车门保持件全球技术法规

合集下载

GTR(全球统一汽车技术法规)介绍

GTR(全球统一汽车技术法规)介绍

GTR技术法规介绍来源:全国汽车标准化技术委员会1.GTR技术法规的制定组织和《1998年协定书》GTR法规全称为全球统一汽车技术法规,由联合国世界车辆法规协调论坛(UN/WP29)负责制定发布,WP29原为联合国欧洲经济委员会内陆运输委员会下属的车辆结构工作组,在《1958年协定书》的框架下制定并实施ECE汽车技术法规,从20世纪80年代初开始,随着经济全球化的到来,许多国家和地区的政府开始认识到各自为政的汽车技术法规体系阻碍了汽车产品在全球范围内的自由流通,限制并阻碍了商品经济规律应起的作用,于是由国际上一些汽车工业发达国家牵头,开始进行国际汽车技术法规的协调与统一的工作,以打破世界各国、各地区已形成的汽车技术法规这一贸易技术壁垒。

在当时情况下,联合国欧洲经济委员会车辆结构工作组(UN/ECE/WP29)成了开展这种世界范围内汽车技术法规协调和统一工作的主要组织。

WP29于1998年6月25日制订《全球汽车技术法规协定书》[1],因此该协定书也就简称为《1998年协定书》。

世界各国以此协定书为法律框架,共同制修订全球统一的汽车技术法规。

该协定书在法律地位上明确原UN/ECE/WP29(联合国欧洲经济委员会车辆结构工作组)作为开展全球汽车技术法规协调和统一工作的国际组织,UN/ECE/WP29的名称随之更改为:“世界车辆法规协调论坛”(World Forum for Harmonization of Vehicle Regulations),仍简称为WP29,开始按照《全球汽车技术法规协定书》中规定的程序规则制定全球统一的汽车技术法规,到目前,《1998年协定书》的正式缔约方共计31个[2]。

历史之所以选择UN/ECE/WP29来开展全球范围内的汽车技术法规协调统一工作,其原因为:①UN/ECE/WP29成功运作《1958年协定书》,具有开展国际汽车技术法规统一工作的技术基础;②UN/ECE/WP29的广泛参与性,使其具有开展国际汽车技术法规统一工作的技术基础。

GTR(全球统一汽车技术法规)介绍

GTR(全球统一汽车技术法规)介绍

GTR技术法规介绍全国汽车标准化技术委员会1.GTR技术法规的制定组织和《1998年协定书》GTR法规全称为全球统一汽车技术法规,由联合国世界车辆法规协调论坛(UN/WP29)负责制定发布,WP29原为联合国欧洲经济委员会内陆运输委员会下属的车辆结构工作组,在《1958年协定书》的框架下制定并实施ECE汽车技术法规,从20世纪80年代初开始,随着经济全球化的到来,许多国家和地区的政府开始认识到各自为政的汽车技术法规体系阻碍了汽车产品在全球范围内的自由流通,限制并阻碍了商品经济规律应起的作用,于是由国际上一些汽车工业发达国家牵头,开始进行国际汽车技术法规的协调与统一的工作,以打破世界各国、各地区已形成的汽车技术法规这一贸易技术壁垒。

在当时情况下,联合国欧洲经济委员会车辆结构工作组(UN/ECE/WP29)成了开展这种世界范围内汽车技术法规协调和统一工作的主要组织。

[1]WP29于1998年6月25日制订《全球汽车技术法规协定书》,因此该协定书也就简称为《1998年协定书》。

世界各国以此协定书为法律框架,共同制修订全球统一的汽车技术法规。

该协定书在法律地位上明确原UN/ECE/WP29(联合国欧洲经济委员会车辆结构工作组)作为开展全球汽车技术法规协调和统一工作的国际组织,UN/ECE/WP29的名称随之更改为:“世界车辆法规协调论坛”(World Forum for Harmonization of Vehicle Regulations),仍简称为WP29,开始按照《全球汽车技术法规协定书》中规定的程序规则制定全球统一的汽车技术法规,到目前,《1998年协定书》的正式缔约方共计31个[2]。

历史之所以选择UN/ECE/WP29来开展全球范围内的汽车技术法规协调统一工作,其原因为:①UN/ECE/WP29成功运作《1958年协定书》,具有开展国际汽车技术法规统一工作的技术基础;②UN/ECE/WP29的广泛参与性,使其具有开展国际汽车技术法规统一工作的技术基础。

GTR No 1

GTR No 1

ECE/TRANS/180/Add.11 April 2005GLOBAL REGISTRYCreated on 18 November 2004, pursuant to Article 6 of the AGREEMENT CONCERNING THE ESTABLISHING OF GLOBAL TECHNICAL REGULATIONS FOR WHEELED VEHICLES, EQUIPMENT AND PARTS WHICH CAN BE FITTED AND/OR BE USED ON WHEELED VEHICLES(ECE/TRANS/132 and Corr.1)Done at Geneva on 25 June 1998AddendumGlobal technical regulation No. 1DOOR LOCKS AND DOOR RETENTION COMPONENTS(Established in the Global Registry on 18 November 2004)UNITED NATIONSECE/TRANS/180/Add.1page 3TABLE OF CONTENTSA. STATEMENT OF TECHNICAL RATIONALE AND JUSTIFICATION (4)B. TEXT OF REGULATION (17)1. SCOPE AND PURPOSE (17)2. APPLICATION (17)3. DEFINITIONS (17)REQUIREMENTS (19)4. GENERALREQUIREMENTS (19)5. PERFORMANCECONDITIONS (23)6. TESTPROCEDURE (23)7. TESTANNEXESAnnex 1 Latch Test for Load Test One, Two, and Three Force Applications (25)Annex 2 Inertial Test Procedures (31)Annex 3 Hinge Test Procedure (39)Annex 4 Sliding Side Door, Full Door Test (44)Annex 5 Vehicle Category Definitions (48)* * *ECE/TRANS/180/Add.1page 4A. Statement of Technical Rationale and JustificationI. IntroductionCurrent regulations were designed to test for door openings in vehicles that were built in the 1960s. Aside from changes made to United States of America and Canadian requirements in the early to mid-1990s to address rear door openings, no significant changes have been made to any of the current regulations. While existing regulations governing door openings have proven largely effective, door openings continue to present a risk of serious injury or death to vehicle occupants, particularly when an occupant is unbelted.The precise size of the safety problem posed by inadvertent door openings is difficult to quantify because very few jurisdictions gather the type of crash data needed to evaluate the problem. This task is further compounded by the effect of occupant belt use on injury risk. Notwithstanding the difficulty in quantifying the overall benefit associated with the establishment of a global technical regulation internationally, the types of changes to door retention components needed to upgrade existing regulations and standards appear to be quite small. Additionally, vehicle manufacturers and the ultimate consumers of motor vehicles can expect to achieve further cost savings through the formal harmonization of differing sets of regulations and standards that already largely replicate each other.Research conducted by the United States of America indicates that there are approximately 42,000 door openings in crashes in the United States of America per year. 1/ While this number corresponds to less than one per cent of the roughly six million crashes that occur in that country each year, the majority of those crashes do not occur at speeds where a door opening is likely. Rather, door failures appear to be most common in moderate- to high-speed crashes. 2/ Structural failures of the latch and striker are the leading cause of door openings. The United States of America’s evaluation of its data indicates that about two-thirds (64.5 per cent) of door openings involve damage to the latch or striker, either alone or in combination with damage to one or more hinges. The next most likely causes of a door opening are the failure of the vehicle structure holding the door in place or the door itself. In 8.37 per cent of the evaluated cases, the door support, e.g., B-pillar or C-pillar, was damaged; while in 9.68 per cent of the evaluated cases, the door structure caused the door to open without damaging the actual door retention components. Only rarely did a door open with no damage to the door whatsoever (2.15 per cent). 1/ At the request of the Working Party on Passive Safety, the United States of America provided data on the magnitude of the door ejections and door openings based on 1994-99 National Automotive Sampling System (NASS) and Fatal Analysis Reporting System (FARS) annual estimates. No data from other jurisdictions were presented.2/ In the United States of America the average change of velocity (delta V) for crashes where a door opens is approximately 30.5 km/h; the average delta V for crashes where there is no failure of the door retention system is approximately 21 km/h.ECE/TRANS/180/Add.15pageThe type of crash also has an impact on the likely type of door failure. The primary source offailure in side impact crashes was damage to the latch/striker assembly, while damage to the doorsupports was a distant secondary source. In rollover crashes, non-structural failures, i.e., thosewhere there is no damage to the door, are more common.In 1991, the United States of America conducted an engineering analysis of door latch systems incases involving vehicle side door openings to determine the loading conditions and failure modesof door latch systems in crashes. 3/ This analysis revealed the following four distinct failuremodes:Structural FailuresStructural failures are characterized as physical damage to the latch, striker, or hinges. Othertypes of structural failures include broken attachment hardware or separation of a latch, striker, orhinge from its support structure.Detent Lever-Fork Bolt Misalignment (Bypass) FailuresDetent lever-fork bolt misalignment (bypass) failures may occur when the striker is subjected tolongitudinal forces in conjunction with lateral forces. These forces cause the fork bolt to moveand become misaligned with the detent lever, causing the latch to open. These forces mosttypically occur in frontal and oblique frontal impacts.Linkage Actuation FailuresLinkage actuation failures are caused by forces being transmitted to the door’s linkage system(i.e., the connection between the door handle and the door latch) due to vehicle deformationduring a crash. It may be possible to observe some bowing of the door after a linkage actuationfailure.Inertial Force FailuresInertial force failures are latch openings due to acceleration of latch system components relative toeach other, which produce sufficient inertial force to activate the latch. Often, there is no visibledamage to the latch or striker system. Inertial loading typically occurs in rollover crashes or whena portion of the vehicle other than the door is impacted at a high speed.These four failure modes can be categorized as either structural failures or actuation failures.Structural failures usually leave clear evidence of the component failure and result in aninoperable door retention system. Actuation failures consist of latch by-pass, linkage actuation,and inertial force failures. Often a door opening caused by an actuation failure will not leave anyreadily visible evidence that the crash caused the door to open and will not affect the retentionsystem’s subsequent ability to open and close correctly. Thus, many of the failures associatedwith a latch by-pass, linkage actuation, or inertial force failure will be represented by the 2.15 percent of crashes where no damage to the door was observed.3/ Door Latch Integrity Study: Engineering Analysis and NASS Case Review,December, 1991, Docket No. NHTSA-1998-3705.ECE/TRANS/180/Add.1page 6According to the United States of America statistics, less than one per cent of occupants who sustain serious and fatal injuries in tow-away crashes are ejected through doors. Yet, despite the relatively rare occurrence of door ejections in crashes, the risk of serious or fatal injury is high when ejection does occur. Door ejections are the second leading source of ejections in all crashes in the United States of America. They are particularly likely in rollover crashes. Door ejections constitute 19 per cent (1,668) of all ejection fatalities and 22 per cent (1,976) of all ejection serious injuries in the United States of America each year. Of the approximately 42,000 door openings in the United States of America each year, side door openings constitute approximately 90 per cent (1,501) of all door ejection fatalities and 93 per cent (1,838) of the serious injuries.The rate of ejections through doors is heavily dependent on belt use. 94 per cent of serious injuries and fatalities attributable to ejections through doors in the United States of America involve unbelted occupants. While the risk of ejection will likely vary from jurisdiction to jurisdiction, based on differing rates of belt use, the incidence of door openings should be relatively constant among various jurisdictions given the similarity in door designs and the lack of occupant behaviour patterns as a factor in door failures.BackgroundII. ProceduralDuring the one-hundred-and-twenty-sixth session of WP.29 of March 2002, the Executive Committee (AC.3) of the 1998 Global Agreement (1998 Agreement) adopted a Programme of Work, which includes the development of a global technical regulation (gtr) to address inadvertent door opening in crashes. The Executive Committee also charged the Working Party on Passive Safety (GRSP) to form an informal working group to discuss and evaluate relevant issues concerning requirements for door locks and door retention components to make recommendations regarding a potential gtr.The informal working group was established in September 2002. The United States of America volunteered to lead the group’s efforts and develop a document detailing the recommended requirements for the gtr. The United States of America presented a formal proposal to the Executive Committee of the 1998 Agreement, which was adopted in June 2003 (TRANS/WP.29/2003/49). The GRSP developed the door locks and door retention gtr. At its May 2004 session, the GRSP concluded its work and agreed to recommend the establishment of this gtr to the Executive Committee.III. Existing Regulations, Directives, and International Voluntary StandardsThere are several existing regulations, directives, and standards that pertain to door locks and door retention components. All share similarities. The Canadian and US regulations are very similar to each other and the Japanese and UNECE regulations are very similar to each other. The European Union Directive is an exact alternative of the UNECE regulation requirements. The Australian regulation has commonalities to both of the above-mentioned pairs. A preliminary analysis has been made to identify the differences in the application, requirements, and test procedures of the North American and UNECE Regulations (TRANS/WP.29/GRSP/2001/1 and TRANS/WP.29/2003/49). There are no apparent conflicts between the gtr and other existing international regulations or standards. However, the gtr does incorporate aspects of the existing regulations, directives and standards that are not common to all existing requirements. Given theECE/TRANS/180/Add.17pagegenerally minor variability in the door retention designs among these jurisdictions that currentlyregulate door design, it is not expected that the additional requirements imposed by the gtr arelikely to drive major, costly changes to existing door retention designs.IV. Discussion of Issues Addressed by the gtrThe proposed gtr provides that certain door retention components on any door leading directlyinto an occupant compartment, i.e., a compartment containing one or more seatingaccommodations, must comply with the requirements of the gtr. Tractor trailers are excludedbecause they do not meet this criterion. Likewise, doors leading into cargo compartments that areseparated by a barrier would not be regulated since an individual could not access the occupantcompartment through those doors. The gtr excludes folding doors, roll-up doors, detachabledoors, and doors that provide emergency egress, as these types of doors would require entirelynew test procedures and are not in such common use as to justify the development of newrequirements and test procedures. Thus, for certain vehicle designs, some, but not all doors wouldbe regulated by the gtr.During the development of the gtr, all issues were thoroughly discussed. The followingdiscussions reflect the evaluation of the issues that lead to the final recommendations.(a) ApplicabilityThe application of the requirements of this gtr refers, to the extent possible, to the revised vehicleclassification and definitions that the Working Party on General Safety (GRSG) Common TaskInformal Group has prepared. Difficulties were encountered in determining which vehicles wouldbe covered. Currently, UNECE Regulations only apply to M1 vehicles (passenger vehicles withup to 9 seats in total) and N1 vehicles (goods vehicles weighing up to 3,500 kg gross vehiclemass). It was posited that it would be difficult to apply full door tests, such as the proposedinertial load, to large trucks and specialized vehicles. With the decision not to propose theinclusion of two full door tests, discussed in greater detail below, these concerns were largelyresolved. Likewise, the retention of a calculation for meeting the inertial load requirements wouldallow a jurisdiction to avoid applying a full-door inertial load test for doors on heavier vehicles.To address concerns about the applicability of door retention requirements to heavier vehicles, itwas proposed that the gtr only apply to passenger cars, light commercial vehicles, and vans andthat other vehicles be excluded initially, then added in the future after further evaluation ofvarious door designs. The argument in favour of a more inclusive gtr focuses attention on thecurrent United States of America, Canadian, Japanese, and Australian requirements that alreadyapply to all vehicles other than buses (M2 and M3 vehicles) and that the applicability of existingrequirements to commercial trucks has not proven problematic for vehicle manufacturers. Thisargument supports the exclusion of specific door types rather than entire classes of vehicles.ECE/TRANS/180/Add.1page 8Heavy trucks in the United States of America have been subject to that country’s door retention requirements since 1972. The United States of America requirement was extended to trucks because researchers from a major United States of America university determined in a study published in 1969 that the rate of door ejection from truck doors was approximately twice that from doors on passenger cars that met the door retention requirements. The authors of the study concluded that at 40.3 per cent, the level of door failure in the truck fleet was approximately four times the failure rate of regulated passenger cars and roughly equivalent to the rate of failure in passenger cars manufactured before 1956. They also concluded that insufficient door retention was a problem across vehicle weight classifications, with pick-up trucks, medium-weight trucks and tractor trailers all exhibiting a door failure rate in excess of 33 per cent.To accommodate both positions, the gtr will apply to all vehicles except buses, with exceptions for specific door designs. The gtr incorporates the definitions of Category 1-1 vehicles and Category 2 vehicles developed in draft Special Resolution 1 (S.R. 1) concerning common definitions and procedures to be used in global technical regulations, which will be submitted as an informal document at the one-hundred-and-thirty-fourth WP.29 session and with an expected adoption at the one-hundred-and-thirty-fifth WP.29 session. If a jurisdiction determines that its domestic regulatory scheme is such that full applicability is inappropriate, it may limit domestic regulation to vehicles with a gross vehicle weight of 3,500 kg or less. The jurisdiction could also decide to phase-in the door retention requirements for heavier vehicles, delay implementation for a few years, or even to impose only some of the gtr requirements to these heavier vehicles. For example, it is unlikely that a jurisdiction would want to require heavier truck doors to meet the dynamic inertial test rather than the calculation. On the other hand, the longitudinal and transverse load requirements have been applicable to heavy trucks in the United States of America and Canada for over thirty years without imposing any hardship on vehicle manufacturers.(b) DefinitionsDefinitions, used in this gtr, are defined in section B, paragraph 3. of this regulation, with the exception of those related to the applicability. Definitions that relate to the applicability are drawn from a draft version of S.R. 1 and are listed in Annex 5.(c) General RequirementsGRSP agreed to recommend that the gtr should specify requirements for side and back doors, door retention components and door locks. The United States of America, Canadian, and Australian regulations have provisions for back doors and door locks, the UNECE Regulations do not. Currently, UNECE Regulations require that the sliding door systems be tested in a fully latched position and an intermediate latched position. If there is no intermediate position, when unlatched, the door must move into an apparent open position. The United States of America and Canadian regulations have no latching system requirements for the sliding doors. The Working Party decided that it was appropriate to regulate the sliding side door latching system, but recognized that the existing UNECE requirement to determine whether a sliding side door was unlatched was too subjective. Accordingly, the gtr specifies a door closure warning system that activates when the sliding side door is not latched and there is no intermediate/secondary latching position.ECE/TRANS/180/Add.19pageThe inclusion of a requirement in the gtr that side doors remain shut during vehicle dynamic crashtests, as well as a requirement that at least one door per row be operable following a crash test,was considered. Existing UNECE Regulations with dynamic crash test components alreadyrequire all doors to stay closed during the test and at least one door per seat row to be operableafterwards. It is believed that it is unnecessary to repeat this requirement in the gtr and itsinclusion would make the certification process under this regulation very difficult. However,recognizing the value of such a requirement, non-UNECE countries have agreed to considerincluding a similar requirement in their domestic regulations. This will result in a harmonizedrequirement outside of the context of the gtr.Force levels identified in the current component static tests for latches and hinges have beenharmonized to eliminate variations due to rounding of unit conversions.(d) Performance Requirements(i) Hinged Doors IssuesCurrently, UNECE Regulation No. 11 has similar hinged door requirements to the NorthAmerican regulations, although UNECE Regulation No. 11 does not distinguish between cargoand non-cargo door latches. The Working Party agreed to recommend that cargo doors (i.e.,double doors) meet the same requirements as hinged doors if they provide access to the occupantseating compartment. Additionally, the term "cargo door" has been eliminated to clarify thatdoors that do not lead into an occupant compartment with one or more seat positions are notregulated by the gtr.(ii) Load TestsBoth regulations require load tests of the hinge systems in the longitudinal and transversedirections. These tests remain, but have been reworded such that the loads are applied based onthe alignment of the hinge system and not the alignment of the vehicle. A load test in the verticaldirection was evaluated and ultimately rejected except for back doors. Since a large number ofdoor openings occur during vehicle rollovers, it was suggested that perhaps a load test in thevertical direction would help reduce these types of openings. However, it was ultimatelydetermined that the addition of a load test conducted in a direction orthogonal to the existing testscould not be justified at the present time. Those countries concerned about protecting againstrollover crash door openings may determine that such a test would be useful outside the context ofthe gtr.ECE/TRANS/180/Add.1page 10(iii) Inertial TestA dynamic inertial test requirement was added to the gtr, as an option to the inertial calculation. There are provisions for this type of testing in both the UNECE and North American regulations, but there is no specified test procedure. A test procedure was developed based on the testing currently conducted for the UNECE requirement and validated by the United States of America and Canada. In addition to the longitudinal and transverse tests, tests in the vertical direction were considered. Conducting the inertial test in the vertical direction is feasible, but it is much more difficult to conduct than the tests in the longitudinal and transverse directions. Since the most common failure mode demonstrated in the inertial tests conducted by Canada was in the direction of door opening, it was determined that a test in the vertical direction appeared to be beneficial only for back door designs, which commonly open in the vertical direction. However, those countries concerned about protecting against rollover crash door openings may determine that such a test would be useful outside the context of the gtr.(iv) New Combination Component TestThe United States of America developed a new combination test procedure for hinged side doors that is representative of the combination of longitudinal compressive and lateral tensile forces that occur in real-world latch failures. Currently, no regulation, directive, or international voluntary standard has such a requirement, although it is possible that a test developed by one vehicle manufacturer may be suitable for substitution once it has been fully evaluated and a benefits correlation has been conducted.Examples of the types of crashes in which forces addressed by the combination test could occur are crashes in which either the front or the rear of the vehicle is impacted (including in an offset mode). The proposed combination test procedure was a static bench test capable of evaluating the strength of the latching systems and designed to detect fork bolt detent bypass failures. No other test procedure within the gtr simulates these types of latch failure conditions.In the combination test, the latch is mounted on a flat steel plate that moves horizontally and the striker is mounted on a vertically moving ram device. During the test, the latch and striker, while in their primary coupled position, are simultaneously moved such that lateral tension (i.e., force applied perpendicularly to the coupled latch and striker) and longitudinal compressive forces (i.e., force applied against the latch toward the striker) are applied at their interface.The required forces for the primary position of the hinged side door latching systems would be simultaneous forces of 16,000 N longitudinal compressive force and 6,650 N lateral tensile force. The longitudinal force application device is moved at a rate of one centimeter per minute until the longitudinal force is achieved.There is widespread support for a test that addresses the door failure modes represented by this test. However, in some vehicles, the test setup is such that the striker cannot interface with the faceplate of the latch, rendering the test meaningless. While it is possible to modify the striker portion of the latch system so that the test can be conducted, there is strong concern regarding the adoption of this type of procedure and its potential for enforceability questions.The adoption of the combination test into the gtr is not supported at this time due to the technical difficulties in conducting the test. Instead, the Working Party delegates and representatives will continue to review work on the modification of the United States of America-based procedure, or the development of a new procedure, to capture the benefits associated with a test addressing door failures due to simultaneous compressive longitudinal and tensile lateral loading of latch systems in real world crashes. Any acceptable procedure developed could then be added to the gtr as an amendment.(v) Door HingesBoth the UNECE and North American regulations have the same load testing requirements for door hinges. The current side door requirements for hinges, which are based on SAE Recommended Practice J934, Vehicle Passenger Door Hinge Systems, appear to test adequately the strength and design of door hinges. The United States of America’s comprehensive analysis of its data and possible failure modes has not revealed problems with door hinges. Accordingly, these requirements have been included in the gtr. The current UNECE requirements only allow for the hinges to be mounted on the forward edge in the direction of travel. This requirement was based on the safety concern of a possible inadvertent opening while the vehicle is in motion. This requirement, as stated, was found to be design restrictive and the safety concerns were resolved by developing text to regulate the design and not prohibit it.(vi) Hinged Side Door System Tests (Full Door Tests)A new series of test procedures was designed to simulate real world door openings in crashes. These tests consist of door-in-frame quasi-static (full door) tests in both longitudinal and lateral directions, independent from the door system.The lateral full door test is designed to simulate latch failures in crashes that produce outwards forces on the door (i.e., through occupant loading or inertial loading) such as side crashes that result in vehicle spin and rollover. The longitudinal full door test is designed to simulate a collision in which the side of the vehicle is stretched, leading to the possibility that the striker could be torn from its mated latch (i.e., far side door in side impacts, and front and rear offset crashes on the opposite side door).The inclusion of the full door tests in the gtr was not supported because the tests raise concerns about unduly restricting door designs, developing a repeatable and enforceable test procedure, and addressing door openings under real world conditions. Because of the current UNECE requirement for both the component tests and a door closure requirement in dynamic tests, there is some question as to whether a full door test provides any additional value. In an analysis of the proposed tests using its FARS and NASS databases, the United States of America was unable to correlate the proposed tests with a reduction on door openings in real world crashes at a level that was statistically significant.The contemplated test procedures were evaluated and concerns were expressed that the new procedure will end up being unduly design restrictive, given the limitations of the test frame. For example, it may be that multiple test frames would be required to ensure an appropriate "fit" between the door and the test frame. This is because placement of the test load relative to the latch mechanism may be sufficiently different to produce significantly different results, andbecause door specific holes must be drilled into the test frame. Additionally, the test frame may not adequately address new latch designs that may be mounted in non-traditional locations. Likewise, the procedure does not allow manufacturers the benefit of non-latch attachments that are primarily used for side impact purposes but also may have a positive effect on door closure. Concerns were voiced that conducting the proposed tests on a test frame rather than on the full vehicle is impractical because not all loads can be applied to a closed door. However, it may be possible to cut the door frame and attach it to the test fixture, although such an approach may not fully replicate the actual door-in-frame as installed in the vehicle since cutting the door frame may change its characteristics. Such an approach may address the fit between the latch and striker, as well as the physical characteristics of the door and the doorframe. Accordingly, it was finally agreed not to include these proposals.(vii) Side Sliding Doors IssuesThe requirements and test procedures in both UNECE Regulation No. 11 and the North American standards for the track and slide combinations of side sliding doors are included in the gtr. The latch/striker system requirements of UNECE Regulation No. 11 are also included. However, neither regulation has a detailed full vehicle sliding door test procedure that simulates real world door openings in crashes.Simply testing the strength of the latch fails to fully account for the design of a sliding door. The current regulations for hinged doors adequately address door retention components because they test both the latch system and the hinge system. Since a sliding door has no hinges, only the latch is evaluated. The lack of a test for retention components other than the latch is an obvious weakness in the existing standards. Yet evaluating these components through a bench test would be impossible. The retention components simply are not amenable to a component test. The full-door test overcomes the lack of a component test similar to the hinge test for other doors by evaluating all retention components while the door interfaces with the doorframe.The procedure involves a full vehicle test in which a sliding door is tested by applying force against the two edges of the door. The test setup is initiated by placing two loading plates against the interior of the door. The loading plates are placed adjacent to the latch/striker system located at the door edge. If the door edge has two latch/striker systems, the loading plate is placed between the two systems. If a door edge does not have a latch/striker system, the loading plate is placed at a point midway along the length of the door edge. An outward lateral force of 18,000 N total is then applied to the loading plates, placing force against the two door edges. A test failure would be indicated by a 100 mm separation of the interior of door from the exterior of the vehicle’s doorframe at any point or either force application device reaching a total displacement of 300 mm. The gtr requires that there be no more than 100 mm of separation, even if the latch system does not fail, because, unlike hinged doors, the configuration of sliding doors allows for separation of the door from the frame without the latch system failing. The 100 mm limit is based on a commonly used measurement for maximum allowable open space in the United States of America and Canada for school bus opening requirements.The sliding door test procedure specifies that the test be conducted with force application devices that, when installed as part of the test setup, are each capable of reaching a total displacement of at least 300 mm after placement of the loading plates against the interior of the door. Under the test,。

ECE和EEC(EC)汽车技术法规介绍

ECE和EEC(EC)汽车技术法规介绍

ECE和EEC(EC)汽车技术法规介绍ECE和EEC(EC)汽车技术法规介绍一、ECE汽车技术法规介绍1 ECE汽车技术法规及其目前的体系结构WP29(世界车辆法规论坛)目前同时运作《1958年协定书》(目前该协定书修订版的全称为《关于对轮式车辆、安装和/或用于轮式车辆的装备和部件采用统一技术法规以及采用统一条件以相互承认基于上述技术法规的批准的协定书》)和《1998年协定书》(目前该协定书全称为《关于对轮式车辆、安装和/或用于轮式车辆的装备和部件制定全球性技术法规协定书》),进行ECE汽车技术法规和全球统一汽车技术法规的制修订和实施工作。

在ECE汽车技术法规的制修订方面,目前已正式制定颁布的ECE法规共有121项,其中针对汽车产品(M、N、O类车辆)的ECE法规95项,针对摩托车产品(L类车辆)的ECE法规21项,针对农林拖拉机产品(T类车辆)的ECE法规5项。

在针对汽车产品的95项ECE法规中,欧洲联盟的汽车整车型式批准框架性技术指令2001/116/EC(70/156/EEC的最新修订本)中,规定58项ECE法规完全等同于相应的欧盟技术指令,即按照这些ECE法规所作的ECE汽车零部件产品型式批准,等同于欧洲联盟整车型式批准框架中的相应的汽车零部件产品的EEC/EC型式批准。

目前已颁布的121项ECE法规的体系结构如表1所示:2 已颁布的121项ECE汽车技术法规目录注:备注栏中“等同EC指令”表示该ECE法规在2001/116/EC中被规定与相应的欧盟技术指令完全等同;“▲”表示该ECE法规为摩托车、轻便摩托车法规项目;“○”表示该ECE法规为农林拖拉机法规项目。

二、EEC(EC)汽车技术法规介绍1、前言欧洲联盟所制定的EEC(EC)技术指令(即欧洲经济共同体技术指令,由原欧洲经济共同体——EEC制定,《马斯特里赫特条约》生效实施后,EEC指令逐渐改称EC指令——欧洲共同体指令)是根据《罗马条约》针对国民经济中各种有关安全、环保、节能的产品而制定的,与联合国欧洲经济委员会的ECE汽车技术法规不同,EEC(EC)技术指令涉及国民经济的各行各业,有关车辆产品的EEC(EC)技术指令只是其中的一部分。

《汽车门锁及车门保持件产品强制性认证实施规则》共14页

《汽车门锁及车门保持件产品强制性认证实施规则》共14页

《汽车门锁及车门保持件产品强制性认证实施规则》2005-10-10发布 2005-12-01实施国家认证认可监督管理委员会发布目录1.适用范围2.认证模式3. 认证的基本环节4. 认证实施的基本要求4.1 认证的委托和受理4.2型式试验4.3初始工厂审查4.4认证结果评价与批准4.5 获证后监督5. 认证证书5.1认证证书的有效性5.2认证证书的变更5.3认证证书的暂停、注销和撤消6. 强制性产品认证标志的使用6.1准许使用的标志样式6.2变形认证标志的使用6.3加施方式6.4加施位置7. 收费附件1 认证委托时需提交的文件资料附件2 检测项目和检测依据附件3 强制性认证工厂质量保证能力要求1. 适用范围本规则适用于M1类和N1类汽车上用于乘员进出的任一侧车门的门锁及车门保持件。

2. 认证模式型式试验+初始工厂审查+获证后监督3. 认证的基本环节3.1认证的委托和受理3.2型式试验3.3初始工厂审查3.4认证结果评价与批准3.5获证后监督(抽样)4. 认证实施的基本要求4.1认证的委托和受理4.1.1认证的单元划分同一生产厂生产的且在以下主要方面无差异的汽车门锁及车门保持件产品视为同一单元:1)结构和材料;2)车门保持件的销轴(长度与直径)相差在20%之内的。

4.1.2认证委托时需提交的文件资料见附件1。

4.2 型式试验4.2.1型式试验的送样4.2.1.1型式试验送样的原则认证单元中只有一个型号的,送本型号的样品。

以多于一个型号的产品为同一认证单元委托认证时,应由认证机构从中选取具有代表性的一个型号,其他型号需要时作差异试验。

4.2.1.2送样数量门锁产品型式试验样品为单元内同一型号4套。

门铰链产品型式试验样品为单元内同一型号2套(上、下铰链各2付)。

4.2.1.3 型式试验样品及相关资料的处置型式试验后,应以适当的方式处置已经确认合格的样品和相关资料。

4.2.2检测标准、项目及依据检测项目和检测依据见附件2。

国际汽车技术法规

国际汽车技术法规

第一部分国际汽车技术法规(ECE、EC、GTR)发展动态[前言] 根据国际通行的惯例,世界各国政府都对汽车产品的市场准入规定了系统严格的政策和法规。

其中在技术领域,专门针对汽车产品建立并实施配套、完善的法律、技术法规体系。

对汽车产品的设计和制造专门立法,授权各自国家主管运输或工业的政府部门作为汽车安全、环保和节能的主管部门,制定汽车技术法规,并按照汽车技术法规,对汽车产品实施法制化管理制度,即汽车产品的型式批准(美国和加拿大等极少数国家采取自我认证制度),目前国际上最典型的汽车技术法规体系包括欧洲ECE汽车技术法规体系、EEC/EC 汽车技术指令体系、美国汽车技术法规体系和日本汽车技术法规体系。

这几大汽车技术法规体系,尤其是ECE法规体系在国际上具有深远的影响,在世界上其它的几大块汽车市场,诸如:东南亚市场、中国香港和中国台湾地区、拉美市场、非洲市场、南亚市场都能得到承认。

从20世纪80年代开始,国际社会开始对汽车技术法规的协调和统一工作,建立全球统一的汽车技术法规(GTR)体系。

第一章欧洲ECE汽车技术法规的制修订及体系分类介绍欧洲ECE汽车技术法规体系是目前国际上最具有影响力的汽车技术法规,不仅被《1958年协定书》缔约方所采用,也得到许多非《1958年协定书》缔约方的承认和采用。

由于ECE汽车技术法规具有较为广泛的国际性,许多发展中国家或地区,如中东、东南亚、拉丁美洲等国家和地区在建设自身的汽车技术法规体系时,都尽可能地参照和采用ECE法规的技术内容。

我国的汽车强制性汽车标准也是参照ECE技术法规体系而建立的,因此了解和跟踪ECE汽车技术法规的发展现状和未来发展趋势对于汽车产品进入国际市场就具有十分重要的意义。

一、ECE法规制修订组织—WP29ECE汽车技术法规的制修订组织为WP29,其前身为UN/ECE/WP29,它的全称为联合国经济及社会理事会欧洲经济委员会中内陆运输委员会道路交通分委会下属的车辆结构工作组,简称UN/ECOSO/ECE/TRANS/SC.1/WP29(参见下图),它是著名的欧洲ECE汽车技术法规的制修订机构。

《汽车门锁及车门保持件产品强制性认证实施规则》

《汽车门锁及车门保持件产品强制性认证实施规则》

《汽车门锁及车门保持件产品强制性认证实施规则》2005-10-10发布2005-12-01实施国家认证认可监督管理委员会发布目录1.适用范围2.认证模式3. 认证的基本环节4. 认证实施的基本要求4.1 认证的委托和受理4.2型式试验4.3初始工厂审查4.4认证结果评价与批准4.5 获证后监督5. 认证证书5.1认证证书的有效性5.2认证证书的变更5.3认证证书的暂停、注销和撤消6. 强制性产品认证标志的使用6.1准许使用的标志样式6.2变形认证标志的使用6.3加施方式6.4加施位置7. 收费附件1 认证委托时需提交的文件资料附件2 检测项目和检测依据附件3 强制性认证工厂质量保证能力要求1. 适用范围本规则适用于M1类和N1类汽车上用于乘员进出的任一侧车门的门锁及车门保持件。

2. 认证模式型式试验+初始工厂审查+获证后监督3. 认证的基本环节3.1认证的委托和受理3.2型式试验3.3初始工厂审查3.4认证结果评价与批准3.5获证后监督(抽样)4. 认证实施的基本要求4.1认证的委托和受理4.1.1认证的单元划分同一生产厂生产的且在以下主要方面无差异的汽车门锁及车门保持件产品视为同一单元:1)结构和材料;2)车门保持件的销轴(长度与直径)相差在20%之内的。

4.1.2认证委托时需提交的文件资料见附件1。

4.2 型式试验4.2.1型式试验的送样4.2.1.1型式试验送样的原则认证单元中只有一个型号的,送本型号的样品。

以多于一个型号的产品为同一认证单元委托认证时,应由认证机构从中选取具有代表性的一个型号,其他型号需要时作差异试验。

4.2.1.2送样数量门锁产品型式试验样品为单元内同一型号4套。

门铰链产品型式试验样品为单元内同一型号2套(上、下铰链各2付)。

4.2.1.3 型式试验样品及相关资料的处置型式试验后,应以适当的方式处置已经确认合格的样品和相关资料。

4.2.2检测标准、项目及依据检测项目和检测依据见附件2。

汽车门锁技术标准

汽车门锁技术标准

汽车门锁技术标准
汽车门锁是汽车安全保障的重要组成部分,各国针对汽车门锁设置了一系列技术标准,旨在确保汽车门锁的安全性、可靠性和功能性等方面能够达到一定的要求。

以下是几个常见的汽车门锁技术标准:
1. ISO 9001:2008标准,它是一个质量管理标准,通常用于评估汽车门锁生产商的质量管理体系。

该标准要求企业实行一整套严格的质量管理制度,包括产品质量管理、控制管理、内部监督和持续改进等方面。

2. ISO 26262标准,它是汽车电子行业的安全性标准,用于确保汽车电子系统(包括门锁控制系统)符合安全要求。

该标准要求产品从设计、开发、测试、验证到生产、使用和退役的全生命周期中都要实现安全性要求。

3. GB/T19158-2003汽车门锁技术标准,它是中国的汽车门锁技术标准,主要涉及到门锁的组成部件、结构、性能、试验方法等方面的要求。

4. FMVSS 206标准,它是美国联邦汽车安全标准,针对汽车门锁的性能和安全性进行规范。

该标准要求新型车辆必须通过门锁控制装置进行安全测试,包括门锁结构的测试、侵入测试和行驶速度为48公里/小时下的开车门测试。

除了这些标准,还有其他的汽车门锁技术标准,例如ECE R11标准(欧洲汽车门锁标准)、JIS D2301标准(日本汽车门锁标准)等。

这些标准为汽车门锁的安全性和可靠性提供了保障,同时也促进了汽车门锁技术的创新和发展。

GB15086-2006 汽车门锁及车门保持件培训材料-文档资料

GB15086-2006 汽车门锁及车门保持件培训材料-文档资料

一、术语和定义
7、全锁紧位置
车门完全关闭时,锁体与锁扣或挡块所处的啮合位置。(车门完全推到底的时候)
8、半全锁紧位置 车门不完全关闭时,锁体与锁扣或挡块所处的啮合位置。(车门虽关住,不能自由活动,但处
于不完全推到底的时候)
9、M1:包括驾驶员座位在内,座位数不超过九座的载客车辆。
注:对于M1类中的多用途乘用车(定义见GB 3730.1-2001中2.1.1.8),如果同时具有定义中规定 的两个条件,则不属于M1类而根据其质量属于N1、N2、或是N3。 — 除驾驶员以外的座位数不超过6个;只要车辆具有可使用的座椅安装点,就应算“座位”存在。
铰接门 (对开门) 滑动门
11 110 N
全锁紧位置
8 8至状态时,当门锁(包括其操纵机构)在纵向或横向受 到294.2m/s2(30g)的加速度时,门锁必须保持在全锁紧位置上不得脱开; ● 门锁的设计应保证能防止车门意外打开。
四、要求
2、门铰链 — 车辆侧面铰接门的门铰链系统必须安装在车门沿汽车行驶方向的前缘;如果是对开 车门,此要求只适用于先开的那扇车门,另一扇门应能闩住。(调整) — 每套车门门铰链总成应能支承车门重量,且能承受11110N的纵向载荷和8890N的横向 载荷而不得脱开。 3、滑动门 — 当在车门的相对边上各施加一个8890N的横向向外的作用力时(总计17790N),滑 门导轨和滑门组件或其他支承部件均不得脱开。 — 试验即可在车辆上进行,也可连同车门组件在试验台上进行。
七、标准实施对福田公司的影响
1、设计上
● 对于轻客、SUV、G项目、C项目等车型应验证门锁的耐惯性力要求是否符合标准规定,
对开门、滑动门应验证其性能是否满足标准要求; ●对于皮卡、GVW≤3.5t的轻卡、微卡等产品,应校核门锁、门铰链总成的性能是否满足标 准要求; ●若校核后,门锁、门铰链、滑动门的性能不能满足标准要求,需改进设计,并下发新的 设计文件以及与配套商重新签订技术协议。 2、产品公告:

汽车门锁及门保持件的性能要求和试验方法

汽车门锁及门保持件的性能要求和试验方法

汽车门锁及门保持件的性能要求和试验方法编制说明一、 任务来源GB15086-XXXX《汽车门锁及保持件的性能要求和试验方法》是根据依据全国汽车标准化技术委员会的要求并已列入全委员会车身附件分技术委员会2008年标准制修订计划,并上报的汽车国家强制性标准, 制定工作由东风汽车公司技术中心、国家质量监督检验中心(襄樊)和中国质量认证中心武汉分中心3个单位共同参与起草,项目归口单位全标委汽车车身附件分技术委员会。

二.主要起草单位和主要起草人主要起草单位:东风汽车公司技术中心国家质量监督检验中心(襄樊)中国质量认证中心武汉分中心工作组成员:侯翠华 黄小枚 李再华三、编制原则和依据国家强制性标准《汽车门锁及保持件的性能要求和试验方法》是修改采用GTR《关于门锁和车门保持件的全球技术法规》(英文版)和ECE R11. 02系列,2007年版《关于机动车辆门锁及保持件的认证统一规定》(英文版)法规,在修改采用时,做了一些整合和修改。

编写规则执行了GB/T1.1-2009 标准。

随着全球第一个法规-----《关于门锁和车门保持件的全球法规》(以下简称全球法规)的发布,该法规成为第一项正式出台的全球统一的汽车技术法规,得到世界各国汽车厂商的认同。

我国汽车强制性标准中这一项目采用GB15086-2006《汽车门锁及门保持件的性能要求和试验方法》,该标准的原版本为GB15086-1994, 根据ECE R11的02系列修订为GB15086-2006,而全球法规是根据ECE R11和70/387/EEC, 及北美汽车门锁和车门保持件方面的技术法规制定而成的,因此GB15086-2006与全球法规没有根本性的差异。

但在某些地方,GB15086-2006存在一些与全球法规不同之处,此次修订保留了GB15086-2006原有内容,根据GTR《关于门锁和车门保持件的全球技术法规》(英文版)和ECE R11. 02系列,2007年版《关于机动车辆门锁及保持件的认证统一规定》(英文版)进行了整合,增加了一些内容 。

GTR(全球统一汽车技术法规)介绍

GTR(全球统一汽车技术法规)介绍

GTR技术法规介绍全国汽车标准化技术委员会1.GTR技术法规的制定组织和《1998年协定书》GTR法规全称为全球统一汽车技术法规,由联合国世界车辆法规协调论坛(UN/WP29)负责制定发布,WP29原为联合国欧洲经济委员会内陆运输委员会下属的车辆结构工作组,在《1958年协定书》的框架下制定并实施ECE汽车技术法规,从20世纪80年代初开始,随着经济全球化的到来,许多国家和地区的政府开始认识到各自为政的汽车技术法规体系阻碍了汽车产品在全球范围内的自由流通,限制并阻碍了商品经济规律应起的作用,于是由国际上一些汽车工业发达国家牵头,开始进行国际汽车技术法规的协调与统一的工作,以打破世界各国、各地区已形成的汽车技术法规这一贸易技术壁垒。

在当时情况下,联合国欧洲经济委员会车辆结构工作组(UN/ECE/WP29)成了开展这种世界范围内汽车技术法规协调和统一工作的主要组织。

[1]WP29于1998年6月25日制订《全球汽车技术法规协定书》,因此该协定书也就简称为《1998年协定书》。

世界各国以此协定书为法律框架,共同制修订全球统一的汽车技术法规。

该协定书在法律地位上明确原UN/ECE/WP29(联合国欧洲经济委员会车辆结构工作组)作为开展全球汽车技术法规协调和统一工作的国际组织,UN/ECE/WP29的名称随之更改为:“世界车辆法规协调论坛”(World Forum for Harmonization of Vehicle Regulations),仍简称为WP29,开始按照《全球汽车技术法规协定书》中规定的程序规则制定全球统一的汽车技术法规,到目前,《1998年协定书》的正式缔约方共计31个[2]。

历史之所以选择UN/ECE/WP29来开展全球范围内的汽车技术法规协调统一工作,其原因为:①UN/ECE/WP29成功运作《1958年协定书》,具有开展国际汽车技术法规统一工作的技术基础;②UN/ECE/WP29的广泛参与性,使其具有开展国际汽车技术法规统一工作的技术基础。

汽车门锁及车门保持件的性能要求和试验方法-Inmetro

汽车门锁及车门保持件的性能要求和试验方法-Inmetro
门 上卷门和易于安装拆卸的简易门 2.2 门锁 Door lock
锁止车门的机构 包括锁体 锁扣 或挡块 内外操纵机构和内外锁止机构 2.3 车门保持件 Door retention components
将车门与车身固定连接的零部件 包括铰接门的门铰链及滑动门的导轨或其它支承部 件 2.4 门铰链 Door hinges
车门不完全关闭时 锁体与锁扣 或挡块 所处的啮合位置 3 技术要求 3.1 一般要求 3.1.1 用于 M1 类和 N1 类汽车上供乘员进出的任一侧车门的门锁和门保持件系统 其设 计 制造和安装应遵守本标准的规定 3.1.2 每套门锁都应有一个全锁紧位置 用于铰接门的门锁 还要有一个半锁紧位置 3.1.3 没有半锁紧位置的滑动门 如果车门没有达到全锁紧位置 车门应能自动移动 到部分开启位置 且该位置便于车内乘员分辨 3.1.4 门锁的设计应能防止车门意外打开
1-锁扣(挡块)总成 2-锁体总成
3
GB15086-×××× 4.2.4.1 将锁体和锁扣安装固定在静态横向载荷试验夹具上 然后将夹具安装到拉力 试验机上并满足下列要求 见图 2 4.2.4.1.1 拉力应通过锁体和锁扣的啮合面中心 4.2.4.1.2 该拉力应沿车门开启方向横向作用在锁体和锁扣上 4.2.4.2 锁体和锁扣应处于全锁紧位置
图1 门锁-静态纵向载荷试验夹具 4.2.2 纵向载荷 全锁紧位置 4.2.2.1 将锁体和锁扣安装固定在静态纵向载荷试验夹具上 然后将夹具安装到拉力 试验机上并满足下列要求 见图 1 4.2.2.1.1 拉力应通过锁体和锁扣的啮合面中心 4.2.2.1.2 该拉力应沿车辆纵向方向作用在锁体和锁扣上 4.2.2.2 锁体和锁扣应处于全锁紧位置 4.2.2.3 沿车辆横向ห้องสมุดไป่ตู้即车门开启方向向锁体和锁扣上施加一个 890N 的重量载荷 4.2.3 横向载荷 半锁紧位置 4.2.3.1 将锁体和锁扣安装固定在静态横向载荷试验夹具上 然后将夹具安装到拉力 试验机上并满足下列要求 见图 2 4.2.3.1.1 拉力应通过锁体和锁扣的啮合面中心 4.2.3.1.2 该拉力应接近水平地沿车门开启方向横向作用在锁体和锁扣上 4.2.3.2 锁体和锁扣应处于半锁紧位置 4.2.4 横向载荷 全锁紧位置

汽车门锁及车门保持件国内外标准差异分析

汽车门锁及车门保持件国内外标准差异分析

20 04年 ,WP 9第 14次会议 表 决通过 了 G R 2 3 T
门不会 自动打 开 ,碰 撞发 生 后能 正 常开 启 ,具有 良 1 关于 门锁和车 门保持件 的全球技术法规 , 成为第 1 好 的防 盗性 能 。 汽 车 门锁 及 门铰 链 是 实现 锁 止 车 项全 球 技 术法 规 ,具 有 里程 碑 的意 义 。门锁 和车 门 门 ,将 车 门和 车 身 固定连 接 ,并 使 车 门绕 轴 线 开 闭 保持 件项 目能在 首批 l 5个 项 目中成 为 第一 个 出台 且 相 互结 合 的部件 总 成 ,其 主要 作 用是 汽车 在行 驶 的全 球技 术法 规,是 以美 国等 国家 积极推 进 19 年 98 过 程 或 停 泊 状 态 下保 证 车 门 的完 全 闭合 和 牢 固 可 协 定 书 的工 作进 程 ,促 成全 球 技术 法 规 早 日出台 的 靠 ,是关 系到 汽车 车 身整 体性 、行 驶 安 全性 和 防盗 结果 。
紧 闭 ,试 验后 每排 座 椅至 少一 个车 门可 以打开 。若
要 :介 绍 了中 、美 、欧汽 车 门锁和 车 门保 持件标准 的体系 和概 况 。从标 准体 系 、试验 项 目、
技术 要 求及试 验 方法 等方 面 ,对 中、美 、欧及 全球 技术 法规 进行 了比对分 析 。结果表 明欧美 国家 标 准体 系较 为科 学 ,对 乘 员安 全考虑 更 为周全 ,法 规较 为严 格详 细 ,我 国国家标 准及 行业 标准 均 与 国 际标 准存 在 一 定差距 ,需缩短 制 修订周 期 。
ห้องสมุดไป่ตู้
关键词 :汽车门锁 ;车门保持件 ;检测;标准比对
车 门作 为 汽车 车 身 的一个 重 要组 成 部分 ,要 满 阻碍 了汽 车企 业 的 国际化 ,因此 迫切 需要 出台全 球

汽车产品认证

汽车产品认证

京五
第Ⅴ阶段
(2013.2.1) (2018.01.01起)
DB 11-946-2013 北京五阶段
GB18352.5-2013
DB 11-946-2013 北京五阶段
GB18352.5-2013
DB 11-946-2013 北京五阶段
GB18352.5-2013
DB 11-946-2013 北京五阶段
GB18352.5-2013
DB 11-946-2013 北京五阶段
GB18352.5-2013
-
GB18352.3-2005
OBD

第Ⅲ阶段 国三带OBD:
GB18352.3-2005
DB 11-946-2013 北京五阶段
GB18352.5-2013
2008.07.01起
Ⅵ(-7度) 噪声
无 GB1495-2002
19
三、汽车3C认证 3C关键外购件
20
三、汽车3C认证 3C认证模式
为履行加入WTO时政府的承诺,国家认监委将进口汽车 管理CCIB许可证改为CCC强制性产品认证,同时要求国产车 也要进行CCC认证,实施时间从2003年5月1日所有汽车产品 必须符合CCC认证要求并通过认证,未通过认证的产品不得 生产和销售。
第六步
• 中机中心根据各厂家申报的车型的数量拟定每月申报截止日期,一般情况每月截至日期为10 日。之后中机中心将组织专家进行公告综合技术审查工作。每月25日后,企业可以从网上下 载专家审查结果。如果企业对审查结果有异议可在15日内提出申诉。申诉应以正式书面文件 的形式报中中心,并注明联系人及联系电话。
16
三、汽车3C认证 3C申报流程:
17
三、汽车3C认证 汽车3C认证具体工作过程

门锁及车门保持件的全球技术法规研究

门锁及车门保持件的全球技术法规研究

门锁及车门保持件的全球技术法规研究
丁昆;杨志清
【期刊名称】《国防技术基础》
【年(卷),期】2010(000)007
【摘要】介绍了GTR 1<关于门锁和车门保持件的全球技术法规>制定的基本情况,对比分析了GTR 1与GB 15086-2006<汽车门锁及车门保持件的性能要求和试验方法>的主要差异.
【总页数】3页(P6-8)
【作者】丁昆;杨志清
【作者单位】中国兵器工业标准化研究所;中国兵器工业标准化研究所
【正文语种】中文
【相关文献】
1.汽车门锁及车门保持件国内外标准差异分析 [J], 冯蓬
2.汽车门锁法规以及验证试验研究 [J], 卢璋
3.距离保持水平集在汽车门锁图像分割中的应用研究 [J], 王瑶;安伟;尤丽华
4.基于《汽车门锁及车门保持件的性能要求和试验方法》的相关研究 [J], 周福荣; 张蕾
5.轿车门锁锁扣连接件螺母自动焊接线的研究 [J], 钟毅
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《关于门锁和车门保持件的全球技术法规》1 范围和目的本法规规定了对车辆门锁及车门保持件的要求,包括锁体、铰链和其它支持方式,以最大限度地减少乘员由于碰撞而被甩出车外的可能性。

2 适用本法规适用于1-1类或2类车辆上用于乘员直接进出包含一个或多个座位的乘客舱的侧门或后门的门锁及车门保持件。

3术语和定义下列术语和定义适用于本法规,上述第2条所述的车辆类别,按照SR1草案中的定义,并在本法规附件5中列出。

3.1 辅助门锁(Auxiliary Door Latch):安装到已装有主门锁系统的车门或车门系统上,带有全锁紧位置的门锁。

3.2 辅助门锁系统(Auxiliary Door Latch System):至少包括一个辅助门锁和一个锁扣(或)挡块。

3.3 后门(Back Door):位于机动车辆后端的车门或车门系统,通过它乘员可以进入或离开车辆,货物可以往车辆上装卸。

它不包括如下部件:(a) 后背箱盖(b) 完全由玻璃材料组成的车门或车窗,其门锁和/或门铰链系统直接安装在玻璃材料上。

3.4 车身构件(Body Member):通常安装到车身结构上的门铰链部分。

3.5 儿童安全锁系统(Child Safety Lock System):能够独立于其它锁止装置单独啮合和开启的锁止装置,当它啮合时,能使门内侧的把手或其它开启装置无法操作。

该锁的开启/啮合装置可以是手动的或电动的,而且可以安装在车辆的任何位置。

3.6 车门关闭报警系统(Door Closure Warning System):安装在驾驶员能够清晰看到的的位置,当车门锁系统没有处于完全锁止位置,而且车辆点火已被启动时,即触发视觉信号的系统。

3.7 门铰链系统(Door Hinge System):用来支撑车门的一个或多个铰链。

3.8 门锁系统(Door Latch System):至少包括一个锁体和一个锁扣(或挡块)。

3.9 车门构件(Door Member):通常安装到车门结构上并包括回转构件的门铰链部分。

3.10 车门系统(Door System):车门、锁体、铰链、滑道的组合,以及位于车门上或位于车门框架周围的其它保持件。

双门系统包括两个门。

3.11 双门(Double Door):两门系统,前门或转动门先开启,与之相连的后门或螺栓固定的门后开启。

3.12 叉栓(Fork-bolt):锁体部分,当位于锁紧位置是它啮合并保持住锁扣(或挡块)。

3.13 叉栓开启方向(Fork-bolt Opening Direction):与锁扣(或挡块)进入锁体并与叉栓啮合相反的方向。

3.14 全锁紧位置(Fully Latched Position):锁体保持车门在完全关闭位置的联结状态。

3.15 铰链(Hinge): 用来使车门相对于车身结构定位,并针对乘员进出车辆控制车门转动路径的装置。

3.16 铰链销(Hinge Pin):铰链的一部分,通常用来连接铰链的车门构件和车身构件,并作为转动轴。

3.17 锁体(Latch):用来使车门相对于车身保持在关闭位置,并可以有意开启(或操作)的装置。

3.18 主门锁(Primary Door Latch):带有全锁紧位置和半锁紧位置门锁。

3.19 主门锁系统(Primary Door Latch System):至少包括一个主门锁和一个锁扣(或挡块)的门锁系统。

3.20 半锁紧位置(Secondary Latched Position):锁体保持车门在部分关闭位置的联结状态。

3.21 侧前门(Side Front Door):从侧面看,当驾驶员座椅靠背调节到最垂直和最靠后的位置时,车门50%或以上的开启面是位于该座椅靠背最后点的前方。

3.22 侧后门(Side Rear Door):从侧面看,当驾驶员座椅靠背调节到最垂直和最靠后的位置时,车门50%或以上的开启面是位于该座椅靠背最后点的后方。

3.23 锁扣(或挡块)(Striker):与锁体啮合,以保持车门处于全锁紧位置或半锁紧位置的部件。

3.24 行李箱盖(Trunk Lid):可活动的车身板件,作为从外面进入车辆中被永久安装的隔板或固定或向下折叠的座椅靠背完全与乘客舱隔开的空间的入口。

4.一般要求4.1 该要求适用于除折叠门、上卷门和用来作为紧急出口的可拆卸门以外所有的侧门和后门以及车门部件。

4.2 车门锁4.2.1 每个铰接式车门系统应装有至少一个主门锁系统。

4.2.2 每个滑动车门系统应至少装有如下系统之一:a)一个主门锁系统,或b)一个带有全锁紧位置及车门关闭报警系统的车门锁系统。

5.性能要求5.1 铰接式车门5.1.1 载荷试验15.1.1.1 每个主门锁系统和辅助门锁系统在全锁紧位置,当按照7。

1。

1。

1项中的规定,以与锁体面垂直且使得锁体和锁扣(或挡块)固定点之间没有互相压力的方向施加11000N的载荷时,不得分开。

5.1.1.2 主门锁系统在半锁紧位置,当按照7。

1。

1。

1项中的规定,以与5.1.1.1项相同的方向施加4500N的载荷时,不得分开。

5.1.2 载荷试验25.1.2.1 每个主门锁系统和辅助门锁系统在全锁紧位置,当按照7。

1。

1。

1项中的规定,以在叉栓(Fork-bolt)开启方向且与锁体面平行的方向施加9000N的载荷时,不得分开。

5.1.2.2 主门锁系统在半锁紧位置,当按照7。

1。

1。

1项中的规定,以与5.1.2.1项相同的方向施加4500N的载荷时,不得分开。

5.1.3 载荷试验35.1.3.1 当按照7。

1。

1。

1项中的规定,以与5.1.1.1项和5.1.2.1项中规定的方向相正交的方向对后门上的每个主门锁系统施加9000N的载荷时,主门锁系统不得从全锁紧位置脱开。

5.1.4 惯性载荷每个主门锁系统和辅助门锁系统应满足5.1.4.1或5.1.4.2项的动态要求,或者满足5.1.4.3项中的耐惯性载荷的计算要求。

5.1.4.1 当对车门锁系统,包括锁体及其促动装置,如7.1.1.2项所示,在锁紧装置脱开的情况下以与车辆纵向轴及车辆横向轴平行方向施加30g的惯性载荷,铰接式车门上的每个主门锁系统和辅助门锁系统不得从全锁紧位置脱开。

5.1.4.2 当对车门锁系统,包括锁体及其促动装置,如7.1.1.2项所示,在锁紧装置脱开的情况下以与车辆垂直轴平行方向施加30g的惯性载荷,铰接式后门上的每个主门锁系统和辅助门锁系统不得从全锁紧位置脱开。

5.1.4.3 每个部件和子系统可以通过计算求出在特定方向上的最小耐惯性载荷。

不会发生开锁操作的组合耐惯性力应保证门锁系统在正确安装到车门上时,按照7.1.1.2项所示,在承受5.1.4.1项和5.1.4.2项规定的方向上30 g的惯性载荷时,保持在锁紧位置。

5.1.5 门铰链5.1.5.1 每个门铰链系统应:a) 支持车门,b) 在11000N的纵向载荷下不分离,c) 在9000N的横向载荷下不分离,d) 仅对于后门,在9000N的垂直载荷下不分离。

5.1.5.2 在5.1.5.1项中所要求的所有试验都应按照7.1.2款进行。

5.1.5.3 如果不是对整个铰链系统进行试验,而只对铰链系统中的一个单个铰链进行实验,该铰链必须按照铰链系统中铰链的总数按比例承受载荷。

5.1.5.4 对于带有后向安装铰链并可以独立于其他车门进行操作的侧门,a) 当车辆的速度大于或等于4km/h时,内侧门把手应无法操作,并且b) 对这类车门应装有车门关闭报警系统。

5.2 滑动侧门5.2.1 载荷试验15.2.1.1 至少有一个门锁系统在全锁紧位置时,当按照7。

2。

1。

1项中的规定,以与锁体面垂直的方向施加11000N的载荷时,不得分开。

5.2.1.2 对于主门锁系统,当其处于半锁紧位置,当按照7。

2。

1。

1项中的规定,以与5.2.1.1项相同的方向施加4500N的载荷时,不得分开。

5.2.2 载荷试验25.2.2.1 至少一个门锁系统,当其处于全锁紧位置时,当按照7。

2。

1。

1项中的规定,以在叉栓(Fork-bolt)开启方向且与锁体面平行的方向施加9000N的载荷时,不得分开。

5.2.2.2 对于主门锁系统,当其处于半锁紧位置,当按照7。

2。

1。

1项中的规定,以与5.2.2.1项相同的方向施加4500N的载荷时,不得分开。

5.2.3 惯性载荷每个满足5.2.1和5.2.2款要求的车门锁系统,应满足5.2.3.1项的动态要求,或者满足5.2.3.2项中的耐惯性载荷的计算要求。

5.2.3.1 当对车门锁系统,包括锁体及其促动装置,如7.2.1.2项所示,在锁紧装置脱开的情况下以与车辆纵向轴及车辆横向轴平行方向施加30g的惯性载荷,门锁系统不得从全锁紧位置脱开。

5.2.3.2 每个部件和子系统可以通过计算求出最小耐惯性载荷。

不会发生开锁操作的组合耐惯性力应保证门锁系统在正确安装到车门上时,按照7.2.1.2项所示,在承受5.2.1项或5.2.2项规定的方向上30 g的惯性载荷时,保持在锁紧位置。

5.2.4 车门系统5.2.4.1 每个滑动门的滑道和滑座组合或其它的支持方式,处于全锁紧关闭位置时,当按照7。

2。

2 项中的规定,沿车辆横向轴方向对车门施加总量为18000N的力时,不得与门框相分离。

5.2.4.2 当按照7。

2。

2 项中的规定进行试验时,如果发生下列任何一种情况,滑动门即未能满足要求:5.2.4.2.1 当保持所要求的力时,车门内侧与门框的外边缘分离距离超过100mm;5.2.4.2.2 任何一个施力装置的总位移达到300mm。

5.3 门锁5.3.1 每个车门至少要装备一个锁止装置,当其啮合时应防止外侧门把手或其它外侧锁开启控制件的操作,该锁止装置在车内装有操作方式以及锁开启/啮合装置。

5.3.2 后侧门每个后侧门至少要装备一个锁止装置,当其啮合时应防止内侧门把手或其它内侧锁开启控制件的操作,并且要求单独的动作以打开车门及操作内侧门把手或其它内侧锁开启控制件。

5.3.2.1 各缔约方或地区经济一体化组织可自行决定,该锁止装置可以是:a) 儿童安全锁系统,或者b) 安装在车辆内,驾驶员或靠近车门乘坐的乘员容易够到的锁开启/啮合装置。

5.3.2.2 在5.3.2.1 a) 和b)中所述的任一系统应被允许作为其它的锁止功能使用。

5.3.3 后门装有内侧门把手或其它内侧锁开启控制件的后门至少要在车内装备一个锁止装置,当其啮合时应防止内侧门把手或其它内侧锁开启控制件的操作,并且要求单独的动作以打开车门及操作内侧门把手或其它内侧锁开启控制件。

6.试验条件(保留)7.试验规程7.1 铰接式车门7.1.1 车门锁7.1.1.1 载荷试验1,2和3的施力与5.1.1、5.1.2、5.1.3款的符合性如附件1所示。

相关文档
最新文档