(完整)最新五年级希望杯近几年试题
(完整)最新五年级希望杯近几年试题
(完整)最新五年级希望杯近⼏年试题2010年第⼋届⼩学“希望杯”全国数学邀请赛五年级第1试试题1、计算 10.37×3.4+1.7×19.26=。
2、已知1.08÷1.2÷2.3=10.8÷□,其中□表⽰的数是。
3、计算:1.825gg-0.8g=。
(8、5、8的上⾯有循环点)4、有三个⾃然数a ,b ,c ,已知b 除以a ,得商3余3;c 除以a ,得商9余11。
则c b ,得到的余数是。
5、已知300=2×2×3×5×5,则300⼀共有不同的约数。
6、在99个连续的⾃然数中,最⼤的数是最⼩的数的25.5倍,那么这99个⾃然数的平均数是。
7、要往码头运28个同样⼤⼩的集装箱,每个集装箱的质量是1560千克。
现安排⼀辆载重6吨的卡车运送这些集装箱,卡车车厢的⼤⼩最多可以容纳5个集装箱,则这辆卡车⾄少需往返趟。
8、⼩晴做道菜:“⾹葱炒蛋”,需7道⼯序,时间如下:洗葱,切葱花打蛋搅拌蛋液和葱花洗锅烧热锅烧热油烧菜1分钟半分钟 1分钟半分钟半分钟半分钟 2分钟做好这道菜⾄少要分钟。
9、⼀项特殊的⼯作必须⽇夜有⼈看守,如果安排8⼈轮流值班,当值⼈员为3⼈,那么,平均每⼈每天⼯作⼩时。
10、甲、⼄两商店中某商品的定价相同。
甲商店按定价销售这种商品,销售额是7200元;⼄商店按定价的⼋折销售,⽐甲商店多售出15件,销售额与甲商店相同。
则甲商店售出件这种商品。
11、夜⾥下了⼀场⼤雪,早上,⼩龙和爸爸⼀起步测花园⾥⼀条环形⼩路的长度,他们从同⼀点同向⾏⾛。
⼩龙每步长54厘⽶,爸爸每步长72厘⽶,两⼈各⾛完⼀圈后⼜都回到出发点,这时雪地上只留下60个脚印。
那么这条⼩路长⽶。
12、⼀艘客轮在静⽔中的航⾏速度是26千⽶/时,往返于A 、B 两港之间,河⽔的流速是6千⽶/时。
如果客轮在河中往返4趟公⽤13⼩时,那么A 、B 两港之间相距千⽶。
2022 奥赛希望杯五年级培训 100题——答案版
2022希望少年俱乐部-五年级培训100题(解析)1.【答案】395【解析】原式=75÷30× 4.67×30+17.9×2.5=2.5×140.1+17.9×2.5=2.5×140.1+17.9=2.5×158=3952.【答案】579557.95【解析】原式=5795.5795×579.5÷5.795=5795.5795×579.5÷5.795=5795.5795×100=579557.953.【答案】27.25【解析】分两段计算,前一段5个数,后一段项数:0.99− 0.11 ÷0.02+1=45原式=0.5× 5 +0.11 + 0.99 × 45 ÷ 2=2.5+1.1 × 45 ÷ 2=2.5 + 24.75=27.254.【答案】5【解析】原式=(0.81+0.83+⋯⋯+0.99)× 0.6=(0.81+0.99)× 10 ÷2× 0.6=1.8× 10 ÷2×0.6=9×0.6=5.4所以结果的整数部分是5。
5.【答案】13【解析】首先考虑商的十位,6□□×□=□□7,商的十位只能是1,可知除数是6□7,接着考虑商的个位,6□7×□=□□61得知,商的个位只能是3,反推可知除数是687,剩下就可以正常推算。
6.【答案】2754【解析】首先□□□×7=□1□,可知前一个乘数百位是1因为结果是2□□□,可知第2行乘积最高位是2接着是1□□×□=20□,可知,前一个乘数的十位是0,后一个乘数是2再回头可知10□×7=□1□,一定是102×7=714,剩下就容易填了。
(完整)最新五年级希望杯近几年试题
2010年第八届小学“希望杯”全国数学邀请赛五年级 第1试试题1、计算 10.37×3.4+1.7×19.26= 。
2、已知1.08÷1.2÷2.3=10.8÷□,其中□表示的数是 。
3、计算:1.825gg-0.8g= 。
(8、5、8的上面有循环点)4、有三个自然数a ,b ,c ,已知b 除以a ,得商3余3;c 除以a ,得商9余11。
则c b ,得到的余数是 。
5、已知300=2×2×3×5×5,则300一共有 不同的约数。
6、在99个连续的自然数中,最大的数是最小的数的25.5倍,那么这99个自然数的平均数是 。
7、要往码头运28个同样大小的集装箱,每个集装箱的质量是1560千克。
现安排一辆载重6吨的卡车运送这些集装箱,卡车车厢的大小最多可以容纳5个集装箱,则这辆卡车至少需往返 趟。
8、小晴做道菜:“香葱炒蛋”,需7道工序,时间如下:洗葱,切葱花 打蛋 搅拌蛋液和葱花洗锅 烧热锅 烧热油 烧菜1分钟 半分钟 1分钟 半分钟 半分钟 半分钟 2分钟 做好这道菜至少要 分钟。
9、一项特殊的工作必须日夜有人看守,如果安排8人轮流值班,当值人员为3人,那么,平均每人每天工作 小时。
10、甲、乙两商店中某商品的定价相同。
甲商店按定价销售这种商品,销售额是7200元;乙商店按定价的八折销售,比甲商店多售出15件,销售额与甲商店相同。
则甲商店售出 件这种商品。
11、夜里下了一场大雪,早上,小龙和爸爸一起步测花园里一条环形小路的长度,他们从同一点同向行走。
小龙每步长54厘米,爸爸每步长72厘米,两人各走完一圈后又都回到出发点,这时雪地上只留下60个脚印。
那么这条小路长 米。
12、一艘客轮在静水中的航行速度是26千米/时,往返于A 、B 两港之间,河水的流速是6千米/时。
如果客轮在河中往返4趟公用13小时,那么A 、B 两港之间相距 千米。
2024年希望杯五年级竞赛数学试卷培训题含答案
2024年希望杯五年级竞赛数学试卷培训题 1 .计算:.2 .计算:.3 ..4 ..5 .在横线上填上“”“”或“”.6 .已知:,则.7 .现定义一种新运算“”:,则.8 .表示的整数部分,如:,.计算:.9 .小强在计算除法时,把除数写成,结果得到的商是且余数是,正确的商是,余数是.10 .小虎在计算时,先算了减法,最后得到的结果是,正确的计算结果应该是.11 .在的两个里填入相同的数,使等式成立,里应填.12 .一个数的小数点向右移动一位后,比原来的数大,原来的数是.13 .循环小数小数点后第位数字是.14 .把化成小数,小数点后面第位上的数字是.15 .请你根据题图所示向日葵上的数字规律,在方框中填入正确的数字.16 .在一个四位数的前、后分别加上,组成两个五位数.若这两个五位数相差,则.17 .王冬有存款元,张华有存款元.王冬每月存元,张华每月存元,个月后张华的存款才能和王冬的一样多.18 .,要使商的中间有,里可以填.19 .题图算式中的,,分别代表不同的数字.式中的,和分别表示,和的倒置数字(如的倒置数字是,的倒置数字还是).那么是,是,是.20 .请把图中的除法竖式补充完整.21 .这个自然数的和是三位数,且这个三位数各个数位上的数字相同,则.22 .九位数能被中任何一个自然数整除,且数字、、互不相同,则三位数.23 .一个自然数的个位数字是,将这个移动到最左边,得到的新数恰好是原数的倍.原数最小是.24 .已知三个最简真分数的分母分别为,和,它们的乘积是.则这三个最简真分数中,最大的数是.25 .在等差数列1,8,15,22,29,36,43,…中,如果前个数乘积的末尾0的个数比前个数乘积的末尾0的个数少3个,那么最小是 .26 .是的倍数,则.27 .有一篮鸡蛋,每次取出个,最后剩下个,如果每次取出个或个,最后都剩下个,篮子里的鸡蛋至少有个.28 .自然数除以的余数是,则除以的余数是.29 .Given and are two non-zero digits and the digit numbers formed by these two digits have the following properties:. can be expressed by a product of and ;. is a square number;Find the digit number .已知和为两个非零数位.且利用这两个数位组成的两位数有以下性质:.可以被写成和的积;.是个平方数;求两位数.30 .快速公交路线有四个站点,把这四个站点两两之间的距离从小到大排列,分别是:,,,,,,则“”.31 .有个因数且能被整除的最小自然数是.32 .从开始做乘法:,当乘到时,乘积的末尾有个连续的.33 .的计算结果末尾有个.34 .一个正整数与的积是一个完全平方数,则的最小值是.35 .,都是非零自然数.如果是的倍,那么和的最大公因数是;如果,那么和的最小公倍数是.36 .已知存在三个小于的自然数,它们的最大公因数是,且两两不互质,将这三个数相加,最大可能是.37 .定义,则有个因数.38 .选一选.. A.. B.. C.. D.. E.39 .九张卡片上分别写有数,,,,,,,,(不能倒过来看).甲,乙,丙,丁四人分别抽取了其中两张:甲说:“我拿到的两个数互质,因为它们相邻.”乙说:“我拿到的两个数不互质,但也不是倍数关系.”丙说:“我拿到的两个数都是合数,但它们却互质.”丁说:“我拿到的两个数是倍数关系,它们不互质.”如果这四人说的都是真话,那么剩下的一张卡片上写的数是.40 .用、、、四个数字可以组成个双数,其中最大的是.(每个数字都要用且不重复)41 .将一个能被整除的三位数的首、末数字交换后,还是三位数,原数的倍也是三位数,原数的后两位数字的和是的约数,满足条件的最大的三位数是.42 .如图,大长方形被两条互相垂直的线段分成了四个小长方形.已知四个小长方形面积均为整数,其中两块面积分别为和.大长方形面积最大是.(注:图中各部分大小并不代表其面积大小关系)43 .如图,正方形的面积是,是中点,连接、交于点.是中点,连接并延长交于点.阴影部分的面积是.44 .如图,分别以一个正六边形的顶点和各边的中点为圆心,以正六边形的边长为直径画了个圆和个半圆.若阴影部分的面积和是,那么正六边形内部的阴影面积是.45 .正方形的面积是,,,,是正方形各边的中点,那么阴影部分的总面积是.46 .如图,在四边形中,,分别是,边的三等分点.已知四边形的面积是平方厘米,求四边形的面积是平方厘米.47 .如图所示,如果一块正方形土地的两边各增加米,面积将增加平方米.原来正方形的面积是平方米.48 .如图,两个正方形并排放在一起,、、在同一条直线上,大正方形边长为厘米,小正方形边长为厘米,那么阴影三角形的面积为平方厘米.49 .下图中,平行四边形的面积是,点是线段的中点.三角形的面积是.50 .如图,若大正方形的周长是,小正方形的周长是,则蓝色阴影部分的面积是.51 .正方形的边长为,,,是对角线的四等分点.图中阴影部分的总面积是.52 .学校校园里有一块宽为米的长方形空地,后勤部门准备从空地中划分出一块米宽的形区域作为绿植区,剩下的部分作为休闲区,而且休闲区和绿植区的面积刚好相等,如图所示(单位:米).那么这块空地的面积是平方米.53 .如图所示,梯形的面积为平方厘米,,厘米,厘米,又已知于点,那么阴影部分的总面积为平方厘米.54 .如图,长方形中有四个完全相同的直角三角形,这四个直角三角形的面积总和是.55 .鲁西西最近爱上了折纸,她发现如果把折纸按照图中的样子翻折一下,以直线为折痕将点翻折到,,.当阴影部分的面积与空白部分的面积相等时,如果知道折纸的面积就能算出折痕的长度.如果鲁西西的这张折纸(正方形)的面积是平方厘米,折痕厘米.56 .如图,长方形的广告牌长为,宽为,,,,分别在四条边上,并且比低,在的左边,四边形的面积是.57 .如图的一个骰子,其中对面的数字之和等于,首先将骰子如图放置,然后将骰子向右滚动次,再向前滚动次,此时面朝上.58 .一个物体从正面、右面和上面看到的都是,它一定是由个相同大小的正方体摆成的.59 .一个正方体木块,棱长是,从它的八个顶点处各截去棱长分别是、、、、、、、的小正方体.这个木块剩下部分的表面积最少是.60 .如图,在一个棱长为厘米的正方体密闭容器的下底固定了一个实心圆柱体,容器内盛有一定量的水且水面恰好经过圆柱体的上底面.如果将容器倒置,圆柱体有厘米露出水面.已知圆柱体的底面积是正方体底面积的,则实心圆柱体的体积为立方厘米.61 .琳琳、彤彤各带一些钱去书店,她们看上了一本元的书.如果这元由琳琳出,则琳琳剩下的钱是彤彤的倍;如果这元由彤彤出,琳琳的钱是彤彤剩下的钱的倍.那么开始时琳琳带了元,彤彤带了元.62 .一片牧场,每天草的生长速度相同,这片牧场可供头牛吃天,或者可供只羊吃天.如果只羊的吃草量相当于头牛的吃草量,那么头牛和只羊一起吃这片牧场上的草,可以吃天.63 .大黄蜂从赛博坦星球飞往潘多拉星球,原计划每小时行驶万千米,实际途中遇到电子风暴,只有一半的路程能按原计划的速度行驶,其余路程每小时行驶万千米,结果比原计划推迟了小时抵达潘多拉星球.赛博坦星球到潘多拉星球的路程是万千米.64 .张强晚上六点多外出锻炼身体,此时时针与分针的夹角;回家时还未到七点,此时时针与分针的夹角仍是,则张强外出锻炼身体用了分钟.65 .一条线段上最初有个点(包含端点),第一次在每相邻的两点之间增加一个点,第二次同样在每相邻的两点之间增加一个点.这时线段上共有个点.66 .冰墩墩练习滑雪一周,其中后四天平均每天滑雪的长度比前三天平均每天滑雪的长度多千米,后三天平均每天滑雪的长度比前四天平均每天滑雪的长度多千米.冰墩墩后三天滑雪的总长度比前三天滑雪的总长度多千米.67 .个数的平均数是,如果其中一个数变为,则这个数的平均数为.原来这个数是.68 .小林和叔叔的年龄和是岁.69 .若干年后,爷爷的年龄比小高年龄的倍多岁;再过几年,爷爷的年龄比小高年龄的倍多岁,已知今年小高岁,那么爷爷今年岁(今年爷爷年龄不到岁). 70 .某汽车厂同时建成两条生产线.第一条生产线第一个月生产了辆汽车,以后每个月比前一个月多生产辆;第二条生产线第一个月也生产了辆汽车,以后每半个月比前半个月生产辆.那么,该厂生产辆汽车需要个月.71 .张三、李四两人一起加工一批零件,用时天完成了任务,李四中途有事请假天.已知张三每天比李四多做个零件,且最终李四加工的零件数恰好是张三的一半.这批零件的总数是个.72 .一项工程,甲单独做天完成,乙单独做天完成,若甲先做若干天后乙接着做,共用天完成.甲做了天.73 .游艇在静水中的速度是千米时,水速是千米时,喜羊羊驾驶游艇从下游的地到上游的地,然后立即返回下游地.游艇从到的时间是从到的倍,那么.74 .一位考古学家乘坐游艇从尼罗河上游码头出发,沿河行驶米到下游,然后原路返回.水流速度是千米时,游艇逆流而上比顺流而下多用小时,那么游艇在静水中的速度是每小时千米.75 .从地球到沙拉达行星有光年(注:光年是一个长度单位).贝吉塔和孙悟空从地球出发前往沙拉达行星.贝吉塔比孙悟空先出发天,如果贝吉塔和孙悟空沿直线飞行,他们每天都能飞行光年,那么孙悟空出发天后,贝吉塔正好在孙悟空和沙拉达行星的正中间.76 .有甲、乙两个村,小王从甲村步行到乙村,小李骑摩托车从乙村与小王同时出发,并不停地往返于甲、乙两村之间,过分钟后两人第一次相遇,分钟时小李第一次追上小王,那么当小王到达乙村时,小李追上小王的次数是.77 .甲乙两车分别从、两地同时出发,相向而行,在距离地米处的地相遇.相遇后乙的速度保持不变,甲的速度变为原来一半,甲继续行驶到地后立即掉头返回.当甲再次到达地时,乙刚好第一次到达地.、两地的距离是米.78 .甲乙两站相距,某天上午,车以的速度从甲站开往乙站,当天上午时,车以每小时的速度从乙站开往甲站,那么两车在点分时相遇.79 .如图所示,一个边长为米的正方形围墙,甲、乙两人分别从两个对角处沿围墙按逆时针方向同时出发.已知甲每秒走米,乙每秒走米.至少经过秒甲才能看到乙.80 .边长为的正方形的顶点,各有一只小虫,它们同时出发沿正方形的边顺时针爬行,小虫甲每秒爬,小虫乙每秒爬,它们在顶点处转弯时都需要耗秒.经过秒其中一只小虫将首次追上另一只小虫.81 .在校运动会上,三班参加跳绳比赛的有人,参加踢毽比赛的有人,那么参加这两项比赛的最多有人,最少有人.82 .数一数,下图一共有个“☆”.83 .如图,若干边长为的小等边三角形组成一个边长为的大等边三角形.现在每个小三角形的顶点涂上黑色或白色,可以按照任意顺序涂色.如果某个小三角形有两个顶点的颜色相同,那么第三个顶点涂黑色;否则第三个顶点涂白色.完成涂色后的大三角形有种不同的样式.(不可旋转、翻转)84 .用三种颜色去涂如图所示的三块区域,要求一个区域中只能涂一种颜色,相邻区域涂不同颜色,那么共有种不同的涂法.85 .如图,阴影部分是一个圆环,条直线最多可以把这个阴影分成个部分.86 .从以内的个质数中任取两个构成真分数,这样的真分数有个.87 .池塘中片莲叶如下图排列.青蛙在莲叶间跳跃,每次只能从一片莲叶跳到相邻的另一片莲叶.一只青蛙盘算着从其中一片莲叶上起跳,连跳步,那么它有种不同的跳法.88 .数一数,下图中共有个梯形.89 .图中共有个平行四边形.90 .如图,在的网格中,每一个小正方形的面积为,点可以是每个小正方形的顶点,则满足的点的个数是.91 .把本书分给某班学生,不论怎么分总有一个学生至少分到本,那么这个班最多有人.92 .桌上有编号至的张卡片,小明每次取出张卡片,要求一张卡片的编号是另一张卡片的倍多,则小明最多取出张卡片.93 .果蔬王国正在举行国王竞选,全国人每人投票,从番茄勇士、香蕉超人、胡萝卜博士中选择人,票数最多的人当选.截至目前番茄勇土得票,香蕉超人得票,胡萝卜博士得票.那么,番茄勇士至少再得票就能够保证当选国王.94 .找规律填数.95 .一列慢车长米,一列快车长米,如果两车在并行的轨道上同向而行,从快车追上慢车到快车超过慢车要秒,如果两车相向而行,从两车相遇到完全错开要秒.慢车的速度是米秒.96 .小明手里有一盒棋子,最初盒子里全是白子.他先取出颗白子,然后放入颗黑子,再取出颗白子,再放入颗黑子.此时小明发现盒子里的白子恰好是黑子颗数的一半,那么最初盒子里有颗白子.97 .在六位数的某一位数字后面再插入一个同样的数字(例如,可以在的后面插入得到),这样得到的七位数最大是,最小是.98 .从、、、、、、、、这串奇数中至少取个数,才能保证其中一定有两个数之和是.99 .左图的表格中分别填入了,我们把对角相邻的两个数同时加上或同时减去一个相同的数叫做一次操作(如和同时加,变成和),经过若干次操作得到右图,那么和的乘积是.100 .将数字填入空白方格中,使得每一行、每一列、每个粗线围成的区域数字都只恰好出现一次,那么最下面的一行个数字组成的位数是.4 、【答案】5 、【答案】6 、【答案】7 、【答案】8 、【答案】9 、【答案】10 、【答案】11 、【答案】12 、【答案】略13 、【答案】14 、【答案】15 、【答案】.16 、【答案】17 、【答案】18 、【答案】,,,,19 、【答案】20 、【答案】.21 、【答案】22 、【答案】23 、【答案】24 、【答案】25 、【答案】 10826 、【答案】27 、【答案】28 、【答案】29 、【答案】.30 、【答案】31 、【答案】32 、【答案】33 、【答案】34 、【答案】35 、【答案】36 、【答案】37 、【答案】38 、【答案】 DECAB39 、【答案】40 、【答案】41 、【答案】42 、【答案】43 、【答案】44 、【答案】45 、【答案】46 、【答案】47 、【答案】48 、【答案】49 、【答案】50 、【答案】51 、【答案】52 、【答案】53 、【答案】54 、【答案】58 、【答案】59 、【答案】60 、【答案】61 、【答案】62 、【答案】63 、【答案】64 、【答案】65 、【答案】66 、【答案】67 、【答案】68 、【答案】69 、【答案】70 、【答案】71 、【答案】72 、【答案】73 、【答案】74 、【答案】75 、【答案】76 、【答案】77 、【答案】78 、【答案】79 、【答案】80 、【答案】81 、【答案】82 、【答案】83 、【答案】84 、【答案】85 、【答案】86 、【答案】87 、【答案】88 、【答案】89 、【答案】90 、【答案】91 、【答案】92 、【答案】93 、【答案】94 、【答案】95 、【答案】96 、【答案】97 、【答案】98 、【答案】99 、【答案】 100 、【答案】。
希望杯五年级历届试题与答案
2011年第九届初赛1.计算:1.25×31.3×24= 。
2.把0.123,0.1·23·,0.12·3·,0.123·按照从小到大的顺序排列:< < <。
4.如图1,从A到B,有条不同的路线。
(不能重复经过同一个点)5.数数,图2中有个正方形。
6.—个除法算式中.被除数、除数、商与余数都是自然数,并且商与余数相等若被除数是47.则除数是,余数是。
7.如果六位数2011□□能被90整除.那么它的最后两位数是。
8.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”。
那么,1000以内最大的“希望数”是。
9.将等边三角形纸片按图3所示步骤折叠3次(图3中的虚线是三边的中点的连线然后沿过两边的中点的直线减去一角(如图4)将剩下的纸片展开,平铺.得到的图形是。
10.如图5,甲、乙两人按箭头方向从A点问时出发,沿着正方形ABCD的边行走,正方形ABCD的边长是100米,甲的速度是乙的速度的1.5倍,两人在E点第一次相遇,则三角形ADE的面积比EBC三角形的面积大平方米。
11.星期天早晨,哥哥和弟弟去练习跑步。
哥哥每分钟跑110米,弟弟每分钟跑80米。
弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米。
那么,哥哥跑了米。
12.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本则还差2元。
那么,笔记本每个元,笔每支元。
13.数学家维纳是控制论的创始人。
在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄。
维纳的问答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0?9这10个数字全都用上了,不重也不漏。
”那么.维纳这一年岁。
(注:数a的立方等于a×a×a,数a的四次方等于a×a×a×a)14.鸡与兔共100只,鸡的脚比兔的脚多26只。
2024新希望杯五年级竞赛模拟数学试卷
1.对于非零自然数,,规定运算“”的含义是:,已知,的值 .2.计算:的结果个位数字是 .个3.把分解质因数是 。
4.将至六个数填入下图所示球体的圆内,使球体的各个大圆上每四个数的和都相等。
这个和是 。
5..6.有若干名小朋友,第一名小朋友的糖果比第二名小朋友的糖果多块,第二名小朋友的糖果比第三名小朋友的糖果多块……即前一名小朋友总比后一名小朋友多块糖果.他们按次序围成圆圈做游戏,从第一名小朋友开始给第二名小朋友块糖果,第二名小朋友给第三名小朋友块糖果……即每一名小朋友总是将前面传来的糖果再加上自己的块传给下面的小朋友.当游戏进行到最后一名小朋友无法按规定给出糖果时,有两名相邻的小朋友的糖果数之比是,最多有 名小朋友.7.新希望杯五年级竞赛模拟数学试卷①猴子和狮子的总数要比熊猫的数量多,②熊猫和狮子的总数要比猴子的两倍还多,③猴子和熊猫的总数要比狮子的三倍还多,④熊猫的数量没有狮子数量的两倍那么多,可知猴子有 只,熊猫有 只,狮子有 只.8.某天早上,一只怪物攻击了奥拉星球.为了拯救星球,从怪物出现时亚比英雄们就对怪物进行反击.怪物出现时有点生命值,每位亚比英雄每个白天可以消耗怪物点生命值,但在晚上亚比英雄们都休息时,怪物会恢复点生命值.如果在天内怪物被消灭,至少需要 位亚比英雄.9.在这个数中,十位数字是奇数的数共有 个.,,,,10.欢欢和乐乐同时出发去集市,他们以不同的速度沿同一条直路匀速前行,开始时两人相距米,小时后两人仍相距米.再过小时他们都没有到达集市,这时候他们相距 米.11.艾迪、 薇儿和大宽是好朋友, 住在同一个镇上, 靠着同一条镇中小道. 大宽在中间些,艾迪和薇儿在小道的两端. 三个好朋友每天都要聚一次. 第一天, 艾迪和薇儿从同一时刻出发, 从各自的家沿着小道走, 结果同时到达大宽家. 第二天, 艾迪比第一天提早小时出发,薇儿比第一天又推迟半个小时出发, 艾迪和薇儿比第一天提前了分钟相遇. 第三天薇儿比第一天提早小时出发, 艾迪比第一天推迟半个小时出发, 艾迪和薇儿在离大宽家千米处相遇. 问艾迪的速度是 .12.的分数单位是 ,再增加 个这样的单位就是最小的质数.13.边长是厘米的正方形纸片,正中间挖了一个正方形的洞,成为一个宽厘米的方框.把五个这样的方框放在桌面上,成为一个这样的图案(如图所示).桌面上被这些方框盖住的部分面积是 平方厘米.14.从这个自然数中删掉若干个连续的自然数,使得余下数的和能被整除,最少要删掉 个数.15.自然数、、、、都大于,其乘积,则其和的最大值是 ,最小值是 .16.三位数是一个质数,巧的是,,,,也都是质数, .17.个连续自然数的和恰好是三个不同质数的积,那么这三个质数的和最小是 .18.在这个数中,最多可取出 个数,使所取出的数中,任意两个数的和能被整除.19.若六位数能被和整除,则两位数 .20.的个位是 .21.平面内有个点,其中任意个点均不在同一条直线上,以这些点为端点连接线段,则除这个点外,这些线段至少还有 个交点.22.如图,若干边长为的小等边三角形组成一个边长为的大等边三角形.现在每个小三角形的顶点涂上黑色或白色,可以按照任意顺序涂色.如果某个小三角形有两个顶点的颜色相同,那么第三个顶点涂黑色;否则第三个顶点涂白色.完成涂色后的大三角形有 种不同的样式.(不可旋转、翻转)23.用,,,这个数字任意写出一个一万位数,从这个一万位数中任意截取相邻的个数字,可以组成许许多多的四位数,这些四位数中,至少有 个相同.24.甲、乙、丙、丁兄弟四人各收藏了一些宝石.每天早上他们都要聚在一起,重新分配宝石.分配的规则是:拥有宝石最多的人分给其他三人每人颗.如果第天早上分配完后,甲、乙、丙、丁四人分别有、、、颗宝石,那么第天早上分配完后,甲有 颗宝石.25.舞台中央有一个音效区,被分隔成个不同区域,每个区域安装个音箱(音箱无差别),音箱朝向只能向东、西、南或北,且相邻两个区域的音箱朝向不能面对面(有公共边的两个区域视为相邻).共有 种安装方案.东南西北(1)可以组成 个不同的三位数.26.有张卡,分别写有数字,,,,.如果允许可以作用,那么从中任意取出张卡片,并排放在一起.27.在平面上有个点,其中任意个点都不在同一条直线上.如果在这个点之间连结条线段,那么这些线段最多能构成 个三角形.28.计算 .29.计算: .30.定义新运算:,(个相乘),则.31.已知三个不同的非零自然数、、满足算式, 且.那么代表的自然数是 .32.下面表格所有数的和是 ?33.三位数(,,互不相同),是,,的最小公倍数,是,,的最大公因数,等于的因数个数,这样的三位数有 个.34.35.一个两位数,在它的前面写上,得到一个三位数.这个三位数比原两位数的倍多,那么原来的两位数为 .36.左图一个由小正方体组成的的大正方体.从这个大正方体中抽出若干个小正方体,把大正方体中相对的两面打通.右图中的阴影部分是抽空的状态.右图的正方体中还剩 个小正方体.37.有一个两位数,除以余,除以余,除以余,那么这个数最小是 .38.小明全家拍全家福,家里有爷爷、奶奶、爸爸、妈妈和小明人,爷爷必须站最中间,小明不站两边,请问:一共有 种不同的排队方式.39.图中有四个等边三角形,边长分别为,,,,那么阴影部分的总面积是最小的等边三角形面积的 倍.乐乐老师想把件相同的礼物全部分给个小朋友,要使每个小朋友都分到礼物,则分礼物的不同方法一共有 种.41.题图中共有 个正方形.42.龙猫家的大花园是一个平行四边形.如图,线段和将花园分成四块,其中的和的面积分别是和,则四边形的面积是 .43.如图所示,正六边形的面积为,则阴影部分的面积为 .44.一张卡片如左图所示,从中选个数字,分别写在个部分上,“”已经写好,然后将卡片折成右图的正方体纸盒.这个纸盒三组相对面上的数字和都相等,这个和是 .45.在一个的方阵中,任意填上自然数,从中任选出个的方格.如果选出的方格中必有个方格为原方阵中一个矩形的个角,上面所填的个数的和是偶数,那么的最小值是 .46.潘多拉星球遭到只飞龙和只地虎的袭击,机甲战士奋力抗击.潘多拉星球上的机甲战士共名,每个战士击退只飞龙需要分钟,击退只地虎需要分钟.那么,战士们击退全部敌人至少需要 分钟.47.自动扶梯以匀速由下往上行驶,两个急性子的孩子嫌扶梯走的太慢,于是在行驶的扶梯上,男孩每秒向上走梯级,女孩每秒钟走梯级.结果男孩用秒到达楼上,女孩用秒到达楼上.该楼梯共有 级.48.小明读一本小说,已读页数比全书页数的多页,未读的页数比全书页数的少页.这本书共有 页.49.父亲节来临之际,商店进行优惠促销.领带原价元条,现在买条送条,妈妈和两位阿姨现在合买条领带,每条领带比原来便宜 元.50.年父亲的年龄是儿子年龄的倍,年父亲年龄是儿子年龄的倍.儿子是在 年出生的.51.一辆汽车的速度是每小时千米,现有一个每小时比标准表多走秒的计时器,若用该计时器计时,则测得这辆汽车的速度是每小时 千米.52.放暑假真棒啊下面算式中不同的汉字代表不同的数字,六位数“”的最小值是 .放放放暑暑暑假假假真真棒啊53.若,则整数的所有数位上数字的和是 .个个54.甲、乙、丙三位同学去买书,他们买的本数都是两位数,且甲买的最多,丙买的最少,又知这些书本数的总和是偶数,它们的积是,那么乙最多买 本.55.已知、两地相距千米,从到是下坡路.小高同学早上点骑车从地去地,点整到达;第天早上点,他从地原路返回,中午点整才到达地.他在两天往返的过程中曾在同一时刻到达同一地点,那么小高同学 时 分到达这一地点,此地距离地 千米.56.有这样一类四位数,它满足的形式,如.这样的四位数中偶数有 个.57.下图有五个圆,它们相交相互分成个区域,现在两个区域里已经填上与,要求在另外七个区域里分别填进、、、、、、七个数,使每个圆内的和都等于.则所表示的三位数是 .58.四个边长都是整数的正方形如下图摆放,正方形的三个顶点分别是正方形,,的中心.若红色部分的总面积和绿色部分的面积相等,则正方形的边长最小是 .59.名工人小时加工零件个,按这个效率,小时加工个零件,需要 名工人.60.一只蚂蚁从正方体某个面的中心出发,每次走到相邻面的中心,每个中心恰好经过一次最终回到出发点,所有经过的中心排出的序列共有 种.(两条序列不同指沿着行走方向经过的中心点顺序不一样)61.若一个能被整除的两位数,既不能被整除,又不能被整除,它的倍是偶数,十位数字不小于,则这个两位数是 .62.除以的余数是 .63.一个正方体被切成个大小形状一模一样的小长方体(如图所示),这些小长方体的表面积之和为平方厘米。
第9-11届希望杯数学竞赛五年级二试试题含答案
第九届小学“希望杯”全国数学邀请赛五年级第 2 试一、填空题(每小题 5 分,共 60 分)1、计算:0.15÷2.1×56=___________。
2、 15+115+1115+……+1111111115=____________。
3、一个自然数除以 3,得余数 2,用所得的商除以 4,得余数 3。
若用这个自然数除以 6,得余数____________。
4、数一数,图 1 中共有____________个长方形。
5、有一些自然数(0 除外)既是平方数(可写成两个相同的自然数的乘积),又是立方数(可写成三个相同的自然数的乘积)。
如:1=1×1=1×1×1,64=8×8=4×4×4。
那么在 1000 以内的自然数中,这样的数有________个。
6、有一个自然数,它的最小的两个约数的差是 4,最大的两个约数的差是 308,则这个自然数是___________。
7、如图 2,先将 4 黑1 白共 5 个棋子放在一个圆圈上,然后在同色的两子之间放入一个白子,在异色的两子之间放入一个黑子,再将原来的 5 个棋子拿掉。
如此不断操作下去,圆圈上的 5 个棋子中最多有_______个白子。
8、甲、乙两人分别从 A、B 两地同时相向而行,甲的速度是乙的速度的 3 倍,经过 60 分钟,两人相遇。
然后,甲的速度减为原速的一半,乙的速度不变,两人各自继续前行。
那么,当甲到达 B地后,再经过____分钟,乙到达_____A 地。
9、如图 3,将一个棱长为 1 米的正方体木块分别沿长、宽、高三个方向锯开 1,2,3 次,得到 24 个长方体木块。
这 24 块长方体木块的表面积的和是_____________平方米。
(18)10.如图4,小丽和小明的桶中原来各装有 3 千克和5 千克水。
根据图中的信息可知,小丽的桶最多可以装___________千克水,小明的桶最多可以装____________千克水。
新希望杯 全国数学大赛培训试题(五年级)
五年级训练题(一)一、选择题1.甲、乙两个数的和是201.3,其中甲数的小数点向左移动一位,就等于乙数,甲数与乙数的差是( )。
A. 164.3B.164.7C.165.3D.165.72.如图,平面上有12个点,上下或左右相邻的两点之间的距离都是1,选其中4个点围成一个正方形,不同的选法共有( )。
A.8种B.9种C.10种D.11种3.五年级两个班共100人参加智力竞赛,平均分是78分,其中男生平均分是80分,女生平均分是75分,男生比女生多( )。
A. 20人B.22人C.24人D.25人4.王伯去水果店买水果。
如果买4千克梨和6千克苹果,要付款84元;如果买5千克梨和6千克苹果,要付款91.5元。
那么买1千克梨和1千克苹果要付款 ( )。
A. 15元B.15.5元C.16元D.16.5元5.如下左图,某物体由14个小正方体堆积而成,从左边看该物体,看到的图形是( )。
999除以13所得的余数是( )。
6.1232012个9A.4 B.6 C.8 D.10二、填空题7.计算:(9.6×8.6×8.4)÷(4.3×3.2×2.1)=。
8.在400米长的环形跑道上,甲、乙两人同时同向从起跑线并排起跑,甲每秒跑5米,乙每秒跑4.2米。
两人起跑后第一次相遇时,乙共跑了米。
9.某校五年级举行篮球比赛,规定:胜一场积3分,平一场积1分,负一场积0分。
赛后统计,A班共积9分,其中平比胜多1局,负的局数是胜的2倍,A班负了局。
10.如图,连接大正方形各边的中点得到第二个正方形,再连接第二个正方形各边的中点得到第三个正方形,最后连接第三个正方形各边的中点得到第四个正方形。
大正方形的面积是图中阴影部分面积的倍。
11.如果+++=2.1, +++=2.5,+++=3, 则+++++=。
12.建设某项工程,原计划40名工人用90天完成。
现在这批工人工作30天后又增加了10人,完成剩下的部分需再做天。
五年级希望杯试题
19
★★★☆ 三、解答题 17
木材厂加工一批木材,原计划每天加工16.5吨,实际每
天比原计划多加工1.5吨,结果提前3.5天完成了任务。 实际完成任务用了多少天?
20
★★★☆ 三、解答题 18
如果长方形的长减少3.6厘米,宽减少2.5厘米,面积就
比原来减少57.8平方厘米,且剩下部分正好是一个正方 形,求这个正方形的面积。
③ 广西人与四川人、江苏人相隔的层数一样;
④ 广西人在的层数是湖南人和四川人在的层数的和。 根据以上条件可知,甲是( )。
A.广西人
B.湖南人
C.四川人
D.江苏人
9
★★ 二、填空题 计算:(81.8+818.818)÷8.18= 07
。
10
★★ 二、填空题 将两条长度分别是1.49米、1.17米的绳子接起来,接口处 08 共用去绳子0.28米,接好后的绳子长 米。
60
★★★☆
二、填空题
16
星星和贝贝各骑一辆自行车从学校出发,到相隔45千米的森林公园
游玩。贝贝比星星早出发20分,而星星比贝贝早到40分,星星到达 时,贝贝在他的后面10千米处。星星每小时行 千米。
61
★★★
三、解答题
17
食堂第一次运来6袋大米和5袋面粉,一共重360千克;第二次
又运来8袋大米和5袋面粉,一共重440千克。每袋大米和每袋 面粉各重多少千克?
子中各取一个球放入这个盒子;……如此继续,当第2017位小朋友
放完后,A、B、C、D、E五个盒子中各放有几个球?
44
五年级训练题(三)
45
★★ 一、选择题 01 下列说法正确的是(
)。
A. 一个分数的分母越小,它的分数单位就越小
希望杯五年级奥数试卷【含答案】
希望杯五年级奥数试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 25D. 27答案:B2. 一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 29B. 30C. 31D. 32答案:D3. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 三角形D. 梯形答案:A4. 一个正方形的边长是4厘米,那么它的面积是多少平方厘米?A. 8B. 16C. 32D. 64答案:B5. 下列哪个数是偶数?A. 101B. 102C. 103D. 104答案:D二、判断题(每题1分,共5分)1. 2的倍数都是偶数。
(正确)2. 所有的等差数列都是递增的。
(错误)3. 两个奇数相加的和是偶数。
(正确)4. 任何数乘以0都等于0。
(正确)5. 所有的质数都是奇数。
(错误)三、填空题(每题1分,共5分)1. 1+2+3++100的和是______。
(5050)2. 一个等边三角形的周长是15厘米,那么它的边长是______厘米。
(5)3. 两个质数相乘得到的数是______数。
(合)4. 一个数的因数个数是______。
(有限的)5. 0的阶乘是______。
(1)四、简答题(每题2分,共10分)1. 请列举出前5个质数。
答案:2,3,5,7,112. 请写出等差数列的通项公式。
答案:an = a1 + (n 1)d3. 请解释什么是偶数。
答案:偶数是能被2整除的整数。
4. 请解释什么是因数。
答案:因数是能整除一个数的数。
5. 请解释什么是等边三角形。
答案:等边三角形是三边长度相等的三角形。
五、应用题(每题2分,共10分)1. 一个数列的前三项分别是2,4,6,那么第10项是多少?答案:第10项是20。
2. 一个正方形的边长是6厘米,那么它的面积是多少平方厘米?答案:36平方厘米。
3. 请列举出10以内的所有质数。
答案:2,3,5,7。
“希望杯”全国数学邀请赛真题(五年级)
“希望杯”全国数学邀请赛真题(五年级)第一届小学“希望杯”五年级第1试一、填空题1.计算=_______ 。
2.将1、2、3、4、5、6分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。
3.在纸上画5条直线,最多可有_______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ 。
5.,各表示一个两位数,若和它的反序数+=139,则=_______ 。
6.三位数的差被99除,商等于_______ 与_______ 的差。
7.右图是半个正方形,它被分成一个一个小的等腰三角形,图2中,正方形有_______ 个,三角形有_______ 个。
8.一次智力测验,主持人亮出四块三角形的牌子:在第(4)块牌子中,?表示的数是_______ 。
9.正方形的一条对角线长13厘米,这个正方形的面积是平方厘米。
10.六位自然数1082□□能被12整除,末两位数有种情况。
11.右边的除法算式中,商数是。
第 1 页共 87 页12.比2/3大,比3/4小的分数有无穷多个,请写出三个:。
、B、C、D、E五位同学进行乒乓球循环赛,比赛进行了一段时间后,A赛了4场,B赛了3场,C赛了2场,D赛了1场,这时,E赛了场。
14.观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是。
15.警察查找一辆肇事汽车的车牌号,一位目击者对数字很敏感,他提供情况说:―第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的4倍刚好比后两位数少2‖。
警察此判断该车牌号可能是。
16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9。
小光,小亮二人随意往桌上扔放这个木块。
规定:当小光扔时,如果朝上的一面写的是偶数,得1分。
当小亮扔时,如果朝上的一面写的是奇数,得1分。
每人扔100次,得分高的可能性最大。
五年级希望杯近四年一、二试试题及答案解析
第十三届小学“希望杯”全国数学邀请赛五年级 第1试试题以下每题6分,共120分 1、计算:(2015201.520.15)________.2.015--= 2、9个13相乘,积的个位数字是________. 3、如果自然数a ,b ,c 除以14都余5,则a b c ++除以14,得到的余数是_______. 4、将1到25这25个数随意排成一行,然后将它们依次和1,2,3,,25相减,并且都是大数减小数,则在这25个差中,偶数最多有_______个. 5、如图1,有3个长方形,长方形①的长为16厘米,宽为8厘米;长方形②的长、宽分别是长方形①长、宽的一半;长方形③的长、宽分别是长方形②长、宽的一半,则这个图形的周长是_______厘米. 图1 6、字母,,,,,,a b c d e f g 分别代表1至7中的一个数字,若a b c c d e c f g ++=++=++,则c 可取的值有________个. 7、用64个体积为1立方米的小正方体拼成一个大正方体,如果将大正方体的8个顶点处的小正方体都去掉,则此时的几何体的表面积是 平方米. 8、有一个三位数,百位数字是最小的质数,十位数字是算式(0.3+π×13)的结果中小数点后的第一位数字,个位数字是三位数中能被17整除的最小数的个位数字,则这三位数是.(π取3.14)9、循环小数0.0142857的小数部分的前2015位数字之和是 . 10、如图,用若干个相同的小正方体摆成一个几何体,从上面、前面、左面看,分别是①、②、③,则至少需要 小正方体. 11、已知a 与b 的最大公约数是4,a 与c 以及b 与c 的最小公倍数都是100,而且a 小于等于b ,则满足条件的有序自然数对(a ,b ,c )共有 组.12、从写有1、2、3、4、5的5张卡片中任取3张组成一个三位数,其中不能被3整除的有_____个.13、两位数ab 和ba 都是质数,则ab 有 个.14、ab ,cde 分别表示两位数和三位数, 如果ab+ cde =1079,则a +b +c +d +e = 15、已知三位数abc ,并且a (b +c )=33,b (a +c )=40, 则这个三位数是 .16、若要组成一个表面积为52的长方体,则最少需要棱长为1的小正方体 个. 17、某工厂生产一批零件,如果每天比原计划少生产3个,同时零件生产定额减少60个,那么需要31天完成,如果每天超额生产3个,并且零件生产定额增加60个,那么经过25天即可完成.则原计划的零件生产定额是 个. 18、某次考试中,11名同学的平均分经四舍五入到小数点后的第一位等于85.3,已知每名同学的得分都是整数,则这11名同学的总分是分. 19、有编号1,2,3,4…2015的2015盏亮着的电灯,各有一个拉线开光控制,若将编号为2的倍数,3的倍数,5的倍数的灯线都各拉一下,这时,亮着的灯有 盏.20、今年是2015年,小明说:“我现在的年龄正好与我出生那年年份的四个数字之和相同.”则小明现在 岁. 第十三届小学“希望杯”全国数学邀请赛 五年级 第二试试题 一.填空题(每小题5分,共60分) 1. 用3、4、7、8这4个数字组成两个两位数(每个数字只能使用一次,且必须使用),它们的乘积最大是 . 【解析】首先要想让乘积最大,应该先乘数的十位尽量大,所以十位应用7、8.然后根据数字和一定,两数差越小乘积越大,可以知道83和74的差是最小的,因此乘积最大是83746142⨯=.2. 有三个自然数,它们的和是2015,两两相加的和分别是m +1,m +2011和m +2012,则m =____.【解析】由题意可以知道(1)m +、(2011)m +、(2012)m +三者的和是三个自然数和的2倍, ①②③因此12011201220152m m m +++++=⨯,得出2m =.3.用1、2、3、5、6、7、8、9这8个数字最多可以组成____个质数(每个数字只能使用一次,且必须使用).【解析】方法一:由于8个数字中有2个不为2的偶数,这2个数不能在个位,因此可以组成的质数最多有826-=(个),经尝试可得2、3、5、7、61、89满足条件,因此最多可以组成6个质数;方法二:题目要求最多个质数,应该使一位数的质数尽量多,有2、3、5、7;剩下1、6、8、9,我们会发现6和8只要放在个位这个数就不是质数,尝试可以组成61和89这两个质数,因此最多可以组成6个质数.4. 一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是____分.【解析】10个人的总分是8410840⨯=(分),其他9个人的总分是84093747-=(分),因此其他9个人的平均分是747983÷=(分). 5. 同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6),则朝上一面的4个数字的和有____种. 【解析】朝上一面的4个数字和最大是666624+++=,最小是11114+++=,最小和最大数字和之间的情况都有可能出现,因此朝上一面的4个数字和有244121-+=(种). 6. 某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是_____.【解析】三个彼此互质的自然数乘积是665,则其中必然有一个质数是5,6655133=⨯,那么133等于另外两个质数的乘积,可以看出133719=⨯,那么知道这三个彼此互质的自然数分别是5、7、19,长方体的表面积是(57719519)2526⨯+⨯+⨯⨯=.7.大于0的自然数n 是3的倍数,3n 是5的倍数,则n 的最小值是_____.【解析】若3n 是5的倍数,那么n 也是5的倍数,由题意可以得到n 既是3的倍数,也是5的倍数,所以n 的最小值是3515⨯=. 8. 从1、2、3、4、5 中任取3个组成一个三位数,其中不能被3整除的三位数有_____个. 【解析】若这个三位数的数字和不能被3整除,那么就不能被3整除.枚举可以知道(1、2、4),(1、2、5),(1、3、4),(1、4、5),(2、3、5),(2、4、5)这6组数字的数字和不能被3整除.那么不能被3整除的三位数有33636A ⨯=(个).9.观察下表中的数的规律,可知第8行中,从左向右第5个数是_____.【解析】前7行共有135********++++++=(个)数,即第7行的最后一个数是49,那么第8行前5个数分别是50、51、52、53、54,所以从左到右第5个数是54.10.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换______只鸡.【解析】根据题意有:2牛=42羊,3羊=26兔,2兔=3鸡,所以可得:3牛=4223÷⨯羊=63羊=26363÷⨯兔=546兔=54623÷⨯鸡=819鸡.11.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有_____种不同围法(边长相同的矩形算同一种围法).【解析】设矩形的长为a ,宽为b ,且a b ≥,根据题意可得:17a b +=,由于a 、b 均为整数,因此(a ,b )的取值有以下8种:(16,1),(15,2),(14,3),(13,4),(12,5),(11,6),(10,7),(9,8).12.将五位数“12345”重复写403次组成一个2015位数:“…”,从左往右,先删去这个数中所有位于奇数位上的数字,得到一个新数;再删去新数中所有位于奇数位上的数字;按上述规则一直删下去,直到剩下一个数字为止,则最后剩下的数字是______.【解析】从左到右删去奇数位上的数字,第一次删除后剩余第2,4,6,8,12k (11007k ≤)位上的数; 第二次删除后剩余第4,8,12,16,,()224503k k ≤位上的数;第n 次删除后剩余第2,22,23n n n ⨯⨯位上的数,以此类推最后剩余的一定是1021024=位上的数字(11220482015=>),102452044÷=,所以最后剩余的数字应为4.二、解答题(每个小题15分,共60分),每题都要写出推算过程13.甲、乙两船顺流每小时行8千米,逆流每小时行4千米.若甲船顺流而下,然后返回;乙船逆流而上,然后返回.两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?【解析】设甲船顺水航行x小时,则逆水航行()3-x小时,根据题意列方程得:()843x x=-,解得:1x=,甲船出发后顺水航行1小时后逆水航行2小时;同理可求出乙船出发后逆水航行2小时后顺水航行1小时.因此出发后的第2个小时甲、乙两船均逆水,有1小时行船方向相同.14.图中有多少个三角形?图1【解析】设最小的三角形面积为1,图中面积为1的三角形有16个;面积为2的三角形有44+8=24⨯(个);面积为4的三角形有44+4=20⨯(个);面积为8的三角形4+4=8(个);面积为16的三角形有4个;所以共有16+24+20+8+4=72(个).15.如图2,在一个平行四边形纸片上剪去甲、乙两个直角三角形.甲直角三角形的两条直角边边分别为8cm和5cm. 乙直角三角形的两条直角边边分别为6cm和2cm.求图中阴影部分的面积.图2 【解析】如下图所示,延长CP与DF垂直于F,DF与AH交于E,由于ABCD为平行四边形,则直角三角形CFD与甲三角形相等,直角三角形AED与乙三角形相等,阴影部分的面积为直角三角形CFD与直角三角形AED面积之和减去长方形EFPH,可得EF=5-2=3cm,EH=8-6=2cm,则阴影部分的面积为8×5÷2+6×2÷2-3×2=20(平方厘米). 16. 有158个小朋友排成一排,从左边第一个人起(第一个人发一个苹果),每隔1人发一个苹果,又从右边第一个人起(第一个人发一个香蕉),每隔2人发一个香蕉,求没有得到水果的小朋友的人数.【答案】52人【解析】由于从左边第一个人起(第一个人发一个苹果),每隔1人发一个苹果,即每2个人1个周期,158能被2整除,相当于从右边起(第一个人不发苹果),每隔1人发一个苹果,又从右边第一个人起(第一个人发一个香蕉),每隔2人发一个香蕉,发香蕉的周期为3,则从右边起每6个人为一个周期,发的水果数如下:苹果 1 0 1 0香蕉0 0 1 0 可以发现每个6个人的周期中共有2人没发水果,158÷6=26…… 2,剩余的2人均发了水果,则没发水果的一共有26×2=52(人).第十三届小学“希望杯”全国数学邀请赛五年级第二试试题一.填空题(每小题5分,共60分)1.用3、4、7、8这4个数字组成两个两位数(每个数字只能使用一次,且必须使用),它们的乘积最大是 .2.有三个自然数,它们的和是2015,两两相加的和分别是m+1,m+2011和m+2012,则m=____.3.用1、2、3、5、6、7、8、9这8个数字最多可以组成____个质数(每个数字只能使用一次,且必须使用).4.一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是____分.5.同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6),则朝上一面的4个数字的和有____种.6.某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是_____.7.大于0的自然数n是3的倍数,3n是5的倍数,则n的最小值是_____.8. 从1、2、3、4、5 中任取3个组成一个三位数,其中不能被3整除的三位数有_____个.9.观察下表中的数的规律,可知第8行中,从左向右第5个数是_____.10.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换______只鸡.11.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有_____种不同围法(边长相同的矩形算同一种围法).12.将五位数“12345”重复写403次组成一个2015位数:“…”,从左往右,先删去这个数中所有位于奇数位上的数字,得到一个新数;再删去新数中所有位于奇数位上的数字;按上述规则一直删下去,直到剩下一个数字为止,则最后剩下的数字是______.二、解答题(每个小题15分,共60分),每题都要写出推算过程13.甲、乙两船顺流每小时行8千米,逆流每小时行4千米.若甲船顺流而下,然后返回;乙船逆流而上,然后返回.两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?14.图中有多少个三角形?图115.如图2,在一个平行四边形纸片上剪去甲、乙两个直角三角形.甲直角三角形的两条直角边边分别为8cm和5cm. 乙直角三角形的两条直角边边分别为6cm和2cm.求图中阴影部分的面积.图2 16. 有158个小朋友排成一排,从左边第一个人起(第一个人发一个苹果),每隔1人发一个苹果,又从右边第一个人起(第一个人发一个香蕉),每隔2人发一个香蕉,求没有得到水果的小朋友的人数.2014第十二届希望杯五年级试题1.201403165÷,余数是________。
五年级希望杯数学竞赛题目
五年级希望杯数学竞赛题目一、题目与解析。
1. 计算:0.125×0.25×0.5×64- 解析:- 把64分解成8×4×2。
- 原式=(0.125×8)×(0.25×4)×(0.5×2)。
- 因为0.125×8 = 1,0.25×4=1,0.5×2 = 1。
- 所以结果为1×1×1 = 1。
2. 计算:(1.25+1.25+1.25+1.25)×25×8- 解析:- 括号里1.25+1.25+1.25+1.25 = 1.25×4。
- 原式=(1.25×4)×25×8。
- 根据乘法交换律和结合律,先算4×25 = 100,1.25×8 = 10。
- 结果为100×10 = 1000。
3. 一个数除以5余3,除以6余4,除以7余5。
这个数最小是多少?- 解析:- 这个数加上2就能被5、6、7整除。
- 5、6、7的最小公倍数为5×6×7=210。
- 所以这个数最小是210 - 2 = 208。
4. 有一个自然数,用它分别去除63,90,130都有余数,三个余数的和为25。
这三个余数中最大的一个是多少?- 解析:- 设这个自然数为x,设除63的余数为a,除90的余数为b,除130的余数为c。
- 则63 = k_1x + a,90=k_2x + b,130 = k_3x + c。
- 已知a + b + c = 25。
- 那么63+90 + 130-(a + b + c)=(k_1 + k_2 + k_3)x。
- 即63+90+130 - 25=(k_1 + k_2 + k_3)x。
- 计算得258=(k_1 + k_2 + k_3)x。
- 把258分解因数:258 = 2×3×43。
小学五年级“希望杯”第1-12届试题及详解(第一试
第一届小学―希望杯‖全国数学邀请赛五年级第1试一、填空题1.计算=_______ 。
2.将1、2、3、4、5、6分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。
3.在纸上画5条直线,最多可有_______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ 。
5.,各表示一个两位数,若+=139,则=_______ 。
6.三位数和它的反序数的差被99除,商等于_______ 与_______ 的差。
7.右图是半个正方形,它被分成一个一个小的等腰三角形,图2中,正方形有_______ 个,三角形有_______ 个。
8.一次智力测验,主持人亮出四块三角形的牌子:在第(4)块牌子中,?表示的数是_______ 。
9.正方形的一条对角线长13厘米,这个正方形的面积是______平方厘米。
10.六位自然数1082□□能被12整除,末两位数有_____种情况。
11.右边的除法算式中,商数是______。
12.比大,比小的分数有无穷多个,请写出三个:__________。
13.A、B、C、D、E五位同学进行乒乓球循环赛(即每2人赛一场),比赛进行了一段时间后,A赛了4场,B赛了3场,C赛了2场,D赛了1场,这时,E赛了______场。
14.观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是_________。
15.警察查找一辆肇事汽车的车牌号(四位数),一位目击者对数字很敏感,他提供情况说:―第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的4倍刚好比后两位数少2‖。
警察由此判断该车牌号可能是________。
16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9。
小光,小亮二人随意往桌上扔放这个木块。
规定:当小光扔时,如果朝上的一面写的是偶数,得1分。
当小亮扔时,如果朝上的一面写的是奇数,得1分。
2024年希望杯五年级竞赛数学试卷培训题含答案
2024年希望杯五年级竞赛数学试卷培训题1 .计算:.2 .计算:.3 ..4 ..5 .在横线上填上“”“”或“”.6 .已知:,则.7 .现定义一种新运算“”:,则.8 .表示的整数部分,如:,.计算:.9 .小强在计算除法时,把除数写成,结果得到的商是且余数是,正确的商是,余数是.10 .小虎在计算时,先算了减法,最后得到的结果是,正确的计算结果应该是.11 .在的两个里填入相同的数,使等式成立,里应填.12 .一个数的小数点向右移动一位后,比原来的数大,原来的数是.13 .循环小数小数点后第位数字是.14 .把化成小数,小数点后面第位上的数字是.15 .请你根据题图所示向日葵上的数字规律,在方框中填入正确的数字.16 .在一个四位数的前、后分别加上,组成两个五位数.若这两个五位数相差,则.17 .王冬有存款元,张华有存款元.王冬每月存元,张华每月存元,个月后张华的存款才能和王冬的一样多.18 .,要使商的中间有,里可以填.19 .题图算式中的,,分别代表不同的数字.式中的,和分别表示,和的倒置数字(如的倒置数字是,的倒置数字还是).那么是,是,是.20 .请把图中的除法竖式补充完整.21 .这个自然数的和是三位数,且这个三位数各个数位上的数字相同,则.22 .九位数能被中任何一个自然数整除,且数字、、互不相同,则三位数.23 .一个自然数的个位数字是,将这个移动到最左边,得到的新数恰好是原数的倍.原数最小是.24 .已知三个最简真分数的分母分别为,和,它们的乘积是.则这三个最简真分数中,最大的数是.25 .在等差数列1,8,15,22,29,36,43,…中,如果前个数乘积的末尾0的个数比前个数乘积的末尾0的个数少3个,那么最小是 .26 .是的倍数,则.27 .有一篮鸡蛋,每次取出个,最后剩下个,如果每次取出个或个,最后都剩下个,篮子里的鸡蛋至少有个.28 .自然数除以的余数是,则除以的余数是.29 .Given and are two non-zero digits and the digit numbers formed by these two digits have the following properties:.can be expressed by a product of and;.is a square number;Find the digit number.已知和为两个非零数位.且利用这两个数位组成的两位数有以下性质:.可以被写成和的积;.是个平方数;求两位数.30 .快速公交路线有四个站点,把这四个站点两两之间的距离从小到大排列,分别是:,,,,,,则“”.31 .有个因数且能被整除的最小自然数是.32 .从开始做乘法:,当乘到时,乘积的末尾有个连续的.33 .的计算结果末尾有个.34 .一个正整数与的积是一个完全平方数,则的最小值是.35 .,都是非零自然数.如果是的倍,那么和的最大公因数是;如果,那么和的最小公倍数是.36 .已知存在三个小于的自然数,它们的最大公因数是,且两两不互质,将这三个数相加,最大可能是.37 .定义,则有个因数.38 .选一选..A..B..C..D..E.39 .九张卡片上分别写有数,,,,,,,,(不能倒过来看).甲,乙,丙,丁四人分别抽取了其中两张:甲说:“我拿到的两个数互质,因为它们相邻.”乙说:“我拿到的两个数不互质,但也不是倍数关系.”丙说:“我拿到的两个数都是合数,但它们却互质.”丁说:“我拿到的两个数是倍数关系,它们不互质.”如果这四人说的都是真话,那么剩下的一张卡片上写的数是.40 .用、、、四个数字可以组成个双数,其中最大的是.(每个数字都要用且不重复)41 .将一个能被整除的三位数的首、末数字交换后,还是三位数,原数的倍也是三位数,原数的后两位数字的和是的约数,满足条件的最大的三位数是.42 .如图,大长方形被两条互相垂直的线段分成了四个小长方形.已知四个小长方形面积均为整数,其中两块面积分别为和.大长方形面积最大是.(注:图中各部分大小并不代表其面积大小关系)43 .如图,正方形的面积是,是中点,连接、交于点.是中点,连接并延长交于点.阴影部分的面积是.44 .如图,分别以一个正六边形的顶点和各边的中点为圆心,以正六边形的边长为直径画了个圆和个半圆.若阴影部分的面积和是,那么正六边形内部的阴影面积是.45 .正方形的面积是,,,,是正方形各边的中点,那么阴影部分的总面积是.46 .如图,在四边形中,,分别是,边的三等分点.已知四边形的面积是平方厘米,求四边形的面积是平方厘米.47 .如图所示,如果一块正方形土地的两边各增加米,面积将增加平方米.原来正方形的面积是平方米.48 .如图,两个正方形并排放在一起,、、在同一条直线上,大正方形边长为厘米,小正方形边长为厘米,那么阴影三角形的面积为平方厘米.49 .下图中,平行四边形的面积是,点是线段的中点.三角形的面积是.50 .如图,若大正方形的周长是,小正方形的周长是,则蓝色阴影部分的面积是.51 .正方形的边长为,,,是对角线的四等分点.图中阴影部分的总面积是.52 .学校校园里有一块宽为米的长方形空地,后勤部门准备从空地中划分出一块米宽的形区域作为绿植区,剩下的部分作为休闲区,而且休闲区和绿植区的面积刚好相等,如图所示(单位:米).那么这块空地的面积是平方米.53 .如图所示,梯形的面积为平方厘米,,厘米,厘米,又已知于点,那么阴影部分的总面积为平方厘米.54 .如图,长方形中有四个完全相同的直角三角形,这四个直角三角形的面积总和是.55 .鲁西西最近爱上了折纸,她发现如果把折纸按照图中的样子翻折一下,以直线为折痕将点翻折到,,.当阴影部分的面积与空白部分的面积相等时,如果知道折纸的面积就能算出折痕的长度.如果鲁西西的这张折纸(正方形)的面积是平方厘米,折痕厘米.56 .如图,长方形的广告牌长为,宽为,,,,分别在四条边上,并且比低,在的左边,四边形的面积是.57 .如图的一个骰子,其中对面的数字之和等于,首先将骰子如图放置,然后将骰子向右滚动次,再向前滚动次,此时面朝上.58 .,它一定是由个相同大小的正方体摆成的.59 .一个正方体木块,棱长是,从它的八个顶点处各截去棱长分别是、、、、、、、的小正方体.这个木块剩下部分的表面积最少是.60 .如图,在一个棱长为厘米的正方体密闭容器的下底固定了一个实心圆柱体,容器内盛有一定量的水且水面恰好经过圆柱体的上底面.如果将容器倒置,圆柱体有厘米露出水面.已知圆柱体的底面积是正方体底面积的,则实心圆柱体的体积为立方厘米.61 .琳琳、彤彤各带一些钱去书店,她们看上了一本元的书.如果这元由琳琳出,则琳琳剩下的钱是彤彤的倍;如果这元由彤彤出,琳琳的钱是彤彤剩下的钱的倍.那么开始时琳琳带了元,彤彤带了元.62 .一片牧场,每天草的生长速度相同,这片牧场可供头牛吃天,或者可供只羊吃天.如果只羊的吃草量相当于头牛的吃草量,那么头牛和只羊一起吃这片牧场上的草,可以吃天.63 .大黄蜂从赛博坦星球飞往潘多拉星球,原计划每小时行驶万千米,实际途中遇到电子风暴,只有一半的路程能按原计划的速度行驶,其余路程每小时行驶万千米,结果比原计划推迟了小时抵达潘多拉星球.赛博坦星球到潘多拉星球的路程是万千米.64 .张强晚上六点多外出锻炼身体,此时时针与分针的夹角;回家时还未到七点,此时时针与分针的夹角仍是,则张强外出锻炼身体用了分钟.65 .一条线段上最初有个点(包含端点),第一次在每相邻的两点之间增加一个点,第二次同样在每相邻的两点之间增加一个点.这时线段上共有个点.66 .冰墩墩练习滑雪一周,其中后四天平均每天滑雪的长度比前三天平均每天滑雪的长度多千米,后三天平均每天滑雪的长度比前四天平均每天滑雪的长度多千米.冰墩墩后三天滑雪的总长度比前三天滑雪的总长度多千米.67 .个数的平均数是,如果其中一个数变为,则这个数的平均数为.原来这个数是.68 .小林和叔叔的年龄和是岁.69 .若干年后,爷爷的年龄比小高年龄的倍多岁;再过几年,爷爷的年龄比小高年龄的倍多岁,已知今年小高岁,那么爷爷今年岁(今年爷爷年龄不到岁).70 .某汽车厂同时建成两条生产线.第一条生产线第一个月生产了辆汽车,以后每个月比前一个月多生产辆;第二条生产线第一个月也生产了辆汽车,以后每半个月比前半个月生产辆.那么,该厂生产辆汽车需要个月.71 .张三、李四两人一起加工一批零件,用时天完成了任务,李四中途有事请假天.已知张三每天比李四多做个零件,且最终李四加工的零件数恰好是张三的一半.这批零件的总数是个.72 .一项工程,甲单独做天完成,乙单独做天完成,若甲先做若干天后乙接着做,共用天完成.甲做了天.73 .游艇在静水中的速度是千米时,水速是千米时,喜羊羊驾驶游艇从下游的地到上游的地,然后立即返回下游地.游艇从到的时间是从到的倍,那么.74 .一位考古学家乘坐游艇从尼罗河上游码头出发,沿河行驶米到下游,然后原路返回.水流速度是千米时,游艇逆流而上比顺流而下多用小时,那么游艇在静水中的速度是每小时千米.75 .从地球到沙拉达行星有光年(注:光年是一个长度单位).贝吉塔和孙悟空从地球出发前往沙拉达行星.贝吉塔比孙悟空先出发天,如果贝吉塔和孙悟空沿直线飞行,他们每天都能飞行光年,那么孙悟空出发天后,贝吉塔正好在孙悟空和沙拉达行星的正中间.76 .有甲、乙两个村,小王从甲村步行到乙村,小李骑摩托车从乙村与小王同时出发,并不停地往返于甲、乙两村之间,过分钟后两人第一次相遇,分钟时小李第一次追上小王,那么当小王到达乙村时,小李追上小王的次数是.77 .甲乙两车分别从、两地同时出发,相向而行,在距离地米处的地相遇.相遇后乙的速度保持不变,甲的速度变为原来一半,甲继续行驶到地后立即掉头返回.当甲再次到达地时,乙刚好第一次到达地.、两地的距离是米.78 .甲乙两站相距,某天上午,车以的速度从甲站开往乙站,当天上午时,车以每小时的速度从乙站开往甲站,那么两车在点分时相遇.79 .如图所示,一个边长为米的正方形围墙,甲、乙两人分别从两个对角处沿围墙按逆时针方向同时出发.已知甲每秒走米,乙每秒走米.至少经过秒甲才能看到乙.80 .边长为的正方形的顶点,各有一只小虫,它们同时出发沿正方形的边顺时针爬行,小虫甲每秒爬,小虫乙每秒爬,它们在顶点处转弯时都需要耗秒.经过秒其中一只小虫将首次追上另一只小虫.81 .在校运动会上,三班参加跳绳比赛的有人,参加踢毽比赛的有人,那么参加这两项比赛的最多有人,最少有人.82 .数一数,下图一共有个“☆”.83 .如图,若干边长为的小等边三角形组成一个边长为的大等边三角形.现在每个小三角形的顶点涂上黑色或白色,可以按照任意顺序涂色.如果某个小三角形有两个顶点的颜色相同,那么第三个顶点涂黑色;否则第三个顶点涂白色.完成涂色后的大三角形有种不同的样式.(不可旋转、翻转)84 .用三种颜色去涂如图所示的三块区域,要求一个区域中只能涂一种颜色,相邻区域涂不同颜色,那么共有种不同的涂法.86 .从以内的个质数中任取两个构成真分数,这样的真分数有个.87 .池塘中片莲叶如下图排列.青蛙在莲叶间跳跃,每次只能从一片莲叶跳到相邻的另一片莲叶.一只青蛙盘算着从其中一片莲叶上起跳,连跳步,那么它有种不同的跳法.88 .数一数,下图中共有个梯形.89 .图中共有个平行四边形.90 .如图,在的网格中,每一个小正方形的面积为,点可以是每个小正方形的顶点,则满足的点的个数是.91 .把本书分给某班学生,不论怎么分总有一个学生至少分到本,那么这个班最多有人.92 .桌上有编号至的张卡片,小明每次取出张卡片,要求一张卡片的编号是另一张卡片的倍多,则小明最多取出张卡片.93 .果蔬王国正在举行国王竞选,全国人每人投票,从番茄勇士、香蕉超人、胡萝卜博士中选择人,票数最多的人当选.截至目前番茄勇土得票,香蕉超人得票,胡萝卜博士得票.那么,番茄勇士至少再得票就能够保证当选国王.94 .找规律填数.95 .一列慢车长米,一列快车长米,如果两车在并行的轨道上同向而行,从快车追上慢车到快车超过慢车要秒,如果两车相向而行,从两车相遇到完全错开要秒.慢车的速度是米秒.96 .小明手里有一盒棋子,最初盒子里全是白子.他先取出颗白子,然后放入颗黑子,再取出颗白子,再放入颗黑子.此时小明发现盒子里的白子恰好是黑子颗数的一半,那么最初盒子里有颗白子.97 .在六位数的某一位数字后面再插入一个同样的数字(例如,可以在的后面插入得到),这样得到的七位数最大是,最小是.98 .从、、、、、、、、这串奇数中至少取个数,才能保证其中一定有两个数之和是.99 .左图的表格中分别填入了,我们把对角相邻的两个数同时加上或同时减去一个相同的数叫做一次操作(如和同时加,变成和),经过若干次操作得到右图,那么和的乘积是.100 .将数字填入空白方格中,使得每一行、每一列、每个粗线围成的区域数字都只恰好出现一次,那么最下面的一行个数字组成的位数是.2 、【答案】3 、【答案】4 、【答案】5 、【答案】6 、【答案】7 、【答案】8 、【答案】9 、【答案】10 、【答案】11 、【答案】12 、【答案】略13 、【答案】14 、【答案】15 、【答案】.16 、【答案】17 、【答案】18 、【答案】,,,,19 、【答案】20 、【答案】.21 、【答案】22 、【答案】23 、【答案】24 、【答案】25 、【答案】 10826 、【答案】27 、【答案】28 、【答案】29 、【答案】.30 、【答案】31 、【答案】34 、【答案】35 、【答案】36 、【答案】37 、【答案】38 、【答案】 DECAB39 、【答案】40 、【答案】41 、【答案】42 、【答案】43 、【答案】44 、【答案】45 、【答案】46 、【答案】47 、【答案】48 、【答案】49 、【答案】50 、【答案】51 、【答案】52 、【答案】53 、【答案】54 、【答案】55 、【答案】56 、【答案】57 、【答案】58 、【答案】59 、【答案】60 、【答案】61 、【答案】62 、【答案】63 、【答案】66 、【答案】67 、【答案】68 、【答案】69 、【答案】70 、【答案】71 、【答案】72 、【答案】73 、【答案】74 、【答案】75 、【答案】76 、【答案】77 、【答案】78 、【答案】79 、【答案】80 、【答案】81 、【答案】82 、【答案】83 、【答案】84 、【答案】85 、【答案】86 、【答案】87 、【答案】88 、【答案】89 、【答案】90 、【答案】91 、【答案】92 、【答案】93 、【答案】94 、【答案】95 、【答案】97 、【答案】98 、【答案】99 、【答案】100 、【答案】。
希望杯第1-13届五年级数学1试和2试试题及答案(WORD版)
第一届小学“希望杯”全国数学邀请赛五年级第1试2003年3月30日上午8:30至10:00一、填空题1.计算=_______ 。
2.将1、2、3、4、5、6分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。
3.在纸上画5条直线,最多可有_______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ 。
5.,各表示一个两位数,若+=139,则=_______ 。
6.三位数和它的反序数的差被99除,商等于_______ 与_______ 的差。
7.右图是半个正方形,它被分成一个一个小的等腰三角形,图2中,正方形有_______ 个,三角形有_______ 个。
8.一次智力测验,主持人亮出四块三角形的牌子:在第(4)块牌子中,?表示的数是_______ 。
9.正方形的一条对角线长13厘米,这个正方形的面积是平方厘米。
10.六位自然数1082□□能被12整除,末两位数有种情况。
11.右边的除法算式中,商数是。
12.比大,比小的分数有无穷多个,请写出三个:。
13.A、B、C、D、E五位同学进行乒乓球循环赛(即每2人赛一场),比赛进行了一段时间后,A赛了4场,B赛了3场,C赛了2场,D赛了1场,这时,E赛了场。
14.观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是。
15.警察查找一辆肇事汽车的车牌号(四位数),一位目击者对数字很敏感,他提供情况说:“第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的4倍刚好比后两位数少2”。
警察由此判断该车牌号可能是。
16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9。
小光,小亮二人随意往桌上扔放这个木块。
规定:当小光扔时,如果朝上的一面写的是偶数,得1分。
当小亮扔时,如果朝上的一面写的是奇数,得1分。
每人扔100次,得分高的可能性最大。
五年级希望杯1-81题目
五年级希望杯1.计算:1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.192.计算:2004.05×1997.05-2001.05×1999.053.计算:1÷64÷0.05÷0.25÷0.1254.计算:0.000...000125÷0.000 (0008)2017个0 2017个05.计算:7.816×1.45+3.14×2.184+1.69×7.8166、计算:(20.17+1.2+2.3)×(1.2+2.3+3.4)- (20.17+1.2+2.3+3.4)×(1.2+2.3)6.计算:2÷(3÷4)÷(4÷5)÷……(2014÷2015)÷(2015÷2016)7.比较下面两个乘积A、B的大小A=9.8732×7.2345B=9.8733×7.23448.计算:......++ (结果写成分数形式)0.010.260.629.阿呆买了72支同样的钢笔,可是发票不慎落水浸湿,单价已无法辨认,总价□□(□表示不明数字).请问总价应该是多少?数字也不全,只能认出:11.410.三个连续自然数的乘积等于39270,那么这三个数的和等于多少?11.算式1×2×3×...×35的计算结果的末尾有多少个连续的“0”?12.算式3333...20212229++++计算结果的整数部分是多少?13.2017个7相乘,积的个位数字是几?14.算式66.666×66.666计算结果的整数部分是多少?16、李老师出了两道题,全班40人中,第1题有30人做对,第2题有12人未做对,两题都做对的有20人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年第八届小学“希望杯”全国数学邀请赛五年级 第1试试题1、计算 10.37×3.4+1.7×19.26= 。
2、已知1.08÷1.2÷2.3=10.8÷□,其中□表示的数是 。
3、计算:1.825gg-0.8g= 。
(8、5、8的上面有循环点)4、有三个自然数a ,b ,c ,已知b 除以a ,得商3余3;c 除以a ,得商9余11。
则c b ,得到的余数是 。
5、已知300=2×2×3×5×5,则300一共有 不同的约数。
6、在99个连续的自然数中,最大的数是最小的数的25.5倍,那么这99个自然数的平均数是 。
7、要往码头运28个同样大小的集装箱,每个集装箱的质量是1560千克。
现安排一辆载重6吨的卡车运送这些集装箱,卡车车厢的大小最多可以容纳5个集装箱,则这辆卡车至少需往返 趟。
8、小晴做道菜:“香葱炒蛋”,需7道工序,时间如下:洗葱,切葱花 打蛋 搅拌蛋液和葱花洗锅 烧热锅 烧热油 烧菜1分钟 半分钟 1分钟 半分钟 半分钟 半分钟 2分钟 做好这道菜至少要 分钟。
9、一项特殊的工作必须日夜有人看守,如果安排8人轮流值班,当值人员为3人,那么,平均每人每天工作 小时。
10、甲、乙两商店中某商品的定价相同。
甲商店按定价销售这种商品,销售额是7200元;乙商店按定价的八折销售,比甲商店多售出15件,销售额与甲商店相同。
则甲商店售出 件这种商品。
11、夜里下了一场大雪,早上,小龙和爸爸一起步测花园里一条环形小路的长度,他们从同一点同向行走。
小龙每步长54厘米,爸爸每步长72厘米,两人各走完一圈后又都回到出发点,这时雪地上只留下60个脚印。
那么这条小路长 米。
12、一艘客轮在静水中的航行速度是26千米/时,往返于A 、B 两港之间,河水的流速是6千米/时。
如果客轮在河中往返4趟公用13小时,那么A 、B 两港之间相距 千米。
13、如图1,将从2开始的偶数从小到大排列成一个顺时针方向的直角螺旋,4,6,10,14,20,26,34,……依次出现在螺旋的拐角处。
则2010 (填“会”或“不会”)出现在螺旋的拐角处?图114、大猴采到一些桃子,分给一群小猴吃。
如果其中两只小猴各分得4个桃,其余每只小猴各分得2个桃,则最后剩4个桃;如果其中一只小猴分得6个桃,其余每只小猴各分得4个桃,那么还差12个桃。
大猴共采到个桃,这群小猴共有只。
的油倒入15、甲、乙、丙三个桶内各装了一些油。
先将甲桶内13的油倒入丙桶,这时三个桶内的油一样多。
乙桶,再将乙桶内15如果最初丙桶内有油48千克,那么最初甲桶内有油千克,乙桶内有油千克。
16、甲、乙两车从相距330千米的A、B两城相向而行,甲车先从A城出发,过一段时间后,乙车才从B城出发,并且甲车的速度是乙车。
当两车相遇时,甲车比乙车多行驶了30千米,则甲车开出千的速度的56米,乙车才出发。
17、□,○,△分别表示三个小木块,它们的质量各不相同,可能是1克、2克、3克、4克或5克。
根据图2可判断,□的质量是克,○的质量是克,△的质量是克。
图2图318、如图3,四个完全相同的正方体木块并排放在一起,木块的6个面上涂有6种不同的颜色,则与涂蓝色的面相对的那一面上是色。
19、用九个如图甲所示的小长方体拼成一个如图4乙所示的大长方形,已知小长方形的体积是750立方厘米,则大长方体的表面积是平方厘米。
(单位:厘米) 甲乙图4图520、如图,边长为12厘米的正方形中有一块阴影部分,阴影部分的面积是 平方厘米。
2011年第九届小学希望杯全国数学邀请赛五年级 第1试试题1.计算:1.25×31.3×24= .2.把0.123,0.1••32,0.12•3,0.•12•3按照从小到大的顺序排列: ___________< < <3.先将1开始的自然数排成一列:123456789101112131415…… 然后按一定的规律分组:1,23,456,7891,01112,131415,…… 在分组后的数中,有一个十位数,这个十位数是 .4.如图1,从A 到B ,有 条不同的路线.(不能重复经过同一个点)5.数一数,图2中有 个正方形.6.一个除法算式中,被除数、除数、商与余数都是自然数,并且商与余数相等.若被除数是47,则除数是 ,余数是 .7.如果六位数□□2011能被90整除,那么它的最后两位数是 . 8.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”.那么,1000以内最大的“希望数”是 .9.将等边三角形纸片按图3所示步骤折叠3次(图3中的虚线是三边中点的连线),然后沿过两边的中点的直线剪去一角(如图4).图3 图4 将剩下的纸片展开,平铺,得到的图形是 .丁丙乙甲10.如图5,甲乙两人按箭头方向从A 点同时出发,沿着正方形ABCD图1BA 图2剪去,不要的边行走,正方形ABCD 的边长是100米,甲的速度是乙的速度的1.5倍,两人在E 点第一次相遇,则三角形ADE 的面积比三角形BCE 的面积大 平方米. 图511.星期天早晨,哥哥和弟弟去练习跑步.哥哥每分钟跑110米,弟弟每分钟跑80米.弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米.那么哥哥跑了 米.12.差元,笔每支 元.13.等于14.15.216.17.A 与18.有27个,放2个或3个红球的纸盒共有42个,放3个白球和3个红球的纸盒数量相同.那么,白球共有 个.19.用长5厘米、宽4厘米、高3厘米的长方体木块叠成一个最大的正方体,至少需要 个这样的长方体木块.20.如图6,梯形ABCD 的上底AD 长12厘米,高BD 长18厘米,BE=2DE ,则下底BC 长 厘米.ED CBA2012年第十届小学“希望杯”全国数学邀请赛五年级第1试1.计算:1.2×67+6.7×88=2.计算:21.49+52.37-0.4+5.51-11.37-6.6=3.用1,2,3,4,5和+,-,×,÷组合成一个算式(不含括号),计算结果最大是()。
4.一件商品对原价打八折和打六折的售价相差4.8元,这件商品的原价是()元。
5.将252块巧克力,294盒饼干,336袋牛奶分成相同的份数,并且都没有余数,那么最多可以分成()份。
6. 若8只羊一星期要吃168千克饲料,一头牛的食量是一只羊的食量的2.8倍,那么,200只羊和180头牛一个月(按30天计)要吃()千克饲料。
7. 图1中,阴影面积最大的图形是(),阴影面积最小的图形是()。
(填序号)8.一个两位数,将它的十位数字和个位数字对调,得到的数比原来的数大18,这样的两位数有()个。
9.如图2,如果小数的愿望能够实现,那么它的身高平均每年要增长到上一年的()倍。
图110.两个不同的三位数被13除,若得到相同的余数,那么,这两个三位数的和最大是(),他们的差最大是()。
11.如图3,从左到右,在每列各选出一个框,组成算式(如:5×2+3),则有()种不同的结果。
图212.A、B两地间有一条公路。
甲车从A驶到B,需60分钟;乙车从B驶到A,需120分钟。
若甲、乙两车分别从A、B两地同时出发,则在出发后()分钟相遇。
13.学校购买了数量相同的课桌和椅子,用小货车装运,每车装17张课桌和13把椅子。
装了若干车后,课桌剩9张,椅子剩77把。
那么,此时已经装了()车;按1桌1椅为1套,那么学校购买了()套课桌和椅子。
14.如图4,甲、乙、丙三个大小相同的杯子在桌面上一次排列,其中甲杯中盛满水,乙和丙是空杯。
现把水全部倒入相邻(左或右)的空杯中,那么,经过55次倒水后,有水的是()杯。
15.要搭建如图5所示的立体,需要()个相同的小正方体。
16.用60个相同的正方体,可以堆积成形状不同的长方体()个。
17.恰有两个数字相同的三位数共有()个。
18.小王为一个16人的旅游团购买飞机票,座位有经济舱和商务舱可选择,其中经济舱的票价是720元/人,商务舱的票价是1500元/人。
这次购票共花费13080元,则小王购买了()张经济舱机票。
19.如图6,在由9个相同的小正方形拼成的3×3网格中,标出9个角。
则的度数是()。
在一个海岛上居住者2012人,其中一些人总是说假话,其余的人总是说真话。
岛上的每一位居民都崇拜太阳神、月亮神和地球神这三个神中的一个。
一位外来的采访者向岛上的每一位居民提出三个问题:(1)你崇拜太阳神吗?(2)你崇拜月亮神吗?(3)你崇拜地球神吗?对第一个问题,有804人回答:“是”;对第二个问题,有1004人回答:“是”;对第三个问题,有1204人回答:“是”。
那么,他们中有()人说的是真话。
2013第十一届小学“希望杯”全国数学邀请赛五年级第1试试题1.计算:5.62×49-5.62×39+43.8= 。
1△1.8= 。
2.规定a△b=a÷(a+b),那么253.若干个数的平均数是2013,增加一个数后,平均数仍是2013,则增加的这个数是。
4.如果三位数3□2是4的倍数,那么□里能填的最小的数是,最大的数是。
5.观察下图,?代表的数是。
1 3 5 7 9 8 6 4 22 4 6 8 7 5 33 5 7 6 44 6 5?6.小明在计算一个整除的除法算式时,不小心将除数18看成15,得到的商是24,则正确的商是。
7.将100块糖分成5份,使每一份的数量依次多2,那么最少的一份有糖块,最多的一份有糖块。
8.一件商品,对原价打九折和打七折后的售价相差5.4,那么此商品的原价是元。
9.有26个连续的自然数,如果前13个数的和是247,那么,后13个数的和是。
10.在三位数253,257,523,527中,质数是。
11.14个棱长为1的正方体在地面上堆成如图1所示的几何体,将它的表面(包括与地面接触部分)染成红色,那么红色部分的面积是。
12.如图2,若梯形ABCD的上底AD长16厘米,高BD长21厘米,并且BD=3DE,则三角形ADE的面积是平方厘米,梯形的下底BC长厘米。
13.小丽将一些巧克力装入大,小两种礼盒中的一种礼盒内,如果每个小礼盒装5块巧克力,那么剩下10块;如果每个大礼盒装8块巧克力,那么少2块。
已知小礼盒比大礼盒多3个,则这些巧克力共有块。
14.从甲地到乙地,小张走完全程用2个小时,小李走完全程用1个小时。
如果小张和小李同时从甲地出发去乙地,后来,在某一时刻,小张未走的路程恰好是小李未走的路程的2倍,那么此时他们走了分钟。
15.有16盒饼干,其中15盒的重量(含盒子)相同,另有1盒少了几块,如果用天平称,那么至少称次就一定能找出这盒饼干。