信号与系统课后习题答案第5章
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代入初始条件yzi(0)=1,确定c=1,故有零输入响应:
yzi(k)=(-2)kε(k)
39
第5章 离散信号与系统的时域分析 40
第5章 离散信号与系统的时域分析 41
第5章 离散信号与系统的时域分析 42
第5章 离散信号与系统的时域分析 43
第5章 离散信号与系统的时域分析
(6) 系统传输算子:
题解图 5.6-1
16
第5章 离散信号与系统的时域分析
题解图 5.6-2
17
第5章 离散信号与系统的时域分析
因此
18
第5章 离散信号与系统的时域分析
5.7 各序列的图形如题图 5.2 所示,求下列卷积和。
题图 5.2
19
第5章 离散信号与系统的时域分析 20
第5章 离散信号与系统的时域分析 21
22
第5章 离散信号与系统的时域分析
5.9 已知两序列
试计算f1(k)*f2(k)。
23
解 因为
第5章 离散信号与系统的时域分析
所以
24
第5章 离散信号与系统的时域分析
5.10 已知序列x(k)、y(k)为
试用图解法求g(k)=x(k)*y(k)。
25
第5章 离散信号与系统的时域分析
解 首先画出y(k)和x(k)图形如题解图5.10所示, 然后结合 卷积和的图解机理和常用公式,应用局部范围等效的计算方法 求解。
第5章 离散信号与系统的时域分析
第5章 离散信号与系统的时域分析 46
第5章 离散信号与系统的时域分析
5.16 已知离散系统的差分方程(或传输算子)如下,试求各 系统的单位响应。
47
第5章 离散信号与系统的时域分析 48
由于
第5章 离散信号与系统的时域分析
49
第5章 离散信号与系统的时域分析
因此系统单位响应为
50
第5章 离散信号与系统Biblioteka Baidu时域分析 51
第5章 离散信号与系统的时域分析 10
第5章 离散信号与系统的时域分析 11
第5章 离散信号与系统的时域分析 12
第5章 离散信号与系统的时域分析 13
第5章 离散信号与系统的时域分析 14
第5章 离散信号与系统的时域分析
用图解法计算,见题解图5.6-1。 因此
15
第5章 离散信号与系统的时域分析
题解图 5.10
26
第5章 离散信号与系统的时域分析 27
总之有
第5章 离散信号与系统的时域分析
28
第5章 离散信号与系统的时域分析
5.11 下列系统方程中,f(k)和y(k)分别表示系统的输入和输 出,试写出各离散系统的传输算子H(E)。
29
第5章 离散信号与系统的时域分析
解 由系统差分方程写出传输算子H(E)如下:
所以
37
第5章 离散信号与系统的时域分析
5.14 试求由下列差分方程描述的离散时间系统的零输入 响应。设初始观察时刻k0=0。
38
第5章 离散信号与系统的时域分析
解 由差分方程计算系统零输入响应。 (1) 系统传输算子:
由传输算子极点r=-2,写出系统零输入响应:
yzi(k)=crk=c(-2)k, k≥0
30
第5章 离散信号与系统的时域分析 31
第5章 离散信号与系统的时域分析
结合Mason公式画出模拟信号流图如题解图5.12所示。 依据方框图与信号流图对应关系,可画出系统模拟方框图。 此处从略。
题解图 5.12
32
第5章 离散信号与系统的时域分析
5.13 列出题图 5.3 所示离散时间系统的输入输出差分 方程。
第5章 离散信号与系统的时域分析
5.8 各序列图形如题图 5.2 所示。 (1) 若f(k)=f1(k)*f2(k),则f(-2)、f(0)和f(2)各是多少? (2) 若y(k)=f2(k)*f3(k),则y(-2)、y(0)和y(2)各是多少? 解 根据卷积和的图解机理,求得 (1) f(-2)=4, f(0)=6, f(2)=7 (2) y(-2)=1, y(0)=6, y(2)=6.5
题图 5.3
33
第5章 离散信号与系统的时域分析
解 应用Mason公式,由方框图或信号流图写出传输算子, 进而写出系统差分方程。
(a) 因为
所以
34
(b) 因为
第5章 离散信号与系统的时域分析
所以
35
(c) 因为
第5章 离散信号与系统的时域分析
所以
36
(d) 因为
第5章 离散信号与系统的时域分析
第5章 离散信号与系统的时域分析
第5章 离散信号与系统 的时域分析
1
第5章 离散信号与系统的时域分析
5.1 画出下列各序列的图形。
2
第5章 离散信号与系统的时域分析
解 各序列的图形如题解图5.1所示。
题解图 5.1
3
第5章 离散信号与系统的时域分析
5.2 画出下列各序列的图形。
4
第5章 离散信号与系统的时域分析
H(E)极点r=-1(二阶极点), 写出零输入响应表达式:
yzi(k)=(c0+c1k)rk=(c0+c1k)(-1)k
结合初始条件yzi(-1)=y(-1)=3, yzi(-2)=y(-2)=-5,确定 c0=-1, c1=2, 故有零输入响应:
yzi(k)=(2k-1)(-1)kε(k)
44
第5章 离散信号与系统的时域分析 45
第5章 离散信号与系统的时域分析 52
第5章 离散信号与系统的时域分析 53
第5章 离散信号与系统的时域分析 54
第5章 离散信号与系统的时域分析
5.17 求题图 5.4 所示各系统的单位响应。
题图 5.4
55
第5章 离散信号与系统的时域分析 56
(c) 因为
第5章 离散信号与系统的时域分析
方程两边同乘E,得 所以,单位响应为
57
(d) 因为
第5章 离散信号与系统的时域分析
方程两边同乘E,得 所以,单位响应为
58
第5章 离散信号与系统的时域分析
5.18 离散系统的模拟框图如题图 5.5 所示,求该系统的单 位响应和阶跃响应。
题图 5.5
59
第5章 离散信号与系统的时域分析 60
第5章 离散信号与系统的时域分析 61
解 各序列的图形如题解图5.2所示。
题解图 5.2
5
第5章 离散信号与系统的时域分析
5.3 写出题图 5.1 所示各序列的表达式。
题图 5.1
6
第5章 离散信号与系统的时域分析 7
第5章 离散信号与系统的时域分析
5.4 判断下列各序列是否为周期序列。如果是周期序列, 试确定其周期。
8
第5章 离散信号与系统的时域分析 9
yzi(k)=(-2)kε(k)
39
第5章 离散信号与系统的时域分析 40
第5章 离散信号与系统的时域分析 41
第5章 离散信号与系统的时域分析 42
第5章 离散信号与系统的时域分析 43
第5章 离散信号与系统的时域分析
(6) 系统传输算子:
题解图 5.6-1
16
第5章 离散信号与系统的时域分析
题解图 5.6-2
17
第5章 离散信号与系统的时域分析
因此
18
第5章 离散信号与系统的时域分析
5.7 各序列的图形如题图 5.2 所示,求下列卷积和。
题图 5.2
19
第5章 离散信号与系统的时域分析 20
第5章 离散信号与系统的时域分析 21
22
第5章 离散信号与系统的时域分析
5.9 已知两序列
试计算f1(k)*f2(k)。
23
解 因为
第5章 离散信号与系统的时域分析
所以
24
第5章 离散信号与系统的时域分析
5.10 已知序列x(k)、y(k)为
试用图解法求g(k)=x(k)*y(k)。
25
第5章 离散信号与系统的时域分析
解 首先画出y(k)和x(k)图形如题解图5.10所示, 然后结合 卷积和的图解机理和常用公式,应用局部范围等效的计算方法 求解。
第5章 离散信号与系统的时域分析
第5章 离散信号与系统的时域分析 46
第5章 离散信号与系统的时域分析
5.16 已知离散系统的差分方程(或传输算子)如下,试求各 系统的单位响应。
47
第5章 离散信号与系统的时域分析 48
由于
第5章 离散信号与系统的时域分析
49
第5章 离散信号与系统的时域分析
因此系统单位响应为
50
第5章 离散信号与系统Biblioteka Baidu时域分析 51
第5章 离散信号与系统的时域分析 10
第5章 离散信号与系统的时域分析 11
第5章 离散信号与系统的时域分析 12
第5章 离散信号与系统的时域分析 13
第5章 离散信号与系统的时域分析 14
第5章 离散信号与系统的时域分析
用图解法计算,见题解图5.6-1。 因此
15
第5章 离散信号与系统的时域分析
题解图 5.10
26
第5章 离散信号与系统的时域分析 27
总之有
第5章 离散信号与系统的时域分析
28
第5章 离散信号与系统的时域分析
5.11 下列系统方程中,f(k)和y(k)分别表示系统的输入和输 出,试写出各离散系统的传输算子H(E)。
29
第5章 离散信号与系统的时域分析
解 由系统差分方程写出传输算子H(E)如下:
所以
37
第5章 离散信号与系统的时域分析
5.14 试求由下列差分方程描述的离散时间系统的零输入 响应。设初始观察时刻k0=0。
38
第5章 离散信号与系统的时域分析
解 由差分方程计算系统零输入响应。 (1) 系统传输算子:
由传输算子极点r=-2,写出系统零输入响应:
yzi(k)=crk=c(-2)k, k≥0
30
第5章 离散信号与系统的时域分析 31
第5章 离散信号与系统的时域分析
结合Mason公式画出模拟信号流图如题解图5.12所示。 依据方框图与信号流图对应关系,可画出系统模拟方框图。 此处从略。
题解图 5.12
32
第5章 离散信号与系统的时域分析
5.13 列出题图 5.3 所示离散时间系统的输入输出差分 方程。
第5章 离散信号与系统的时域分析
5.8 各序列图形如题图 5.2 所示。 (1) 若f(k)=f1(k)*f2(k),则f(-2)、f(0)和f(2)各是多少? (2) 若y(k)=f2(k)*f3(k),则y(-2)、y(0)和y(2)各是多少? 解 根据卷积和的图解机理,求得 (1) f(-2)=4, f(0)=6, f(2)=7 (2) y(-2)=1, y(0)=6, y(2)=6.5
题图 5.3
33
第5章 离散信号与系统的时域分析
解 应用Mason公式,由方框图或信号流图写出传输算子, 进而写出系统差分方程。
(a) 因为
所以
34
(b) 因为
第5章 离散信号与系统的时域分析
所以
35
(c) 因为
第5章 离散信号与系统的时域分析
所以
36
(d) 因为
第5章 离散信号与系统的时域分析
第5章 离散信号与系统的时域分析
第5章 离散信号与系统 的时域分析
1
第5章 离散信号与系统的时域分析
5.1 画出下列各序列的图形。
2
第5章 离散信号与系统的时域分析
解 各序列的图形如题解图5.1所示。
题解图 5.1
3
第5章 离散信号与系统的时域分析
5.2 画出下列各序列的图形。
4
第5章 离散信号与系统的时域分析
H(E)极点r=-1(二阶极点), 写出零输入响应表达式:
yzi(k)=(c0+c1k)rk=(c0+c1k)(-1)k
结合初始条件yzi(-1)=y(-1)=3, yzi(-2)=y(-2)=-5,确定 c0=-1, c1=2, 故有零输入响应:
yzi(k)=(2k-1)(-1)kε(k)
44
第5章 离散信号与系统的时域分析 45
第5章 离散信号与系统的时域分析 52
第5章 离散信号与系统的时域分析 53
第5章 离散信号与系统的时域分析 54
第5章 离散信号与系统的时域分析
5.17 求题图 5.4 所示各系统的单位响应。
题图 5.4
55
第5章 离散信号与系统的时域分析 56
(c) 因为
第5章 离散信号与系统的时域分析
方程两边同乘E,得 所以,单位响应为
57
(d) 因为
第5章 离散信号与系统的时域分析
方程两边同乘E,得 所以,单位响应为
58
第5章 离散信号与系统的时域分析
5.18 离散系统的模拟框图如题图 5.5 所示,求该系统的单 位响应和阶跃响应。
题图 5.5
59
第5章 离散信号与系统的时域分析 60
第5章 离散信号与系统的时域分析 61
解 各序列的图形如题解图5.2所示。
题解图 5.2
5
第5章 离散信号与系统的时域分析
5.3 写出题图 5.1 所示各序列的表达式。
题图 5.1
6
第5章 离散信号与系统的时域分析 7
第5章 离散信号与系统的时域分析
5.4 判断下列各序列是否为周期序列。如果是周期序列, 试确定其周期。
8
第5章 离散信号与系统的时域分析 9