2019-2020年高中数学 第一教时 映射教案 新人教A版必修1

合集下载

高中数学 1.2.5映射 新人教A版必修1

高中数学 1.2.5映射 新人教A版必修1

对应关系f:数轴上的点与它所代表的
实数对应; 是
(2)集合A={P|P是平面直角坐标系中的点},
集合B={(x,y) | x∈R,y∈R},
对应关系f:平面直角坐标系中的点与它的
坐标对应; 是
精选版ppt
7
例2: 以下给出的对应是不是从集合A到B的
映射?
(3)集合A={x|x是三角形},
集合B={x|x是圆},
(3)A {x | 0 x 1}, B {y | y 1},
f : x y x1;
(4)A R, B {x | x 0}, f : 求平方;
(5)A {x | x 0}, B R, f : 求平方根.
其中构成映射的是:(2)
精选版ppt
9
思 考:
你能说出函数与映射之间的异同吗?
1)函数是特殊的映射,映射不一定是函数, 映射是函数的推广;
2)2)函数是非空数集A到非空数集B的映射, 3) 而对于映射,A和B不一定是数集。
精选版ppt
10
二、象、原象的概念:
给定一个集合A到B的映射, 且a∈A,b∈B,若a与b对应, 则把元素b叫做a在B中的象, 而a叫做b的原象。
精选版ppt
精选版ppt
16
【总一总★成竹在胸】
(1) 映射三要素: 原象、象、对应法则;
(2) 取元任意性,成象唯一性;
(3) A中元素不可剩,B中元素可剩;
(4) 多对一行,一对多不行;
(5) 映射具有方向性:f : A→B与 f : B→A是不同的映射;
(6) 原象的集合为A, 象集CB.
精选版ppt
17
1
1 ②求平方
-1
2
1

【2019版新教材】高中数学A版必修第一册第一章全章节教案教学设计+课后练习及答案(名师推荐精编版)

【2019版新教材】高中数学A版必修第一册第一章全章节教案教学设计+课后练习及答案(名师推荐精编版)

【新教材】人教统编版高中数学A版必修第一册第一章教案教学设计+课后练习及答案1.1 《集合的概念》教案教材分析集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础.许多重要的数学分支,都是建立在集合理论的基础上.此外,集合理论的应用也变得更加广泛.教学目标【知识与能力目标】1.通过实例,了解集合的含义,体会元素与集合的属于关系;2.知道常用数集及其专用记号;3.了解集合中元素的确定性、互异性、无序性;4.会用集合语言表示有关数学对象;5.培养学生抽象概括的能力.【过程与方法目标】1.让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.2.让学生归纳整理本节所学知识.【情感态度价值观目标】使学生感受学习集合的必要性和重要性,增加学生对数学学习的兴趣.教学重难点【教学重点】集合的含义与表示方法.【教学难点】对待不同问题,表示法的恰当选择.课前准备学生通过预习,自主学习、思考、交流、讨论和概括,从而更好地完成本节课的教学目标.教学过程(一)创设情景,揭示课题请分析以下几个实例:1.正整数1,2,3,;2.中国古典四大名著;3.2018足球世界杯参赛队伍;4.《水浒》中梁山108 好汉;5.到线段两端距离相等的点.在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体.(二)研探新知1.集合的有关概念(1)一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集).思考:上述5 个实例能否构成集合?如果是集合,那么它的元素分别是什么?练习1:下列指定的对象,是否能构成一个集合?①很小的数②不超过30 的非负实数③直角坐标平面的横坐标与纵坐标相等的点④ 的近似值⑤高一年级优秀的学生⑥所有无理数⑦大于2 的整数⑧正三角形全体(2)关于集合的元素的特征(a)确定性:设A一个给定的集合,对于一个具体对象a,则a或者是集合A 的元素,或者不是集合 A 的元素,两种情况必有一种且只有一种成立.(b)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.一元素.(c)无序性:集合中的元素是没有顺序关系的,即只要构成两个集合的元素一样,我们称这两个集合是相等的,跟顺序无关.(3)思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题.答案:(a)把3-11内的每一个偶数作为元数,这些偶数全体就构成一个集合.(b)不能组成集合,因为组成它的元素是不确定的.( 4)元素与集合的关系;(a)如果a是集合A的元素,就说a属于(belongto) A,记作a € A(b)如果a不是集合A的元素,就说a不属于(not belong to) A,记作a A例如:A表示方程x2=1的解. 2 A, 1CA( 5)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合.(a)列举法:把集合中的元素一一列举出来,并用花括号”。

高中数学 第一教时 映射教案 新人教A版必修1

高中数学 第一教时 映射教案 新人教A版必修1

第二章函数教材:映射目的:要求学生了解映射和一一映射的概念,为今后在此基础上对函数概念的理解打下基础。

过程:一、复习:以前遇到过的有关“对应”的例子1︒看电影时,电影票与座位之间存在者一一对应的关系。

2︒对任意实数a,数轴上都有唯一的一点A与此相对应。

3︒坐标平面内任意一点A都有唯一的有序数对(x, y)和它对应。

4︒任意一个三角形,都有唯一的确定的面积与此相对应。

二、提出课题:一种特殊的对应:映射(1)(2)(3)(4)引导观察,分析以上三个实例。

注意讲清以下几点:1.先讲清对应法则:然后,根据法则,对于集合A中的每一个元素,在集合B中都有一个(或几个)元素与此相对应。

2.对应的形式:一对多(如①)、多对一(如③)、一对一(如②、④)3.映射的概念(定义):强调:两个“一”即“任一”、“唯一”。

4.注意映射是有方向性的。

5.符号:f: A B集合A到集合B的映射。

6.讲解:象与原象定义。

2︒A=N+B={0,1} 法则:B中的元素x除以2得的余数是映射3︒A=Z B=N* 法则:求绝对值不是映射(A中没有象)三、一一映射观察上面的例图(2)得出两个特点:1︒对于集合A中的不同元素,在集合B中有不同的象(单射)2︒集合B中的每一个元素都是集合A中的每一个元素的象(满射)即集合B中的每一个元素都有原象。

结论:(见P48)从而得出一一映射的定义。

例一:A={a,b,c,d} B={m,n,p,q}它是一一映射例二:P48例三:看上面的图例(2)、(3)、(4)及例1︒、2︒、4︒辨析为什么不是一一映射。

四、练习P49五、作业P49—50 习题2.1《教学与测试》P33—34第16课第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。

2、了解我国书法发展的历史。

3、掌握基本笔画的书写特点。

重点:基本笔画的书写。

难点:运笔的技法。

教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。

2019-2020学年高中数学人教A版(2019)必修第一册教师用书:2.3 二次函数与一元二次方程、不等式

2019-2020学年高中数学人教A版(2019)必修第一册教师用书:2.3 二次函数与一元二次方程、不等式

2.3二次函数与一元二次方程、不等式考点学习目标核心素养一元二次不等式的解法掌握一元二次不等式的解法数学运算三个“二次”之间的关系理解一元二次方程、一元二次不等式与二次函数的关系数学抽象一元二次不等式的实际应用会用一元二次不等式解决有关实际问题数学建模预习教材P50-P54,并思考以下问题:1.一元二次不等式的概念是什么?2.二次函数与一元二次方程、一元二次不等式的解有什么对应关系?3.求解一元二次不等式ax2+bx+c>0(a>0)的过程是什么?1.一元二次不等式(1)一般地,我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.(2)一元二次不等式的一般形式是ax2+bx+c>0或ax2+bx+c<0(其中a,b,c均为常数,a≠0)■名师点拨一元二次不等式概念中的关键词(1)一元,即只含一个未知数,其他元素均为常数(或参数).(2)二次,即未知数的最高次数必须为2,且其系数不能为0.2.二次函数的零点一般地,对于二次函数y=ax2+bx+c,我们把使ax2+bx+c=0的实数x叫做二次函数y=ax2+bx+c的零点.3.二次函数与一元二次方程、不等式的解的对应关系Δ>0Δ=0Δ<0y=ax2+bx+c(a>0)的图象ax2+bx+c=0(a>0)的根有两个不相等的实数根x1,x2(x1<x2)有两个相等的实数根x1=x2=-b2a没有实数根ax2+bx+c>0(a>0)的解集{x|x<x1,或x>x2}{x|x≠-b2a}Rax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅从两个角度看三个“二次”之间的内在联系(1)函数的角度:一元二次不等式ax2+bx+c>0表示二次函数y=ax2+bx+c的函数值大于0,图象在x轴的上方;一元二次不等式ax2+bx+c>0的解集即二次函数图象在x轴上方部分的自变量的取值范围.(2)方程的角度:一元二次不等式ax2+bx+c>0的解集的端点值是一元二次方程ax2+bx +c=0的根.4.求解一元二次不等式的过程判断正误(正确的打“√”,错误的打“×”)(1)mx2-5x<0是一元二次不等式.()(2)不等式x2-2x+3>0的解集为R.()(3)若一元二次方程ax2+bx+c=0的两根为x1,x2(x1<x2),则一元二次不等式ax2+bx +c<0的解集为{x|x1<x<x2}.()答案:(1)×(2)√(3)×不等式3x2-2x+1>0的解集为()A .⎩⎨⎧x ⎪⎪⎭⎬⎫-1<x <13 B .⎩⎨⎧x ⎪⎪⎭⎬⎫13<x <1 C .∅ D .R解析:选D.因为Δ=(-2)2-4×3×1=4-12=-8<0, 所以不等式3x 2-2x +1>0的解集为R .不等式ax 2+5x +c >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12,则a ,c 的值分别为( ) A .a =6,c =1 B .a =-6,c =-1 C .a =1,c =1D .a =-1,c =-6解析:选B.由题意知,方程ax 2+5x +c =0的两根为x 1=13,x 2=12,由根与系数的关系得x 1+x 2=13+12=-5a ,x 1x 2=13×12=ca,解得a =-6,c =-1.不等式(2x -5)(x +3)<0的解集为________. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪-3<x <52解不含参数的一元二次不等式解下列不等式: (1)2x 2+7x +3>0; (2)-4x 2+18x -814≥0;(3)-2x 2+3x -2<0; (4)-12x 2+3x -5>0.【解】 (1)因为Δ=72-4×2×3=25>0,所以方程2x 2+7x +3=0有两个不等实根x 1=-3,x 2=-12.又二次函数y =2x 2+7x +3的图象开口向上, 所以原不等式的解集为 ⎩⎨⎧⎭⎬⎫x ⎪⎪x <-3或x >-12.(2)原不等式可化为⎝⎛⎭⎫2x -922≤0, 所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x =94.(3)原不等式可化为2x 2-3x +2>0, 因为Δ=9-4×2×2=-7<0, 所以方程2x 2-3x +2=0无实根,又二次函数y =2x 2-3x +2的图象开口向上, 所以原不等式的解集为R .(4)原不等式可化为x 2-6x +10<0,Δ=(-6)2-40=-4<0,所以方程x 2-6x +10=0无实根,又二次函数y =x 2-6x +10的图象开口向上,所以原不等式的解集为∅.解不含参数的一元二次不等式的方法(1)若不等式对应的一元二次方程能够因式分解,即能够转化为几个代数式的乘积形式,则可以直接由一元二次方程的根及不等号方向得到不等式的解集.(2)若不等式对应的一元二次方程能够化为完全平方式,不论取何值,完全平方式始终大于或等于零,则不等式的解集易得.(3)若上述两种方法均不能解决,则应采用求一元二次不等式的解集的通法,即判别式法.1.不等式-2x 2+x +3<0的解集是( ) A .{x |x <-1} B.⎩⎨⎧⎭⎬⎫x ⎪⎪x >32 C.⎩⎨⎧⎭⎬⎫x ⎪⎪-1<x <32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >32 解析:选D.不等式-2x 2+x +3<0可化为2x 2-x -3>0,因为Δ=(-1)2-4×2×(-3)=25>0,所以方程2x 2-x -3=0的两根为x 1=-1,x 2=32,又二次函数y =2x 2-x -3的图象开口向上,所以不等式-2x 2+x +3<0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >32,故选D.2.解不等式:-2<x 2-3x ≤10. 解:原不等式等价于不等式组⎩⎪⎨⎪⎧x 2-3x >-2①,x 2-3x ≤10②,不等式①可化为x 2-3x +2>0,解得x >2或x <1. 不等式②可化为x 2-3x -10≤0,解得-2≤x ≤5. 故原不等式的解集为{x |-2≤x <1或2<x ≤5}.解含参数的一元二次不等式解关于x 的不等式ax 2-(a +1)x +1<0.【解】 ①当a =0时,原不等式即为-x +1<0,解得x >1. ②当a <0时,原不等式化为⎝⎛⎭⎫x -1a (x -1)>0,解得x <1a 或x >1. ③当a >0时,原不等式化为⎝⎛⎭⎫x -1a (x -1)<0. 若a =1,即1a =1时,不等式无解;若a >1,即1a <1时,解得1a <x <1;若0<a <1,即1a >1时,解得1<x <1a.综上可知,当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1a 或x >1; 当a =0时,不等式的解集为{x |x >1}; 当0<a <1时,不等式的解集为 ⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ;当a =1时,不等式的解集为∅; 当a >1时,不等式的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫1a <x <1.含参一元二次不等式的解法解关于x 的不等式x 2+x -a (a -1)>0,(a ∈R ). 解:因为关于x 的不等式x 2+x -a (a -1)>0, 所以(x +a )(x +1-a )>0,当-a >a -1,即a <12时,x <a -1或x >-a ,当a -1>-a ,即a >12时,x <-a 或x >a -1,当a -1=-a ,即a =12时,x ≠-12,所以当a <12时,原不等式的解集为{x |x <a -1或x >-a },当a >12时,原不等式的解集为{x |x <-a 或x >a -1},当a =12时,原不等式的解集为⎩⎨⎧x ⎪⎪⎭⎬⎫x ≠-12,x ∈R .三个“二次”之间的关系若关于x 的一元二次不等式ax 2+bx +c <0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或x >12,求关于x 的不等式cx 2-bx +a >0的解集.【解】 由题意知⎩⎨⎧a <0,13+12=-ba ,13×12=c a ,所以⎩⎨⎧a <0,b =-56a >0,c =16a <0,代入不等式cx 2-bx +a >0中得16ax 2+56ax +a >0(a <0).即16x 2+56x +1<0,化简得x 2+5x +6<0, 解得-3<x <-2,所以所求不等式的解集为{x |-3<x <-2}.若将本例中“⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或x >12”改为“{x |13<x <12}”,其他条件不变,如何求解? 解:由题意知⎩⎪⎨⎪⎧a >013+12=-b a 13×12=c a ,即⎩⎨⎧a >0,b =-56a <0,c =16a >0.代入不等式cx 2-bx +a >0,得16ax 2+56ax +a >0(a >0),即16x 2+56x +1>0, 化简得x 2+5x +6>0, 解得x >-2或x <-3.所以所求不等式的解集为{x |x >-2或x <-3}.三个“二次”之间的关系(1)三个“二次”中,二次函数是主体,讨论二次函数主要是将问题转化为一元二次方程和一元二次不等式的形式来研究.(2)讨论一元二次方程和一元二次不等式又要将其与相应的二次函数相联系,通过二次函数的图象及性质来解决问题,关系如下:1.若不等式(x -a )(x -b )<0的解集为{x |1<x <2},则a +b 的值为( ) A .3 B .1 C .-3D .-1解析:选A.因为不等式(x -a )(x -b )<0的解集为{x |1<x <2},所以1和2为方程(x -a )(x-b )=0的两个根,则有⎩⎪⎨⎪⎧a =1,b =2或⎩⎪⎨⎪⎧a =2,b =1.所以a +b =1+2=3,即a +b 的值为3.2.已知关于x 的不等式x 2-ax +2a >0在R 上恒成立,则实数a 的取值范围是________. 解析:因为不等式x 2-ax +2a >0在R 上恒成立. 所以Δ=(-a )2-8a <0,解得0<a <8. 答案:0<a <8一元二次不等式的实际应用某小区内有一个矩形花坛ABCD ,现将这一矩形花坛扩建成一个更大的矩形花坛AMPN ,要求点B 在AM 上,点D 在AN 上,且对角线MN 过点C ,如图所示.已知AB =3 m ,AD =2 m.要使矩形AMPN 的面积大于32 m 2,则DN 的长应在什么范围内? 【解】 设DN 的长为x (x >0)m ,则AN 的长为(x +2)m. 因为DN AN =DCAM ,所以AM =3(x +2)x ,所以S 矩形AMPN =AN ·AM =3(x +2)2x .由S 矩形AMPN >32,得3(x +2)2x >32.又x >0,得3x 2-20x +12>0, 解得0<x <23或x >6,即DN 的长的取值范围是 ⎩⎨⎧⎭⎬⎫x |0<x <23或x >6.解不等式应用题的步骤1.若产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3 000+20x -0.1x 2(0<x <240),每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是( )A .100台B .120台C .150台D .180台解析:选C.由题意知y -25x =-0.1x 2-5x +3 000≤0, 即x 2+50x -30 000≥0, 解得x ≥150或x ≤-200(舍去).2.用一根长为100 m 的绳子能围成一个面积大于600 m 2的矩形吗?若“能”,求出该矩形边长的取值范围.解:设矩形一边的长为x m ,则另一边的长为(50-x )m ,0<x <50.由题意,得x (50-x )>600,即x 2-50x +600<0,解得20<x <30.所以当矩形一边的长在(20,30)的范围内取值时,能围成一个面积大于600 m 2的矩形.1.不等式3x 2-7x +2<0的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <2 B.⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或x >2 C.⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <-13 D .{x |x >2}解析:选A.因为3x 2-7x +2=(x -2)(3x -1)<0,所以13<x <2.2.不等式(3x -2)(2-x )≥0的解集是( )A.⎩⎨⎧⎭⎬⎫x |23≤x ≤2 B.⎩⎨⎧⎭⎬⎫x |x ≥2或x ≤23C.⎩⎨⎧⎭⎬⎫x |32≤x ≤2D.⎩⎨⎧⎭⎬⎫x |-23≤x ≤2解析:选A.原不等式等价于⎝⎛⎭⎫x -23(x -2)≤0,解得23≤x ≤2,故选A. 3.要使17-6x -x 2有意义,则x 的取值范围为________.解析:要使17-6x -x 2有意义,则7-6x -x 2>0,即(x +7)(x -1)<0,所以-7<x <1. 答案:-7<x <14.某省每年损失耕地20万亩,每亩耕地价值24 000元,为了减小耕地损失,决定按耕地价格的t %征收耕地占用税,这样每年的耕地损失可减少52t 万亩,为了既减少耕地的损失又保证此项税收一年不少于9 000万元,则t 的取值范围为________.解析:由题意可列不等式如下:⎝⎛⎭⎫20-52t ·24 000·t %≥9 000⇔3≤t ≤5.答案:3≤t ≤5[A 基础达标]1.下列四个不等式: ①-x 2+x +1≥0; ②x 2-25x +5>0; ③x 2+6x +10>0; ④2x 2-3x +4<1. 其中解集为R 的是( ) A .① B .② C .③D .④解析:选C.①显然不可能;②中Δ=(-25)2-4×5>0,解集不为R ;③中Δ=62-4×10<0,满足条件;④中不等式可化为2x 2-3x +3<0,所对应的二次函数的图象开口向上,显然不可能.故选C.2.(2019·临川一中月考)不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是( )A .{a |a >4或a <-4}B .{a |-4<a <4}C .{a |a ≥4或a ≤-4}D .{a |-4≤a ≤4}解析:选A.不等式x 2+ax +4<0的解集不是空集,即不等式x 2+ax +4<0有解,所以Δ=a 2-4×1×4>0,解得a >4或a <-4.3.已知2a +1<0,则关于x 的不等式x 2-4ax -5a 2>0的解集是( )A .{x |x <5a 或x >-a }B .{x |x >5a 或x <-a }C .{x |-a <x <5a }D .{x |5a <x <-a }解析:选A.方程x 2-4ax -5a 2=0的两根为-a ,5a . 因为2a +1<0,所以a <-12,所以-a >5a .结合二次函数y =x 2-4ax -5a 2的图象,得原不等式的解集为{x |x <5a 或x >-a },故选A.4.已知不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a <0的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪-1<x <12 B.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >12 C .{x |-2<x <1}D .{x |x <-2或x >1}解析:选A.由题意知x =-1,x =2是方程ax 2+bx +2=0的根,则-1+2=-b a,-1×2=2a ,解得a =-1,b =1.所以2x 2+bx +a =2x 2+x -1<0,解得-1<x <12. 5.若不等式ax 2+8ax +21<0的解集是{x |-7<x <-1},那么a 的值是________. 解析:因为不等式ax 2+8ax +21<0的解集为{}x |-7<x <-1,所以方程ax 2+8ax +21=0的两个根为-7和-1,所以(-7)×(-1)=21a,所以a =3. 答案:36.若关于x 的不等式ax 2-6x +a 2<0的非空解集为{x |1<x <m },则m =________. 解析:因为ax 2-6x +a 2<0的解集为{x |1<x <m }.所以a >0,且1与m 是方程ax 2-6x +a 2=0的根.则⎩⎪⎨⎪⎧1+m =6a ,m =a ,即1+m =6m . 所以m 2+m -6=0,解得m =-3或m =2,当m =-3时,a =m <0(舍去),故m =2.答案:27.某商家一月份至五月份累计销售额达3 860万元,六月份的销售额为500万元,七月份的销售额比六月份增加x %,八月份的销售额比七月份增加x %,九、十月份的销售总额与七、八月份的销售总额相等,若一月份至十月份的销售总额至少为7 000万元,则x 的最小值为________.解析:由题意得七月份的销售额为500(1+x %),八月份的销售额为500(1+x %)2,所以一月份至十月份的销售总额为3 860+500+2[500(1+x %)+500(1+x %)2]≥7 000,解得1+x %≤-115(舍去)或1+x %≥65,即x %≥20%,所以x 的最小值为20. 答案:208.解下列不等式:(1)2+3x -2x 2>0;(2)x (3-x )≤x (x +2)-1;(3)x 2-2x +3>0.解:(1)原不等式可化为2x 2-3x -2<0,所以(2x +1)(x -2)<0,故原不等式的解集是⎩⎨⎧x ⎪⎪⎭⎬⎫-12<x <2. (2)原不等式可化为2x 2-x -1≥0.所以(2x +1)(x -1)≥0,故原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-12或x ≥1. (3)因为Δ=(-2)2-4×3=-8<0,故原不等式的解集是R .9.已知关于x 的不等式x 2-x -m +1>0.(1)当m =3时,解此不等式;(2)若对于任意的实数x ,此不等式恒成立,求实数m 的取值范围.解:(1)当m =3时,不等式为x 2-x -2>0,方程x 2-x -2=0的两根为2和-1, 根据函数y =x 2-x -2的图象,可知此不等式的解集为{x |x >2或x <-1}.(2)不等式x 2-x -m +1>0对任意实数x 恒成立,等价于二次函数y =x 2-x -m +1的图象在x 轴上方,即1-4(-m +1)<0,解得m <34, 所以实数m 的取值范围是m <34. [B 能力提升]10.不等式mx 2-ax -1>0(m >0)的解集可能是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >14 B .RC.⎩⎨⎧⎭⎬⎫x ⎪⎪-13<x <32 D .∅解析:选A.因为Δ=a 2+4m >0,所以函数y =mx 2-ax -1的图象与x 轴有两个交点,又m >0,所以原不等式的解集不可能是B 、C 、D 选项.11.已知A ={x |1<x <2},B ={x |x 2-2ax +a 2-1<0},若A ⊆B ,则a 的取值范围是________. 解析:方程x 2-2ax +a 2-1=0的两根为a +1,a -1,且a +1>a -1,所以B ={x |a -1<x <a +1}.因为A ⊆B ,所以⎩⎪⎨⎪⎧a -1≤1a +1≥2,解得1≤a ≤2. 答案:1≤a ≤212.对于实数x ,规定[x ]表示不大于x 的最大整数,那么不等式4[x ]2-36[x ]+45<0的解集为________.解析:由题意解得32<[x ]<152,又[x ]表示不大于x 的最大整数,所以[x ]的取值为2,3,4,5,6,7,故2≤x <8.答案:2≤x <813.解关于x 的不等式x 2+3ax -4a 2<0(a ∈R ).解:由于x 2+3ax -4a 2<0可化为(x -a )·(x +4a )<0,且方程(x -a )(x +4a )=0的两个根分别是a 和-4a .当a =-4a ,即a =0时,不等式的解集为∅;当a >-4a ,即a >0时,解不等式为-4a <x <a ;当a <-4a ,即a <0时,解不等式为a <x <-4a .综上所述,当a =0时,不等式的解集为∅;当a >0时,不等式的解集为{x |-4a <x <a };当a <0时,不等式的解集为{x |a <x <-4a }.[C 拓展探究]14.某种牌号的汽车在水泥路面上的刹车距离(刹车距离是指汽车刹车后由于惯性往前滑行的距离)s m 和汽车车速x km/h 有如下关系:s =-2x +118x 2.在一次交通事故中,测得这种车的刹车距离不小于22.5 m ,那么这辆汽车刹车前的车速至少为多少?解:由题设条件应列式为-2x +118x 2≥22.5, 移项、整理、化简得不等式x 2-36x -405≥0.因为Δ>0,所以方程x 2-36x -405=0有两个实数根x 1=-9,x 2=45,所以不等式的解为x ≤-9或x ≥45.在这个实际问题中x >0,所以这辆汽车刹车前的车速至少为45 km/h.。

人教版高中数学必修1(2019A版)教案+反思-3

人教版高中数学必修1(2019A版)教案+反思-3

【新教材】3.1.2 函数的表示法(人教A版)课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.课本将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.课程目标1、明确函数的三种表示方法;2、在实际情境中,会根据不同的需要选择恰当的方法表示函数;3、通过具体实例,了解简单的分段函数,并能简单应用.数学学科素养1.数学抽象:函数解析法及能由条件求出解析式;2.逻辑推理:由条件求函数解析式;3.数学运算:由函数解析式求值及函数解析式的计算;4.数据分析:利用图像表示函数;5.数学建模:由实际问题构建合理的函数模型。

重点:函数的三种表示方法,分段函数的概念.难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

一、 情景导入初中已经学过函数的三种表示法:列表法、图像法、解析法,那么这三种表示法定义是?优缺点是? 要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探. 二、 预习课本,引入新课阅读课本67-68页,思考并完成以下问题1.表示两个变量之间函数关系的方法有几种?分别是什么?2.函数的各种表示法各有什么特点?3.什么是分段函数?分段函数是一个还是几个函数?4.怎样求分段函数的值?如何画分段函数的图象?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

高中数学:1.2.1《映射的概念》教案(新人教A版必修1)

高中数学:1.2.1《映射的概念》教案(新人教A版必修1)

1.2.1 映射的概念教学目标: 1.知识与技能了解映射的概念,掌握象、原象等概念及其简单应用。

2.过程与方法学会用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。

3.情感、态度与价值观树立数学应用的观点,培养学习良好的思维品质。

教学重点:映射的概念。

教学难点:映射的概念。

教学过程: 一、复习引入:1、在初中我们已学过一些对应的例子:(学生思考、讨论、回答) ①看电影时,电影票与座位之间存在者一一对应的关系 ②对任意实数a ,数轴上都有唯一的一点A 与此相对应③坐标平面内任意一点A 都有唯一的有序数对(x, y)和它对应 2、函数的概念本节我们将学习一种特殊的对应—映射。

二、讲解新课:看下面的例子:设A ,B 分别是两个集合,为简明起见,设A ,B 分别是两个有限集求平方B B说明:(2)(3)(4)这三个对应的共同特点是:对于左边集合A 中的任何一个元素,在右边集合B 中都有唯一的元素和它对应映射:设A ,B 是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,这样的对应(包括集合A 、B 以及A 到B 的对应法则f )叫做集合A 到集合B 的映射 记作:B A f →:象、原象:给定一个集合A 到集合B 的映射,且B b A a ∈∈,,如果元素a 和元素b 对应,则元素b 叫做元素a 的象,元素a 叫做元素b 的原象关键字词:(学生思考、讨论、回答,教师整理、强调) ①“A 到B ”:映射是有方向的,A 到B 的映射与B 到A 的映射往往不是同一个映射,A 到B 是求平方,B 到A 则是开平方,因此映射是有序的; ②“任一”:就是说对集合A 中任何一个元素,集合B 中都有元素和它对应,这是映射的存在性;③“唯一”:对于集合A 中的任何一个元素,集合B 中都是唯一的元素和它对应,这是映射的唯一性;④“在集合B 中”:也就是说A 中元素的象必在集合B 中,这是映射的封闭性. 指出:根据定义,(2)(3)(4)这三个对应都是集合A 到集合B 的映射;注意到其中(2)(4)是一对一,(3)是多对一 思考:(1)为什么不是集合A 到集合B 的映射? 回答:对于(1),在集合A 中的每一个元素,在集合B 中都有两个元素与之相对应,因此,(1)不是集合A 到集合B 的映射思考:如果从对应来说,什么样的对应才是一个映射? 一对一,多对一是映射但一对多显然不是映射 辨析:①任意性:映射中的两个集合A,B 可以是数集、点集或由图形组成的集合等;②有序性:映射是有方向的,A 到B 的映射与B 到A 的映射往往不是同一个映射; ③存在性:映射中集合A 的每一个元素在集合B 中都有它的象; ④唯一性:映射中集合A 的任一元素在集合B 中的象是唯一的;⑤封闭性:映射中集合A 的任一元素的象都必须是B 中的元素,不要求B 中的每一个元素都有原象,即A 中元素的象集是B 的子集.映射三要素:集合A 、B 以及对应法则f ,缺一不可; 三、例题讲解例1 判断下列对应是否映射?有没有对应法则?a eb fc gd (是) (不是) 例2下列各组映射是否同一映射?a e e eb b fc c g 例3A (1)设A={1,2,3,4},B={3,4,5,6,7,8,9},对应法则12:+→x x f(2)设}1,0{,*==B N A ,对应法则得的余数除以2:x x f →(3)N A =,}2,1,0{=B ,除所得的余数被3:x x f →(4)设}41,31,21,1{},4,3,2,1{==Y X 取倒数x x f →: (5)N B N x x x A =∈>=},,2|{,的最大质数小于x x f →:四、练习:1.设A={1,2,3,4},B={3,4,5,6,7,8,9},集合A 中的元素x 按照对应法则“乘2加1”和集合B 中的元素2x+1对应.这个对应是不是映射?(是)2.设A=N*,B={0,1},集合A 中的元素x 按照对应法则“x 除以2得的余数”和集合B 中的元素对应.这个对应是不是映射?(不是(A 中没有象))3.A=Z ,B=N*,集合A 中的元素x 按照对应法则“求绝对值”和集合B 中的元素对应.这个对应是不是映射? (是)4.A={0,1,2,4},B={0,1,4,9,64},集合A 中的元素x 按照对应法则“f :a τ b=(a -1)2”和集合B 中的元素对应.这个对应是不是映射? (是)5.在从集合A 到集合B 的映射中,下列说法哪一个是正确的? (A )B 中的某一个元素b 的原象可能不止一个;(B )A 中的某一个元素a 的象可能不止一个(C )A 中的两个不同元素所对应的象必不相同; (D )B 中的两个不同元素的原象可能相同 6.下面哪一个说法正确?(A )对于任意两个集合A 与B ,都可以建立一个从集合A 到集合B 的映射 (B )对于两个无限集合A 与B ,一定不能建立一个从集合A 到集合B 的映射(C )如果集合A 中只有一个元素,B 为任一非空集合,那么从集合A 到集合B 只能建立一个映射(D )如果集合B 只有一个元素,A 为任一非空集合,则从集合A 到集合B 只能建立一个映射7.集合A=N ,B={m|m=1212+-n n ,n ∈N},f :x →y=1212+-x x ,x ∈A ,y ∈B.请计算在f 作用下,象119,1311的原象分别是多少.( 5,6 )。

高中数学映射的教案

高中数学映射的教案

高中数学映射的教案教学目标:1. 理解数学映射的概念和基本性质。

2. 掌握如何判断一个给定关系是否为映射。

3. 能够在实际问题中应用映射的概念解决问题。

教学重点:1. 映射的定义和基本性质。

2. 判断一个给定关系是否为映射。

3. 应用映射解决实际问题。

教学难点:1. 理解映射和函数的区别。

2. 能够准确地判断一个关系是否为映射。

教学准备:1. 教师备好教材、教具和课件。

2. 学生预先学习相关知识。

3. 教师准备案例题目和练习题。

教学过程:一、导入(5分钟)教师引导学生回顾函数的概念,并告诉学生今天将学习数学映射的内容。

二、讲解映射的概念和基本性质(15分钟)1. 教师讲解映射的定义和基本性质,引导学生理解映射的概念。

2. 教师通过示例说明映射的性质,让学生加深对映射的理解。

三、判断关系是否为映射(15分钟)1. 教师讲解判断一个给定关系是否为映射的方法。

2. 教师通过案例指导学生如何判断一个关系是否为映射。

四、应用映射解决实际问题(10分钟)1. 教师给出一个实际问题,引导学生运用映射的概念解决问题。

2. 学生尝试独立解决问题,教师及时给予指导和反馈。

五、课堂练习(10分钟)学生完成几道与映射相关的练习题,巩固所学知识。

六、总结(5分钟)教师对本节课的重点内容进行总结,并提醒学生对映射的概念进行复习。

七、作业布置(5分钟)布置相关习题作业,督促学生加强练习。

教学反思:本节课主要是对数学映射的基本概念和性质进行讲解,通过案例和练习引导学生深入理解映射的概念。

教学中应注意引导学生掌握映射的判定方法和应用技巧,激发学生对数学的兴趣和学习的动力。

2019-2020学年高中数学(人教A版必修一)教师用书:第1章 1.1.3 第1课时 并集、交集 Word版含解析

2019-2020学年高中数学(人教A版必修一)教师用书:第1章 1.1.3 第1课时 并集、交集 Word版含解析

第1课时 并集、交集1.理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.(重点、难点)2.能使用Venn 图表达集合的关系及运算,体会图示对理解抽象概念的作用.(难点)[基础·初探]教材整理1 并集阅读教材P 8~P 9“交集”以上部分,完成下列问题.1.并集的定义A ∪B =B ∪A ,A ∪A =A ,A ∪∅=A ,A ⊆A ∪B .判断(正确的打“√”,错误的打“×”)(1)两个集合的并集中元素的个数一定多于这两个集合中元素个数之和.( )(2){1,2,3,4}∪{0,2,3}={1,2,3,4,0,2,3}.( )(3)若A ∪B =A ,则A ⊆B .( )【解析】 (1)×.当两个集合没有公共元素时,两个集合的并集中元素的个数等于这两个集合中元素个数之和.(2)×.求两个集合的并集时,这两个集合的公共元素在并集中只能出现一次,需要满足集合中元素的互异性.(3)×.若A ∪B =A ,则应有B ⊆A .【答案】 (1)× (2)× (3)×教材整理2 交集阅读教材P 9“思考”以下~P 10“补集”以上部分,完成下列问题.1.交集的定义A ∩B =B ∩A ,A ∩A =A ,A ∩∅=∅,A ∩B ⊆A .1.设集合A ={1,2},B ={1,2,3},C ={2,3,4},则(A ∩B )∪C =( )A .{1,2,3}B .{1,2,4}C .{2,3,4}D .{1,2,3,4} 【解析】 ∵集合A ={1,2},B ={1,2,3},∴A ∩B =A ={1,2},又∵C ={2,3,4},∴(A ∩B )∪C ={1,2,3,4}.【答案】 D2.已知集合A ={x |-3≤x <4},B ={x |-2≤x ≤5},则A ∩B =( )A .{x |-3≤x ≤5}B .{x |-2≤x <4}C .{x |-2≤x ≤5}D .{x |-3≤x <4}【解析】 ∵集合A ={x |-3≤x <4},集合B ={x |-2≤x ≤5},∴A ∩B ={x |-2≤x <4},。

2019-2020学年高中数学(人教A版必修一)教师用书:第1章 1.3.2 奇偶性 Word版含解析

2019-2020学年高中数学(人教A版必修一)教师用书:第1章 1.3.2 奇偶性 Word版含解析

1.3.2奇偶性1.结合具体函数了解函数奇偶性的含义.(难点)2.会判断函数奇偶性的方法.(重点、难点)3.能运用函数图象理解和研究函数的奇偶性,了解函数奇偶性与图象的对称性之间的关系.(易混点)[基础·初探]教材整理1 偶函数阅读教材P33~P34“观察”以上部分,完成下列问题.已知函数f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.现已画出函数f(x)在y轴左侧的图象,如图1-3-4所示,请补出完整函数f(x)的图象,并根据图象写出函数f(x)的增区间.图1-3-4【解】由题意做出函数图象如下:据图可知,单调增区间为(-1,0),(1,+∞).教材整理2 奇函数阅读教材P34“观察”至P35“例5”以上部分,完成下列问题.判断(正确的打“√”,错误的打“×”)(1)对于函数y=f(x),若存在x,使f(-x)=-f(x),则函数y=f(x)一定是奇函数.( )(2)不存在既是奇函数,又是偶函数的函数.( )(3)若函数的定义域关于原点对称,则这个函数不是奇函数就是偶函数.( )【解析】(1)×.如f(x)=x2,满足f(-0)=-f(0)=0,但函数f(x)=x2不是奇函数.(2)×.存在f(x)=0,x∈R既是奇函数,又是偶函数.(3)×.函数f(x)=x2-2x,x∈R的定义域关于原点对称,但它既不是奇函数,也不是偶函数.【答案】(1)×(2)×(3)×[小组合作型]①f (x )=|x +1|-|x -1|是奇函数;②g(x )=1-x2|x +2|-2既不是奇函数也不是偶函数; ③F (x )=f (x )f (-x )(x ∈R )是偶函数;④h (x )=x2-1+1-x2既是奇函数,又是偶函数.其中正确的序号是________. 【精彩点拨】 先求函数的定义域,若定义域不关于原点对称,则既不是奇函数也不是偶函数;若关于原点对称,利用函数的奇偶性判断.【自主解答】 对于①,∵f (-x )=|-x +1|-|-x -1|=-(|x +1|-|x -1|)=-f (x ), ∴f (x )=|x +1|-|x -1|是奇函数,①正确;对于②,由1-x 2≥0,得-1≤x ≤1,∴g (x )=1-x2|x +2|-2=1-x2x +2-2=1-x2x ,满足g (-x )=-g (x ),故y =g (x )是奇函数,②错误;对于③,∵F (x )=f (x )f (-x ),∴F (-x )=f (-x )f (x )=F (x )(x ∈R ),∴F (x )=f (x )f (-x )是偶函数,③正确;对于④,由⎩⎨⎧x2-1≥0,1-x2≥0,解得x =±1,故函数h (x )的定义域为{-1,1},且h (x )=0,所以h (x )既是奇函数,又是偶函数,④正确.【答案】 ①③④定义法判断函数奇偶性的步骤[再练一题]1.下列函数中,是偶函数的有________.(填序号)【导学号:97030060】 (1)f (x )=x 3;(2)f (x )=|x |+1;(3)f (x )=1x2;(4)f(x)=x+1x;(5)f(x)=x2,x∈[-1,2].【解析】对于(1),f(-x)=-x3=-f(x),则为奇函数;对于(2),f(-x)=|-x|+1=|x|+1,则为偶函数;对于(3),定义域为{x|x≠0},关于原点对称,f(-x)=错误!=错误!=f(x),则为偶函数;对于(4),定义域为{x|x≠0},关于原点对称,f(-x)=-x-1x=-f(x),则为奇函数;对于(5),定义域为[-1,2],不关于原点对称,不具有奇偶性,则为非奇非偶函数.故为偶函数的是(2)(3).【答案】(2)(3)(1)A.12 B.23C.34D.1(2)已知f(x)=x5+ax3+bx-8且f(-2)=10,那么f(2)=________.【精彩点拨】(1)利用奇函数的定义得到f(-1)=-f(1),列出方程求出a;(2)由已知中f(x)=x5+ax3+bx-8,我们构造出函数g(x)=f(x)+8,由函数奇偶性的性质,可得g(x)为奇函数,由f(-2)=10,我们逐次求出g(-2)、g(2),可求f(2).【自主解答】(1)∵f(x)为奇函数,∴f(-1)=-f(1),∴11+a=错误!,∴1+a=3(1-a),解得a=12,故选A.(2)∵f(x)=x5+ax3+bx-8,令g(x)=f(x)+8=x5+ax3+bx,则g(x)为奇函数,∵f(-2)=10,∴g(-2)=10+8=18,∴g(2)=-18,∴f(2)=g(2)-8=-18-8=-26.【答案】(1)A (2)-261.由函数的奇偶性求参数应关注两点(1)函数奇偶性的定义既是判断函数的奇偶性的一种方法,也是在已知函数奇偶性时可以运用的一个性质,要注意函数奇偶性定义的正用和逆用.(2)利用常见函数如一次函数、反比例函数、二次函数具有奇偶性的条件也可求得参数. 2.利用函数的奇偶性求函数值时,若所给的函数不具有奇偶性,一般需利用所给的函数来构造一个奇函数或偶函数,然后利用其奇偶性求值,如本例(2)即是如此.[再练一题]2.若函数f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a ],则a =________,b =________.【解析】 由于f (x )是偶函数,由题意可知 ⎩⎨⎧a -1+2a =0,b =0, ∴a =13,b =0. 【答案】 13 0函数f (x ) 【精彩点拨】 设x <0,则-x >0,结合f (-x )=-f (x ),f (0)=0,可求f (x ).【自主解答】 设x <0,则-x >0,∴f (-x )=-x +1.∵f (x )是奇函数,∴f (-x )=-f (x ), 即-f (x )=-x +1,∴f (x )=--x -1. ∵f (x)是奇函数,∴f (0)=0,∴f (x )=⎩⎨⎧1+x ,x>0,0,x =0,--x -1,x<0.利用奇偶性求函数解析式的一般步骤1.在哪个区间上求解析式,x就设在哪个区间.2.把x对称转化到已知区间上,利用已知区间的解析式进行代入.3.利用函数的奇偶性把f(-x)改写成-f(x)或f(x),从而求出f(x).[再练一题]3.已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=x(x-2),则当x<0时,f(x)的表达式为( )A.f(x)=x(x-2) B.f(x)=x(x+2)C.f(x)=-x(x-2) D.f(x)=-x(x+2)【解析】∵函数y=f(x)是定义在R上的奇函数,∴f(-x)=-f(x).∵当x≥0时,f(x)=x(x-2),∴当x<0时,即-x>0,f(x)=-f(-x)=-[-x(-x-2)]=-x(x+2).故选D.【答案】 D[探究共研型]探究1 )上的单调性如何?如果偶函数f(x)在区间(a,b)上单调递减,那么f(x)在(-b,-a)上的单调性如何?【提示】如果奇函数f(x)在区间(a,b)上单调递增,那么f(x)在(-b,-a)上单调递增;如果偶函数f(x)在区间(a,b)上单调递减,那么f(x)在(-b,-a)上单调递增.探究2 你能否把探究1所得出的结论用一句话概括出来?【提示】奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反.探究3若偶函数f(x)在(-∞,0)上单调递增,那么f(3)和f(-2)的大小关系如何?若f(a)>f(b),你能得到什么结论?【提示】f(-2)>f(3),若f(a)>f(b),则|a|<|b|.(1)定义在R上的偶函数f(x)满足:对任意的x 1,x 2∈(-∞,0](x 1≠x 2),有(x 2-x 1)[f (x 2)-f (x 1)]>0,则当n ∈N *时,有( )A .f (-n )<f (n -1)<f (n +1)B .f (n +1)<f (-n )<f (n -1)C .f (n -1)<f (-n )<f (n +1)D .f (n +1)<f (n -1)<f (-n )(2)已知y =f (x )在定义域(-1,1)上是减函数,其图象关于原点对称,且f (1-a )+f (1-2a )<0,则a 的取值范围是________.【精彩点拨】 (1)根据条件判断函数的单调性,利用函数奇偶性和单调性之间的关系进行判断即可.(2)由于y =f (x )在定义域(-1,1)上,其图象关于原点对称,可得函数f (x )是奇函数.再利用单调性即可得出.【自主解答】 (1)∵对任意的x 1,x 2∈(-∞,0](x 1≠x 2),有(x 2-x 1)[f (x 2)-f (x 1)]>0, ∴若x 2-x 1>0,则f (x 2)-f (x 1)>0,即x 2>x 1,则f (x 2)>f (x 1),若x 2-x 1<0,则f (x 2)-f (x 1)<0,即x 2<x 1,则f (x 2)<f (x 1),则函数在(-∞,0]上为单调递增函数.又∵f (x )为定义在R 上的偶函数,∴函数f (x )在[0,+∞)上为单调递减函数,则f (n +1)<f (n )<f (n -1),即f (n +1)<f (-n )<f (n -1),故选B .(2)∵y =f (x )在定义域(-1,1)上,其图象关于原点对称,∴函数f (x )是奇函数.∵f (1-a )+f (1-2a )<0,∴f (1-a )<-f (1-2a )=f (2a -1),又y =f (x )在定义域(-1,1)上是减函数,∴1>1-a >2a -1>-1,解得0<a <23. ∴a 的取值范围是0<a <23. 【答案】 (1)B (2)⎝ ⎛⎭⎪⎫0,231.利用函数的奇偶性与单调性求参数的范围问题,要首先弄清函数在各区间上的单调性,然后利用单调性列出不等式并求解,同时不应忘记函数自身定义域对参数的影响.2.利用函数的奇偶性与单调性比较函数值的大小,关键是利用奇偶性把自变量转化到函数的一个单调区间内,然后利用单调性比较.[再练一题]4.设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是( ) 【导学号:97030062】A.f(π)>f(-3)>f(-2)B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2)D.f(π)<f(-2)<f(-3)【解析】由偶函数与单调性的关系知,若x∈[0,+∞)时,f(x)是增函数,则x∈(-∞,0)时,f(x)是减函数,故其图象的几何特征是自变量的绝对值越小,则其函数值越小,∵|-2|<|-3|<π,∴f(π)>f(-3)>f(-2),故选A.【答案】 A1.下列函数是偶函数的是( )A.f(x)=x B.f(x)=2x2-3C.f(x)=x D.f(x)=x2,x∈(-1,1]【解析】对于A,f(-x)=-x=-f(x),是奇函数;对于B,定义域为R,满足f(x)=f(-x),是偶函数;对于C和D,定义域不对称,则不是偶函数,故选B.【答案】B2.若函数f(x)=ax2+(2+a)x+1是偶函数,则函数f(x)的单调递增区间为( )A.(-∞,0] B.[0,+∞)C.(-∞,+∞) D.[1,+∞)【解析】因为函数为偶函数,所以a+2=0,a=-2,即该函数f(x)=-2x2+1,所以函数在(-∞,0]上单调递增.【答案】A3.若奇函数f(x)在[-6,-2]上是减函数,且最小值是1,则它在[2,6]上是( ) 【导学号:97030063】A.增函数且最小值是-1B.增函数且最大值是-1C.减函数且最大值是-1D.减函数且最小值是-1【解析】 ∵奇函数f (x )在[-6,-2]上是减函数,且最小值是1,∴函数f (x )在[2,6]上是减函数且最大值是-1.【答案】 C4.如图1-3-5,已知偶函数f (x )的定义域为{x |x ≠0},且f (3)=0,则不等式f (x )<0的解集为________.图1-3-5【解析】 画出函数f (x )在R 上的简图,如图所示.数形结合可得不等式f (x )<0的解集为(-3,0)∪(0,3). 【答案】 (-3,0)∪(0,3)5.设函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=2x 2-x . (1)求f (x )的表达式; (2)画出f (x )的图象.【解】 (1)当x =0时,f (-0)=-f (0),则f (0)=0;当x <0时,即-x >0,函数f (x )是奇函数,则f (x )=-f (-x )=-[2(-x )2-(-x )]=-(2x 2+x )=-2x 2-x .综上所述,f (x )=⎩⎨⎧2x2-x ,x>0,0,x =0,-2x2-x ,x<0.(2)函数f (x )的图象如图所示.。

2019-2020学年人教a版数学必修1课件:1.2.2 第2课时分段函数与映射

2019-2020学年人教a版数学必修1课件:1.2.2 第2课时分段函数与映射

(n∈N*,n≥3).
求 f(3),f(4),f[f(4)]的值. 【解析】由题意可知 f(1)=1,f(2)=2,则
f(3)=f(2)+f(1)=2+1=3,
f(4)=f(3)+f(2)=3+2=5,
f[f(4)]=f(5)=f(4)+f(3)=5+3=8.
分段函数的图象及应用 【例 2】已知函数 f(x)=1+|x|-2 x(-2<x≤2). (1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域. 【 解 题 探 究 】 讨论x的取值范围 → 化简fx的解析式
•1.2 函数及其表示
1.2.2 函数的表示法
第2课时 分段函数与映射
目标定位
1.掌握简单的分段函数, 并能简单应用. 2.了解映射概念及它与函 数的联系.
重点难点
重点:分段函数的应用及 映射的判断. 难点:分段函数的应用.
• 1.分段函数
• 在函数的定义域内,对于自变量x的不同取值区间, 有 数着. 不对应同关的系_________,这样的函数通常叫做分段函
2a=4a,所以a=2.
• 5.某单位为鼓励职工节约用水,作出了如下规定: 每位职工每月用水不超过10立方米的,按每立方米 m元收费;用水超过10立方米的,超过部分按每立 方米2m元收费.某职工某月缴水费16m元,求该职 工这个月实际用水量.
【解析】该单位职工每月应缴水费y与实际用水量x满足的
关系式为y=m2mx,x-0≤ 10xm≤,1x0>,10.
映射的概念及应用
• 【例3】判断下列对应是不是从集合A到集合B的映 射.
• (1)A=N*,B=N*,对应关系f:x→|x-3|; • (2)A={平面内的圆},B={平面内的矩形},对应关

人教版高中数学必修1(2019A版)教案+反思-2

人教版高中数学必修1(2019A版)教案+反思-2

第二章 一元二次函数、方程和不等式2.1等式性质与不等式性质(共2课时)(第1课时)本节内容是《普通高中课程标准实验教科书》(人民教育出版社A 版教材)高中数学必修5第三章第一节不等关系与不等式第2课时的内容,主要讲解不等关系及不等式的性质及其运用;现实世界和日常生活中存在着大量的不等关系,数学中,我们用不等式来表示不等关系。

不等式的性质是解决不等式问题的基本依据,凡是不等式的变形、运算都要严格按照不等式的性质进行。

因此,不等式的性质是学习本章后续内容和选修4-5不等式选讲的重要保障;本节通过类比等式的性质,猜想并证明不等式的性质,并用不等式的性质证明简单的不等式,是体会化归与转化,类比等数学思想,和培养学生数学运算能力,逻辑推理能力的良好素材。

在高中数学中,不等式的地位不仅特殊,而且重要,它与高中数学几乎所有章节都有联系,尤其与函数、方程等联系紧密,因此,不等式才成为高考中经久不衰的热点、重点,有时也是难点.1.教学重点:将不等关系用不等式表示出来,用作差法比较两个式子大小;2.教学难点: 在实际情景中建立不等式(组),准确用作差法比较大小;多媒体教学过程教学设计意图核心素养目标一、情景引入,温故知新(一)、情境导学1.购买火车票有一项规定:随同成人旅行,身高超过1.1 m(含1.1 m)而不超过1.5 m的儿童,享受半价客票、加快票和空调票(简称儿童票),超1.5m时应买全价票.每一成人旅客可免费携带一名身高不足1.1米的儿童,超过一名时,超过的人数应买儿童票.从数学的角度,应如何理解和表示“不超过”“超过”呢?2.展示新闻报道:明天白天广州的最低温度为18℃,白天最高温度为30℃。

师:明天白天广州的温度t℃满足怎样的不等关系?生:t大于或等于18小于或等于30老师引出课题板书:不等关系与不等式师:常见的不等号有?生:大于(>),小于(<),大于或等于(≥),小于或等于(≤),不等于(≠)。

2020年秋【新教材】人教A版高中数学必修第一册数学教学计划

2020年秋【新教材】人教A版高中数学必修第一册数学教学计划

2020年秋【新教材】人教A版高中数学必修第一册数学教学计划【新教材】人教【新教材】人教A版高中数学必修第一册数学教学计划版高中数学必修第一册数学教学计划数学是一切自然科学的基础,没有数学,其他自然科学的发展也无从谈起,函数与方程是中学数学的重要内容,是衔接初等数学与高等数学的纽带,再加上函数与方程还是中学数学四大数学思想之一,是具体事例与抽象思想相结合的体现,在教学过程中,我采用了自主探究教学法。

通过教学情境的设置,让学生由特殊到一般,有熟悉到陌生,让学生从现象中发现本质,以此激发学生的成就感,激发学生的学习兴趣和学习热情。

在现实生活中函数与方程都有着分重要的应用,因此本册的函数与方程在整个高中数学教学中占有非常重要的地位。

一.教学指导思想一.教学指导思想这一学期,我将准确把握教学大纲的各项基本要求,严格遵守教师法,职业教育法,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。

针对学生实际,研究职高学生的实际学习情况,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识.基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。

我将严格遵守学校的各项规章制度.服从高一年级的安排,尽自己的最大努力,力争建设愉悦课堂,完成自己的教学工作。

二.学生情况分析二.学生情况分析本学期担任高一1班.高一2班的数学教学工作,通过对中考成绩的分析,我对这两个班的学习能力有了较好的认识,学习成绩参差不齐,有两极分化现象。

部分学生缺乏热情,学习习惯不好,学生学习动机不明确,这给教学工作带来了一定的难度,课堂上能听讲,但是课后不归纳总结,不做题,学习效率低。

另外,高中数学知识难度大,学生基础差,导致学生兴趣下降。

学生意志薄弱,耐挫力差。

许多学生意志不坚定,因此很多学生坚持性差,意志薄弱,一旦碰到困难便打退堂鼓,害怕去学.去动脑,长期下去,便产生厌学情绪。

三.教材分析三.教材分析1.教学要求1理解任意角的概念.弧度的意义;能正确地进行弧度与角度的换算.2掌握任意角的正弦.余弦.正切的定义.并会利用与单位圆有关的三角函数线表示正弦.余弦和正切;了解任意角的余切.正割.余割的定义;掌握同角三角函数的基本关系式,掌握正弦.余弦的诱导公式.3掌握两角和与两角差的正弦.余弦.正切公式;掌握二倍角的正弦.余弦.正切公式;通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力4能正确运用三角公式,进行简单三角函数式的化简.求值及恒等式证明包括引出半角.积化和差.和差化积公式,但不要求记忆.5会用与单位圆有关的三角函数线画正弦函数.正切函数的图象.并在此基础上由诱导公式画出余弦函数的图象;了解周期函数与最小正周期的意义。

2019-2020学年高一数学人教A版(2019)必修一教案:第二章一元二次函数、方程和不等式等式性质与不等式性质

2019-2020学年高一数学人教A版(2019)必修一教案:第二章一元二次函数、方程和不等式等式性质与不等式性质

第二章一元二次函数、方程和不等式2.1等式性质与不等式性质教学设计学过程二.知识探究【师】某钢铁厂要把长度为4000mm的钢管截成500mum和600mm两种,按照生产的要求,600mm钢管的数量不能超过500mm钢管的3倍.怎样写出满足上述所有不等关系的不等式呢?分析:假设截得500mm的钢管x根,截得600mm的钢管y根.根据题意,应有如下的不等关系:归纳小结:数运算性质与大小顺序之间的关系2比较两个实数a,b大小的方法;(1)作差a-b-—变形—与0比较—得出结论,1.(2)作商ab———变形-一与1比较一得出结论(作商的前提是两个数同号)三、典例分析:试比较下列各组数的大小,其中x R∈(1)61x+与42x x+61x+42()x x-+6421x x x=--+422(1)(1)x x x=---24(1)(1)x x=--222(1)(1)x x=-+当1x=±时, 61x+42()x x=+;当1x≠±,61x+42()x x>+.(2) a ba b与b aa b(1)解得两种钢管的总长度不能超过4000mm;(2)截得600mm钢管的数量不能超过500mm钢管数量的3倍;(3)解得两钟钢管的数量都不能为负.1.由以上不等关系,可得不等式组:学生分组讨论自主探究,教师巡视指导,作出评价。

培养学生分析,抽象能力、感受不等式发现和推导过程。

引导学生共同分析解决问题,熟悉并强化理解。

分析:设该班共有x 人,这笔开学费用共y 元,则⎪⎪⎩⎪⎪⎨⎧∈=-=-.,4011,10,8412*N x y x y x y x <.引导学生学会自己总结,让学生进一步体会知识的形成、发展、完善的过程.板书设计等式性质与不等式性质引入知识探究方法归纳不等式和基本性质典例分析小结课堂练习。

人教版高中数学必修1(2019A版)教案+反思-1

人教版高中数学必修1(2019A版)教案+反思-1

第一章集合与常用逻辑用语1.4充分条件与必要条件本课是高中数学第一章第4节,充要条件是中学数学中最重要的数学概念之一,它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的数学学习特别是数学推理的学习打下基础。

从学生学习的角度看,与旧教材相比,教学时间的前置,造成学生在学习充要条件这一概念时的知识储备不够丰富,逻辑思维能力的训练不够充分,这也为教师的教学带来一定的困难.“充要条件”这一节介绍了充分条件,必要条件和充要条件三个概念,由于这些概念比较抽象,中学生不易理解,用它们去解决具体问题则更为困难,因此”充要条件”的教学成为中学数学的难点之一,而必要条件的定义又是本节内容的难点.课程目标学科素养1.教学重点:理解充分条件、必要条件、充要条件的意义,掌握命题条件的充要性判断及其证明方法;2.教学难点:命题条件充要性的判断及其证明。

多媒体一、情景引入,温故知新情景1:如图所示电路中(整个电路及灯泡一切正常), 记p:闭合开关A, q:灯泡亮。

请把这个电路图改写为“若p ,则q ”形式的命题并判断真假。

【答案】真命题情景2:记p:x >2, q:x >0 。

判断命题“若x >2 ,则 x >0”的真假。

【答案】真命题 二、探索新知探究一 充分条件与必要条件的含义 1.思考:下列“若P ,则q ”形式的命题中,哪些是真命题?哪些是假命题?(1)若平行四边形的对角线互相垂直,则这个平行四边形是菱形; (2)若两个三角形的周长相等,则这两个三角形全等;(3)若2430,1;x x x -+==则(4)若平面内两条直线a 和b 均垂直于直线l ,则a//b 。

【答案】(1)真 (2)假 (3) 假 (4)真2、归纳新知 (1)充分条件、必要条件的含义一般地,用p 、q 分别表示两个命题,如果命题p 成立,可以推出命题q 也成立,即p q ⇒,那么p 叫做q 的充分条件, p 叫做q 的必要条件.P 足以导致q,也就是说条件p 充分了;的一个充分条件。

2019-2020学年高中数学(人教A版必修一)教师用书:第2章 2.3 幂函数 Word版含解析

2019-2020学年高中数学(人教A版必修一)教师用书:第2章 2.3 幂函数 Word版含解析

2.3 幂函数1.通过实例了解幂函数的概念,能区别幂函数与指数函数.(易混点)2.结合函数y =x ,y =x 2,y =x 3,y =x 12,y =x -1的图象,了解它们的变化情况.(难点) 3.能够运用幂函数的简单性质进行实数大小的比较.(重点)[基础·初探]教材整理1 幂函数的概念阅读教材P 77至倒数第二自然段,完成下列问题.幂函数:一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数.判断(正确的打“√”,错误的打“×”) (1)函数y =x-45是幂函数.()(2)函数y =2-x 是幂函数.( ) (3)函数y =-x 12是幂函数.( ) 【解析】 (1)√.函数y =x -45符合幂函数的定义,所以是幂函数;(2)×.幂函数中自变量x 是底数,而不是指数,所以y =2-x 不是幂函数; (3)×.幂函数中x α的系数必须为1,所以y =-x 12不是幂函数. 【答案】 (1)√ (2)× (3)× 教材整理2 幂函数的图象与性质阅读教材P 77倒数第二自然段至P 78“例1”以上部分,完成下列问题.幂函数的图象与性质:幂函数的图象过点(3, 3),则它的单调递增区间是( ) A .[-1,+∞) B .[0,+∞) C .(-∞,+∞)D .(-∞,0)【解析】 设幂函数为f (x )=x α,因为幂函数的图象过点(3, 3),所以f (3)=3α=3=312,解得α=12,所以f (x )=x 12,所以幂函数的单调递增区间为[0,+∞),故选B.【答案】 B[小组合作型](1)在函数y =x -( ) A .0B .1C .2D .3(2)已知幂函数y =f (x )的图象过点(2, 2),则f (9)=________.(3)幂函数f (x )=(m 2-2m -2)xm +12m 2在(0,+∞)上是减函数,则m =________. 【精彩点拨】 (1)结合幂函数y =x α的定义判断.(2)由幂函数的定义设出解析式,代入点的坐标,求出幂函数的解析式,再求f (9)的值. (3)利用幂函数的概念可得到关于m 的关系式,解之即可.【自主解答】 (1)根据幂函数定义可知,只有y =x -2是幂函数,所以选B .(2)由题意,令y =f (x )=x α,由于图象过点(2,2),得2=2α,α=12,∴y =f (x )=x 12,∴f (9)=3.(3)∵f (x )=(m 2-2m -2)xm +12m 2在(0,+∞)上是减函数, ∴⎩⎪⎨⎪⎧m2-2m -2=1,12m2+m<0,∴m =-1.【答案】 (1)B (2)3 (3)-1判断一个函数是否为幂函数的依据是该函数是否为y =x α(α为常数)的形式,即:(1)指数为常数,(2)底数为自变量,(3)底数系数为1.[再练一题]1.若函数f (x )是幂函数,且满足f (4)=3f (2),则f ⎝ ⎛⎭⎪⎫12的值等于________.【导学号:97030116】【解析】 设f (x )=x α,因为f (4)=3f (2),∴4α=3×2α,解得α=log 23,∴f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫12log 23=13.【答案】 13(1)如图2-3-1所示,图中的曲线是幂函数y =x n 在第一象限的图象,已知n 取±2,±12四个值,则相应于C 1,C 2,C 3,C 4的n 依次为( )图2-3-1A .-2,-12,12,2 B .2,12,-12,-2 C .-12,-2,2,12 D .2,12,-2,-12(2)已知幂函数y =x 3m -9(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上单调递减,求满足(a +3)-m 5<(5-2a )-m5的a 的取值范围.【精彩点拨】 (1)根据幂函数的图象特征与性质确定相应的函数图象;(2)先利用幂函数的定义、奇偶性、单调性确定m 的值,再利用幂函数的单调性求解关于a 的不等式.【自主解答】 (1)根据幂函数y =x n 的性质,在第一象限内的图象当n >0时,n 越大,y =x n 递增速度越快,故C 1的n =2,C 2的n =12,当n <0时,|n |越大,曲线越陡峭,所以曲线C 3的n =-12,曲线C 4的n =-2,故选B.【答案】 B(2)因为函数在(0,+∞)上单调递减,所以3m -9<0,解得m<3,又m ∈N *,所以m =1,2. 因为函数的图象关于y 轴对称,所以3m -9为偶数,故m =1,则原不等式可化为(a +3)-15<(5-2a )-15.因为y =x -15在(-∞,0),(0,+∞)上单调递减,所以a +3>5-2a >0或5-2a <a +3<0或a +3<0<5-2a ,解得23<a <52或a <-3.解决幂函数图象问题应把握的两个原则1.依据图象高低判断幂指数大小,相关结论为:在(0,1)上,指数越大,幂函数图象越靠近x 轴(简记为指大图低);在(1,+∞)上,指数越大,幂函数图象越远离x 轴(简记为指大图高).2.依据图象确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图象(类似于y =x -1或y =x 12或y =x 3)来判断.[再练一题]2.点(2,2)与点⎝ ⎛⎭⎪⎫-2,-12分别在幂函数f (x ),g (x )的图象上,问当x 为何值时,有:(1)f (x )>g (x );(2)f (x )=g (x );(3)f (x )<g (x ).【解】 设f (x )=x α,g (x )=x β.∵(2)α=2,(-2)β=-12,∴α=2,β=-1. ∴f (x )=x 2,g (x )=x -1.分别作出它们的图象,如图所示.由图象知, (1)当x ∈(-∞,0)∪(1,+∞)时,f (x )>g (x ); (2)当x =1时,f (x )=g (x ); (3)当x ∈(0,1)时,f (x )<g (x ). [探究共研型]探究1 幂函数y =x 【提示】 当α>0时,幂函数y =x α在(0,+∞)上单调递增;当α<0时,幂函数y =x α在(0,+∞)上单调递减.探究2 23.1和23.2可以看作哪一个函数的两个函数值?二者的大小关系如何?【提示】 23.1和23.2可以看作函数f (x )=2x 的两个函数值,因为函数f (x )=2x 单调递增,所以23.1<23.2.探究3 2.3-0.2和2.2-0.2可以看作哪一个函数的两个函数值?二者的大小关系如何? 【提示】 2.3-0.2和2.2-0.2可以看作幂函数f (x )=x -0.2的两个函数值,因为函数f (x )=x -0.2在(0,+∞)上单调递减,所以2.3-0.2<2.2-0.2.比较下列各组中幂值的大小. (1)30.8,30.7;(2)0.213,0.233;(3)212,1.813;(4)1.212,0.9-12,1.1.【精彩点拨】 构造幂函数或指数函数,借助其单调性求解. 【自主解答】 (1)∵函数y =3x 是增函数,且0.8>0.7,∴30.8>30.7. (2)∵函数y =x 3是增函数,且0.21<0.23,∴0.213<0.233. (3)∵函数y =x 12是增函数,且2>1.8,∴212>1.812. 又∵y =1.8x 是增函数,且12>13, ∴1.812>1.813,∴212>1.813.(4)0.9-12=⎝ ⎛⎭⎪⎫10912,1.1=1.112.∵1.2>109>1.1,且y =x 12在[0,+∞)上单调递增, ∴1.212>⎝ ⎛⎭⎪⎫10912>1.112,即1.212>0.9-12> 1.1.比较幂的大小的关键是弄清底数与指数是否相同.若底数相同,则利用指数函数的单调性比较大小;若指数相同,则利用幂函数的单调性比较大小;若底数、指数均不同,则考虑用中间值法比较大小,这里的中间值可以是“0”或“1”,也可以是如例3(3)中的1.812.[再练一题]3.比较下列各组数的大小. 【导学号:97030117】【解】 (1)因为函数y =x -52在(0,+∞)上为减函数.又3<3.1,所以3-52>3.1-52.1.已知幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫4,12,则f (2)=( ) A.14 B .4 C.22D. 2【解析】 设幂函数为y =x α.∵幂函数的图象经过点⎝ ⎛⎭⎪⎫4,12,∴12=4α,∴α=-12,∴y =x -12,∴f (2)=2-12=22,故选C.【答案】 C2.下列函数中,其定义域和值域不同的函数是( )【导学号:97030118】A .y =x 13 B .y =x -12 C .y =x 53D .y =x 23【解析】 A 中定义域和值域都是R ;B 中定义域和值域都是(0,+∞);C 中定义域和值域都是R ;D 中定义域为R ,值域为[0,+∞).【答案】 D3.设a ∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x a 的定义域是R ,且为奇函数的所有a 的值是( )A .1,3B .-1,1C .-1,3D .-1,1,3【解析】 当a =-1时,y =x -1的定义域是{x |x ≠0},且为奇函数;当a =1时,函数y =x 的定义域是R ,且为奇函数;当a =12时,函数y =x 12的定义域是{x |x ≥0},且为非奇非偶函数;当a =3时,函数y =x 3的定义域是R 且为奇函数.故选A.【答案】 A4.函数y =x 13的图象是( )【解析】 显然函数y =x 13是奇函数.同时当0<x <1时,x 13>x ,当x >1时,x 13<x . 【答案】 B5.比较下列各组数的大小:【解】 (1) ,函数y =在(0,+∞)上为增函数,又18>19,则从而因为函数在(0,+∞)上为减函数,又46>π6,所以。

2019-2020学年新人教A版必修一 基本不等式及其应用 教案

2019-2020学年新人教A版必修一       基本不等式及其应用   教案

1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +a b≥2(a ,b 同号). (3)ab ≤⎝ ⎛⎭⎪⎫a +b 22 (a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大)概念方法微思考1.若两个正数的和为定值,则这两个正数的积一定有最大值吗?提示 不一定.若这两个正数能相等,则这两个数的积一定有最大值;若这两个正数不相等,则这两个正数的积无最大值. 2.函数y =x +1x的最小值是2吗?提示 不是.因为函数y =x +1x 的定义域是{x |x ≠0},当x <0时,y <0,所以函数y =x +1x无最小值.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数f (x )=cos x +4cos x ,x ∈⎝ ⎛⎭⎪⎫0,π2的最小值等于4.( × )(2)“x >0且y >0”是“x y +y x≥2”的充要条件.( × ) (3)(a +b )2≥4ab (a ,b ∈R ).( √ ) (4)若a >0,则a 3+1a2的最小值为2a .( × )(5)不等式a 2+b 2≥2ab 与a +b2≥ab 有相同的成立条件.( × )(6)两个正数的等差中项不小于它们的等比中项.( √ ) 题组二 教材改编2.设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80B .77C .81D .82 答案 C解析 ∵x >0,y >0,∴x +y2≥xy ,即xy ≤⎝⎛⎭⎪⎫x +y 22=81,当且仅当x =y =9时,(xy )max=81.3.若把总长为20m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________m 2. 答案 25解析 设矩形的一边为x m ,面积为y m 2,则另一边为12×(20-2x )=(10-x )m ,其中0<x <10,∴y =x (10-x )≤⎣⎢⎡⎦⎥⎤x +(10-x )22=25,当且仅当x =10-x ,即x =5时,y max =25. 题组三 易错自纠4.“x >0”是“x +1x≥2成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 当x >0时,x +1x≥2x ·1x =2.因为x ,1x同号,所以若x +1x≥2,则x >0,1x>0,所以“x >0”是“x +1x≥2成立”的充要条件,故选C.5.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( ) A .1+2B .1+3C .3D .4 答案 C解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3,故选C. 6.若正数x ,y 满足3x +y =5xy ,则4x +3y 的最小值是( ) A .2B .3C .4D .5 答案 D解析 由3x +y =5xy ,得3x +y xy =3y +1x=5,所以4x +3y =(4x +3y )·15⎝ ⎛⎭⎪⎫3y +1x=15⎝⎛⎭⎪⎫4+9+3y x +12x y≥15(4+9+236)=5, 当且仅当3y x =12xy,即y =2x 时,“=”成立,故4x +3y 的最小值为5.故选D.题型一 利用基本不等式求最值 命题点1 配凑法例1(1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________. 答案 23解析 x (4-3x )=13·(3x )(4-3x )≤13·⎣⎢⎡⎦⎥⎤3x +(4-3x )22=43, 当且仅当3x =4-3x ,即x =23时,取等号.(2)函数y =x 2+2x -1(x >1)的最小值为________.答案 23+2解析 ∵x >1,∴x -1>0,∴y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2. 当且仅当x -1=3x -1,即x =3+1时,等号成立. 命题点2 常数代换法例2(2019·大连模拟)已知首项与公比相等的等比数列{a n }中,满足a m a 2n =a 24(m ,n ∈N *),则2m +1n的最小值为( )A .1B.32C .2D.92答案 A解析 由题意可得,a 1=q , ∵a m a 2n =a 24, ∴a 1·qm -1·(a 1·qn -1)2=(a 1·q 3)2,即q m·q 2n=q 8, 即m +2n =8.∴2m +1n =(m +2n )⎝ ⎛⎭⎪⎫2m +1n ×18=⎝ ⎛⎭⎪⎫2+m n +4n m +2×18≥()4+24×18=1.当且仅当m =2n 时,即m =4,n =2时,等号成立. 命题点3 消元法例3已知正实数a ,b 满足a 2-b +4≤0,则u =2a +3b a +b ( )A .有最大值145B .有最小值145C .有最小值3D .有最大值3答案 B解析 ∵a 2-b +4≤0,∴b ≥a 2+4, ∴a +b ≥a 2+a +4.又∵a ,b >0,∴aa +b ≤aa 2+a +4,∴-aa +b≥-aa 2+a +4,∴u =2a +3b a +b =3-a a +b ≥3-a a 2+a +4=3-1a +4a+1≥3-12a ·4a+1=145, 当且仅当a =2,b =8时取等号.故选B.思维升华 (1)前提:“一正”“二定”“三相等”.(2)要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式. (3)条件最值的求解通常有三种方法:一是消元法;二是将条件灵活变形,利用常数“1”代换的方法;三是配凑法.跟踪训练1(1)(2019·四平质检)设x >0,y >0,若x lg2,lg 2,y lg2成等差数列,则1x +9y的最小值为( ) A .8B .9C .12D .16 答案 D解析 ∵x lg2,lg 2,y lg2成等差数列, ∴2lg 2=(x +y )lg2,∴x +y =1. ∴1x +9y=(x +y )⎝ ⎛⎭⎪⎫1x +9y ≥10+2y x ·9xy=10+6=16, 当且仅当x =14,y =34时取等号,故1x +9y的最小值为16.故选D.(2)若a ,b ,c 都是正数,且a +b +c =2,则4a +1+1b +c的最小值是( ) A .2B .3C .4D .6 答案 B解析 ∵a ,b ,c 都是正数,且a +b +c =2, ∴a +b +c +1=3, 且a +1>0,b +c >0. ∴4a +1+1b +c =13·(a +1+b +c )·⎝ ⎛⎭⎪⎫4a +1+1b +c=13⎣⎢⎡⎦⎥⎤5+4(b +c )a +1+a +1b +c ≥13(5+4)=3. 当且仅当a +1=2(b +c ),即a =1,b +c =1时,等号成立.故选B. 题型二 基本不等式的综合应用命题点1 基本不等式与其他知识交汇的最值问题例4(2018·重庆诊断)已知圆O 的方程为x 2+y 2=1,过第一象限内圆O 外的点P (a ,b )作圆O 的两条切线PA ,PB ,切点分别为A ,B ,若PO →·PA →=8,则a +b 的最大值为( )A .3B .3 2C .4 2D .6答案 B解析 根据题意,结合向量数量积的定义式, 可求得PO →·PA →=|PA →|2=8,所以可求得|PO |2=9, 即a 2+b 2=9,结合基本不等式, 可得a +b ≤2(a 2+b 2)=32, 当且仅当a =b =322时取等号,故选B.命题点2 求参数值或取值范围例5(2018·中山模拟)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a的最小值为( ) A .2 B .4 C .6 D .8答案 B解析 已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,只要求(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值大于或等于9, ∵1+a +y x +axy≥a +2a +1, 当且仅当y =ax 时,等号成立, ∴a +2a +1≥9,∴a ≥2或a ≤-4(舍去),∴a ≥4, 即正实数a 的最小值为4,故选B.思维升华求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.跟踪训练2(1)在△ABC 中,A =π6,△ABC 的面积为2,则2sin C sin C +2sin B +sin Bsin C 的最小值为( )A.32B.334C.32D.53答案 C解析 由△ABC 的面积为2,所以S =12bc sin A =12bc sin π6=2,得bc =8,在△ABC 中,由正弦定理得 2sin C sin C +2sin B +sin B sin C =2c c +2b +bc=2cb b (c +2b )+b 2bc=168+2b 2+b 28=84+b 2+b 2+48-12 ≥284+b 2·b 2+48-12=2-12=32, 当且仅当b =2,c =4时,等号成立,故选C.(2)已知函数f (x )=ax 2+bx (a >0,b >0)的图象在点(1,f (1))处的切线的斜率为2,则8a +b ab的最小值是( ) A .10 B .9 C .8 D .3 2答案 B解析 由函数f (x )=ax 2+bx ,得f ′(x )=2ax +b , 由函数f (x )的图象在点(1,f (1))处的切线斜率为2, 所以f ′(1)=2a +b =2,所以8a +b ab =1a +8b =12⎝ ⎛⎭⎪⎫1a +8b (2a +b )=12⎝⎛⎭⎪⎫10+b a +16a b ≥12⎝ ⎛⎭⎪⎫10+2b a ·16a b =12(10+8)=9,当且仅当b a =16a b ,即a =13,b =43时等号成立, 所以8a +bab的最小值为9,故选B.利用基本不等式求解实际问题数学建模是对现实问题进行数学抽象,用数学的语言表达问题,用数学的方法构建模型解决问题.过程主要包括:在实际情景中从数学的视角发现问题、提出问题、分析问题、建立模型、确定参数、计算求解、检验结果、改进模型,最终解决实际问题.例某厂家拟在2019年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足x =3-km +1(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2019年生产该产品的固定投入为8万元.每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2019年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2019年的促销费用投入多少万元时,厂家的利润最大? 解 (1)由题意知,当m =0时,x =1, ∴1=3-k ⇒k =2, ∴x =3-2m +1, 每万件产品的销售价格为1.5×8+16xx(万元),∴2019年的利润y =1.5x ×8+16xx-8-16x -m=4+8x -m =4+8⎝⎛⎭⎪⎫3-2m +1-m =-⎣⎢⎡⎦⎥⎤16m +1+(m +1)+29(m ≥0). (2)∵m ≥0时,16m +1+(m +1)≥216=8, ∴y ≤-8+29=21, 当且仅当16m +1=m +1⇒m =3(万元)时, y max =21(万元).故该厂家2019年的促销费用投入3万元时,厂家的利润最大为21万元.素养提升 利用基本不等式求解实际问题时根据实际问题抽象出目标函数的表达式,建立数学模型,再利用基本不等式求得函数的最值.1.函数f (x )=x 2+4|x |的最小值为( )A .3B .4C .6D .8答案 B解析 f (x )=x 2+4|x |=|x |+4|x |≥24=4,当且仅当x =±2时,等号成立,故选B.2.若x >0,y >0,则“x +2y =22xy ”的一个充分不必要条件是( ) A .x =y B .x =2y C .x =2且y =1 D .x =y 或y =1答案 C解析 ∵x >0,y >0,∴x +2y ≥22xy ,当且仅当x =2y 时取等号.故“x =2且y =1”是“x +2y =22xy ”的充分不必要条件.故选C. 3.(2018·潍坊模拟)已知正数a ,b 满足a +b =1,则4a +1b的最小值为( )A.53 B .3 C .5 D .9答案 D解析 由题意知,正数a ,b 满足a +b =1, 则4a +1b =⎝ ⎛⎭⎪⎫4a +1b (a +b )=4+1+4b a+ab≥5+24b a ·ab=9,当且仅当4b a =a b ,即a =23,b =13时等号成立,所以4a +1b的最小值为9,故选D.4.若a >0,b >0,lg a +lg b =lg(a +b ),则a +b 的最小值为( ) A .8 B .6 C .4 D .2答案 C解析 由lg a +lg b =lg(a +b ),得lg(ab )=lg(a +b ),即ab =a +b ,则有1a +1b=1,所以a+b =⎝ ⎛⎭⎪⎫1a +1b (a +b )=2+b a +a b≥2+2b a ·ab=4,当且仅当a =b =2时等号成立,所以a +b 的最小值为4,故选C.5.已知函数f (x )=e x 在点(0,f (0))处的切线为l ,动点(a ,b )在直线l 上,则2a +2-b的最小值是( ) A .4 B .2 C .2 2 D. 2答案 D解析 由题意得f ′(x )=e x ,f (0)=e 0=1,k =f ′(0)=e 0=1.所以切线方程为y -1=x -0,即x -y +1=0,∴a -b +1=0,∴a -b =-1,∴2a+2-b≥22a ·2-b =22a -b=22-1= 2⎝ ⎛⎭⎪⎫当且仅当a =-12,b =12时取等号,故选D. 6.《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,则该图形可以完成的无字证明为( )A.a +b2≥ab (a >0,b >0)B .a 2+b 2≥2ab (a >0,b >0) C.2aba +b≤ab (a >0,b >0) D.a +b2≤a 2+b 22(a >0,b >0)答案 D解析 由AC =a ,BC =b ,可得圆O 的半径r =a +b2,又OC =OB -BC =a +b 2-b =a -b 2, 则FC 2=OC 2+OF 2=(a -b )24+(a +b )24=a 2+b 22, 再根据题图知FO ≤FC ,即a +b 2≤a 2+b 22,当且仅当a =b 时取等号.故选D.7.设x ,y 均为正数,且xy +x -y -10=0,则x +y 的最小值是________.答案 6解析 由xy +x -y -10=0,得x =y +10y +1=9y +1+1, ∴x +y =9y +1+1+y ≥29y +1·(1+y )=6, 当且仅当9y +1=1+y ,即y =2时,等号成立. 8.(2019·吉林梅河口二中模拟)设正项等比数列{a n }的前n 项和为S n ,若S 7-S 5=3(a 4+a 5),则4a 3+9a 7的最小值为________. 答案 4解析 设正项等比数列{a n }的公比为q (q >0),∵S 7-S 5=a 7+a 6=3(a 4+a 5),∴a 7+a 6a 5+a 4=q 2=3. ∴4a 3+9a 7=4a 3+9a 3q 4=4a 3+1a 3≥24a 3·1a 3=4, 当且仅当4a 3=1a 3,即a 3=12时等号成立. ∴4a 3+9a 7的最小值为4. 9.(2018·肇庆模拟)已知△ABC 的角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+c 2-bc ,且△ABC 的面积为334,则a 的最小值为________. 答案 3解析 由题意得b 2+c 2-a 2=bc ,∴2bc cos A =bc ,∴cos A =12,∴A =π3. ∵△ABC 的面积为334,∴12bc sin A =343,∴bc =3. ∵a 2=b 2+c 2-bc ,∴a 2≥2bc -bc =bc =3(当且仅当b =c 时,等号成立),∴a ≥ 3.10.已知a ,b 为正实数,且(a -b )2=4(ab )3,则1a +1b的最小值为________. 答案 2 2解析 由题意得(a -b )2=(a +b )2-4ab ,代入已知得(a +b )2=4(ab )3+4ab , 两边同除以(ab )2得⎝ ⎛⎭⎪⎫a +b ab 2=4(ab )3a 2b 2+4ab a 2b 2 =4⎝ ⎛⎭⎪⎫ab +1ab ≥4·2ab ·1ab =8, 当且仅当ab =1时取等号.所以1a +1b≥22, 即1a +1b的最小值为2 2. 11.已知x >0,y >0,且2x +5y =20.(1)求u =lg x +lg y 的最大值;(2)求1x +1y的最小值. 解 (1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy .∵2x +5y =20,∴210xy ≤20,xy ≤10,当且仅当2x =5y 时,等号成立.因此有⎩⎪⎨⎪⎧ 2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧ x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1.(2)∵x >0,y >0,∴1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y 20=120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120⎝ ⎛⎭⎪⎫7+25y x ·2x y =7+21020,当且仅当5y x =2x y时,等号成立. 由⎩⎪⎨⎪⎧ 2x +5y =20,5y x =2x y ,解得⎩⎪⎨⎪⎧ x =1010-203,y =20-4103. ∴1x +1y 的最小值为7+21020. 12.某人准备在一块占地面积为1800平方米的矩形地块中间建三个矩形温室大棚,大棚周围均是宽为1米的小路(如图所示),大棚占地面积为S 平方米,其中a ∶b =1∶2.(1)试用x ,y 表示S ;(2)若要使S 的值最大,则x ,y 的值各为多少?解 (1)由题意可得xy =1800,b =2a ,则y =a +b +3=3a +3,所以S =(x -2)a +(x -3)b =(3x -8)a=(3x -8)y -33=1808-3x -83y (x >3,y >3). (2)方法一 S =1808-3x -83×1800x=1808-⎝ ⎛⎭⎪⎫3x +4800x ≤1808-23x ×4800x=1808-240=1568,当且仅当3x =4800x, 即x =40时等号成立,S 取得最大值,此时y =1800x=45, 所以当x =40,y =45时,S 取得最大值.方法二 设S =f (x )=1808-⎝ ⎛⎭⎪⎫3x +4800x (x >3), 则f ′(x )=4800x 2-3=3(40-x )(40+x )x 2, 令f ′(x )=0,则x =40,当0<x <40时,f ′(x )>0;当x >40时,f ′(x )<0.所以当x =40时,S 取得最大值,此时y =45.13.(2018·郑州模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2a -c b =cos C cos B,b =4,则△ABC 面积的最大值为( )A .4 3B .2 3C .3 3 D. 3 答案 A解析 ∵2a -c b =cos C cos B, ∴(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C ,∴2sin A cos B =sin C cos B +sin B cos C=sin(B +C )=sin A .又sin A ≠0,∴cos B =12. ∵0<B <π,∴B =π3. 由余弦定理得b 2=16=a 2+c 2-2ac cos π3=a 2+c 2-ac ≥2ac -ac =ac ,∴ac ≤16,当且仅当a =c 时等号成立.∴S △ABC =12ac sin π3≤12×16×32=4 3. 故△ABC 面积的最大值为4 3.故选A.14.如图,在△ABC 中,点D ,E 是线段BC 上两个动点,且AD →+AE →=xAB →+yAC →,则1x +4y的最小值为( )A .32B .2C .52D .92答案 D解析 设AD →=mAB →+nAC →,AE →=λAB →+μAC →,∵B ,D ,E ,C 共线,∴m +n =1,λ+μ=1, ∵AD →+AE →=xAB →+yAC →=()m +λAB →+()n +μAC →, 则x +y =m +n +λ+μ=2,∴1x +4y =12⎝ ⎛⎭⎪⎫1x +4y ()x +y =12⎝⎛⎭⎪⎫5+y x +4x y ≥12⎝ ⎛⎭⎪⎫5+2y x ·4x y =92,当且仅当x =23,y =43时,等号成立.故1x +4y 的最小值为92,故选D.15.设S n 为数列{a n }的前n 项和,已知a 1=2,对任意p ,q ∈N *,都有a p +q =a p ·a q ,则f (n )=S n -1·(S n -1+2)+256a n的最小值为_______. 答案 30解析 当q =1时,a p +1=a p ·a 1=2a p , ∴数列{a n }是首项为2,公比为2的等比数列,∴a n =2n ,S n =2(2n-1)2-1=2n +1-2, ∴S n -1=2n -2,S n -1·(S n -1+2)=(2n -2)·2n,∴f (n )=(2n -2)2n +2562n =2n -2+2562n ≥2256-2=30,当且仅当2n =16,即n =4时,等号成立,f (n )min =30.16.已知正三棱柱ABC -A 1B 1C 1,侧面BCC 1B 1的面积为46, 求该正三棱柱外接球表面积的最小值.解 设BC =a ,CC 1=b ,则ab =46,底面三角形外接圆的半径为r , 则a sin60°=2r ,∴r =33a . 所以R 2=⎝ ⎛⎭⎪⎫b 22+⎝ ⎛⎭⎪⎫33a 2=b 24+a 23≥2b 24·a 23=29612=42, 当且仅当a =32b 时,等号成立. 所以该正三棱柱外接球表面积的最小值为 4π×42=162π.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教材:映射
目的:要求学生了解映射和一一映射的概念,为今后在此基础上对函数概念的理解打下基础。

过程:
一、复习:以前遇到过的有关“对应”的例子 1
看电影时,电影票与座位之间存在者一一对应的关系。

2 对任意实数a ,数轴上都有唯一的一点A 与此相对应。

3 坐标平面内任意一点A 都有唯一的有序数对(x, y )和它对应。

4
任意一个三角形,都有唯一的确定的面积与此相对应。

二、提出课题:一种特殊的对应:映射
(1) (2) (3) (4) 引导观察,分析以上三个实例。

注意讲清以下几点:
1.先讲清对应法则:然后,根据法则,对于集合A 中的每一个元素,在集合B 中都有一个(或几个)元素与此相对应。

2.对应的形式:一对多(如①)、多对一(如③)、一对一(如②、④) 3.映射的概念(定义):强调:两个“一”即“任一”、“唯一”。

4.注意映射是有方向性的。

5.符号:f : A
B 集合A 到集合B 的映射。

6.讲解:象与原象定义。

再举例:1A ={1,2,3,4} B ={3,4,5,6,7,8,9} 法则:乘2加1 是映射 2A =N + B ={0,1} 法则:B 中的元素x 除以2得的余数 是映射 3
A =Z
B =N * 法则:求绝对值 不是映射(A 中没有象) 4
A ={0,1,2,4}
B ={0,1,4,9,64} 法则:f :a b =(a
1)2
是映射
三、一一映射
观察上面的例图(2) 得出两个特点: 1对于集合A 中的不同元素,在集合B 中有不同的象 (单射) 2
集合B 中的每一个元素都是集合A 中的每一个元素的象 (满射) 即集合B 中的每一个元素都有原象。

结论:(见P 48) 从而得出一一映射的定义。

例一:A ={a ,b ,c ,d } B ={m ,n ,p ,q } 它是一一映射
例二:P 48
例三:看上面的图例(2)、(3)、(4)及例1、2
、4
辨析为什么不是一一映射。

四、练习 P 49
五、作业 P 49—50 习题2.1
《教学与测试》 P 33—34第16课
教材:集合的概念
A B A B
A B
A B 3 3 2 2 1 1 30 45 60 90 1
2
3
2
22
1
1 1
2 2
3 3
开平方 求平方a b c d
m n p q
A B
f
目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。

过程:
一、引言:(实例)用到过的“正数的集合”、“负数的集合”
如:2x-1>3x>2所有大于2的实数组成的集合称为这个不等式的解集。

如:几何中,圆是到定点的距离等于定长的点的集合。

如:自然数的集合 0,1,2,3,……
如:高一(5)全体同学组成的集合。

结论:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

指出:“集合”如点、直线、平面一样是不定义概念。

二、集合的表示: { … } 如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}
用拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5}
常用数集及其记法:
1.非负整数集(即自然数集)记作:N
2.正整数集N*或 N+
3.整数集 Z
4.有理数集Q
5.实数集R
集合的三要素: 1。

元素的确定性; 2。

元素的互异性; 3。

元素的无序性
(例子略)
三、关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A 记作 a
A ,相反,a不属于集A 记作 a A (或a A)
例:见P4—5中例四、练习 P5略
五、集合的表示方法:列举法与描述法
1.列举法:把集合中的元素一一列举出来。

例:由方程x2-1=0的所有解组成的集合可表示为{1,1}
例;所有大于0且小于10的奇数组成的集合可表示为{1,3,5,7,9} 2.描述法:用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例{不是直角三角形的三角形}再见P6例
②数学式子描述法:例不等式x-3>2的解集是{x R| x-3>2}或{x| x-3>2}或
{x:x-3>2} 再见P6例
六、集合的分类
1.有限集含有有限个元素的集合
2.无限集含有无限个元素的集合例题略
3.空集不含任何元素的集合
七、用图形表示集合 P6略
八、练习 P6
小结:概念、符号、分类、表示法
九、作业 P7习题1.1。

相关文档
最新文档