识点归纳与总结

授课教案教学标题 期末复习(三) 教学目标 1 、不等式知识点归纳与总结 教学重难点重点:不等式基础知识点的熟练掌握难点:不等式在实际应用中的相互转换上次作业检查授课内容:一、数列章节知识点复习1 等差数列(1)性质:a n =an+b ,即a n 是n 的一次性函数,系数a 为等差数列的公差;(2) 等差{n a }前n 项和n d a n d Bn An S n ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=+=22122 即S n 是n 的不含常数项的二次函数;若{a n },{b n }均为等差数列,则{a n ±n n },{∑=k1i ka},{ka n +c}(k ,c 为常数)均为等差数列;当m+n=p+q 时,a m +a n =a p +a q ,特例:a 1+a n =a 2+a n-1=a 3+a n-2=…;当2n=p+q 时,2a n =a p +a q ; ① 等差数列依次每k 项的和仍成等差数列,其公差为原公差的k 2倍...,,232k k k k k S S S S S --; ② 若等差数列的项数为2()+∈N n n ,则,奇偶nd S S =-1+=n na a S S 偶奇;等差数列等比数列 定义 d a a n n =-+1)0(1≠=+q q a a nn 递推公式 d a a n n +=-1;()n m a a n m d =+-q a a n n 1-=;m n m n q a a -= 通项公式 d n a a n )1(1-+=11-=n n q a a (0,1≠q a )中项2kn k n a a A +-+=(*,,0n k N n k ∈>>))0( k n k n k n k n a a a a G +-+-±=(*,,0n k N n k ∈>>)前n 项和)(21n n a a nS +=d n n na S n 2)1(1-+=()⎪⎩⎪⎨⎧≠--=--==)1(111)1(111q q qa a qq a q na S n n n 重要性质),,,,(*q p n m N q p n m a a a a qp n m +=+∈+=+),,,,(*q p n m N q p n m a a a a qp n m +=+∈⋅=⋅③ 若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇, 1-=n n S S 偶奇 (4)常用公式:①1+2+3 …+n =()21+n n ②()()61213212222++=+++n n n n③()2213213333⎥⎦⎤⎢⎣⎡+=++n n n[注]:熟悉常用通项:9,99,999,…110-=⇒n n a ; 5,55,555,…()11095-=⇒nna .2 等比数列 (1)性质当m+n=p+q 时,a m a n =a p a q ,特例:a 1a n =a 2a n-1=a 3a n-2=…,当2n=p+q 时,a n 2=a p a q ,数列{ka n },{∑=k1i ia}成等比数列。

不等式与不等式组教材分析

不等式与不等式组教材分析

第九章不等式与不等式组教材分析一、教材基本情况1、本章教材的地位不等式的知识是初中阶段在一元一次方程和二元一次方程组的学习之后,进一步探究现实世界数量关系的重要内容.数量之间除了有相等关系外,还有大小不等的关系.正如方程与方程组是讨论等量关系的有力数学工具一样,不等式与不等式组是讨论不等关系的有力数学工具.掌握不等式的基本性质是基础知识,解一元一次不等式是一项基本技能,也是学生以后学习一元二次方程、函数以及进一步学习不等式知识的基础.2、教材的主要内容本章的主要内容包括:一元一次不等式(组)及相关概念,不等式的性质,一元一次不等式(组)的解法及其解集的几何表示,利用一元一次不等式分析、解决实际问题.其中,以不等式(组)为工具分析问题、解决问题是重点;一元一次不等式(组)及其相关概念、不等式的性质是基础知识;掌握一元一次不等式(组)的解法及解集的几何表示是基本技能.本章重视数学与实际的关系,注意体现列不等式(组)中蕴藏的建模思想和解不等式(组)中蕴藏的化归思想.本章第9.1节中,首先经实际问题为例,结合问题中的不等式关系,引出不等式及其解集的概念;然后类比一元一次方程,引出一元一次不等式的概念.为进一步讨论不等式的解法,教科书接着对不等式的性质进行了讨论,得出不等式的三个性质,并运用它们解简单的不等式.不等式的性质是解不等式基本功的重要依据,教科书正是从讨论解不等式的需要出发引导学生认识它们的.解不等式就是求出对其未知数的大小的限制,有了这样明确的目标,再加上对不等式性质的认识,解不等式的方法就能很自然地产生.这一节的框架与一元一次方程的相应部分相似,教学中可以类比方程、等式的性质等来讨论不等式、不等式的性质等.涉及求未知数取值范围的问题是普遍存在的,而不等式是解决这些问题的有力工具.本章第9.2节从一个选择购物商店问题(章前图)入手,再对列、解一元一次不等式作进一步的讨论.通过引入的问题以及它后面的例题,教科书归纳出一元一次不等式与一元一次方程在解法上的异同及应注意之处.上述讨论与归纳的过程,是结合分析和解决实际问题进行的,建立不等式模型始终是本章的核心内容.本章第9.3节中,结合三角形三条边的大小关系,引进了一元一次不等式组及其解集的概念.在第8章刚学习了二元一次方程组的基础上,讨论不等式组是比较自然的安排.这里公共解集中的“公共”,是指各不等式解集的公共部分(交集).二元一次方程组的解可以是通过消元直接产生,而一元一次不等式组的解集要借助画出数轴(或在头脑中想象出数轴)才能得到.在这个问题上借助直观利用数形结合具有重要作用.本节中的实际问题中,数量间的大小关系理为复杂(有两个以上),通过列不等式组可以进一步培养建立不等式(组)模型的能力.本章知识结构①.利用不等式(组)解决实际问题的基本过程教材注重了一元一次不等式(组)的解法与一元一次不等式(组)在实际问题中的应用的有机结合,让学生经历和体会“从实际问题中抽象出数学模型,并回到实际问题中解释和检验”的过程.②.本章知识安排的前后顺序3、教学目标:①.了解一元一次不等式及其相关概念,经历“把实际问题抽象为不等式”的过程,能够“列出不等式或不等式组表示问题中的不等关系”,体会不等式(组)是刻画现实世界中不等关系的一种有效的数学模型.②.通过观察、对比和归纳,探索不等式的性质,能利用它们探究一元一次不等式的解法.③.了解解一元一次不等式的基本目标(使不等式逐步转化为的形式),熟悉解一元一次不等式的一般步骤,掌握一元一次不等式的解法,并能在数轴上表示出解集,体会解法中蕴涵的化归思想.④.了解不等式组及其相关概念,会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集.4、课时安排:本章教学时间约为11课时,大体分配如下(仅供参考):9.1 不等式…………………………………………3课时9.1.1不等式及其解集 1课时9.1.2不等式的性质 2课时不等式的性质 1课时解不等式 1课时9.2 实际问题与一元一次不等式………………… 3课时9.3一元一次不等式组…………………………… 2课时解一元一次不等式组 1课时一元一次不等式组的运用 1课时数学活动………………………………………… 1课时小结………………………………………………2课时7、教材特点⑴突出建摸思想,实际问题作为大背景贯穿全章同前面的第三章“一元一次方程”、第八章“二元一次方程组”一样,在本章中,安排了一些有代表性的实际问题作为知识的发生、发展的背景材料,实际问题始终贯穿于全章,对不等式(组)等概念的引入和对它们的解法的讨论,都是在建立和运用不等式(组)这种数学模型的过程之中进行的.例:9.1节中,通过一个具体行程问题引入不等式及不等式的解.9.2节从生活中常见的购物问题说起.由于市场上存在不同的促销方式,所以购物时可以货比三家,进行选择购物.这个问题与学生距离较近.9.3节从制作三角形木框谈起,引入不等式组的概念,并进一步结合实际问题讨论如何列、解一元一次不等式组.总之,实际问题在本章教材中既是线索、素材,又是检验教学效果的尺度.⑵注重知识的前后联系,强调通过比较来认识新事物本章在全套教科书中,位居一次方程(组)之后.方程(组)是讨论等量关系的数学工具,不等式(组)是讨论不等关系的数学工具.两者既有联系又有差异.在认识一次方程(组)的基础上,通过比较的方式接受新知识一元一次不等式(组),充分发挥心理学所说的正向迁移的作用,可以起到很好的温故而知新的效果.本章9.1节的结构与一元一次方程的相应部分类似,教科书在各概念的引入、展开时注意了类比方程、等式的性质等来讨论不等式、不等式的性质等,反映了知识间的横向联系,突出了不等式的特点.方程组与不等式组在形式上类似,而且它们的解(集)都是指组成方程组或不等式组的各方程或不等式的公共解(集),教科书在引入不等式组及其解集时注意了渗透这种联系.解方程与解不等式都是通过适当的式子变形,使未知数转化为已知,但两者的目标有所不同,前者要转化为的形式,后者则要转化为的形式.为实现这样的目标,都需要运用化归思想,根据等式或不等式的性质,对方程或不等式进行由繁至简的变形.教科书中注意了这样的联系,同时又强调了解不等式与解方程的不同之处,突出了应注意的问题,例如解不等式中要将未知数的系数化为1时,应根据原来系数的正负确定不等号的选择.⑶淡化概念教学,删减运算的数量和难度;强化学生的主动探索,增加培养学生能力的练习教材在解不等式时,并没有专门的一节内容来介绍如何解含括号和分母的不等式,而是放在了实际问题中解决,删减了运算的数量和难度,强化了学生探索解决实际问题的主动性.而每一节课后的习题都有6道以上的与学生实际生活密切相关的习题,增强了学生解决问题的能力,而非培养一个只懂不等式概念和如何解不等式的学生.⑷教材在归纳知识点时,留有较大的空白,引导学生思考教材在提问和总结知识点时,会留较多的空白,给学生起到一个引导和归纳的作用,而教师可以利用来提高学生的自学能力和归纳能力.⑸课后附有大量的阅读材料,拓宽学生的视野和提高能力新教材与华东版不同之处在于,每小节后面都设有一个阅读材料,如9.1节的用求差法比较大小;9.2节的水位升高还是降低了;9.3节的利用不等关系分析比赛.从不同的方面探究了不等式在实际生活中的用途,增强了学生学习的热情和探求新知的欲望.二、教学建议1、注重类比,做好从方程到不等式的迁移从课程标准看,方程与不等式是同属“数与代数”领域内同一标题下的两部分内容,它们之间有密切的联系,存在许多可以进行类比的内容.比如,不等式的性质与等式性质,不等式和方程的解法,不等式组和方程组的解法,利用不等式(组)和方程(组)分析解决实际问题,都有其明显的对应关系.通过了解它们的联系与区别(例如通过类比等式性质学习不等式性质),有助于使学生在已有基础上以效率较高的方式得到新的提高.2、设立专门解不等式的小节,完善不等式解法不等式的解法有一部分(简单的加减乘除不等式)安排在不等式的性质后面学习,一部分(含有括号和分母的不等式)安排在解决实际问题的过程中学习的,这样的安排,不利于不等式解法的系统学习.原本利用不等式解决实际问题对于学生就是一个难点,期间还要学习解法,不利于难点的集中攻破.因此,建议设立专门解不等式的小节,完善不等式解法,集中攻破重难点.3、突出数学建模思想,反映不等式(组)与实际问题的联系在本章教科书中,实际问题情境贯穿于始终,反映出不等式(组)来自实际又服务于实际,加强对不等式(组)是解决现实问题的一种重要数学模型的认识.教学中可以适当出现“数学模型”一词,但是应注意结合具体例子来体现数学模型的意义和作用,反复强调数学模型在解决实际问题中的作用,继续突出建立数学模型(数学化)解决问题的思想.设未知数、列不等式(组)是本章中用数学模型表示和解决实际问题的关键步骤,而正确地理解问题情境,分析其中的不等关系是设未知数、列不等式(组)的基础.在本章的教学和学习中,可以从多种角度启发学生思考数量之间的大小关系,借助数轴等直观图形以及表格、式子等进行分析,寻找不等关系的数学化表达方式,检验不等式本身以及它的解的合理性.教师还可以结合实际情况,选择其他贴近学生生活且适合学生认知水平的问题,引导学生探索用不等式(组)为工具来分析解决它们.利用不等式(组)解决实际问题的基本过程(见前面的图),在本章中的小结中出现,它与前面方程(组)在这方面的框图的基本结构一致,这有助于从整体上进一步加强对数学模型与实际问题关系的认识,在教学、学习和复习时应注意不断强化对它的认识.4、关注基础知识和基本技能本章内容包括一元一次不等式(组)的概念、解法和应用.一元一次不等式是最基本的代数不等式,对它的理解和掌握对于后续学习(其他的不等式以及函数等)具有重要的基础作用.因此,教学和学习中应注意打好基础,对本章中的基础知识和基本技能、能力等进行及时的归纳整理,安排必要的、适量的练习,使得学生对基础知识留下较深刻的印象,对基本技能达到一定的掌握程度,发展基本能力.5、把握学生具体情况开展学习本章书很多小节都是从实际问题开始引入,但难度较大.例如,9.1.1节,由行程问题引入不等式及不等式的解, 但难度已属《课本》第129页的拓广探索题目;9.2节从生活中常见的优惠购物问题说起,展开解决实际问题的探究,与学生生活密切相关,但也具备了相当的难度,情况又多样,学生刚接触,没法很好的理解.这对于刚接触用不等式解决实际问题的学生来说,将可能极大打击他们学习的积极性和热情.因此,对于这两小节的引入建议改用较为简单的应用题.数学思想:(1)列不等式(组)中的建模思想;(2)解不等式(组)中的化归思想;(3)解不等式(组)中的类比思想;(4)不等式(组)解集的几何表示中数形结合思想;内容分析:(1)一元一次不等式(组)及其相关概念、不等式的性质是基础知识;(2)掌握一元一次不等式(组)的解法及解集的几何表示是基本技能;(3)以不等式(组)为工具分析问题、解决问题是重难点;(4)建立不等式模型提高分析问题、解决问题的能力是本章的核心内容.值得注意的几个问题:(1)关注课后阅读材料中的知识点.例如:比差法、球赛分析中的二元一次方程和二元一次不等式.(2)关注数学活动中的知识点,加强探究性学习.三角形面积的最大值、不等式组、恩格尔系数等.(3)解不等式运算的数量和难度以课本为标高.(4) 不等式的性质拓展.(5)不等式的解集的关系.9.1.1不等式及其解集教学过程:了解不等式和一元一次不等式的概念,掌握不等式的解及解集教学重点:不等式的解集教学难点:不等式的解集引入:问题 一辆匀速行驶的汽车在11:20距离A 地50千米,要在12:00之前驶过A 地,车速应满足什么条件?设车速是x 千米/时,得50x<23 ① 或 23x >50② 一、不等式不等式定义:用符号“>”或“<”或“≠”或“≥”或“≤”表示大小关系的式子,叫做不等式(inequality)一元一次不等式定义:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式(linear inequality of one unknown ),例如②.练习1:下式中哪些是不等式?哪些是一元一次不等式?① 2x=2008;②3>12;③x ≠4-3;④5a+6b;⑤31x >2y ;⑥1≤3x+5m ; ⑦23mn ab •⑧x+2<6⑨xy-2=0练习2、用不等式表示下列语句.(1)a 的21与b 的3倍的和是非负数; (2)x 与5的75%不大于-6;(3)a 与b 两数和的平方不能小于8;(4)一个数x 与3的差的2倍小于它与4的和.二、不等式的解集不等式的解定义:使不等式成立的未知数的值叫做不等式的解思考:判断下列数种哪些是不等式23x >50的解 76,73,79,80,74.9,75.1,90,60你还能找出这个不等式的其他解吗?这个不等式有多少个解?1、不等式的解集定义:一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集。

2014-2015(下)八年级数学一元一次不等式与一元一次不等式组教案汤恒星

2014-2015(下)八年级数学一元一次不等式与一元一次不等式组教案汤恒星

第一节.不等关系教学目标:1、知识与技能目标①理解不等式的意义。

②能根据条件列出不等式。

③能用实际生活背景和数学背景解释简单不等式的意义。

2、过程与方法目标经历由具体实例建立不等式模型的过程,进一步发展学生的符号感与数学化的能力。

3、情感与态度目标感受生活中存在着的大量不等关系,通过用不等式解决实际问题,使学生进一步认识数学与人类生活的密切联系,激发学生学习数学的信心和兴趣。

教学重点:①通过探寻实际问题中的不等式关系,认识不等式。

②根据实际问题建立合理的不等关系。

教学过程一. 创设情景,引入新课展示图片(目的:感受生活中的不等关系):(1)甲乙两名同学升高、体重不相等;(2)汤老师的年龄和体重基本都大于你们的(3)跷跷板二.问题提出师:相等关系是用等式表示的,不等关系呢?生:不等式师:你学过那些不等号呢?生:>,<,≤,≥,≠三.小试牛刀(学生初步感受不等式表示不等关系)1. a是负数2. m与2的和小于33. c的两倍不大于a与b的差4. x的平方是非负数师:不大于,不小于表示的含义四.不等式的定义a<0 m+2<3 2c≤a-b x²≥0五.概念辨析指出下列式子是否为不等式?(概念基本辨析)(1)a+1>3 (2)x²+y²(3)2m≠n-1 (4)x+3=2x六.随堂练习1. x 的3倍与8的和比x的5倍大2. x除以2的商加上2至少为53. a与b两数和的平方不小于34. m与4的和的20%至多为9七.实际运用(1)铁路部门对旅客随身携带的行李有如下规定:每件行李的长、宽、高三边之和不得超过160cm。

设行李的长、宽、高分别为 a cm、b cm、c cm,请你列出行李的长、宽、高满足的关系式(2)通过测量一棵树的树围(树干的周长)可以计算出它的树龄,通常规定以树干离地面1.5m的地方作为测量部位。

某树栽种时的树围为6cm,以后树围每年增加约3cm。

初中数学《一元一次不等式和一元一次不等式组》单元教学设计以及思维导图

初中数学《一元一次不等式和一元一次不等式组》单元教学设计以及思维导图

一元一次不等式和一元一次不等式组
主题单元学习目标
知识与技能:
1、经历将一些实际问题抽象成不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效数学模型进一步发展符号感。

2、能够根据具体问题中的大小关系了解不等式的意义。

3、掌握不等式的基本性质。

4、理解不等式组的解及解集的含义,会解简单的一元一次不等式并能在数轴上表示一元一次不等式的解集,会解一元一次不等式组并会在数轴上确定其解集,初步体会数形结合的思想。

其他:纸、笔
学习活动设计
活动一、
如下图,正方形的边长和圆的直径都是acm。

1、如果要使正方形的周长不大于25cm,那么 a 应满足怎样的关系式?
2、如果要使圆的周长不小于100cm,那么a 应满足怎样的关系式?
3、当 a= 8 时,正方形和圆的周长哪个大?a = 12 呢?
4、你能得到什么猜想?改变a的取值再试一试。

观察由上述问题得到的关系式,它们有什么共同特点?
由4a 4a4a≤25, πa ≥100 ,3x+5>240得,这些关系式都是用不等号连接的式子.由此
一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式
活动二、。

不等式与不等式组知识点归纳

不等式与不等式组知识点归纳

第九章 不等式与不等式组一、知识结构图二、知识要点(一、)不等式的概念1、不等式:一般地,用不等符号(“<”“>”“≤”“≥”)表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式。

不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。

2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解。

3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围)。

4、解不等式:求不等式的解集的过程,叫做解不等式。

⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧与实际问题组一元一次不等式法一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(3215、不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向。

规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈。

(二、)不等式的基本性质不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。

用字母表示为:如果b a >,那么c b c a ±>±;如果b a <,那么c b c a ±<± ; 不等式的性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。

用字母表示为: 如果0,>>c b a ,那么bc ac >(或cb c a >);如果0,><c b a ,不等号那么bc ac <(或cb c a <); 不等式的性质3:不等式的两边同时乘以(或除以)同一个 负数 ,的方向 改变 。

用字母表示为: 如果0,<>c b a ,那么bc ac <(或cb c a <);如果0,<<c b a ,那么bc ac >(或cb c a >); 解不等式思想——就是要将不等式逐步转化为x a 或x <a 的形式。

不等式与不等式组小结与解含参数问题题型归纳

不等式与不等式组小结与解含参数问题题型归纳

第九章 不等式与不等式知识点归纳一、不等式及其解集和不等式的性质用不等号表示大小关系的式子叫做不等式。

常见不等号有:“<” “>” “≤” “≥” “ ≠ ”。

含有未知数的不等式的所有解组成这个不等式的解集,解不等式就是求不等式的解集。

注:①在数轴上表示不等式解集时,有等号用实心点,无等号用空心圈.②方向:大于向右画,小于向左画。

不等式的三个性质:①不等式两边同时加(或减)同一数或式子,不等号不变;②不等式两边同时乘(或除)同一正数,不等号不变;③不等式两边同时乘(或除)同一负数,不等号改变。

作差法比较a 与b 的大小:若a —b >0,则a >b ;若a —b <0;则a <b ;若a —b=0, 则a=b 。

例1 、下列式子中哪些是不等式?a+b=b+a ; ②a <b -5; ③-3>-5;④x ≠1 ;⑤2x —3.例2、若a 〈b <0,m <0,用不等号填空。

① a -b 0; ②a -5 b -5; ③-2a -2b ;④31+a 21+b ;⑤22___bm am ⑥ab 0;⑦a+m b+m ;⑧a ² b ²;⑨am bm 。

例3、①由a ax <,可得1>x 可得____a ;②由a ax <,可得1x <可得____a ;③ 由122-≥-≤-x m x mx 可得,那么______m 。

例4、不等式x x 228)2(5-≤+的非负整数解是__________________。

二、一元一次不等式及其实际问题一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式(即分母中不含未知数),这样的不等式叫做一元一次不等式。

解一元一次不等式的一般步骤:(1)去分母(两边每一项同乘分母的最小公倍数)(2)去括号(括号里每一项都要乘括号前面的系数)(3)移项(变号后移项)(4)合并同类项(5)将x 项系数化为1(系数为负数要变号)。

专题15:不等式与不等式组(简答题专练)(解析版)

专题15:不等式与不等式组(简答题专练)(解析版)

专题15:不等式与不等式组(简答题专练)一、解答题1.某电器超市销售每台进价分别为160元、120元的A 、B 两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本) (1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【答案】(1)A 、B 两种型号电风扇的销售单价分别为200元、150元;(2)超市最多采购A 种型号电风扇37台时,采购金额不多于7500元;(3)在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种:当a =36时,采购A 种型号的电风扇36台,B 种型号的电风扇14台;当a =37时,采购A 种型号的电风扇37台,B 种型号的电风扇13台.【分析】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,列二元一次方程组,解方程组即可得到答案;(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(50﹣a )台,利用超市准备用不多于7500元,列不等式160a +120(50﹣a )≤7500,解不等式可得答案;(3)由超市销售完这50台电风扇实现利润超过1850元,列不等式(200﹣160)a +(150﹣120)(50﹣a )>1850,结合(2)问,得到a 的范围,由a 为非负整数,从而可得答案. 【解答】解:(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元, 依题意得:341200561900x y x y +=⎧⎨+=⎩①②,①5⨯-②3⨯得:2300,y =150,y ∴=把150y =代入①得:200,x =解得:200150x y =⎧⎨=⎩,答:A 、B 两种型号电风扇的销售单价分别为200元、150元.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(50﹣a )台. 依题意得:160a +120(50﹣a )≤7500,401500,a ∴≤解得:a ≤1372. 因为:a 为非负整数,所以:a 的最大整数值是37.答:超市最多采购A 种型号电风扇37台时,采购金额不多于7500元. (3)根据题意得:(200﹣160)a +(150﹣120)(50﹣a )>1850, 10a ∴>350, 解得:a >35, ∵a ≤1372, 35∴<a 1372≤,a 为非负整数,36a =或37.a =∴在(2)的条件下超市能实现利润超过1850元的目标.相应方案有两种: 当a =36时,采购A 种型号的电风扇36台,B 种型号的电风扇14台; 当a =37时,采购A 种型号的电风扇37台,B 种型号的电风扇13台.【点评】本题考查的是二元一次方程组的应用,一元一次不等式,一元一次不等式组的应用的方案问题,掌握以上知识是解题的关键.2.解不等式组1(1)1212x x ⎧-≤⎪⎨⎪-⎩<并写出该不等式组的所有整数解.【答案】解集是-1<x≤3;整数解是0,1,2,3【分析】分别解出每个不等式的解集,确定不等式组的解集,然后在解集中确定所有整数解即可. 【解答】解不等式1(1)12x -≤得:x≤3 解不等式12x -<得:x >-1 所以不等式组的解集是-1<x≤3.大于-1而小于或等于3的所有整数有0,1,2,3, ∴该不等式组的所有整数解为0,1,2,3.【点评】本题考查了解不等式组,解决本题的关键是先计算出每个不等式的解集,然后确定不等式组的解集.3.(1)解不等式413x x -> (2)解不等式组()()315121531123x x x x ⎧-+-⎪⎨-+-⎪⎩【答案】(1)1x >; (2)13x ≥. 【分析】(1)移项、合并同类项即可;(2)分别求出两个不等式的解集,再根据同大取大即可确定不等式组的解集. 【解答】解:(1)移项得:431x x ->合并同类项得:1x >(2)()()315121531123x x x x ⎧-+-⎪⎨-+-⎪⎩①②解不等式①得3x ≥-, 解不等式②得13x ≥, 不等式组的解集为: 13x ≥【点评】本题考查了解一元一次不等式(组),熟练掌握解不等式的基本步骤是解决此题的关键.在利用不等式的性质同乘或除时,不等式的两边都乘以(或除以)同一个负数时,不等号的方向改变.在确定不等式组的解集时需注意:同大取大;同小取小;大小小大中间找;大大小小找不到. 4.若关于x 的方程2x 3m 2m 4x 4-=-+的解不小于7183m--,求m 的最小值. 【答案】14-【分析】首先求解关于x的方程2x−3m=2m−4x+4,即可求得x的值,根据方程的解的解不小于7183m--,即可得到关于m的不等式,即可求得m的范围,从而求解.【解答】由54 232446546mx m m x x m x+ -=-+=+=,得,即.根据题意,得5471683m m+-≥-,解得14m,≥-所以m的最小值为1 4 -.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.5.我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4.5>=5,<-1.5>=-1.解决下列问题.(1)[-4.5]=_____ ;<3.5>=________;(2)若[x]=2,则x的取值范围是________;若<y>=-1,则y的取值范围是_______ .(3)若[]21 3x x=-,则x为_________.(4)已知x、y满足方程组[][]32336x yx y⎧+=⎪⎨-=-⎪⎩<><>,求x、y的取值范围.【答案】(1)-5; 4,(2)2≤x<3;-2≤y<-1,;(3)x=-3(4)x,y的取值分别为-1≤x<0,2≤y<3. 【分析】(1)根据新定义与不等式的性质即可求解;(2)根据[a]表示不大于a的最大整数与<a>表示大于a的最小整数与不等式的性质求解;(3)根据[]21 3x x=-得到关于x的方程即可求解;(4)先求出[x]、<y>的值,再根据新定义即可求解. 【解答】(1)依题意得[-4.5]=-5;<3.5>=4,(2)∵[x]=2,则x的取值范围是2≤x<3;∵<y>=-1,则y的取值范围是-2≤y<-1,;(3)∵[x]≤x,[]21 3x x=-化为213x x=-,解得x=-3,符合题意,故x=-3(4)∵[][]323326x y x y ⎧+=⎪⎨-=-⎪⎩<><>,解得[]13x y ⎧=-⎨=⎩<> ∴x ,y 的取值分别为-1≤x <0,2≤y <3.【点评】此题主要考查不等式的应用,解题的关键是熟知不等式的性质. 6.求不等式()()2130x x -+>的解集。

(完整版)不等式与不等式组单元复习教案

(完整版)不等式与不等式组单元复习教案

个性化教案 17授课时间:2011年7月22日(2) 备课时间:2011年7月20日年级:八课时:2小时课题:不等式与不等式组学生姓名:胡雪丹教师姓名:宋学文教学目标1、能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。

2、会解简单的一元一次不等式,并能在数轴上表示出解集。

会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。

3、能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的实际问题。

难点重点能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的实际问题。

教学内容一、基础知识梳理1、叫一元一次不等式,把两个或两个以上的合起来,组成一个一元一次不等式组。

2、一般的,几个不等式的解集的,叫做由它们所组成的不等式组的解集。

3、不等式性质1 :不等式性质2:不等式性质3 :4、解不等式组,取解集的法则:5、老师归纳总结1、不等式的基本性质性质1:不等式的两边都加上或减去同一个数或同一个整式,不等号的方向不变。

如果a>b,则a+c>b+c,a-c>b-c性质2:不等式的两边同时乘以或除以同一个正数,不等号的方向不变。

如果a>b,并且c>0,那么则ac>bc性质3:不等式两边都乘以或除以同一个负数,不等号的方向改变成相反方向。

如果a>b,并且c<0,那么则ac<bc2、不等式组的公共解集,可用口诀:大大取大,小小取小;大小小大取中间;大大小小取不了。

1、已知a>b 用”>”或”<”连接下列各式;(1)a-3 ---- b-3 (2)2a ----2b (3)- a 3 ------b3(4)4a-3 ---- 4b-3 (5)a-b --- 02、在数轴上表示不等式组x>-2x 1⎧⎨≤⎩ 的解,其中正确的是( )3、已知a>b ,⎩⎨⎧b x a x πφ 的解是 ,⎩⎨⎧--b x a x φφ的解是 。

一元一次不等式与不等式组复习大纲

一元一次不等式与不等式组复习大纲

(2)在同一数轴表达不等式的解集。
x x 1 1 32
解:x 6 x 1 6 1 6
3
2
2x 3(x 1) 6
2x 3x 3 6
-x3
x 3
2x 1 5 ① x 2 1 ②
解:解不等式① 得,x 2
解不等式 ② 得,x 3
-1 0 1
2
34
所以原方程组的解为:2 x 3
第一章一元一次不等式(组)
复习大纲
一、不等式(组)概念 二、不等式的性质 三、一元一次不等式(组)的解法 四、一元一次不等式(组)的应用 五、一元一次不等式(组)与一次函
数的关系。
一、不等式(组)有关概念
1.不等式:用不等号连接的式子。 如:2>-1, a<b, x+y>0等
2.不等式的解:使得不等式成立的未知数的值。 3. 不等式的解集:使得不等式成立的全部未知 数的值。 4.一元一次不等式:(1)只含有一种未知数
惯用不等式性质:
1.若a b, 那么b a。 2.若a - b 0, 那么a b。 3.若a - b 0, 那么a b。
4.若a b, c 0那么ac bc。
5.若a b, c 0那么ac bc。
三、不等式(组)的解法:
1.项合并同类项 (4)系数化为1 2.解不等式组环节: (1)解出不等式的解集
(2)未知数的次数是1 (3)分母中不含有未知数 5.一元一次不等式组的解集:各个不等式的解集 的公共部分。
二、不等式的性质
(1)不等式的两边都加上(或减去) 同一种整式,不等号的方向不变。
(注:移项要变号,但不等号不变。)
(2)不等式的两边都乘以(或除以) 同一种正数,不等号的方向不变。

南通市初中数学教材目录及各章详细内容(人教版)

南通市初中数学教材目录及各章详细内容(人教版)

初中数学教材目录(全)--各章详细内容---人教版七年级上册第一章有理数1.1正数和负数阅读与思考用正负数表示加工允许误差1.2有理数1.3有理数的加减法实验与探究填幻方阅读与思考中国人最先使用负数1.4有理数的乘除法观察与思考翻牌游戏中的数学道理1.5有理数的乘方数学活动小结复习题1第二章整式的加减2.1整式阅读与思考数字1与字母X的对话2.2整式的加减信息技术应用电子表格与数据计算数学活动小结复习题2第三章一元一次方程3.1从算式到方程阅读与思考“方程”史话3.2解一元一次方程(一)——合并同类项与移项实验与探究无限循环小数化分数3.3解一元一次方程(二)——去括号与去分母3.4实际问题与一元一次方程数学活动小结复习题3第四章图形认识初步4.1多姿多彩的图形阅读与思考几何学的起源4.2直线、射线、线段阅读与思考长度的测量4.3角4.4课题学习设计制作长方体形状的包装纸盒数学活动小结复习题4部分中英文词汇索引~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~七年级下册第五章相交线与平行线5.1相交线5.1.2垂线5.1.3同位角、内错角、同旁内角观察与猜想5.2平行线5.2.1平行线5.3平行线的性质5.3.1平行线的性质5.3.2命题、定理5.4平移数学活动小结复习题5第六章平面直角坐标系6.1平面直角坐标系6.2坐标方法的简单应用数学活动小结复习题6第七章三角形7.1与三角形有关的线段7.1.2三角形的高、中线与角平分线7.1.3三角形的稳定性信息技术应用7.2与三角形有关的角7.2.2三角形的外角阅读与思考7.3多边形及其内角和7.4课题学习镶嵌数学活动小结复习题7第八章二元一次方程组8.1二元一次方程组8.2消元——二元一次方程组的解法8.3实际问题与二元一次方程组*8.4三元一次方程组解法举例数学活动小结复习题8第九章不等式与不等式组9.1不等式阅读与思考9.2实际问题与一元一次不等式实验与探究9.3一元一次不等式组数学活动小结复习题9第十章数据的收集、整理与描述10.1统计调查实验与探究10.2直方图10.3课题学习从数据谈节水教学活动小结部分中英文词汇索引~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~八年级上册第十一章全等三角形11.1全等三角形11.2三角形全等的判定阅读与思考全等与全等三角形11.3角的平分线的性质教学活动小结复习题11第十二章轴对称12.1轴对称12.2作轴对称图形12.3等腰三角形教学活动小结复习题12第十三章实数13.1平方根13.2立方根13.3实数教学活动小结复习题13第十四章一次函数14.1变量与函数14.2一次函数14.3用函数观点看方程(组)与不等式14.4课题学习选择方案教学活动小结复习题14第十五章整式的乘除与因式分解15.1整式的乘法15.2乘法公式15.3整式的除法教学活动小结复习题15部分中英文词汇索引~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~八年级下册第十六章分式16.1分式16.2分式的运算阅读与思考容器中的水能倒完吗16.3分式方程数学活动小结复习题16第十七章反比例函数17.1反比例函数信息技术应用探索反比例函数的性质17.2实际问题与反比例函数阅读与思考生活中的反比例关系数学活动小结复习题17第十八章勾股定理18.1勾股定理阅读与思考勾股定理的证明18.2勾股定理的逆定理数学活动小结复习题18第十九章四边形19.1平行四边形阅读与思考平行四边形法则19.2特殊的平行四边形实验与探究巧拼正方形19.3梯形观察与猜想平面直角坐标系中的特殊四边形19.4课题学习重心数学活动小结复习题19第二十章数据的分析20.1数据的代表20.2数据的波动信息技术应用用计算机求几种统计量阅读与思考数据波动的几种度量20.3课题学习体质健康测试中的数据分析数学活动小结复习题20 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~九年级上册第二十一章二次根式21.1 二次根式21.2 二次根式的乘除21.3 二次根式的加减阅读与思考海伦──秦九韶公式数学活动小结复习题21第二十二章一元二次方程22.1一元二次方程22.2降次──解一元二次方程阅读与思考黄金分割数22.3实际问题与一元二次方程实验与探究三角点阵中前n行的点数计算数学活动小结复习题22第二十三章旋转23.1图形的旋转23.2中心对称信息技术应用探索旋转的性质23.3课题学习图案设计数学活动小结复习题23第二十四章圆24.1 圆24.2 点、直线、圆和圆的位置关系24.3 正多边形和圆阅读与思考圆周率Π24.4 弧长和扇形面积实验与探究设计跑道数学活动小结复习题24第二十五章概率初步25.1 随机事件与概率25.2 用列举法求概率阅读与思考概率与中奖25.3 用频率估计概率实验与探究П的估计25.4 课题学习键盘上字母的排列规律数学活动小结复习题25部分中英文词汇索引~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~九年级下册第二十六章二次函数26.1二次函数及其图像26.2用函数观点看一元二次方程信息技术应用探索二次函数的性质26.3实际问题与二次函数实验与探索推测植物的生长与温度的关系教学活动小结复习题26第二十七章相似27.1图形的相似27.2相似三角形观察与猜想奇妙的分形图形27.3位似信息技术应用探索位似的性质教学活动小结复习题27第二十八章锐角三角函数28.1锐角三角函数阅读与思考一张古老的三角函数表28.2解直角三角形教学活动小结复习题28第二十九章投影与视图29.1投影29.2三视图阅读与思考视图的产生与应用29.3课题学习制作立体模型数学活动小结复习题29部分中英文词汇索引。

期末专项训练----不等式与不等式组(2)

期末专项训练----不等式与不等式组(2)

期末专项训练----不等式与不等式组(2)一、填空题(每空2分,共28分) 1、不等式621<-x 的负整数解是2、若2,2a a 则-<_______a 2-;不等式b ax >解集是ab x <,则a 取值范围是3、一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答,一道题得-1分,在这次竞赛中,小明获得优秀(90或90分以上),则小明至少答对了 道题。

4、不等式组⎩⎨⎧≤〉+201x x 的解集是 。

5、如图数轴上表示的是一不等式组的解集,这个不等式组的整数解是-1+1-26、若代数式1-x-22 的值不大于1+3x3的值,那么x 的取值范围是_______________________。

7、若不等式组⎩⎨⎧->+<121m x m x 无解,则m 的取值范围是 .8、已知三角形三边长分别为3、(1-2a)、8,则a的取值范围是____________。

9、若0,0><b a ,则点 ()21+-b a , 在第象限 。

10、已知点M(1-a ,a+2)在第二象限,则a 的取值范围是_______________。

11、在方程组a y x y x a y x 则已知中,0,0,62<>⎩⎨⎧=-=+的取值范围是____________________ 12、某书城开展学生优惠售书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算。

某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元钱。

则该学生第二次购书实际付款 元。

12、阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,如果用x 表示他的速度(单位:米/分),则x 的取值范围为 。

二、选择题(每小题3分,共30分)1、若∣-a ∣=-a 则有(A) a ≥ 0 (B) a ≤ 0 (C) a ≥-1 (D) -1≤a ≤02、不等式组⎩⎨⎧-≤-->xx x 28132的最小整数解是( )A .-1B .0C .24、在∆ABC 中,AB=14,BC=2x ,AC=3x ,则x 的取值范围是( )A 、x >2.8B 、2.8<x <14C 、x <14D 、7<x <145、下列不等式组中,无解的是( )2x+3<03x+2>0⎧⎨⎩ (B) 3x+2<02x+3>0⎧⎨⎩ (C) 3x+2>02x+3>0⎧⎨⎩ (D) 2x+3<03x+2<0⎧⎨⎩ 6、如果0<x<1则1x ,x,x 2 这三个数的大小关系可表示为( )(A)x< 1x < x 2 (B)x <x 2< 1x (C) 1x <x<x 2(D) x 2<x<1x7、在平面直角坐标系中,点(-1,3m 2+1)一定在( )A .第一象限. B.第二象限. C.第三象限.D.第四象限 8、如图2,天平右盘中的每个砝码的质量都是1g ,则物体A的质量m(g)的取值范围,在数轴上可表示为( )9、设“○”、“□”、“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所CD示,那么每个“○”、“□”、“△”这样的物体,按质量从小到大....的顺序排列为( ) A 、○□△ B 、○△□ C 、□○△D 、△□○10、某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至少可打( ) A .6折 B .7折 C .8折 D .9折三、解答题(1~2共10分,3~4共12分,5~6共20分)1、解不等式组⎪⎩⎪⎨⎧+<+≤-.413,13)1(2x xx x2、求不等式组5131131132x x x x -<+⎧⎪++⎨≤+⎪⎩的整数解3、已知方程组32121x y m x y m +=+⎧⎨+=-⎩,m 为何值时,x >y?4、乘某城市的一种出租车起步价是10元(即行驶路程在5km 以内都需付车费10元),达到或超过5km 后,每增加1km 加价1.2元(不足1km 部分按1km 计)。

不等式与不等式组(知识总结-试题和答案)

不等式与不等式组(知识总结-试题和答案)

不等式与不等式组(知识总结-试题和答案)初中精品数学精选精讲学科:数学任课教师:授课时间:年⽉姓名年级课时教学课题不等式与不等式组教学⽬标(知识点、考点、能⼒、⽅法)知识点:不等式及性质,⼀元⼀次不等式,⼀元⼀次不等式组。

考点:不等式的解集,⼀元⼀次不等式及⼀元⼀次不等式组的解法,列⼀元⼀次不等式组解实际问题。

能⼒:能判断及解不等式组及不等式组,通过具体实例建⽴不等式,探索不等式的基本性质。

⽅法:了解⼀般不等式的解、解集以及解不等式的概念;然后具体研究⼀元⼀次不等式、⼀元⼀次不等式组的解、解集、难点重点⼀元⼀次不等式及⼀元⼀次不等式组的解法.实际问题与⼀元⼀次不等式(组)课堂教学过程课前检查作业完成情况:优□良□中□差□建议______________________________________________ ⼀、知识点⼤集锦不等式与不等式组1.熟悉知识体系2.不等式与不等式组的概念不等式:⽤“⼤于号”、“⼩于号”、“不等号”、“⼤于等于”或“⼩于等于”连接并具有⼤⼩关系的式⼦,叫做不等式。

不等式组:⼏个不等式联⽴起来,叫做不等式组.(注意:当有A3.⼀元⼀次不等式:只含有⼀个未知数,并且未知数的最⾼次数是⼀次,这样的不等式,叫做⼀元⼀次不等式.4.不等式的基本性质:性质l:不等式的两边都加上(或减去)同⼀个数(或式⼦),不等号的⽅向不变;性质2:不等式的两边都乘以(或除以)同⼀个正数,不等号的⽅向不变;性质3:不等式的两边都乘以(或除以)同⼀个负数,不等号的⽅向改变2.5.解不等式组解不等式组,可以先把其中的不等式逐条算出各⾃的解集,然后分别在数轴上表⽰出来。

(1)求出不等式组中每个不等式的解集(2)借助数轴找出各解集的公共部分(3)写出不等式组的解集求公共部分的规律:⼤⼤取⼤,⼩⼩取⼩,⼤⼩⼩⼤取中间,⼤⼤⼩⼩⽆解.以两条不等式组成的不等式组为例,①若两个未知数的解集在数轴上表⽰同向左,就取在左边的未知数的解集为不等式组的解集,此乃“同⼩取⼩”②若两个未知数的解集在数轴上表⽰同向右,就取在右边的未知数的解集为不等式组的解集,此乃“同⼤取⼤”③若两个未知数的解集在数轴上相交,就取它们之间的值为不等式组的解集。

高中数学不等式与不等式组的解法

高中数学不等式与不等式组的解法

高中数学不等式与不等式组的解法高中数学不等式与不等式组的解法高中数学不等式主要问题包括:大小比较(方法有作差法,作商法,图象法,函数性质法);证明题(比较法,反证法,换元法,综合法…);恒成立问题(判别式法,分离参数法…)等,下面是店铺为大家精心推荐不等式与不等式组的解法,希望能够对您有所帮助。

不等式与不等式组的数轴穿根解法数轴穿根:用根轴发解高次不等式时,就是先把不等式一端化为零,再对另一端分解因式,并求出它的零点,把这些零点标在数轴上,再用一条光滑的曲线,从x轴的右端上方起,一次穿过这些零点,这大于零的不等式地接对应这曲线在x轴上放部分的实数x得起值集合,小于零的这相反。

做法:1.把所有X前的系数都变成正的(不用是1,但是得是正的);2.画数轴,在数轴上从小到大依次标出所有根;3.从右上角开始,一上一下依次穿过不等式的根,奇过偶不过(即遇到含X的项是奇次幂就穿过,偶次幂跨过,后面有详细介绍);4.注意看看题中不等号有没有等号,没有的话还要注意写结果时舍去使使不等式为0的根。

例如不等式:x2-3x+2≤0(最高次项系数一定要为正,不为正要化成正的)⒈分解因式:(x-1)(x-2)≤0;⒉找方程(x-1)(x-2)=0的根:x=1或x=2;⒊画数轴,并把根所在的点标上去;⒋注意了,这时候从最右边开始,从2的右上方引出一条曲线,经过点2,继续向左画,类似于抛物线,再经过点1,向点1的左上方无限延伸;⒌看题求解,题中要求求≤0的解,那么只需要在数轴上看看哪一段在数轴及数轴以下即可,观察可以得到:1≤x≤2。

高次不等式也一样.比方说一个分解因式之后的不等式:x(x+2)(x-1)(x-3)>0一样先找方程x(x+2)(x-1)(x-3)=0的根x=0,x=1,x=-2,x=3在数轴上依次标出这些点.还是从最右边的一点3的右上方引出一条曲线,经过点3,在1、3之间类似于一个开口向上的抛物线,经过点1;继续向点1的左上方延伸,这条曲线在点0、1之间类似于一条开口向下的曲线,经过点0;继续向0的左下方延伸,在0、-2之间类似于一条开口向上的抛物线,经过点-2;继续向点-2的左上方无限延伸。

九年级数学下册2023年中考专题培优训练:不等式与不等式组【含答案】

九年级数学下册2023年中考专题培优训练:不等式与不等式组【含答案】

九年级数学下册2023年中考专题培优训练:不等式与不等式组一、单选题1.下列说法不正确的是( )A .不等式的解集是B .不等式的整数解有无数个32x ->5x >3x <C .不等式的整数解是0D .是不等式的一个解33x +<0x =23x <2.已知,则下列结论成立的是( )x y <A .B .C .D .77x y ->-55x y ->-2121x y +>+22x y >3.一元一次不等式x+1>2的解在数轴上表示为( )A .B .C .D .4.关于 的不等式 的非负整数解共有( )个x 1230x ->A .3B .4C .5D .65.若关于x 的不等式2x+a≤0只有两个正整数解,则a 的取值范围是( )A .﹣6≤a≤﹣4B .﹣6<a≤﹣4C .﹣6≤a <﹣4D .﹣6<a <﹣46.若a <b ,则下列各式正确的是( )A .3a >3bB .﹣3a >﹣3bC .a﹣3>b﹣3D .33a b >7.如图表示的是关于 的不等式 ≤ 的解集,则 的取值是( )x 2x a --1a A . ≤-1B . ≤-2C . =-1D . =-2a a a a 8.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃9.不等式组 的解集在数轴上表示为( )21112x x -≤⎧⎨+>-⎩A .B .C.D.10.若 是关于x 的不等式 的一个解,则a 的取值范围是( )3x =2()x x a >-A .B .C .D .32a <32a >32a ≤32a ≥11.关于x 的一元一次不等式3x>6的解都能满足下列哪一个不等式的解( )A .4x-9<xB .-3x+2<0C .2x+4<0D .122x <12.老张从一个鱼摊上买了三条鱼,平均每条a 元,又从另一个鱼摊上买了两条鱼,平均每条b 元,后来他又以每条 元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是( )2a b+A .a >b B .a <bC .a =bD .与a 和b 的大小无关二、填空题13.不等式组 的解集为  .23x x >-⎧⎨≤⎩14.若不等式(a+1)x >a+1的解集是x <1,则a 的取值范围是 .15.a >b ,且c 为实数,则ac 2  bc 2.(用数学符号填空)16.不等式3x﹣2≥4(x﹣1)的所有非负整数解的和为 .17.对于任意实数m 、n ,定义一种运运算m ※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a <2※x <7,且解集中有两个整数解,则a 的取值范围是 三、解答题18.解不等式组 ,并求它的整数解.64325213x x x x +≥-⎧⎪+⎨->-⎪⎩19.今年中考期间,我县部分乡镇学校的九年级考生选择在一中、二中的学生宿舍住宿,某学校将若干间宿舍分配给该校九年级一班的女生住宿,已知该班女生少于25人,若每个房间住4人,则剩下3人没处住;若每个房间住6人,则空一间房,并且还有一间房有人住但住不满。

不等式(组)的知识点

不等式(组)的知识点

不等式与不等式组知识点总结一、知识导航图二、课标要求一元一次不等式(组)的应用一元一次不等式(组)的解法一元一次不等式(组)解集的含义一元一次不等式(组)的概念不等式的性质一元一次不等式和一元一次不等式组三、知识梳理考点一、不等式的概念(3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。

常见的不等号有五种:“≠”、“>” 、“<” 、“≥”、“≤”.2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

不等式的解集可以在数轴上直观的表示出来,具体表示方法是:①确定边界点。

解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;②确定方向:大向右,小向左。

3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

考点二、不等式基本性质(3~5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

如果a>b,那么a+c>b+c,a-c>b-c.2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

如果a >b ,并且c >0,那么a c >b c3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

如果a >b ,并且c <0,那么a c <b c4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。

②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;考点三、一元一次不等式 (6--8分)1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x 项的系数化为1说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例:131321≤---x x 解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!) 移 项,得 23663-+≤-x x (移项要变号)合并同类项,得 73≤-x (计算要正确) 系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了)考点四、一元一次不等式组 (8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

初三数学总复习数学《方程(组)及不等式(组)教案

初三数学总复习数学《方程(组)及不等式(组)教案

12-13下学期初三数学总复习《方程(组)与不等式(组)》主备人:汤恒星本章教学分析一、本章教学目标1、方程(组)、一次方程(组)、一次不等式(组)、分式方程的概念及解法2、用方程(组)解决实际问题二、本章教学重难点重点:目标1,2难点:目标2三、学情分析初三复习阶段,学生对本部分内容有接触,但是遗忘比较多,教师在复习的过程中应加强基本技能的训练,适当加以示范。

四、课时安排(共计10 课时)第1节:2课时第2节:2课时第3节:2课时第4节:2课时测评及讲解:2课时五、章节测试命题人安排:汤恒星第一节 一次方程(组)及其应用(2课时)教学目标:1.方程、一元一次方程、方程的解、一元一次方程的解法;2.二元一次方程、二元一次方程组、二元一次方程的解、二元一次方程的解法、利用方程解决生活中的实际问题3. 用一元一次方程和二元一次方程组解决实际问题;4 数学思想方法:消元教学重难点:教学重点:一元一次方程解法、二元一次方程组的解法、用一元一次方程和二元一次方程组解决实际问题难点:用一元一次方程和二元一次方程组解决实际问题教学过程:一、知识点(1) 方程:含有未知数的等式(2) 等式性质:1、等式两边分别加上或减去一个数字或式子,结果仍然是等式;2、等式两边分别乘以或除以一个不为0的数,结果仍然是等式;(3) 方程的解:使方程左右两边相等的未知数的值(4) 一元一次方程的解法:去分母、去括号、移项、合并、系数化为1(5) 二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的整式方程为二元一次方程(6) 二元一次方程组:把具有相同未知数的两个二元一次方程合在一起就组成了一个二元一次方程组(7) 二元一次方程组的解:一般地,能使二元一次方程组的两个方程左右两边的值都相等的一对未知数的值,叫做二元一次方程组的解,即二元一次方程组中方程的公共解。

(8) 二元一次方程组的解法:(1)代入消元法:多适用于方程组中有一个未知数的系数是1或-1的情形;(2)加减消元法:多适用于方程组中的两个方程中相同未知数的系数相同或互为相反数的情形(9) 列方程(组)解应用题的一般步骤二、例题精讲例1.下列方程组中,是二元一次方程组的是( ) ⎪⎩⎪⎨⎧=+=+65115y x y x ⎩⎨⎧-=+=+2102y x y x ⎩⎨⎧==+158xy y x ⎩⎨⎧=+=31y x xA. B. C. D.例2.在 中,用x 的代数式表示y ,则y=______________.例3.(1)解方程.x x +--=21152156(2)解二元一次方程组⎩⎨⎧=+=+27271523y x y x 例4.已知a 、b 、c 满足⎩⎨⎧=+-=-+02052c b a c b a ,则a :b :c= . 例5.已知x =-2是关于x 的方程()x m x m -=-284的解,求m 的值.例6.某电厂规定该厂家属区的每户居民如果一个月的用电量不超过A 度,那么这个月这户只需交 10 元用电费,如果超过 A 度,则这个月除了仍要交 10 元用电费外,超过部分还要按每度 0.5 元交费.①该厂某户居民 2 月份用电 90 度,超过了规定的 A 度,则超过部分应该交电费多少元(用 A 表示)? .②右表是这户居民 3 月、4 月的用电情况和交费情况:根据右表数据,求电厂规定A 度为 .三、当堂检测1.若关于x 的方程x k =-153的解是x =-3,则k =_________. 2.解下列方程(组): (1)x x -+=-2114135;(2)⎩⎨⎧=+=+832152y x y x 3.当x =-2时,代数式x bx +-22的值是12,求当x =2时,这个代数式的值.4.应用方程解下列问题:初一(4)班课外乒乓球组买了两副乒乓球板,若每人付9元,则多了5元,后来组长收了每人8元,自己多付了2元,问两副乒乓球板价值多少?四、小结(1)方程的相关概念(2)一次方程(组)的解法(3)用一次方程(组)解应用题五、作业:试题研究教学反思:032=-+y x第二节 一元二次方程及其应用(第2课时)教学目标:1.一元二次方程的相关概念及解法;2. 根的判别式、根与系数的关系3. 用一元二次方程解决实际问题教学重难点:教学重点:一元二次方程的相关概念及解法、根的判别式、根与系数的关系、用一元二次方程解决实际问题难点:根的判别式、根与系数的关系、用一元二次方程解决实际问题教学过程:五、 知识点1. 一元二次方程的概念及一般形式:ax 2+bx +c =0 (a ≠0)2. 一元二次方程的解法:①直接开平方法②配方法③公式法④因式分解法3.求根公式:当b 2-4ac ≥0时,一元二次方程ax 2+bx +c =0 (a ≠0)的两根为4.根的判别式: 当b 2-4ac >0时,方程有 实数根.当b 2-4ac=0时, 方程有 实数根.当b 2-4ac <0时,方程 实数根.5.(1)增长率问题;(2)利润问题二、例题精讲例1.选用合适的方法解下列方程:(1) (x-15)2-225=0; (2) 3x 2-4x -1=0(用公式法);(3) 4x 2-8x +1=0(用配方法); (4)x 2+22x=0 例2 .已知一元二次方程0437122=-+++-m m mx x m )(有一个根为零,求m 的值.例3.用22cm 长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否折成面积是32㎝2的矩形呢?为什么?三、当堂检测一、填空1.下列是关于x 的一元二次方程的有_______ ①02x 3x12=-+ aac b b x 242-±-=②01x 2=+③)3x 4)(1x ()1x 2(2--=- ④06x 5x k 22=++ ⑤021x x 2432=-- ⑥0x 22x 32=-+2.一元二次方程3x 2=2x 的解是 .3.一元二次方程(m-2)x 2+3x+m 2-4=0有一解为0,则m 的值是 .4.已知m 是方程x 2-x-2=0的一个根,那么代数式m 2-m = .5.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根, 则k 的取值范围是__________.6.如果关于的一元二次方程的两根分别为3和4,那么这个一元二次方程可以是 .三、解下方程:(1)(x+5)(x-5)=7 (2)x(x-1)=3-3x(3)x 2-4x-4=0 (4)x 2+x-1=0四、小结(1)一元二次方程的相关概念及解法;(2)根的判别式及根与系数关系;(3)用一次方程(组)解应用题五、作业:试题研究 教学反思:第三节 分式方程及其应用(2课时)教学目标:1、分式方程的相关概念及解法2. 了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根.3. 列分式方程解决实际问题教学重点:目标1,2,3难点:目标2,3教学过程:一、知识点1.分式方程:分母中含有1个未知数的方程叫做分式方程2.解分式方程的步骤:去分母转化为整式方程,解整式方程,再将整式方程的解代入最公分母中,判断整式方程的解是否为分式方程的增根二、例题精讲例1:(1)013522=--+xx x x (2)41622222-=-+-+-x x x x x 例2 若分式方程xx k x --=+-2321有增根,则k 为( ) A. 2 B.1 C. 3 D.-2三、当堂检测1.解分式方程. (1)22011x x x -=+- (2) x2)3(x 22x x -=--;(3) 11322x x x -=--- (4)11-x 1x 1x 22=+-- 2. 一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米,则根据题意所列方程正确的是( )A. B.C. D.四、小结(1)解分式方程要注意检验(2)增根是把分式方程转化为整式方程的解五、作业:试题研究教学反思:第四节 一元一次不等式(组)及其应用(2课时) 教学目标:1、 不等式(组)的定义及解法2、 不等式的性质3、 不等式的解集在数轴上表示4、 用不等式解应用题教学重难点:教学重点:目标1,2,3难点:目标4教学过程:一、知识点1.定义:用不等号连接起来的式子2.解集:一个含有未知数的不等式的所有的解的集合3.解集在数轴上表示:(略)4.性质:(1)不等式的两边都加上(或减去)同一个数或整式,不等号的方向不变,即若,b a <则c b c a ±<±(2)不等式的两边都乘以(或除以)同一个整数,不等号的方向不变,即若,b a <且0c >,则bc ac <(或cb c a <) (3)不等式的两边都乘以(或除以)同一个整数,不等号的方向不变,即若,b a <且0c <,则bc ac >(或c b c a >) 二、例题精讲例1.如图所示,O 是原点,实数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,则下列结论错误的是( )A. 0b a >-B. 0ab <C. 0b a <+D.例2. 不等式112x ->的解集是( ) A.12x >- B.2x >- C.2x <- D.12x <- 例3. 把不等式组21123x x +>-⎧⎨+⎩≤的解集表示在数轴上,下列选项正确A .B .C .D .BA O C 0)c a(b >-1 0 1- 10 1- 1 0 1- 10 1-例4. 不等式组221x x -⎧⎨-<⎩≤的整数解共有( ) A .3个 B .4个 C .5个 D .6个例6.若关于x 的不等式x -m ≥-1的解集如图所示,则m 等于( )A .0B .1C .2D .3 例7.解不等式组:(1)21113x x x +<⎧⎪⎨-≥⎪⎩ (2)⎪⎩⎪⎨⎧+<+->+)6(3)4(4,5351x x x x 【当堂检测】1.苹果的进价是每千克3.8元,销售中估计有5%的苹果正常损耗.为避免亏本,商家把售价应该至少定为每千克 元.2. 解不等式723<-x ,将解集在数轴上表示出来,并写出它的正整数解.3. 解不等式组⎪⎩⎪⎨⎧-<+--+≥+224313322x x x x ,并把它的解集在数轴上表示出来.4. 我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:(1)设装运y ,求y 与x 之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.四、小结(1)解不等式时左右两边同时乘以负数时,不等号方向要改变(2)列不等式解应用题是要主要“至少、最多、不低于、不大于、高于”等字样的理解五、作业:试题研究教学反思:欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求。

《不等式与不等式组》教材分析

《不等式与不等式组》教材分析

《不等式与不等式组》教材分析1、本章教材的地位不等式的知识是初中阶段在一元一次方程和二元一次方程组的学习之后,进一步探究数量关系的重要内容.数量之间除了有相等关系外,还有大小不等的关系。

不等式与不等式组是讨论不等关系的有力数学工具,掌握不等式的基本性质是基础知识,解一元一次不等式是一项基本技能,也是学生以后学习一元二次方程、函数以及进一步学习不等式知识的基础。

2、教材的主要内容本章的主要内容包括:一元一次不等式(组)及相关概念,不等式的性质,一元一次不等式(组)的解法及其解集的几何表示,利用一元一次不等式分析、解决实际问题。

本章重视数学与实际的关系,注意体现列不等式(组)中蕴藏的建模思想和解不等式(组)中蕴藏的化归思想。

3、教材特点(1)突出建摸思想,实际问题作为大背景贯穿全章在本章中,安排了一些有代表性的实际问题作为知识的发生、发展的背景材料,实际问题始终贯穿于全章,对不等式(组)等概念的引入和对它们的解法的讨论,都是在建立和运用不等式(组)这种数学模型的过程之中进行的.例:91节中,通过一个具体行程问题引入不等式及不等式的解,9.2 节从生活中常见的购物问题说起,由于市场上存在不同的促销方式,所以购物时可以货比三家,进行选择购物。

(2)注重知识的前后联系,强调通过比较来认识新事物本章位居一次方程(组)之后.方程(组)是讨论等量关系的数学工具,不等式(组)是讨论不等关系的数学工具。

两者既有联系又有差异。

在认识一次方程(组)的基础上,通过比较的方式学习新知识一元一次不等式(组),对于学生的学习起到了正向迁移的作用。

(3)淡化概念教学,删减运算的数量和难度:强化学生的主动探索,增加培养学生能力的练习教材在解不等式时,将其放在了实际问题中解决,删减了运算的数量和难度,强化了学生探索解决实际问题的主动性。

而每一节课后的习题都有与学生实际生活密切相关的习题,使学生能够更加生动形象的理解数学问题,同时也增强了学生解决问题的能力。

人教版七年级下册数学《一元一次不等式》不等式与不等式组教学说课复习课件指导

人教版七年级下册数学《一元一次不等式》不等式与不等式组教学说课复习课件指导

(一元一次不等式)

数学建模
不 等

实际问题的解答
检验
数学问题的解 (一元一次不等式的解集)
巩固练习
2.某次知识竞赛共有20道题,每一道题 答 对得10分,答错或不答都扣5分.小明得分 要超过90分,他至少要答对多少道题?
巩固练习
解:设至少要答对 x道题. 10x 5(20 x) 90, 10x 100 5x 90, 10x 5x 90 100, 15x 190, x 12 2 . 3
解一元一次方程的依据是等式的性质.
解一元一次方程的一般步骤是: 去分母,去括号,移项,合并同类项,系数化为1.
例 解下列不等式,并在数轴上表示解集:
(1) 2(1 x) 3
问题(1) 解一元一次不等式的目标是什么?
问题(2) 你能类比一元一次方程的步骤,解这个不等式吗?
例 解下列不等式,并在数轴上表示解集:
怎样将不等式 2 x 2x 1 变形,使变形后的不等
2
3
式不含分母?
例 解下列不等式,并在数轴上表示解集:
(2) 2 x 2x 1
2
3
解:去分母,得 3(2 x) 2(2x 1),
去括号,得 6 3x 4x 2,
移项,得 3x 4x 2 6, 合并同类项,得 x 8,
系数化为1,得 x 8.
步骤
依据
去分母 去括号 移项 合并同类项 系数化为1
不等式的性质2 去括号法则 不等式的性质1 合并同类项法则 不等式的性质2或3
问题8 解一元一次不等式和解一元一次方程 有哪些相同和不同之处?
相同之处: 基本步骤相同:去分母,去括号,移项,合并同类项, 系数化为1. 基本思想相同:都是运用化归思想,将一元一次方程或 一元一次不等式变形为最简形式.

最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编

最新届中考数学方程(组)与不等式(组)复习知识点总结及经典考题选编

中考数学方程(组)与不等式(组)复习知识点总结一、方程【知识梳理】1、知识结构方程分式方程的应用分式方程的解法分式方程的概念分式方程的关系根的判别式,根与系数一元二次方程的解法念一元二次方程的有关概一元二次方程二元一次方程组的应用二元一次方程组的解法二元一次方程组一元一次方程的应用一元一次方程的解法一元一次方程整式方程2、知识扫描(1)只含有一个未知数,并且未知数的次数是1的整式方程,叫做一元一次方程。

(2)含有2个未知数,并且所含未知数的项的次数都是1次,这样的方程叫二元一次方程.(3)含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.(4)二元一次方程组的解法有法和法.(5)只含有1 个未知数,并且未知数的最高次数是2且系数不为0的整式方程,叫做一元二次方程,其一般形式为)0(02a cbx ax。

(6)解一元二次方程的方法有:①直接开平方法;②配方法;③公式法;④因式分解法例:(1)042x(2)0342x x(3)4722x x (4)0232x x(7)一元二次方程的根的判别式:ac b42叫做一元二次方程的根的判别式。

对于一元二次方程)0(02a cbx ax当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;当△<0时,没有实数根;反之也成立。

(8)一元二次方程的根与系数的关系:如果)0(02acbx ax的两个根是21,x x 那么ab x x 21,ac x x 21(9)一元二次方程)0(02a cbx ax的求根公式:)04(2422ac baacb bx(10)分母中含有未知数的方程叫分式方程.(11)解分式方程的基本思想是将分式方程通过去分母转化为整式方程.◆解分式方程的步骤◆1、去分母,化分式方程为整式方程;◆2、解这个整式方程;◆3、验根。

注意:(1)解分式方程的基本思想是“转化”,即把分式方程化为我们熟悉的整式方程,转化的途径是“去分母”,即方程两边都乘以最简公分母.(2)因为解分式方程时可能产生增根,所以解分式方程必须检验,检验是解分式方程必要的步骤.二、不等式【知识梳理】1、知识结构解法性质概念不等式2、知识扫描(1) 只含有一个未知数,并且未知数的次数是1,系数不为 0 的不等式,叫做一元一次不等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、我们把使不等式成立的______________叫做不等式的解.使不等式成立的未知数的____________叫做不等式的解的集合,简称_________.求不等式的解集的过程叫做______________.
4、类似于一元一次方程,____________________________________叫做一元一次不等式.
得x>5
根据分析,你能完成方案(2)和(3)吗?
四、【课堂检测】(7分)
1、某校两名教师拟带若干名学生去旅游,联系了两家标价相同的旅游公司。经洽谈,甲公司的优惠条件是:一名教师全额收费,其余师生按7.5折收费;乙公司的优惠条件是:全体师生都按8折收费。当学生人数超过多少时,甲公司的价格比乙公司的价格优惠?
一、【自主预习】
解下列不等式:
(1) < (2) < +1
二、【小组合作交流展示】
1、有人问一位老师:“您所教的班级有多少名学生?”老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还剩不足6位学生在玩足球。”求这个班有多少位学生?
2、某工厂前年有员工280人,去年经过结构改革减员40人,全厂年利润增加100万元,人均创利至少增加6000元,前年全厂年利润至少是多少?
(3)如果 , ,那么 , .
<二>利用不等式的基本性质填空:
(1)如果 ,那么 ;
(2)如果 且 ,那么
(3)如果 且 ,那么 0.
三、【小组合作交流展示】(20分)
1、将下列不等式化为“ ”或“ ”的形式:
(1) (2) (3)
2、设 < ,用<或>填空:
3、若 ,则下列各式错误的是( )
A、 B、 C、 D、
15.2实际问题与一元一次不等式(三)
【学习目标】
1、根据实际问题中的数量关系建立数学模型;
2、会熟练列不等式解应用问题;
一、【自主预习】
1、一次智力测试有20道选择题。评分标准是:对1题得5分,错1题扣2分,不答题不得分也不扣分。小明有两道题未答,至少答对几道题,总分才不会低于60分?设小明至少答对的题数为x道,则列出的不等式为:。
【学习目标】
1、经历不等式三个基本性质的探索过程,能利用性质对不等式进行简单的变形。
2、透彻理解不等式的基本性质三,并利用它进行变形。
一、导入新课(3分)
二、【自主预习】(15分)(学法指导:参照教材结合导学案完成下列填空)
<一>不等式的基本性质:
(1)如果 ,那么 ,
(2)如果 , ,那么 , .
(1)什么情况下,到甲商场购买更优惠?
(2)什么情况下,到乙商场购买更优惠?
(1)什么情况下,两个商场收费相同?
先考虑方案(1):
解:设购买x台电脑,在甲商场的收费为:6000+6000(1-25%)(x-1)元
在乙商场的收费为:6000(1-20%)x元
则:6000+6000(1-25%)(x-1)<6000(1-20%)x
点拨:【求出一般解集,再在解集中找出正整数解】
2、 取何值时代数式 的值:
①大于 的值;②不大于 的值;
③是非负数;④不小于3.
教学反思:
1
5.2实际问题与一元一次不等式(一)
【学习不等式在实际生活中的应用。
一、【导入新课】(3分)
二、【自主预习】(15分)
4、据图所示,对 、 、 三种物体的重量判断不正确的是( )
A、 B、 C、 D、
四、【课堂检测】(7分)
1、如果 ,那么 、 、 的大小关系为( )
A、 B、 C、 D、
2、用“ ”或“ ”填空:
若 ,则 ;
若 且 ,则 .
3、填空:已知 <b<0 c<0,则
4、若 <1,则 。
5、根据不等式的基本性质,把下列不等式化成 > 或 < 的形式。
三、【小组合作交流展示】(时间:28分)
例1解不等式3x+26<8,并把它的解集在数轴上表示出来。(填空)
解:3x+26<8
3x<8-26()
3x<-18
x<-6()
解集在数轴上表示:
例2解不等式 ≤ -1完成以下填空
解:得:3(x-3)≤2(2x-1)-6()
得:3x-9≤4x-2-6()
得:3x-4x≤9-2-6()
⑶x的2倍与1的和大于—1⑷a的一半与4的差的绝对值不小于a.
(5)某商品原价为a元,降价x%后,价格仍不低于15元。
2、判断下列数中哪些是不等式2x+3>9的解?哪些不是?
-4,-2, 0,3,3.01, 4, 6, 100.
3、直接想出不等式的解集:
(1) x+5>6 (2) 2x<6
三、【课堂检测】
(1) > (2) <
课后反思:
15.1.2不等式的性质(二)
【学习目标】
1、会解一元一次不等式,掌握解一元一次不等式的一般步骤和方法。、
2、正确地将不等式的解集表示在数轴上。
一、导入新课(3分)
二、【自主预习】(15分)
学法指导:阅读教材并结合导学案完成下填空
1.、在数轴上表示不等式的解集:
不等式x+2>5的解集,可以表示成x>3.x>3表示x取哪些数?
2、小颖准备用21元钱买笔和笔记本。已知每支钢笔3元,每本笔记本2.2元,她买了2本笔记本后,还可以买几支钢笔?
二、【小组合作交流展示】
1、某市自来水公司按如下标准收费:用户每月用水在5m³之内,按每立方米1.5元收费;超出5m³部分,每立方米收费2元。小希家某月的水费超过了15元,那么他家的用水量至少是多少?
(3) ;(4) ;
三、【小组合作交流展示】(20分)
1、解下列不等式,并在数轴上表示解集:
(1)x+5>-1(2)3x<4x-5
(3)8x-2≤7x+3(4)– x<
2、用不等式表示下列数量关系,再用数轴表示出来:
(1)x小于-1;(2)x不小于-1;
(3)a是正数;(4)b是非负数.
四、【课堂检测】(7分)
在数轴上表示大于3的数的点应该数3所对应点的______(填写左边还是右边)?因此我们可以在数轴上把x>3直观地表示出来.画图时要注意方向(向___)和端点(不包括数3,在对应点画____圆圈).如图所示:
同样,如果某个不等式的解集为x≤-2,那么它表示x取那些数?此时在作x≤-2的数轴表示时,要包括-2的对应点,因而在该点处应画_____圆点.如图所示:
总结:小于向___画,大于向___画;无等号画____圆圈,有等号画_____圆点.
2、判断下列说法是否正确:
(1)x=-2是不等式x+1<2的解;(2)不等式x+1<2的解集是x=-1.
3、在数轴上表示下列不等式的解集:
(1)x<3;(2)x≥-4;
4、将数轴上x的范围用不等式表示:
(1) ;(2) ;
15.1.1不等式及其解集
【学习目标】
1、通过具体情景,感受现实世界和日常生活中存在着大量的不等关系。
2、了解不等式的意义,经历实际问题中数量关系的分析和抽象过程。
一、【自主预习】
1、用“>”或“<”填空.
7+3__4+3 7×24×2
2、以上式子是等式吗?它是用______或______号表示___关系的式子,这样的式子叫做____________.
三、【小组合作交流展示】(20分)
某学校计划购买若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠。甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%。如果你是校长,你如何选择?
分析:结合课本例题,可以归纳出以下三种采购方案:
1、在数轴上表示下列不等式的解集:
(1)x<2(2)x≥-3
2、不等式x<5有多少个解?有多少个正整数解?
3、某开山工程正在进行爆破作业。已知导火索燃烧的速度是每秒0.8厘米,人跑开的速度是每秒
4米。为了使放炮的工人在爆炸时能跑到100米以外的安全地带,导火索的长度应超过多少厘米?
15.1.2不等式的性质(一)
分析:求解应用题时,在很多情况下,我们可以将某些适当的量设为未知数.此题中我们如何来设元呢?若设需要x分钟才能将污水抽完.总的抽水量可表示为吨.
【学习目标】
1、理解一元一次不等式组和它的解集的概念;
2、掌握一元一次不等式组的解法,会用数轴确定一元一次不等式组的解集.
一、导入新课(4分)
二、【自主预习】(15分)
例题:用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水超过1200吨不足1500吨,那么大约需要多少时间能将污水抽完?
2、某单位组织员工去某地旅游,参加旅游的员工大概有10~25人左右。甲、乙两家旅行社服务质量相同,报价都是每人200元。经协商,甲旅行社表示,可以给予每位游客7.5折优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客按8折优惠。该单位选择哪一家旅行社,支付的费用较少?
15.3一元一次不等式组(一)
5、不等式用符号>,<,≥,≤.“≥”读作“大于等于”,表示大于或等于也就是不小于。
“≤”读作“小于等于”.表示小于或等于也就是不大于。例如:x≥y表示___________,也就是_________________.
二、【小组合作交流展示】
1、用不等式表示下列问题中的数量关系:
⑴a与1的和是正数;⑵x的2倍与y的3倍的差是非负数;
三、【课堂检测】
1、某种植物适宜生长在温度为18℃~22℃的山区,已知山区海拔每升高100m,气温下降0.6℃,现测出山脚下的平均气温为22℃,问该植物种在山上的哪一部分为宜(设山脚下的平均海拔高度为0m)
相关文档
最新文档