系统传递函数方框图及其简化
合集下载
第2章(4)传递函数方块图及其化简
G(s) 1 G(s)H (s)
G(s) 1 Gk (s)
B(s)
H(s)
前向通道传递函数、
反馈通道传递函数、
开环传递函数、
正反馈、负反馈;
2.方框图的变换与化简:(1)串、并联的化简; (2)分支点跨过环节的移动规则; (3)相加点的拆并及跨过环节的移动规则; (4)反馈与并联交错的化简
Xo(s)
G1(S)
G2(S)
Xi(s) G1(S) G2(S)
Xo(s)
G(s)
X X
o(s) i(s)
X o(s) X (s)
X (s) Xi(s)
G2
(
s)G1(
s
)
n
G(s) Gi (s) i 1
负载效应问题
i1 R1 i2 R2
G1(s)
1 R1C1s
1
G2 (s)
Xo(s)
C
略
H1
jik 04
16
X (s) 0 求 Xo(s) 。令
Xi2(s)
i1
Xi 1(s)
H3
+
-
-
G1 B +
G2
,
Xi
2(
Xi1(s)处的相加点取消,
H1 变成(-H1)。原图改画成:
s)
Xi 2(s) +
G3
Xo(s)
+
+
-A +
+
-
G3 Xo(s) A +
H2
C
H2
G2
+
-
B G1
复习:
1.微分方程的拉氏算子解法; 2.系统的响应就是微分方程的解 总响应x(t) =零输入响应xZ(t)+零状态响应xs(t)
2.第二章方框图及简化(new)
多个输入同时作用于线性系统时,分别考虑 每个输入的影响
• 如考虑扰动的反馈控制系统:
• 只考虑给定输入时:
• 只考虑干扰输入时:
• 如考虑扰动的反馈控制系统:
• 只考虑给定输入时:
• 只考虑干扰输入时:
• 系统总的输出量
扰动的影响将被抑制!!!
若 G1 ( s )G2 ( s ) H ( s ) >> 1 且 G1 ( s) H ( s ) >> 1 ,则:
X o ( s) ≈ 1 X i ( s) H ( s)
• 上式表明,采用反馈控制的系统,适当选 上式表明,采用反馈控制的系统, 择元部件的结构参数, 择元部件的结构参数,可以增强系统抑制 干扰的能力。 干扰的能力。
• 结论 • 闭环系统具有抑制干扰的能力; • 闭环系统输入、输出的取法不同时,其传 递函数不同,但传递函数的分母不变,而 开环系统则不然。
反馈连接及其等效原则前向通道传递函数反馈回路传递函开环传递函数闭环传递函数前向通道反馈通道开环传递函数都只只是闭环系统部分环节或环节组合的传递函数而闭环传递函数才是系统的传递函数
第二章 系统的数学模型
2.3 系统的传递函数方框图及其简化
• 将组成系统的各个环节用传递函数方框表示,并将相应的变 量按信息流向连接起来,就构成系统的传递函数方框图
• 例2-10
• 一定要注意梅逊公式的两个条件; • 若系统不满足两个条件,可先将其方框图 化成满足使用条件的形式,然后再利用梅 逊公式。
多个输入同时作用于线性系统时,分别考虑 每个输入的影响
• 如考虑扰动的反馈控制系统:
• 只考虑给定输入时:ຫໍສະໝຸດ • 只考虑干扰输入时:• 如考虑扰动的反馈控制系统:
2.3 传递函数的方块图表示及运算
2.3.2 闭环控制系统的方块图
(4)误差传递函数 假设N(s)=0 误差信号E(s)与输入信号Xi(s)之比 。
X 0 (s) E(s)G(s) 代入上式,消去G(s)即得:
E ( s) 1 1 X i ( s) 1 H ( s)G( s) 1 开环传递函数
2.3.2 闭环控制系统的方块图
G2 ( s) G( s) X 0 ( s) X i ( s) N ( s) 1 G( s) H ( s) 1 G( s) H ( s)
G2 ( s) H ( s) 1 E (s) X i (s) N (s) 1 G( s) H (s) 1 G(s) H (s)
注意:由于N(s)极性的随机性,因而在路传递函数 假设N(s)=0
主反馈信号B(s) 与输出信号X0(s) 之比。 B( s) H ( s ) 当H(s)=1时,系统叫单位反馈系统。 X 0 (s)
(3)闭环系统的开环传递函数 假设N(s)=0 假设反馈通路断开,反馈信号B(s)与误差信号E(s) 之比。 B( s ) G1 ( s)G2 ( s) H ( s) G ( s) H ( s) E ( s)
反馈公式 G1G5 G1G6 1 G5 H 2 G1G5 G7 1 GHG 1 G5 H 2 G1 H 1G2 1 G1G6 H 1G2 1 1 1 2 G5 1 G5 H 2
R
i
(1) (2)
ui
i
C (a)
uo
(b)
U o ( s)
U i (s) - U o ( s)
I(s)
U o ( s)
I(s) (c)
U o ( s)
(d)
例:画出下列R-C网络的方块图
第二章-系统的传递函数方框图及其简化.
系统闭环传递函数
GB (s)
X o (s) Xi (s)
由图可知
X i (s) E(s) G(s)
B(s)
H (s)
X o (s)
E(s) Xi (s) B(s) Xi (s) Xo(s)H (s) Xo(s) G(s)E(s) G(s)[Xi (s) Xo(s)H (s)]
G(s)Xi (s) G(s)Xo(s)H (s) 由此可得:
GK (s) G(s)H (s) E(s)
无量纲.
系统闭环传递函数
GB (s)
X o (s) Xi (s)
注意:我们所指的前向通道的传递函数、反馈回路的
传递函数和开环传递函数都是针对一个闭环系统而
言的。它们都是闭环系统的一部分。系统闭环传递
函数是闭环系统的传递函数。看一个传递函数是什
么具体类型,要从定义出发,而不能只看其符号。
8.分支点和相加点之间等效规则
X1(s)
X1(s) X2(s)
X 2 (s)
X1(s) X2(s)
X1(s)
X 2 (s)
X1(s) X2(s)
X1(s) X2(s)
X 2 (s)
一般应避免分支点和相加点之间的相互移动
三、方框图简化的一般方法 (法1)
1.确定系统的输入量和输出量.若作用在系统上的输 入量或输出量有多个,则必须分别对每一输入量,逐个 进行方框图的简化,以求得各自的传递函数. 2.若方框图中有交叉连接,则利用分支点或相加点的 移动规则,将交叉消除,简化成无交叉的多回路方框图 的形式.(大回路套小回路) 3.对多回路方框图,按照先里后外的顺序依次对各个 回路进行简化. 4.写出系统的传递函数.
Ua (s) 0
2.3系统的方框图及其简化
例:求系统传递函数。
Xi(s) + E(+s)
分
+
支
B(s)
点
前
移 Xi(s) + E(+s)
+
B(s)
G1 +
H2
G2
G3
H1
H2G3
G1 +
G2
G3
H1
Xo(s) Xo(s)
Xi(s) + E(+s)
+
B(s)
G1 +
H2G3 G2
H1
Xo(s) G3
Xi(s) + E(+s) G1
+
B(s)
纲也要相同。 相加点可以有多个输入,
但输出是唯一的。
C
A + A-B+C +
B
(3) 分支点
分支点表示同一信号向不同方向的传递。只传递信号, 不传递能量。
在分支点引出的信号不仅量纲相同,而且数值也相 等。
X(s) X(s) X(s)
2、系统方框图的建立步骤
(1) 建立系统(或元件)的
;
(2) 对这些原始微分方程进行
函数无量纲,而且H(s)的量纲是G(s)的量纲的倒数。
小小总结:
前述三种基本连接形式:串联、并联、反馈
G(s)
①两个环 Xi(s)
节相串联
G1(Gs) 1 ( sX)1G(s)2 (Gs)2(s)
Xo(s)
②两个环节 G(s)
相并联
G1(s) Xo1(s)
Xi(s)
G1(s)
G2
+
(s) +_
G2 (s) Xo2(s)
《计算机控制系统教学课件》5.传递函数及方框图
T2s 116(来自)振荡环节振荡环节的传递函数为:
G(s)
s2
wn2 2wns
wn2
式中wn———无阻尼自然振荡频率,wn=1/T; z ——阻尼比,0<z<1。
下图所示为单位阶跃函数作用下的响应曲线。
RLC串联电路、弹簧质量 阻尼器串联系统都是二阶 系统。只要满足0<z<1, 则它们都是振荡环节。
G(s) C(s) G1(s) R(s) 1 G1(s) G2 (s)
G1(s) G2(s)
G1(s) G2(s)
C (s) C (s)
26
4、分支点移位:
(1)前移
R (s) C (s)
G1(s)
(2)后移
C (s)
R (s)
C (s) G1(s)
C (s) G1(s)
R (s)
G1(s)
C (s) R (s)
6
a0c(n) a1c(n1) anc b0r(m) b1r(m1) bmr
在零初始条件下:
c(0) c(0) c(n1) (0) 0
n个
r(0) r(0) r(m1) (0) 0
m个
拉氏变换:
单输入单输出 线性定常系统
r(t) 输入量 c(t) 输出量
[a0sn a1sn1 an1s an ]C(s) [b0sm b1sm1 bm1s bm]R(s)
17
(六)延滞环节
延滞环节是线性环节, 称为延滞时间(又称死时)。
具有延滞环节的系统叫做延滞系统。
如下图所示,当输入为阶跃信号,输出要隔一定时间 后才出现阶跃信号,在0<1< 内,输出为零。
延滞环节的传递函数为: G(s) es 系统具有延滞环节对系统的稳定性不利,延滞越大,影响越大。
机械控制工程基础2.3系统的传递函数方框图及其简化
分支点引出的信号不仅量纲相同,而且数值也相等。
X(s) X(s) X(s)
2011年9月
第 5 页/53
机电汽车工程学院
Block diagram establishing
2、系统方框图的建立
建立系统方框图的步骤如下:
(1) 建立系统(或元件)的原始微分方程; (2) 对这些原始微分方程进行Laplace变换,并根据各变换 式中的因果关系,绘出相应的方框图; (3) 按照信号在系统中传递、变换的过程,依次将各传递函 数方框图连接起来(同一变量的信号通路连接在一起),系 统输入量置于左端。输出量置于右端,便得到系统的传递 函数方框图。
X(s)
+
Kq
_
Q(s)
P(s) A Y(s)
1/Kc
ms2 cs
(c)
As
2011年9月
第 12 页/53
机电汽车工程学院
例2:如图2.1.2所示电枢控制式直流时机,由第2.1节例2的
推导可知其运动微分方程可列写如下:
练习题: Ldia dt
ia R ed
ua
ed kd
输入:Ua(s), ML(s)
Q(s)
(c)
P(s)
1/Kc
P(s) A Y(s) ms2 cs
(a)
Q(s) As Y(s)
输入:X(s) 输出:Y(2s0) 11年9月 中间变量:P(s) Q(s)
(b)
第 11 页/53
机电汽车工程学院
最后,将上述各传递函数方框图按信号的传递关系连接起 来,便得到下图所示的系统的传递函数的方框图。
Ur(s) +
I(s)
Uc(s)
1/R
X(s) X(s) X(s)
2011年9月
第 5 页/53
机电汽车工程学院
Block diagram establishing
2、系统方框图的建立
建立系统方框图的步骤如下:
(1) 建立系统(或元件)的原始微分方程; (2) 对这些原始微分方程进行Laplace变换,并根据各变换 式中的因果关系,绘出相应的方框图; (3) 按照信号在系统中传递、变换的过程,依次将各传递函 数方框图连接起来(同一变量的信号通路连接在一起),系 统输入量置于左端。输出量置于右端,便得到系统的传递 函数方框图。
X(s)
+
Kq
_
Q(s)
P(s) A Y(s)
1/Kc
ms2 cs
(c)
As
2011年9月
第 12 页/53
机电汽车工程学院
例2:如图2.1.2所示电枢控制式直流时机,由第2.1节例2的
推导可知其运动微分方程可列写如下:
练习题: Ldia dt
ia R ed
ua
ed kd
输入:Ua(s), ML(s)
Q(s)
(c)
P(s)
1/Kc
P(s) A Y(s) ms2 cs
(a)
Q(s) As Y(s)
输入:X(s) 输出:Y(2s0) 11年9月 中间变量:P(s) Q(s)
(b)
第 11 页/53
机电汽车工程学院
最后,将上述各传递函数方框图按信号的传递关系连接起 来,便得到下图所示的系统的传递函数的方框图。
Ur(s) +
I(s)
Uc(s)
1/R
233控制系统方框图的化简及传递函数
U 2 ( s)
22
两个相加点互相交换移动
U1 ( s )
A
-
-
1 R1
1 sC1
1 R2C2 s 1
R1C2 s
U 2 ( s)
U1 ( s )
A
-
-
1 R1
1 sC1
1 R2C2 s 1
R1C2 s
U 2 ( s)
23
小回路化简
U1 ( s ) A
-
-
1 R1
1 sC1
1 R2C2 s 1
12
结论
下列闭环传递函数
(s)
F ( s)
(s)
F ( s )
具有相同的特征多项式
13
闭环特征多项式:
1 G1 (s)G2 (s) H (s)
14
G1 (s)G2 (s) (s) 1 G1 (s)G2 (s) H (s)
输出对输入 对 比
G2 (s) F ( s) 1 G1 (s)G2 (s) H (s)
R( s )
+
E ( s )
G1 ( s )
G2 (s)
Y ( s)
35
G3 ( s) G1 ( s)
R( s )
+
E ( s )
G1 ( s )
G2 (s)
Y ( s)
小回路化简
R( s )
G1 ( s) G3 ( s) G1 ( s)
G1 ( s)G2 ( s) 1 G1 ( s)G2 ( s)
1 G2 ( s)G3 ( s) 1 G1 ( s)G2 ( s)
E (s)
E ( s) 1 G2 (s)G3 (s) R(s) 1 G1 (s)G2 (s)
控制工程-系统传递函数方块图及其简化
南华大学
§2推-导4:系统传递函数方块图及其简化
X 0 ( s ) = G ( s ) E ( s ) = G ( s)[ X i ( s) - X B ( s)] = G ( s )[ X i ( s ) - X 0 ( s ) H ( s )] = X i (s)G (s) - X 0 (s) G (s) H (s)
GK (s) =
X B(s) E (s)
=
X B(s) X 0(s)
X 0(s) = G(s) H (s) E(s)
可理解为: 相加点断开后,以E(s)为输入, XB (s) 为输出的传递函数。
5、闭环传递函数 GB(s) :
GB (s) =
X 0 (s) X i (s)
=
G (s)
1 + G(s)H (s)
对于单位反馈:H(s)=1
Xi(s)
+ -
G(s) 1
X0(s)
G (s) G B(s) = 1 + G (s)
§ 系统传递函数方块图及其简化
南华大学
四、具有干扰信号的系统传递函数
扰动
各种电器设备对电视机的干扰
§2-4 系统传递函数方块图及其简化
南华大学
扰动(干扰信号):
在控制系统中,除控制信号(输入给定值)外,其它对 输出能产生影响的信号。
有的干扰因素是由于环境造成的,如影响自行车行驶速度的 变化的自然风等;
有的干扰因素是人为原因所致,如影响飞机导航信号的手机 信号等。
§2-4 系统传递函数方块图及其简化
南华大学
考虑扰动的反馈控制系统的典型方框图如下:
Xi(s) +
-
G1(s)
N (s)
机械工程控制基础-第二章-传递函数
华中科技大学材料学院
典型环节
比例环节 惯性环节 微分环节 积分环节 振荡环节 延时节例
华中科技大学材料学院
比例环节
1、传递函数函:G(s) K (放大环节)
2、特性:输入输出成正比,无惯性,不失真, 无延迟 X(s) Y(s) K 3、参数:K 4、单位阶跃响应:输出按比值复现输入, 无过渡过程。
华中科技大学材料学院
4)方框图不唯一。由于研究角度不一样,传递函数 列写出来就不一样,方框图也就不一样。 5) 研究方便。对于一个复杂的系统可以画出它的方 框图,通过方框图简化,不难求得系统的输入、输出 关系,在此基础上,无论是研究整个系统的性能,还 是评价每一个环节的作用都是很方便的。
华中科技大学材料学院
n 2
2
p1 p2 n , p1 p2 2n 2 1
n e p t e p t y (t ) 1 ( ) 2 p1 p2 2 1
1 2
华中科技大学材料学院
p1 p2 ,当 1时, p1 p2
则
n e p t y (t ) 1 2 2 1 p2
华中科技大学材料学院
延迟环节
1. 传函
W ( s) e
s
x
y
1
t
1
(t ) 2.单位阶跃响应 y(t ) L1[es 1 s ] 1 3.参数 延迟时间 4.特性:能充分复现输入,只是相差 ,该环节
t
是线性的,他对系统稳定性不利。然而过程控制中,
系统多数都存在延迟环节,常用带延迟环节的一阶
x(t )
1
y(t )
K
t
t
比例环节实例
1)分压器
《控制工程》传递函数
1.系统由单变量非线性函数所描述
df 1 d2 f Dx + Dx 2 f ( x) f ( x0 ) + dx x 2! dx 2 0 x0 1 d3 f + 3! dx 3 D x 3 + LL f ( x0 ) +
y= f (x) y(t):输出 x(t):输入 df Dx dx x 0 df Dx dx x 0
1相加点c前移再相加点交换第二章传递函数2内环简化3内环简化1g1g2h1图2321g1g2h1g2g3h2图2334总传递函数1g1g2h1g2g3h2g1g2g3图2341分支点e前移h2g3h1图230第二章传递函数2内环简化3内环简化g2图236第二章传递函数4总传递函数图238含有多个局部反馈的闭环系统中当满足下面条件时1只有一条前向通道2各局部反馈回路间存在公共的传递函数方块递函数之和每一反馈回路的开环传结论
i
式中:a n…a 0, b m…b 0 均为常系数
x 0 (t)为系统输出量,x i(t)为系统输入量
第二章 传递函数 若输入、输出的初始条件为零,即 (K ) x 0 (0 ) 0 K = 0, 1 ,…, n-1
x i(
K)
(0 ) 0
K = 0, 1 ,…, m-1
a n x(0n)( t ) + a n 1 x(0n 1)( t ) + L + a0 x0( t ) 对微分方程两边取拉氏变换得: bm x(i m)( t ) + bm 1 x( m 1)( t ) + L + b0 xi( t )
( ( an X 0n) (t ) + an1 X 0n 1) (t ) + … + a0 X 0 (t )
第三章(第四节) 系统框图及简化
X o (s)
X i (s)
G1 ( s) G2 ( s )
X o (s)G2(s) 来自)X 2 (s)b)
X 0 ( s ) X 1 ( s ) X 2 ( s ) G1 ( s ) X i ( s ) G 2 ( s ) X i ( s ) (G1 ( s ) G2 ( s )) X i ( s ) X 0 (s) G1 ( s ) G2 ( s ) X i (s)
X i (s)
G (s) 1 G (s) H (s)
X o (s)
H(s) a)
b)
闭环传递函数 X 0 ( s ) = G ( s) E ( s)
E ( s ) = X i ( s) B ( s)
消去E (s) (s)得 ﹑B X 0 (s )= G (s ) 轾i (s ) ± H (s ) X 0 (s ) X 臌 轾 G (s ) H (s ) X 0 (s )=G (s ) X i (s ) 1 臌
Y ( s) YN ( s) YX ( s)
G2 (s) G1 (s) X (s) N ( s) 1 G1 (s)G2 (s) H (s)
若设计控制系统时,使
G1 ( s) H ( s) 1,且 G1 ( s)G2 ( s) H ( s) 1
1 则:Y ( s) G1 (s) X (s) N (s) G1 ( s) H ( s)
为便于绘制框图,将上式表示为 1轾 I(s) = 犏 i ( s)- U 0 ( s) U R臌 1 U0 (s ) = I ( s) Cs
U i (s)
1轾 I(s) = 犏 i (s)- U 0 (s) U 臌 R
1 U 0 (s ) = I (s ) Cs
系统方框图及系统传递函数分解课件
系统方框图的合理设计可以优化系统性能,提高系统的稳定性、快速性和准确性。
系统传递函数对方框图的影响
系统传递函数决定了系统的动态特性,通过调整传递 函数可以改变系统的性能。
传递函数的数学表达式可以转化为方框图,通过对方 框图的调整可以实现传递函数的优化,进而改善系统 性能。
04
系统方框图的分解
方框图分解的方法与步骤
简化系统分析
对于复杂系统,方框图能够简化 分析过程,方便进行系统性能分 析和优化。
指导控制器设计
根据系统方框图,可以设计合适 的控制器,实现系统对特定性能 指标的优化。
传递函数在控制系统分析中的应用
数学建模基础
传递函数是控制系统数学建模的基本工具,用于描述系统的动态 行为。
稳定性分析
通过分析传递函数的极点和零点,可以判断系统的稳定性。
03
系统方框图与系统传递 函数的关系
方框图与传递函数的关系
方框图是系统传递函数的图形表示, 通过方框图可以直观地了解系统内部 各环节的信号传递关系。
传递函数是描述系统动态特性的数学 模型,通过传递函数可以计算系统的 频率响应、稳定性等性能指标。
系统方框图对系统性能的影响
系统方框图反映了系统的结构组成和信号传递关系,通过分析方框图可以了解系统性能的优劣。
控制系统分析
通过传递函数分解,分析控制系统的稳定 性、动态性能和稳态性能,为控制系统的
优化提供依据。
控制系统校正
通过传递函数分解,对控制系统的开环传 递函数进行修改,以改善控制系统的性能 指标。
06
系统方框图与系统传递函 数在控制系统中的应用
方框图在控制系统设计中的应用
描述系统动态特性
通过方框图可以直观地表示系统 的动态过程,明确各环节的输入 和输出关系。
系统传递函数对方框图的影响
系统传递函数决定了系统的动态特性,通过调整传递 函数可以改变系统的性能。
传递函数的数学表达式可以转化为方框图,通过对方 框图的调整可以实现传递函数的优化,进而改善系统 性能。
04
系统方框图的分解
方框图分解的方法与步骤
简化系统分析
对于复杂系统,方框图能够简化 分析过程,方便进行系统性能分 析和优化。
指导控制器设计
根据系统方框图,可以设计合适 的控制器,实现系统对特定性能 指标的优化。
传递函数在控制系统分析中的应用
数学建模基础
传递函数是控制系统数学建模的基本工具,用于描述系统的动态 行为。
稳定性分析
通过分析传递函数的极点和零点,可以判断系统的稳定性。
03
系统方框图与系统传递 函数的关系
方框图与传递函数的关系
方框图是系统传递函数的图形表示, 通过方框图可以直观地了解系统内部 各环节的信号传递关系。
传递函数是描述系统动态特性的数学 模型,通过传递函数可以计算系统的 频率响应、稳定性等性能指标。
系统方框图对系统性能的影响
系统方框图反映了系统的结构组成和信号传递关系,通过分析方框图可以了解系统性能的优劣。
控制系统分析
通过传递函数分解,分析控制系统的稳定 性、动态性能和稳态性能,为控制系统的
优化提供依据。
控制系统校正
通过传递函数分解,对控制系统的开环传 递函数进行修改,以改善控制系统的性能 指标。
06
系统方框图与系统传递函 数在控制系统中的应用
方框图在控制系统设计中的应用
描述系统动态特性
通过方框图可以直观地表示系统 的动态过程,明确各环节的输入 和输出关系。
系统传递函数方框图及其简化
G( s) Gຫໍສະໝຸດ ( s)i 12.并联传函等于各相并传函之和
G( s) X o ( s) X 1 ( s) X 2( s) X i ( s) X i ( s) X 1 ( s) X 2 ( s) G1 ( s) G2 ( s) X i ( s) X i ( s)
4
传递函数的等效 变化
1.串联传递函数等于各相串传函之积。
Xi(s) X(s)
G1(S)
G2(S)
X o(s)
X i(s)
G1(S) G2(S)
n
X o(s)
X ( s ) X o ( s ) X ( s ) G (s)G (s) G (s) o 2 1 X i (s) X (s) X i (s)
开环传递函数
Xo( s) B(s) Xi (s) E ( s ) B( s ) H ( s) Gk ( s) G( s) H ( s) G( s) E ( s)
开环传函GK(s)等于前向通道与反馈回路传函的积。 注意:开环传函无量纲.
6
-
E(s)
G(s)
H(s)
Xo(s)
Xo(s) G(s) (s) 1+G(s)H
三
系统传递函数方框图及其简化
传递函数方框图 方框图: 将一个系统中按 一定关系组成的若干环节以方框表示, 其间用相应的变量及信号流向联系起来,就构成了系 统方框图。 方框图的结构要素 函数方框
Xo(s) G(s) Xi(s)
Xi (s) G(s) X o( s)
系统传递函数框图
1
X3
相加点
n
Xi ( s)
G1( s) G2 ( s)
3控制系统方框图的化简及传递函数
U1 ( s )
-
1 R1
A
A
1 sC1
-
1 R2
B
1 sC2
U 2 ( s)
U1 ( s )
-
1 R1
-
1 sC1
sC2
1 R2
1 sC2
B
U 2 ( s)
19
第二个小回路化简
U1 ( s )
-
1 R1
A
-
1 sC1
sC2
1 R2
1 sC2
B
U 2 ( s)
1 R2C2 s 1 1 R2C2 s
12
结论
下( s )
具有相同的特征多项式
13
闭环特征多项式:
1 G1 (s)G2 (s) H (s)
14
G1 (s)G2 (s) (s) 1 G1 (s)G2 (s) H (s)
输出对输入 对 比
G2 (s) F ( s) 1 G1 (s)G2 (s) H (s)
3
Y (s) (s) R( s)
G1 (s)G2 (s) 1 G1 (s)G2 (s) H (s)
当 H ( s) 1 时 , 单位负反馈
G1 (s)G2 (s) ( s ) 1 G1 (s)G2 (s)
4
(3) 输出对于扰动输入的闭环传递函数
Y (s) 令 R( s ) 0 , F (s) F (s)
+
G1 ( s )
Y ( s)
B( s )
F (s)
H (s)
+
G2 (s)
H (s)
1
( s)
G1 ( s )
10
F (s)
-
1 R1
A
A
1 sC1
-
1 R2
B
1 sC2
U 2 ( s)
U1 ( s )
-
1 R1
-
1 sC1
sC2
1 R2
1 sC2
B
U 2 ( s)
19
第二个小回路化简
U1 ( s )
-
1 R1
A
-
1 sC1
sC2
1 R2
1 sC2
B
U 2 ( s)
1 R2C2 s 1 1 R2C2 s
12
结论
下( s )
具有相同的特征多项式
13
闭环特征多项式:
1 G1 (s)G2 (s) H (s)
14
G1 (s)G2 (s) (s) 1 G1 (s)G2 (s) H (s)
输出对输入 对 比
G2 (s) F ( s) 1 G1 (s)G2 (s) H (s)
3
Y (s) (s) R( s)
G1 (s)G2 (s) 1 G1 (s)G2 (s) H (s)
当 H ( s) 1 时 , 单位负反馈
G1 (s)G2 (s) ( s ) 1 G1 (s)G2 (s)
4
(3) 输出对于扰动输入的闭环传递函数
Y (s) 令 R( s ) 0 , F (s) F (s)
+
G1 ( s )
Y ( s)
B( s )
F (s)
H (s)
+
G2 (s)
H (s)
1
( s)
G1 ( s )
10
F (s)
自动控制原理第四次课—传递函数及结构图简化
系统结构图的应用范围
控制系统性能分析
03
稳定性分析
定义
稳定性是指系统受到扰动后,能否回到平衡状态的性能。
稳定性判据
根据劳斯判据或赫尔维茨判据,分析系统的稳定性。
稳定性的实际意义
对于工程应用,稳定性是控制系统能够正常运行的重要条件。
01
02
03
动态性能分析
性能指标
通常用阶跃响应的超调量、调节时间、振荡次数等指标来衡量。
通过MATLAB仿真,可以模拟控制系统的行为,得到系统的响应、频率响应等特性,并进行系统性能评估。
在控制系统设计过程中,MATLAB仿真可以用于优化控制算法、控制器设计等,提高控制系统的性能和鲁棒性。
模拟控制系统行为
优化控制系统设计
控制器设计
MATLAB提供了多种控制器设计方法,如PID控制器、根轨迹法、频率响应法等,可根据不同的控制要求选择适当的控制器设计方法。
为了分析方便,可以增加一些必要的环节,如信号分离点、信号组合点、延时环节等。
系统结构图主要用于表示系统的组成和相互关系,可用于分析和设计各种控制系统。
系统结构图可以清晰地表示出各元件之间的信号传递关系,有助于分析系统的性能和设计系统的控制器。
系统结构图还可用于比较不同系统方案的优劣,以及为控制系统CAD提供基础资料。
校正装置的分类与特点
并联校正装置
02
并联校正装置将校正元件并联在系统中,通过并联补偿装置来改善系统性能。其优点是可以实现对系统的高精度控制,但需要选择合适的补偿装置和控制参数。
复合校正装置
03
复合校正装置结合了串联和并联校正装置的特点,通过串联和并联补偿装置来改善系统性能。其优点是可以实现对系统的更全面的控制和调节,但需要设计合理的复合控制系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X1
X1 X2 X3
▪分支点
X2
同一信号向不同方向传递
➢系统方框图的建立步骤
▪ 建立系统各元部件的微分方程,明确信号的因果关系(输 入/输出)。
▪ 对上述微分方程进行拉氏变换,绘制各部件的方框图。
▪ 按照信号在系统中的传递、变换过程,依次将各部件的 方框图连接起来,得到系统的方框图。
.
2
示例
✓ 无源RC网络
G3(s)
A Xo(s)
G3(s) Xo(s)
H3(s)
.
10
2、消去H2(s)G3(s)反馈回路
Xi(s) G1(s)
+
G2(s) 1G2(s)G3(s)H2(s)
H1(s)
G3(s) Xo(s)
H3(s)
3、消去H1(s) 反馈回路
Xi(s)
G 1(s)G 2(s)G 3(s)
Xo(s)
G2(S)
i(X s)G 1(SG 2()S)o(s)
X
G(s) Xo(s) Xo(s) X(s)G 2(s)G 1(s) Xi (s) X(s) Xi (s)
n
G(s) Gi (s) i1
2.并联传函等于各相并传函之和
G(s) Xo(s) X1(s)X2(s)
Xi (s)
Xi (s)
X1(s) Xi (s)
一个重要公式∶闭环系统的传递函数
Xi(s) + E(s)
-
B(s)
G(s) H(s)
Xo(s)
G (s)
G (s)
G B (s)1 G (s)H (s)1 G k(s)
X o ( s ) G ( s ) E ( s )
G ( s )X i [ ( s ) H ( s ) X o ( s )] G ( s ) X i ( s ) G ( s ) H ( s ) X o ( s )
1G 1(s)G 2(s)H 1(s)G 2(s)G 3(s)H 2(s)
H3(s)
.
11
4、消去H3(s) 反馈回路
Xi(s)
G 1 ( s ) G 2 ( s ) G 3 ( s )
Xo(s)
1 G 1 ( s ) G 2 ( s ) H 1 ( s ) G 2 ( s ) G 3 ( s ) H 2 ( s ) G 1 ( s ) G 2 ( s ) G 3 ( s ) H 3 ( s )
X2
G(s)
X3(X1)
X1 G(s) X2
X3(X2) G(s)
X1 G(s) X2
1 X3(X1) G(s)
5.相加点移过环节
后移X1
X3
+ + G(s)
(-)
X2
X1
G(s) X2
G (s)
X3 ++
(-)
注意:分支
前 移 X1
X3
G(s) + +
X2 (-)
X1
+
+ (-)
G(s) X3
1 X2
例:系统传递函数方框图简化
.
12
.
13
例:系统传递函数方框图简化
.
14
.
15
第k条前向通路特征式的余因子,即对于流图的特征式., 将与第k 条前向通路相接触的回路传递函数代以零值,余 下的.即为 。
.
16
控制系统的传递函数 ➢ 考虑扰动的闭环控制系统
Xi(s) (s)
B(s)
G1(s)
X o (s ) [G ( 1 s )H (s ) ] H (s )X i(s )
G B (s )X X o i( (s ) s ) 1 G G (s (s )) H (s ) 1 G G (s k) (s )
.
7
讨论:
单位反馈:H(s)=1
Xi(s) +-
G(s) Xo(s)
GB(s)1GG (s()s)G(s)
Xi(s) G(s) Xo(s) 1+G(s)H(s)
开环传递函数
Gk
(s)
B(s) E(s)
G(s)H(s)
X i(s) E(s)
X o(s) B (s)
G (s)
H (s)
开环传函GK(s)等于前向通道与反馈回路传函的积。
注意:开环传函无量纲.
.
6
(4)闭环传函GB(s)∶
GB(s)
Xo(s) Xi (s)
Xo1 (s) G1(s)G2(s) Xi(s) 1G1(s)G2(s)H(s)
令Xi(s)=0,由N(s)引起的输出Xo2(s)∶
H(s)
反馈控制系统的典型框图
X o(s 2 )
G 2 (s )
G 2 (s )
N (s ) 1 G 1 (s )H ((s - )G ) 2 (s ) 1 G 1 (s )H (s )G 2 (s )
前移:从G(s)的输出端移到输入G 端(s) ;
点和相加点 之间不能相 互移动。
后移:从G(s)的输入端移到输. 出端。
9
例:求下图所示系统的传递函数。
Xi(s)
B
G1(s)
+
H2(s)
G2(s)
H1(s)
H3(s)
解:1、A点前移;
H2(s)G3(s)
Xi(s) G1(s)
+
G2(s)
H1(s)
若 G 1(s)G 2(s)H (s)1
X o ( s 2 ) G 2 ( s ) G G 2 1 ( ( s s ) ) H ( s ) N ( s ) G 1 ( s 1 ) H ( s ) N ( s ) N ( s )
.
18
8、相似原理
相似系统:能用相同形式的数学模型表示的系统,称 为相似系统。
负反馈:反馈信号减弱输入信号,使误差信号小;正
反馈:反馈信号加强输入信号,使误差信号大。当
H(s)>0,反馈处置负号为负反馈
闭环传函GB(s)的量纲由Xo(s)与Xi(s)的量纲决定,也由前 向通道传函G(s)的量纲决定。
.
8
4.分支点移过环节
分支点
前移 X1 G(s)
X2
X3( X2)
后移 X1
N(s) +
+
G2(s)
H(s)
Xo(s)
Xi(s)到Xo(s)的信号传递通路称为前向通道; Xo(s)到B(s)的信号传递通路称为反馈通道;
.
17
反馈系统的传递函数
N(s)
处理方法:Xi(s)和N(s)各自独立地产生输出。
Xi(s) + -
G1(s)
++
G2(s) Xo(s)
令N(s)=0,由Xi(s)引起的输出Xo1(s):
1 R
I(s)
Uo(s)
(a) I(s)R 1Ui(s)Uo(s)
Ui(s)
U(s) 1 R
I(s)
I(ห้องสมุดไป่ตู้) 1 Cs
Uo(s)
1
(b)
Uo(s)
I(s) Cs
1
Uo(s)
Cs
无源RC电路网络.系统方框图
4
❖ 传递函数的等效 变化
1.串联传递函数等于各相串传函之积。
Xi(s)
G1(S)
X(s) o(sX )
X2(s) Xi (s)
G1(s)G2(s)
Xi(s)
G1(s) X1(s)
+
+
G2(s) X2(s)
Xo(s)
n
G(s) Gi (s) i1
.
5
反馈传递函数的框图
前向通道传递函数 G(s) Xo(s)
E(s)
Xi(s) E(s) G(s)
-
B(s)
H(s)
Xo(s)
反馈回路传递函数
H(s) B(s) Xo (s)
R
R (t)i u i(t) u o(t)
uo(t)C1i(t)dt
拉氏变换得:
RI(s) Ui(s)Uo(s)
Uo(s)
1 I(s) Cs
ui(t)
C
uo(t)
i(t)
无源RC电路网络
I (s)
1 R
Ui (s)
Uo (s)
Uo
(s)
1 Cs
I
(s)
.
3
从而可得系统各方框单元及其方框图。
Ui(s) Ui-Uo
三 系统传递函数方框图及其简化
❖传递函数方框图
➢方框图:
将一个系统中按 一定关系组成的若干环节以方框表示, 其间用相应的变量及信号流向联系起来,就构成了系 统方框图。
➢方框图的结构要素
▪函数方框 X(so )G (s)X(si)
X i(s) G (s) X o (s)
系统传递函数框图
.
1
▪相加点
X3
相似量:在相似系统的数学模型中,占据相同位置的 物理量。
输入为f(t),输出为x(t) 输入为u(t),输出为电容器的电量q
.
19
•• •
mxcxkxf
相似量:
•• • 1 LqRq qu
c
.
20