2018-2019学年福建省莆田一中七年级(下)期末数学试卷(含答案解析)

合集下载

2018—2019学年度第二学期期末考试七年级数学试卷

2018—2019学年度第二学期期末考试七年级数学试卷

2018—2019学年度第二学期期末考试七年级数学试题(90分钟完成,满分100分)题号 一 二 19 20 21 22 23 24 25 26 总分 等级 分数一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入下表中.每选对一个得3分,选错、不选或选出的答案多于一个均得0分.本大题共30分)题号12345678 9 10 答案一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,△ABC=500,△ACB=800,BP 平分△ABC ,CP 平分△ACB ,则△BPC的大小是( )A .1000B .1100C .1150D .1200(1) (2) (3)PCBA 小刚小军小华得分 评卷人C 1A 1ABB 1CD7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(△0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x -9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,△为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,△则△ABC=_______度.16.如图,AD△BC,△D=100°,CA 平分△BCD,则△DAC=_______.17.给出下列正多边形:△ 正三角形;△ 正方形;△ 正六边形;△ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.C B A D20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD△BC , AD 平分△EAC,你能确定△B 与△C 的数量关系吗?请说明理由。

2018-2019年人教版初一数学下学期末数学试卷含答案解析

2018-2019年人教版初一数学下学期末数学试卷含答案解析

2017-2018学年下学期期末考试七年级数学试卷一、选择题:本大题共12小题,每小题3分,共36分,每小题给出的四个选项中,只有一项是正确的1.(3分)下列各数中,是无理数的是()A.﹣2 B.0 C.D.【分析】无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数,根据以上内容判断即可.【解答】解:A、-2是有理数,不是无理数,故A错误;B、0是有理数,不是无理数,故B错误;C、是无理数,故C正确;D、是有理数,不是无理数,故D错误.故选:C.【点评】本题考查了对无理数的应用,注意:无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数.2.(3分)满足﹣1<x≤2的数在数轴上表示为()A.B.C.D.【分析】-1<x≤2表示不等式x>-1与不等式x≤2的公共部分.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.【解答】解:由于x>-1,所以表示-1的点应该是空心点,折线的方向应该是向右.由于x≤2,所以表示2的点应该是实心点,折线的方向应该是向左.所以数轴表示的解集为故选:B.【点评】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集,有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.(3分)下列调查中,适合采用全面调查(普查)方式的是()A.对漓江水质情况的调查B.对端午节期间市场上粽子质量情况的调查.C.对某班55名同学体重情况的调查D.对某类烟花爆竹燃放安全情况的调查【专题】常规题型;数据的收集与整理.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对漓江水质情况的调查适合抽样调查;B、对端午节期间市场上粽子质量情况的调查适合抽样调查;C、对某班55名同学体重情况的调查适合全面调查;D、对某类烟花爆竹燃放安全情况的调查适合抽样调查;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.(3分)下列数据不能确定物体位置的是()A.5楼6号B.北偏东30°C.大学路19号D.东经118°,北纬36°【分析】确定一个物体的位置,要用一个有序数对,即用两个数据.找到一个数据的选项即为所求.【解答】解:A、5楼6号,是有序数对,能确定物体的位置,故本选项不合题意;B、北偏东30°,不是有序数对,能确定物体的位置,故本选项符合题意;C、大学路19号,“大学路”相当于一个数据,是有序数对,能确定物体的位置,故本选项不合题意;D、东经118°北纬36°,是有序数对,能确定物体的位置,故本选项不合题意.故选:B.【点评】本题考查了坐标确定点的位置,要明确,一个有序数对才能确定一个点的位置.5.(3分)a、b都是实数,且a<b,则下列不等式的变形正确的是()A.ac<bc B.a+x>b+x C.﹣a>﹣b D.【分析】根据不等式的性质逐个判断即可.【解答】解:A、当c为0和负数时,不成立,故本选项错误;B、∵a<b,∴a+x<b+x,故本选项错误;C、∵a<b,∴-a>-b,故本选项正确;D、当c为负数和0时不成立,故本选项错误;故选:C.【点评】本题考查了不等式的性质的应用,能熟记不等式的性质是解此题的关键.6.(3分)下列语句不是命题的是()A.画两条相交直线B.互补的两个角之和是180°C.两点之间线段最短 D.相等的两个角是对顶角【专题】几何图形.【分析】根据命题的定义对四个语句分别进行判断即可.【解答】解:A、画两条相交直线不是对一件事情的判断,不是命题;B、互补的两个角之和是180°是命题;C、两点之间线段最短是命题;D、相等的两个角是对顶角是命题;故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.(3分)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.4【分析】根据两直线平行同位角相等,内错角相等,同旁内角互补,及直角三角板的特殊性解答.【解答】解:∵纸条的两边平行,∴(1)∠1=∠2(同位角);(2)∠3=∠4(内错角);(4)∠4+∠5=180°(同旁内角)均正确;又∵直角三角板与纸条下线相交的角为90°,∴(3)∠2+∠4=90°,正确.故选:D.【点评】本题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.8.(3分)若m是任意实数,则点P(m﹣1,m+2)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【专题】平面直角坐标系.【分析】先判断点P的横坐标与纵坐标的大小关系,然后根据各象限内点的坐标特征解答.【解答】解:∵(m+2)-(m-1)=m+2-m+1=3>0,∴点P的纵坐标一定大于横坐标,第一象限的点的横坐标是正数,纵坐标是负数,∴纵坐标一定小于横坐标,∴点P一定不在第四象限,故选:D.【点评】本题考查了点的坐标,利用作差法求出点P的横坐标大于纵坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).9.(3分)若方程组的解x和y的值相等,则k的值为()A.4 B.11 C.10 D.12【分析】x和y的值相等,把第一个式子中的y换成x,就可求出x与y的值,这两个值代入第二个方程就可得到一个关于k的方程,从而求得k的值.【解答】解:把y=x代入4x+3y=1得:7x=1,解得:k=11故选:B.【点评】此题主要考查了二元一次方程组解的定义以及解二元一次方程组的基本方法.10.(3分)若点P为直线外一点,点A、B、C、D为直线L上的不同的点,其中PA=4,PB=4.5,PC=5,PD=6,那么点P到直线L的距离是()A.小于4 B.4 C.不大于4 D.不小于4.5【分析】根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.【解答】解:A、[0)=1,故本项错误;B、若[x)-x=0.5,则x不一定等于0.5,故本项错误;C、[x)-x>0,但是取不到0,故本项错误;D、[x)-x≤1,即最大值为1,故本项正确;故选:D.【点评】此题考查了一元一次不等式组的应用,实数的运算,仔细审题,理解[x)表示大于x的最小整数是解答本题的关键.11.(3分)设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论中正确的是()A.[0)=0 B.若[x)﹣x=0.5,则x=0.5C.[x)﹣x的最小值是0 D.[x)﹣x的最大值是1【分析】根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.【解答】解:A、[0)=1,故本项错误;B、若[x)-x=0.5,则x不一定等于0.5,故本项错误;C、[x)-x>0,但是取不到0,故本项错误;D、[x)-x≤1,即最大值为1,故本项正确;故选:D.【点评】此题考查了一元一次不等式组的应用,实数的运算,仔细审题,理解[x)表示大于x的最小整数是解答本题的关键.12.(3分)如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是()A.54个B.90个C.102个D.114个【专题】压轴题.【分析】本题是一道找规律的题目,这类题型在中考中经常出现.【解答】根据题意分析可得:从里向外的第1层包括6个正三角形.第2层包括18个正三角形.此后,每层都比前一层多12个.依此递推,第8层中含有正三角形个数是6+12×7=90个.故选:B.【点评】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题:(本大题共6小题,每小题3分,共18分,).13.(3分)如图,体育课上老师要测量学生的跳远成绩,其测量时主要依据是.【分析】此题为数学知识的应用,由实际出发,老师测量跳远成绩的依据是垂线段最短.【解答】解:体育课上,老师测量跳远成绩的依据是垂线段最短.故答案为:垂线段最短.【点评】此题考查知识点垂线段最短,关键是掌握垂线段的性质:垂线段最短.14.(3分)将点A(1,1)先向左平移2个单位,再向下平移3个单位得到点B,则点B的坐标是.【分析】让点A的横坐标减2,纵坐标减3即可得到平移后点B的坐标.【解答】解:点B的横坐标为1-2=-1,纵坐标为1-3=-2,所以点B的坐标是(-1,-2).故答案为:(-1,-2).【点评】本题考查点的平移规律;用到的知识点为:点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.15.(3分)方程2x+y=9在正整数范围内的解有组.【分析】把x看做已知数表示出y,即可确定出方程的正整数解.【解答】解:方程2x+y=9,解得:y=-2x+9,当x=1时,y=7;x=2时,y=5;x=3时,y=3;x=4时,y=1,则方程的正整数解有4组,故答案为:4【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.16.(3分)某市为了了解该市6万名七年级学生的身体素质情况,随机抽取了500名七年级学生进行检测,身体素质达标率为92%.这次检测的样本容量是.分析】根据样本容量的定义进行填空即可.【解答】解:调查的对象是七年级学生的身体素质情况,样本是500名学生的身体素质情况,则样本容量是500.故答案为500.【点评】本题考查了总体、个体、样本、样本容量,注意样本容量无单位.17.(3分)老张与老李购买了相同数量的种兔,一年后,老张养兔数比买入种兔增加了2只,老李养兔数比买入种兔数的2倍少了1只,老张养兔数不超过老李养兔数的.一年前老张至少买了只种兔?【专题】一元一次不等式(组)及应用.【分析】设一年前老张买了x只种兔,则老李也买了x只种兔,根据“一年后,老张养兔数比买入种兔增加了2只,老李养兔数比买入种兔数的2倍少了1只,老张养兔数不超过老李养兔数的”,列出关于x的一元一次不等式,解之即可.【解答】解:设一年前老张买了x只种兔,则老李也买了x只种兔,根据题意得:一年后老张的兔子数量为:x+2(只),一年后老李的兔子数量为:2x-1(只),则:x+2≤2x-1,解得:x≥3,即一年前老张至少买了3只种兔,故答案为:3.【点评】本题考查一元一次不等式的应用,正确找出等量关系,列出一元一次不等式是解题的关键.18.(3分)已知不等式组的整数解为1、2、3,如果把适合这个不等式组的整数a、b组成有序数对(a,b),那么对应在平面直角坐标系上的点共有的个数为.【分析】根据不等式组的整数解为1,2,3,即可确定a,b的范围,即可确定a,b的整数解,即可求解.∴b=10,11,12,共3个.2×3=6(个).故适合这个不等式组的整数a,b的有序数对(a,b)共有6个.故答案为6.【点评】本题考查了一元一次不等式组的整数解,注意各个不等式的解集的公式部分就是这个不等式组的解集.但本题是要求整数解的,所以要找出在这范围内的整数.三、解答题:(本大题共8小题,满分66分,写出演算步骤或推理过程19.(17分)计算或解方程(1)计算:(﹣1)2018+﹣3+×(2)解方程组(3)解不等式(3x﹣4)﹣3(2x+1)<﹣1(4)解不等式组并把它的解集表示在数轴上.【专题】方程与不等式.【分析】(1)先算乘方、二次根式化简,三次根式化简,再计算即可求解;(2)根据加减消元法解方程即可求解;(3)去括号、移项、合并同类项、化系数为1,依此即可求解;(4)先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解:(1)(﹣1)2018+﹣3+×=1+2﹣3+1=1.(2),①+②,得4x=12,解得:x=3,将x=3代入①,得9﹣2y=11,解得y=﹣1.故方程组的解是;(3)(3x﹣4)﹣3(2x+1)<﹣1,3x﹣4﹣6x﹣3<﹣1,3x﹣6x<﹣1+4+3,﹣3x<6,x>﹣2;(4),解不等式①,得x≥﹣2,解不等式②,得x<﹣,∴原不等式组的解集为:﹣2≤x<﹣,把它的解集表示在数轴上为:【点评】考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.同时考查了实数的运算,解二元一次方程组.20.(6分)在△ABC中,F是BC上一点,FG⊥AB,垂足为G.(1)过C点画CD⊥AB,垂足为D;(2)过D点画DE∥BC,交AC于E;(3)求证:∠EDC=∠GFB.【专题】计算题;作图题.【分析】(1)以C为圆心画弧,与AB交于两点,分别以两点为圆心,大于两点距离一半长为半径画弧,两弧交于一点,作出垂直CD即可;(2)以D为顶点,作∠ADE=∠B,利用同位角相等两直线平行即可确定出DE;(3)由FG与CD都与AB垂直,得到FG与CD平行,利用两直线平行同位角相等得到一对角相等,再由DE与BC平行,得到一对内错角相等,等量代换即可得证.【解答】解:(1)画CD⊥AB,如图所示;(2)画DE∥BC,如图所示;(3)证明:∵FG⊥AB,CD⊥AB,∴∠FGB=∠CDB=90°,∴FG∥CD,∴∠DFB=∠DCB,∵DE∥BC,∴∠EDC=∠DCB,∴∠EDC=∠GFB.【点评】此题考查了作图-复杂作图,以及平行线的判定与性质,作出正确的图形是解本题的关键.21.(8分)在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:(1)本次接受问卷调查的学生总人数是;(2)扇形统计图中,“了解”所对应扇形的圆心角的度数为,m的值为;(3)若该校共有学生1500名,请根据上述调查结果估算该校学生对足球的了解程度为“基本了解”的人数.【分析】(1)根据折线统计图可得出本次接受问卷调查的学生总人数是20+60+30+10,再计算即可;(2)用360°乘以“了解”占的百分比即可求出所对应扇形的圆心角的度数,用基本了解的人数除以接受问卷调查的学生总人数即可求出m的值;(3)用该校总人数乘以对足球的了解程度为“基本了解”的人数所占的百分比即可.【解答】解:(1)本次接受问卷调查的学生总人数是20+60+30+10=120(人);故答案为:120;故答案为:30°,25;(3)若该校共有学生1500名,则该校学生对足球的了解程度为“基本了解”的人数为:1500×25%=375.【点评】本题考查的是扇形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.22.(6分)如图,已知直线AB∥DF,∠D+∠B=180°.(1)求证:DE∥BC;(2)如果∠AMD=75°,求∠AGC的度数.【专题】线段、角、相交线与平行线.【分析】(1)根据平行线的性质得出∠D+∠BHD=180°,求出∠B=∠DHB,根据平行线的判定得出即可;(2)根据平行线的性质求出∠AGB=∠AMD=75°,根据邻补角的定义求出即可.【解答】解:(1)∵AB∥DF,∴∠D+∠BHD=180°,∵∠D+∠B=180°,∴∠B=∠BHD,∴DE∥BC;(2)∵DE∥BC,∴∠AGB=∠AMD,即∠AMD=75°,∴∠AGB=75°,∴∠AGC=180°-∠AGB=180°-75°=105°.【点评】本题考查了平行线的性质和判定,邻补角的定义的应用,能求出DE∥BC 是解此题的关键.23.(5分)已知a是的整数部分,b是的小数部分,求(﹣a)3+(2+b)2的值.【分析】先估计的近似值,然后得出的整数部分和小数部分,进而得出答案.【解答】解:∵4<8<9,∴2<<3,∴的整数部分和小数部分分别为a=2,b=﹣2.∴(﹣a)3+(2+b)2=(﹣2)3+()2=0.【点评】此题主要考查了估算无理数的大小,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.24.(8分)为了更好治理河流水质,保护环境,某市治污公司决定购买10台污水处理设备,现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:A型B型价格(万元/台) a b处理污水量(吨/月)220 180经调查:购买一台A型设备比购买一台B型设备多3万元,购买2台A型设备比购买3台B型设备少3万元.(1)求a,b的值;(2)经预算:市治污公司购买污水处理设备的资金不超过100万元,你认为该公司有哪几种购买方案;(3)在(2)问的条件下,若每月要求处理的污水量不低于1880吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.【分析】(1)购买A型的价格是a万元,购买B型的设备b万元,根据购买一台A型号设备比购买一台B型号设备多3万元,购买2台A型设备比购买3台B型号设备少3万元,可列方程组求解.(2)设购买A型号设备x台,则B型为(10-x)台,根据使治污公司购买污水处理设备的资金不超过100万元,进而得出不等式;(3)利用每月要求处理污水量不低于1880吨,可列不等式求解.解:(1)根据题意得:,解得:;(2)设购买污水处理设备A型设备x台,B型设备(10﹣x)台,根据题意得,12x+9(10﹣x)≤100,∴x≤,∵x取非负整数,∴x=0,1,2,3∴10﹣x=10,9,8,7∴有四种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.④A型设备3台,B型设备7台;(3)由题意:220x+180(10﹣x)≥1880,∴x≥2,又∵x≤,∴x为2,3.当x=2时,购买资金为12×2+9×8=96(万元),当x=3时,购买资金为12×3+9×7=99(万元),∴为了节约资金,应选购A型设备2台,B型设备8台.【点评】本题考查了一元一次不等式的应用,根据购买一台A型号设备比购买一台B型号设备多3万元,购买2台A型设备比购买3台B型号设备少3万元和根据使治污公司购买污水处理设备的资金不超过100万元,若每月要求处理洋澜湖的污水量不低于1880吨,等量关系和不等量关系分别列出方程组和不等式求解.25.(6分)已知|a﹣1|=1﹣a,若a为整数时,方程组的解x为正数,y为负数,求a的值?【分析】根据“|a-1|=1-a”得到a-1≤0,解方程组得到x和y关于a的解,根据“x 为正数,y为负数”,列出关于a的不等式组,结合a-1≤0,得到a的取值范围,根据a为整数,即可得到a的值.解:∵|a﹣1|=1﹣a,∴a﹣1≤0,解得:a≤1,解方程组得:,∵x为正数,y为负数,∴,解不等式组得:a,即﹣<a≤1,又∵a为整数,∴a=0或a=1,即a的值为0或1.【点评】本题考查解一元一次不等式组和解二元一次方程组,正确掌握解一元一次不等式组和二元一次方程组得方法是解题的关键.26.(10分)解答题如图,已知AB∥CD,∠A=∠C=100°,E,F在CD上,满足∠DBF=∠ABD,BE平分∠CBF.(1)试说明∠FDB=∠DBF(2)求∠DBE的度数.(3)若平行移动AD,那么∠BFC:∠BDC的比值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.【分析】(1)由AB∥CD知∠ABD=∠FDB,结合∠DBF=∠ABD可得答案;(2)由直线AB∥CD,根据两直线平行,同旁内角互补,即可求得∠ABC的度数,(3)由AB∥CD知∠BFC=∠ABF=2∠ABD、∠ABD=∠BDC,据此可得∠BFC=2∠BDC,即可得出答案.解:(1)∵AB∥CD,∴∠ABD=∠FDB,又∵∠DBF=∠ABD,∴∠FDB=∠DBF;(2)∵AB∥CD,∴∠ABC=180°﹣∠C=80°,∵BE平分∠CBF,∴∠EBF=∠FBC,∵∠DBF=∠ABD,∴∠DBF=∠ABF,∴∠DBE=∠DBF+∠EBF=∠FBC+∠ABF=∠ABC=40°;(3)∠BFC:∠ BDC的比值不会随之发生变化,∵AB∥CD,∴∠BFC=∠ABF=2∠ABD,∠ABD=∠BDC,∴∠BFC=2∠BDC,∴∠BFC:∠BDC=2,即∠BFC:∠BDC的比值不会随之发生变化.【点评】本题主要考查了平行线、角平分线的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.。

福建省莆田市七年级下学期期末考试数学试题

福建省莆田市七年级下学期期末考试数学试题

福建省莆田市七年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)下列等式成立的是()A . (-3)-2=-9B . (-3)-2=C . (a12)2=a14D . 0.0000000618=6.18×10-72. (2分)下列命题中,真命题有()(1)直线外一点与直线上各点连接的所有线段中,垂线段最短;(2)两条直线被第三条直线所截,内错角相等;(3)经过两点有一条直线,并且只有一条直线;(4)如果一条直线和两条直线中的一条垂直,那么这条直线也和另一条垂直.A . 1个B . 2个C . 3个D . 4个3. (2分)(2019·禅城模拟) 下列运算正确的是()A . (x-y)2=x2-y2B . x2·y2 =(xy)4C . x2y+xy2 =x3y3D . x6÷y2 =x44. (2分)(2017·个旧模拟) 下列运算正确的是()A . x6÷x2=x3B . =2C . (x+2y)2=x2+2xy+4y2D . ﹣ =5. (2分)下列式子是因式分解的是()A . x(x﹣1)=x2﹣1B . x2﹣x=x(x+1)C . x2+x=x(x+1)D . x2﹣x=x(x+1)(x﹣1)6. (2分)方程x+y=5和2x+y=8的公共解是()A .B .C .D .7. (2分) (2018八上·昌图期末) 下列句子中,不是命题的是()A . 动物都需要水B . 相等的角是对顶角C . 负数都小于零D . 过直线l外一点作l的平行线8. (2分) (2017七下·射阳期末) 已知不等式组有解,则的取值范围是()A .B .C .D .二、填空题 (共10题;共11分)9. (1分)计算:(a3)2•a3=________.10. (1分)雾霾(PM2.5)含有大量的有毒有害物质,对人体健康有很大的危害,被称为大气元凶。

2018-2019学年人教版初一数学下册期末测试卷(含答案)

2018-2019学年人教版初一数学下册期末测试卷(含答案)

2018-2019学年七年级(下)期末数学试卷一、填空题〔本大题共6小题,每小题3分,共18分.请把答案填在题中横线上)1.计算:=.2.计算:=.3.由x﹣3y=6可以得到用x表示y的式子是.4.若a、b满足|a﹣2|+(3﹣b)2=0,则b a=.5.某商店以每件180元的进价购入T恤衫60件,并以每件240元的价格销售.一个月后T恤衫的销售款已经超过这批T恤衫的进货款,这时至少已售出T恤衫件.6.如图,△ABC的顶点都在网格点上,将△ABC向右平移3个单位长度,再向上平移2个单位长度,则平移后得到的△A′B′C′三个顶点A′、B′、C′的坐标分别是.二、选择题(本大题共8小题,每小题4分,共32分在每小题给出的四个选项中,只有一项是符合题目要求的)7.计算±的值为()A.±3B.±9C.3D.98.2013月5日,李克强总理在总结过去五年的政府工作时指出,中央财政加大对各类学校家庭困难学生资助力度,4.3亿人次受益,4.3亿用科学记数法表示为()A.4.3×106B.4.3×107C.4.3×108D.4.3×1099.在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,DE经过点A,DE∥BC,下列说法错误的是()A.∠DAB=∠EAC B.∠EAC=∠CC.∠EAB+∠B=180°D.∠DAB=∠B11.如图,轮船与灯塔相距120nmile,则下列说法中正确的是()A.轮船在灯塔的北偏西65°,120 n mile处B.灯塔在轮船的北偏东25°,120 n mile处C.轮船在灯塔的南偏东25°,120 n mile处D.灯塔在轮船的南偏西65°,120 n mile处12.若a>b,则下列各式中不正确的是()A.7+a>7+b B.a﹣7>b﹣7C.7a>7b D.﹣>﹣13.下列调查方式中最适合的是()A.要了解一批节能灯的使用寿命,采用全面调查方式B.调查你所在班级的同学的身高,采用抽样调查方式C.环保部门调查嘉陵江某段水域的水质情况,采用抽样调查方式D.调查全市中学生每天的就寝时间,采用全面调查方式14.如图,观察下列图形,第一个图形有3个三角形,第二个图形有7个三角形,第三个图形有11个三角形,依照此规律,第12个图形中共有()个三角形.A.47B.43C.39D.36三、解答题(本大题共9小题,共70分.解答应写出必要的文字说明证明过程或演算步骤)15.(6分)计算:(﹣5)3÷(﹣)﹣16.(6分)先化简,再求值:5x3﹣[6x2﹣(3x2+4)﹣4x3],其中x=﹣3.17.(7分)解不等式组,并把它的解集在数轴上表示出来.18.(7分)解方程组19.(8分)甲、乙两个工人同时接受一批任务,上午工作的5小时中,甲用了2小时改装机器以提高工效,因此,上午工作结束时,甲比乙少做60个零件;下午两人继续工作4小时后,全天总计甲反而比乙多做468个零件,问这一天甲、乙每小时各做多少个零件?20.(7分)如图,∠AOB内有一点P;(1)过点P画PE⊥OB,PF⊥OA,垂足分别为E,F.(2)过点P画PM∥OB,交OA于点M;(3)画射线OP;(4)分别写出图中相等的角、互补的角、互余的角各一对.21.(7分)如图,已知:AB∥DE,∠1+∠3=180°,求证:BC∥EF.22.(10分)勤俭节约一直是中华民族的传统美德,某中学校团委准备以“勤俭节约”为主题开展一次演讲比赛,为此先对同学们每月零花钱的数额进行一些了解,随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.根据以上图表,解答下列问题:(1)填空:这次调查的同学共有人,a+b=,m=;(2)求扇形统计图中扇形B的圆心角的度数;(3)该校共有1200名学生,请估计每月零花钱的数额在60≤x<90范围的人数.23.(12分)已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当∠BOC=40°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化,说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,画出图形,直接写出∠DOE的度数(不必写过程).参考答案与试题解析一、填空题〔本大题共6小题,每小题3分,共18分.请把答案填在题中横线上)1.计算:=.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:|﹣|=,故答案为:.【点评】本题考查了实数的性质,负数的绝对值是它的相反数.2.计算:=﹣.【分析】根据立方根计算即可.【解答】解:=,故答案为:﹣【点评】此题考查立方根,关键是根据立方根计算.3.由x﹣3y=6可以得到用x表示y的式子是y=.【分析】把x看做已知数求出y即可.【解答】解:由x﹣3y=6可以得到用x表示y的式子是y=,故答案为:y=,【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.4.若a、b满足|a﹣2|+(3﹣b)2=0,则b a=9.【分析】直接利用偶次方的性质以及绝对值的性质得出a,b的值,进而得出答案.【解答】解:∵|a﹣2|+(3﹣b)2=0,∴a=2,b=3,∴b a=32=9.故答案为:9.【点评】此题主要考查了偶次方的性质以及绝对值的性质,得出a,b的值是解题关键.5.某商店以每件180元的进价购入T恤衫60件,并以每件240元的价格销售.一个月后T恤衫的销售款已经超过这批T恤衫的进货款,这时至少已售出T恤衫46件.【分析】设这时已售出T恤衫x件,根据总价=单价×数量结合一个月后T恤衫的销售款已经超过这批T恤衫的进货款,即可得出关于x的一元一次不等式,解之取其中的最小正整数即可得出结论.【解答】解:设这时已售出T恤衫x件,根据题意得:240x>180×60,解得:x>45,∴这时至少已售出T恤衫46件.故答案为:46.【点评】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.6.如图,△ABC的顶点都在网格点上,将△ABC向右平移3个单位长度,再向上平移2个单位长度,则平移后得到的△A′B′C′三个顶点A′、B′、C′的坐标分别是A′(1,3)、B′(﹣1,0)、C′(2,﹣1).【分析】根据“坐标,右移加,左移减;纵坐标,上移加,下移减”求解可得.【解答】解:因为点A(﹣2,1)、B(﹣4,﹣2)、C(﹣1,﹣3),所以向右平移3个单位长度,再向上平移2个单位长度平移后的对应点的坐标为:A′(1,3)、B′(﹣1,0)、C′(2,﹣1),故答案为:A′(1,3)、B′(﹣1,0)、C′(2,﹣1).【点评】本题主要考查坐标与图形的变化,解题的关键是掌握点的坐标的平移规律:坐标,右移加,左移减;纵坐标,上移加,下移减.二、选择题(本大题共8小题,每小题4分,共32分在每小题给出的四个选项中,只有一项是符合题目要求的)7.计算±的值为()A.±3B.±9C.3D.9【分析】根据平方根的性质,正数a有两个平方根,它们互为相反数即可解答.【解答】解:∵(±9)2=81,∴±=±9.故选:B.【点评】此题考查算术平方根的定义,关键是根据算术平方根的定义,熟记概念与性质是解题的关键.8.2013月5日,李克强总理在总结过去五年的政府工作时指出,中央财政加大对各类学校家庭困难学生资助力度,4.3亿人次受益,4.3亿用科学记数法表示为()A.4.3×106B.4.3×107C.4.3×108D.4.3×109【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:4.3亿=4.3×108,故选:C.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.9.在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答.【解答】解:点P(2,﹣3)在第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10.如图,DE经过点A,DE∥BC,下列说法错误的是()A.∠DAB=∠EAC B.∠EAC=∠CC.∠EAB+∠B=180°D.∠DAB=∠B【分析】根据两直线平行,内错角相等、同旁内角互补逐一判断可得.【解答】解:∵DE∥BC,∴∠DAB=∠ABC(两直线平行,内错角相等),A选项错误、D选项正确;∠EAC=∠C(两直线平行,内错角相等),B选项正确;∠EAB+∠B=180°(两直线平行,同旁内角互补),C选项正确;故选:A.【点评】本题主要考查平行线的性质,解题的关键是掌握两直线平行,内错角相等、同旁内角互补.11.如图,轮船与灯塔相距120nmile,则下列说法中正确的是()A.轮船在灯塔的北偏西65°,120 n mile处B.灯塔在轮船的北偏东25°,120 n mile处C.轮船在灯塔的南偏东25°,120 n mile处D.灯塔在轮船的南偏西65°,120 n mile处【分析】根据方向角的定义作出判断.【解答】解:灯塔在轮船的北偏东25°,120 n mile处.故选:B.【点评】考查了方向角的定义.用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南)12.若a>b,则下列各式中不正确的是()A.7+a>7+b B.a﹣7>b﹣7C.7a>7b D.﹣>﹣【分析】利用不等式的基本性质判断即可.【解答】解:由a>b,得到7+a>7+b,a﹣7>b﹣7,7a>7b,故选:D.【点评】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.13.下列调查方式中最适合的是()A.要了解一批节能灯的使用寿命,采用全面调查方式B.调查你所在班级的同学的身高,采用抽样调查方式C.环保部门调查嘉陵江某段水域的水质情况,采用抽样调查方式D.调查全市中学生每天的就寝时间,采用全面调查方式【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、要了解一批节能灯的使用寿命,采用抽样调查,故A错误;B、调查你所在班级的同学的身高,采用普查,故B错误;C、环保部门调查嘉陵江某段水域的水质情况,采用抽样调查,故C正确;D、调查全市中学生每天的就寝时间,采用抽样调查,故D错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.14.如图,观察下列图形,第一个图形有3个三角形,第二个图形有7个三角形,第三个图形有11个三角形,依照此规律,第12个图形中共有()个三角形.A.47B.43C.39D.36【分析】易得第1个图形中三角形的个数,进而得到其余图形中三角形的个数在第1个图形中三角形的个数的基础上增加了几个4即可.【解答】解:第1个图形中有3个三角形;第2个图形中有3+4=7个三角形;第3个图形中有3+2×4=11个三角形;…第n个图形中有3+(n﹣1)×4=4n﹣1,当n=12时,4×12﹣1=47,故选:A.【点评】考查图形的规律性问题;得到不变的量及变化的量与n的关系是解决本题的关键.三、解答题(本大题共9小题,共70分.解答应写出必要的文字说明证明过程或演算步骤)15.(6分)计算:(﹣5)3÷(﹣)﹣【分析】根据算术平方根的概念计算此题.【解答】解:(﹣5)3÷(﹣)﹣=﹣125×(﹣)﹣7=168【点评】本题主要考查了算术平方根的概念,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.16.(6分)先化简,再求值:5x3﹣[6x2﹣(3x2+4)﹣4x3],其中x=﹣3.【分析】原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=5x3﹣6x2+(3x2+4)+4x3=5x3﹣6x2+3x2+4+4x3=9x3﹣3x2+4,当x=﹣3时,原式=9×(﹣3)3﹣3×(﹣3)2+4=﹣243﹣27+4=﹣266.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.17.(7分)解不等式组,并把它的解集在数轴上表示出来.【分析】先求出不等式组的解集,再在数轴上表示出来即可.【解答】解:∵解不等式①得:x≥﹣2,解不等式②得:x>2,∴不等式组的解集为x>2,在数轴上表示为:.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.18.(7分)解方程组【分析】利用加减法解二元一次方程组,即可解答.【解答】解:把①×3得:a+3b=15 ③,②+③得:a=11,解得:a=,把a=代入①得:+b=5解得:b=,∴方程组的解为:.【点评】本题考查了解二元一次方程组,解决本题的关键是熟记加减法解二元一次方程组.19.(8分)甲、乙两个工人同时接受一批任务,上午工作的5小时中,甲用了2小时改装机器以提高工效,因此,上午工作结束时,甲比乙少做60个零件;下午两人继续工作4小时后,全天总计甲反而比乙多做468个零件,问这一天甲、乙每小时各做多少个零件?【分析】设甲每小时做x个零件,乙每小时做y个零件,根据“上午工作结束时,甲比乙少做60个零件;下午两人继续工作4小时后,全天总计甲反而比乙多做468个零件”,即可得出关于x,y 的二元一次方程组,解之即可得出结论.【解答】解:设甲每小时做x个零件,乙每小时做y个零件,根据题意:,解得:.答:甲每小时做360个零件,乙每小时做228个零件.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(7分)如图,∠AOB内有一点P;(1)过点P画PE⊥OB,PF⊥OA,垂足分别为E,F.(2)过点P画PM∥OB,交OA于点M;(3)画射线OP;(4)分别写出图中相等的角、互补的角、互余的角各一对.【分析】根据要求画出图形,根据相等的角、互补的角、互余的角的定义举例说明即可;(答案不唯一)【解答】解:如图所示,相等的角有:∠PEO=∠PFO=90°,互补的角有:∠EOF+∠EPF=180°.互余的角有:∠POE+∠OPE=90°.【点评】本题考查作图,互补的角、互余的角的定义等知识,解题的关键是理解题意,熟练掌握基本知识,属于中考基础题.21.(7分)如图,已知:AB∥DE,∠1+∠3=180°,求证:BC∥EF.【分析】由AB与DE平行,利用两直线平行内错角相等得到一对角相等,由已知两个角互补,等量代换得到一对同旁内角互补,利用同旁内角互补两直线平行得到BC与EF平行.【解答】证明:∵AB∥DE,∴∠1=∠2,∵∠1+∠3=180°,∴∠2+∠3=180°,∴BC∥EF.【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.22.(10分)勤俭节约一直是中华民族的传统美德,某中学校团委准备以“勤俭节约”为主题开展一次演讲比赛,为此先对同学们每月零花钱的数额进行一些了解,随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.根据以上图表,解答下列问题:(1)填空:这次调查的同学共有50人,a+b=36,m=52;(2)求扇形统计图中扇形B的圆心角的度数;(3)该校共有1200名学生,请估计每月零花钱的数额在60≤x<90范围的人数.【分析】(1)根据A组的频数是4,对应的百分比是8%,据此求得调查的总人数,利用百分比的意义求得a,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1200乘以对应的比例即可求解.【解答】解:(1)∵被调查的同学共有4÷8%=50人,∴a=50×20%=10,b=50﹣(4+10+8+2)=26,则a+b=36,m%=×100%=52%,即m=52,故答案为:50、36、52;(2)扇形统计图中扇形B的圆心角的度数为360°×20%=72°;(3)估计每月零花钱的数额在60≤x<90范围的人数为1200×=864人.【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.23.(12分)已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当∠BOC=40°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化,说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,画出图形,直接写出∠DOE的度数(不必写过程).【分析】(1)如图①,当∠BOC=40°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化,说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,画出图形,直接写出相应的∠DOE的度数(不必写出过程).【解答】解:(1)如图,∠AOC=90°﹣∠BOC=50°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=25°,∠COE=∠BOC=20°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=∠AOC+∠COB=(∠AOC+∠COB)=∠AOB=45°;(3)∠DOE的大小发生变化情况为,如图3,则∠DOE为45°;如图4,则∠DOE为135°,分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD﹣∠COE=(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=×270°=135°.【点评】本题考查了角的计算,熟练掌握角平分线定义是解本题的关键.。

2018-2019学年人教版七年级下册期末数学试卷含答案

2018-2019学年人教版七年级下册期末数学试卷含答案

2018-2019学年七年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的答案的序号填入下面表格内)1.点(﹣1,3),(,5),(0,4),(﹣,﹣)中,在第一象限的是()A.(﹣1,3)B.(,5)C.(0,4)D.(﹣,﹣)2.4的平方根是()A.2B.﹣2C.±2D.163.不等式组的解集在数轴上表示为()A.B.C.D.4.下列说法正确的()A.调查春节联欢晚会收视率适宜用全面调查B.要调查一批灯泡的使用寿命适宜用全面调查C.要调查七年一班学生的年龄适宜全面调查D.要调查第一小组一次数测评学成绩适宜用抽样调查5.在实数,π,,3.5,,0,3.02002,中,无理数共有()A.4个B.5个C.6个D.7个6.如图,直线a、b相交于点O,若∠1=30°,则∠2等于()A.60°B.30°C.140°D.150°7.下列方程组是二元一次方程组的是()A.B.C.D.8.下列命题中,真命题是()A.垂线段最短B.相等的角是对顶角C.同旁内角互补D.0没有立方根9.确定一个地点的位置,下列说法正确的是()A.偏西50°,1000米B.东南方向,距此800米C.距此1000米D.正北方向10.平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线L∥x轴,点C直线L上的一个动点,则线段BC的长度最小时点C的坐标为()A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)二、填空题(本大题共8个小题,每小题2分,共6分,把答案写在题中横线上)面全直的步11.不等式x+3<2的解集是.12.5(填“>”或“<”).13.的相反数是.14.如图,直线AB、CD相交于点O,OE⊥AB,垂足是点O,∠BOC=140°,则∠DOE=.15.把命题“内错角相等,两直线平行”改写成“如果…,那么……”的形式为:两条直线被第三条直线所截,如果,那么.16.一组数据,最大值与最小值的差为16,取组距为4,则组数为.17.点A在x轴上,到原点的距离为3,则点A的坐标为.18.如图,点A(0,0),向右平移1个单位,再向上平移1个单位,得到点A1:点A1向上平移1个单位,再向右平移2个单位,得到点A2;点A2向上平移2个单位,再向右平移4个单位,得到点A3:点A3向上平移4个单位,再向右平移8个单位,得到点A4:……按这个规律平移得到点A n,则点A n的横坐标为.三、解答题(本大题共8个小题,共64分,解答应写出文字说明、证明过程或演算步骤)19.(本小题满分64分)19.(7分)计算:|﹣|+(=1.414,结果保留2位小数).20.(7分)新课程改革十分关注学生的社会实践活动,小明在一次社会实践活动中负责了解他所居住的小区500户居民的家庭月人均收入情况,他从中随机调查了40户居民家庭的“家庭月人均收入情况”(收入取整数,单位:元),并绘制了频数分布表和频数分布直方图(如图).(1)频数分布表中,a=,b=,C=,请根据题中已有信息补全频数分布直方图;(2)观察已绘制的频数分布直方图,可以看出组距是,这个组距选择得(填“好”或“不好”),并请说明理由.(3)如果家庭人均月收入“大于3000元不足6000元”的为中等收入家庭,则用样本估计总体中的中等收入家庭大约有户.21.(7分)解不等式组,并求它的整数解.22.(7分)阅读并完成下列证明:如图,已知AB∥CD,若∠B=55°,∠D=125°,请根据所学的知识判断BC与DE的位置关系,并证明你的结论.解:BC∥DE证明:∵AB∥CD(已知)∴∠C=∠B()又∵∠B=55°(已知)∠C=°()∵∠D=125°(已知)∴∴BC∥DE()23.(8分)如图,三角形ABC在直角坐标系中.(1)请直接写出点A、C两点的坐标:(2)三角形ABC的面积是;(3)若把三角形ABC向上平移1个单位,再向右平移1个单位得三角形A′B′C′在图中画出三角形A′B′C’,这时点B′的坐标为.24.(8分)已知关于x、y的方程组的解x比y的值大1,求方程组的解及k的值.25.(10分)我县某初中为了创建书香校园,购进了一批图书.其中的20本某种科普书和30本某种文学书共花了1080元,经了解,购买的科普书的单价比文学书的单价多4元.(1)购买的科普书和文学书的单价各多少元?(2)另一所学校打算用800元购买这两种图书,问购进25本文学书后至多还能购进多少本科普书?26.(10分)如图1,AB∥CD,点E是直线AB、CD之间的一点,连接EA、EC.(1)探究猜想:①若∠A=20°,∠C=50°,则∠AEC=.②若∠A=25°,∠C=40°,则∠AEC=.③猜想图1中∠EAB、∠ECD、∠AEC的关系,并证明你的结论(提示:作EF∥AB).(2)拓展应用:如图2,AB∥CD,线段MN把ABCD这个封闭区域分为I、Ⅱ两部分(不含边界),点E是位于这两个区域内的任意一点,请直接写出∠EMB、∠END、∠MEN的关系.2018-2019学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合要求的答案的序号填入下面表格内)1.点(﹣1,3),(,5),(0,4),(﹣,﹣)中,在第一象限的是()A.(﹣1,3)B.(,5)C.(0,4)D.(﹣,﹣)【分析】根据第一象限内点的横坐标与纵坐标都是正数即可求解.【解答】解:点(﹣1,3),(,5),(0,4),(﹣,﹣)中,在第一象限的是(,5).故选:B.【点评】本题考查了点的坐标,掌握第一象限内点的坐标特征是解题的关键.2.4的平方根是()A.2B.﹣2C.±2D.16【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.不等式组的解集在数轴上表示为()A.B.C.D.【分析】同大取大;同小取小;大小小大中间找;大大小小找不到;依此可求不等式组的解集,再在数轴上表示出来即可求解.【解答】解:不等式组的解集在数轴上表示为.故选:D.【点评】考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.下列说法正确的()A.调查春节联欢晚会收视率适宜用全面调查B.要调查一批灯泡的使用寿命适宜用全面调查C.要调查七年一班学生的年龄适宜全面调查D.要调查第一小组一次数测评学成绩适宜用抽样调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、调查春节联欢晚会收视率适宜用抽样调查,错误;B、要调查一批灯泡的使用寿命适宜用抽样调查,错误;C、要调查七年一班学生的年龄适宜全面调查,正确;D、要调查第一小组一次数测评学成绩适宜用全面调查,错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.在实数,π,,3.5,,0,3.02002,中,无理数共有()A.4个B.5个C.6个D.7个【分析】根据无理数的定义进行解答即可.【解答】解:在实数,π,,3.5,,0,3.02002,中,无理数有,π,,,共有4个.故选:A.【点评】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数,含有π的绝大部分数,如2π.注意:判断一个数是否为无理数,不能只看形式,要看化简结果,是解题的关键.6.如图,直线a、b相交于点O,若∠1=30°,则∠2等于()A.60°B.30°C.140°D.150°【分析】因∠1和∠2是邻补角,且∠1=30°,由邻补角的定义可得∠2=180°﹣∠1=180°﹣30°=150°.【解答】解:∵∠1+∠2=180°,且∠1=30°,∴∠2=150°,故选:D.【点评】此题主要考查了对顶角和邻补角的特征和应用,要熟练掌握,解答此题的关键是要明确:①有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.②邻补角互补,即和为180°.7.下列方程组是二元一次方程组的是()A.B.C.D.【分析】分析各个方程组是否满足二元一次方程组的定义“1、只有两个未知数;2、未知数的项最高次数都应是一次;3、都是整式方程”.【解答】解:A、此方程组有3个未知数x,y,z.不符合二元一次方程组的定义;B、不是整式方程,不符合二元一次方程组的定义;C、此方程组正好符合二元一次方程组的定义;D、此方程组属于二次.不符合二元一次方程组的定义;故选:C.【点评】本题是考查对二元一次方程组的识别,掌握二元一次方程组的定义,就很容易判断.8.下列命题中,真命题是()A.垂线段最短B.相等的角是对顶角C.同旁内角互补D.0没有立方根【分析】根据垂线段的性质、对顶角、同旁内角和立方根的概念判断即可.【解答】解:A、垂线段最短,是真命题;B、相等的角不一定是对顶角,是假命题;C、两直线平行,同旁内角互补,是假命题;D、0有立方根,它的立方根是0,是假命题;故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.确定一个地点的位置,下列说法正确的是()A.偏西50°,1000米B.东南方向,距此800米C.距此1000米D.正北方向【分析】根据地点的位置确定应该有方向角以及相对距离据此回答.【解答】解:根据地点确定的方法得出:只有东南方向,距此800米,可以确定一个地点的位置,其它选项都不准确.故选:B.【点评】此题主要考查了坐标确定位置,根据已知得出一个地点确定需要两个元素得出是解题关键.10.平面直角坐标系中,点A(﹣3,2),B(1,4),经过点A的直线L∥x轴,点C直线L上的一个动点,则线段BC的长度最小时点C的坐标为()A.(﹣1,4)B.(1,0)C.(1,2)D.(4,2)【分析】如图,根据垂线段最短可知,BC⊥AC时BC最短;【解答】解:如图,根据垂线段最短可知,BC⊥AC时BC最短.∵A(﹣3,2),B(1,4),AC∥x轴,∴BC=2,∴C(1,2),故选:C.【点评】本题考查坐标与图形的性质、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题(本大题共8个小题,每小题2分,共6分,把答案写在题中横线上)面全直的步11.不等式x+3<2的解集是x<﹣1.【分析】不等式经过移项即可得到答案.【解答】解:x+3<2,移项得:x<﹣1,即不等式的解集为:x<﹣1,故答案为:x<﹣1.【点评】本题考查解一元一次不等式,熟悉解一元一次不等式的步骤是解题的关键.12.<5(填“>”或“<”).【分析】直接利用二次根式的性质比较得出答案.【解答】解:∵5=,∴<5.故答案为:<.【点评】此题主要考查了实数大小比较,正确得出5=是解题关键.13.的相反数是﹣2.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:2﹣的相反数是﹣2.故答案为:﹣2.【点评】本题考查了实数的性质,主要利用了负数的绝对值等于它的相反数,是基础题.14.如图,直线AB、CD相交于点O,OE⊥AB,垂足是点O,∠BOC=140°,则∠DOE=50°.【分析】运用垂线的定义,对顶角的性质进行计算即可.【解答】解:∵直线AB、CD相交于点O,∴∠BOC=∠AOD=140°,又∵OE⊥AB,∴∠DOE=140°﹣90°=50°,故答案为:50°.【点评】本题主要考查了对顶角和垂线的定义,解题的关键是运用对顶角的性质:对顶角相等.15.把命题“内错角相等,两直线平行”改写成“如果…,那么……”的形式为:两条直线被第三条直线所截,如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.【分析】先分清命题“内错角相等,两直线平行”的题设与结论,然后把题设写在如果的后面,结论部分写在那么的后面.【解答】解:“内错角相等,两直线平行”改写成“如果…那么…”的形式为如果两条直线被第三条直线所截,截得的内错角相等,那么这两条直线平行.故答案为:两条直线被第三条直线所截,截得的内错角相等;这两条直线平行.【点评】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题;命题由题设和结论两部分组成.16.一组数据,最大值与最小值的差为16,取组距为4,则组数为5.【分析】在样本数据中最大值与最小值的差为16,已知组距为4,那么由于16÷4=4,且要求包含两个端点在内;故可以分成5组.【解答】解:∵16÷4=4,∴组数为5,故答案为:5.【点评】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.17.点A在x轴上,到原点的距离为3,则点A的坐标为(±3,0).【分析】根据在x轴上点的纵坐标是0,横坐标是±3解答.【解答】解:∵点A在x轴上,到原点的距离为3,∴此点的坐标是(±3,0).故答案为:(±3,0).【点评】本题考查了点的坐标,主要利用了x轴上点的坐标特征.18.如图,点A(0,0),向右平移1个单位,再向上平移1个单位,得到点A1:点A1向上平移1个单位,再向右平移2个单位,得到点A2;点A2向上平移2个单位,再向右平移4个单位,得到点A3:点A3向上平移4个单位,再向右平移8个单位,得到点A4:……按这个规律平移得到点A n,则点A n的横坐标为2n﹣1.【分析】从特殊到一般探究规律后,利用规律即可解决问题;【解答】解:点A1的横坐标为1=21﹣1,点A2的横坐为标3=22﹣1,点A3:的横坐标为7=23﹣1,点A4的横坐标为15=24﹣1,按这个规律平移得到点A n为2n﹣1,故答案为2n﹣1【点评】本题考查坐标与图形变化﹣平移、规律型问题等知识,解题的关键是学会探究规律的方法,属于中考常考题型.三、解答题(本大题共8个小题,共64分,解答应写出文字说明、证明过程或演算步骤)19.(本小题满分64分)19.(7分)计算:|﹣|+(=1.414,结果保留2位小数).【分析】直接利用绝对值以及二次根式、立方根的性质分别化简得出答案.【解答】解:原式=﹣0.2﹣2≈1.414﹣0.2﹣2≈﹣0.79.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(7分)新课程改革十分关注学生的社会实践活动,小明在一次社会实践活动中负责了解他所居住的小区500户居民的家庭月人均收入情况,他从中随机调查了40户居民家庭的“家庭月人均收入情况”(收入取整数,单位:元),并绘制了频数分布表和频数分布直方图(如图).(1)频数分布表中,a=12,b=8,C=20%,请根据题中已有信息补全频数分布直方图;(2)观察已绘制的频数分布直方图,可以看出组距是1000,这个组距选择得好(填“好”或“不好”),并请说明理由.(3)如果家庭人均月收入“大于3000元不足6000元”的为中等收入家庭,则用样本估计总体中的中等收入家庭大约有350户.【分析】(1)由频数之和等于总数及频率=频数÷总数求解可得;(2)根据频数分布直方图可得组距,结合数据分布情况解答即可;(3)用总户数乘以大于3000元不足6000元的百分比之和可得.【解答】解:(1)a=40×30%=12、b=40﹣(3+5+12+8+4)=8,则c=8÷40=0.2=20%,补全图形如下:(2)观察已绘制的频数分布直方图,可以看出组距是1000,这个组距选择的好,理由是:这个组距选择得比较合理,确保了数据不重不漏且没有数据为空白的组,比较好地展示了数据的分布情况;故答案为:1000、好.(3)用样本估计总体中的中等收入家庭大约有500×(30%+20%+20%)=350(户),故答案为:350.【点评】此题考查了频数(率)分布直方图,用样本估计总体,以及频数(率)分布表,弄清题意是解本题的关键.21.(7分)解不等式组,并求它的整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式4x﹣1<5x+1,得:x>﹣2,解不等式x﹣2≤5﹣x,得:x≤,则不等式组的解集为﹣2<x≤,所以不等式组的整数解为﹣1、0、1、2、3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.(7分)阅读并完成下列证明:如图,已知AB∥CD,若∠B=55°,∠D=125°,请根据所学的知识判断BC与DE的位置关系,并证明你的结论.解:BC∥DE证明:∵AB∥CD(已知)∴∠C=∠B(两直线平行,内错角相等)又∵∠B=55°(已知)∠C=55°(等量代换)∵∠D=125°(已知)∴∠C+∠D=180°∴BC∥DE(同旁内角互补,两直线平行)【分析】先根据AB∥CD得出∠C的度数,再由∠C+∠D=180°即可得出结论.【解答】证明:∵AB∥CD(已知),∴∠B=∠C(两直线平行,内错角相等),又∵∠B=55°(已知)∠C=55°(等量代换)∵∠D=125°(已知)∴∠C+∠D=180°∴BC∥DE(同旁内角互补,两直线平行).故答案为:两直线平行,内错角相等,55,等量代换;∠C+∠D=180°,同旁内角互补,两直线平行.【点评】本题主要考查了平行线的性质与判定的综合应用,解题时注意:两直线平行,内错角相等;同旁内角互补,两直线平行.23.(8分)如图,三角形ABC在直角坐标系中.(1)请直接写出点A、C两点的坐标:(2)三角形ABC的面积是7;(3)若把三角形ABC向上平移1个单位,再向右平移1个单位得三角形A′B′C′在图中画出三角形A′B′C’,这时点B′的坐标为(5,3).【分析】(1)直接利用已知点在坐标系中位置得出各点坐标即可;(2)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案;(3)直接利用平移的性质进而分析得出答案.【解答】解:(1)点A的坐标为:(﹣1,﹣1)、C点的坐标为:(1,3);(2)三角形ABC的面积是:4×5﹣×2×4﹣×1×3﹣×3×5=7;故答案为:7;(3)如图所示:△A′B′C’即为所求,点B′的坐标为:(5,3).故答案为:(5,3).【点评】此题主要考查了平移变换以及三角形的面积,正确得出三角形面积是解题关键.24.(8分)已知关于x、y的方程组的解x比y的值大1,求方程组的解及k的值.【分析】把k看做已知数表示出方程组的解,根据x比y的值大1,确定出k的值,进而求出方程组的解即可.【解答】解:,把x=y+1代入①得:2y+1=k③,代入②得:y+1﹣2y=3﹣k④,联立③④,解得:,把y=1代入①得:x=2,则方程组的解为,k的值为3.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.25.(10分)我县某初中为了创建书香校园,购进了一批图书.其中的20本某种科普书和30本某种文学书共花了1080元,经了解,购买的科普书的单价比文学书的单价多4元.(1)购买的科普书和文学书的单价各多少元?(2)另一所学校打算用800元购买这两种图书,问购进25本文学书后至多还能购进多少本科普书?【分析】(1)设购买的科普书的单价是x元,文学书的单价是y元,根据20本某种科普书和30本某种文学书共花了1080元;购买的科普书的单价比文学书的单价多4元;可列方程组求解.(2)根据用800元再购进一批科普书和文学书,得出不等式求解即可.【解答】解:(1)设购买的科普书的单价是x元,文学书的单价是y元,根据题意得,解得.故购买的科普书的单价是24元,文学书的单价是20元.(2)设还能购进a本科普书,根据题意得24a+20×25≤800,解得a≤12,∵图书的数量为正整数,∴a的最大值为12.答:至多还能购进12本科普书.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,根据题意设出单价,找到等量关系列方程组求解是解题关键.26.(10分)如图1,AB∥CD,点E是直线AB、CD之间的一点,连接EA、EC.(1)探究猜想:①若∠A=20°,∠C=50°,则∠AEC=70°.②若∠A=25°,∠C=40°,则∠AEC=65°.③猜想图1中∠EAB、∠ECD、∠AEC的关系,并证明你的结论(提示:作EF∥AB).(2)拓展应用:如图2,AB∥CD,线段MN把ABCD这个封闭区域分为I、Ⅱ两部分(不含边界),点E是位于这两个区域内的任意一点,请直接写出∠EMB、∠END、∠MEN的关系.【分析】(1)①过点E作EF∥AB,再由平行线的性质即可得出结论;②、③根据①的过程可得出结论;(2)根据题意画出图形,再根据平行线的性质即可得出∠EMB、∠END、∠MEN的关系.【解答】解:(1)①如图1,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∵∠A=20°,∠C=50°,∴∠1=∠A=20°,∠2=∠C=50°,∴∠AEC=∠1+∠2=70°;故答案为:70°;②同理可得,∴∠AEC=∠1+∠2=65°;故答案为:65°;③猜想:∠AEC=∠EAB+∠ECD.理由:如图1,过点E作EF∥CD,∵AB∥DC∴EF∥AB(平行于同一条直线的两直线平行),∴∠1=∠EAB,∠2=∠ECD(两直线平行,内错角相等),∴∠AEC=∠1+∠2=∠EAB+∠ECD(等量代换).(2)当点E位于区域Ⅰ时,∠EMB+∠END+∠MEN=360°,理由:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠BME+∠MEF=180°,∠DNE+∠NEF=180°,∴∠EMB+∠END+∠MEN=360°;当点E位于区域Ⅱ时,∠EMB+∠END=∠MEN,理由:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠BMN=∠FEM,∠DNE=∠FEN,∴∠EMB+∠END=∠MEF+∠NEF=∠MEN.【点评】本题考查的是平行线的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.。

福建省莆田市2019-2020学年初一下期末考试数学试题含解析

福建省莆田市2019-2020学年初一下期末考试数学试题含解析

福建省莆田市2019-2020学年初一下期末考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每题只有一个答案正确)1.如图,下列条件中能得到AB ∥CD 的是( )A .12∠∠=B .23∠∠=C .14∠∠=D .34∠∠=【答案】C【解析】【分析】 根据平行线的判定定理对各选项进行逐一判断即可.【详解】A 、因为∠1=∠2,不能得出AB ∥CD ,错误;B 、∵∠2=∠3,∴AD ∥BC ,错误;C 、∵∠1=∠4,∴AB ∥CD ,正确;D 、因为∠3=∠4,不能得出AB ∥CD ,错误;故选C .【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.2.若0.0000032用科学记数法可表示为3.210n ⨯,则n 等于( )A .-6B .-5C .5D .6【答案】A【解析】【分析】用科学记数法表示较小数时的形式为10n a ⨯ ,其中110a ≤< ,n 为整数, n 等于该数从左起第一个不为0的数字前所有0的个数的相反数,由此可得出答案.【详解】从左起第一个不为0的数字前面有6个0,所以6n =- ,∴60.0000032 3.210-=⨯ .故选:A .【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键.3.实数9的平方根( )A .3B .5C .-7D .±3【答案】D【解析】【分析】先将原数化简,然后根据平方根的性质即可求出答案.【详解】解:∵9=3,∴3的平方根是±3,故选D.【点睛】本题考查平方根的概念,解题的关键是将原数进行化简,本题属于基础题型.4.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.其中真命题的个数是( )A .1个B .2个C .3个D .4个 【答案】B【解析】解:①符合对顶角的性质,故本小题正确;②两直线平行,内错角相等,故本小题错误;③符合平行线的判定定理,故本小题正确;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故本小题错误. 故选B .5.如图所示,已知AC⊥BC,CD⊥AB,垂足分别是C ,D ,那么以下线段大小的比较必定成立的是( )A .CD AD >B .AC BC < C .BC BD > D .CD BD <【答案】C【解析】 A 选项,CD 与AD 互相垂直,没有明确的大小关系,错误;B 选项,AC 与BC 互相垂直,没有明确的大小关系,错误;C 选项,BD 是从直线CD 外一点B 所作的垂线段,根据垂线段最短定理,BC >BD ,正确;D 选项,CD 与BD 互相垂直,没有明确的大小关系,错误,故选C .6.甲,乙两人在一次百米赛跑中,路程s (米)与赛跑时间t (秒)的关系如图,则下列说法正确的是( )A .乙先到达终点B .乙比甲跑的路程多C .乙用的时间短D .甲的速度比乙的速度快【答案】D【解析】【分析】 利用图象可得出,甲,乙的速度,以及所行路程的关系,注意利用所给数据结合图形逐个分析.【详解】结合图象可知:两人同时出发,甲比乙先到达终点,甲的速度比乙的速度快,故选:D.【点睛】本题考查函数的图像,解题关键在于熟练掌握函数的定义.7.若实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .a c b c +>+B .a c -<0C .ac bc >D .c b > 【答案】C【解析】【分析】 由数轴可得0c a b <<<,再根据不等式的性质以及绝对值的性质对各项进行分析即可.【详解】由数轴可得0c a b <<<A. a c b c +<+,错误;B. 0a c ->,错误;C. ac bc >,正确;D. c b <,错误;故答案为:C .【点睛】本题考查了不等式的问题,掌握数轴的性质、不等式的性质以及绝对值的性质是解题的关键. 8.下列条件中,能说明AD ∥BC 的条件有( )个①∠1=∠4;②∠2=∠3;③∠1+∠2=∠3+∠4;④∠A+∠C=180°;⑤∠A+∠ABC=180°⑥∠A+∠ADC=180°. A .1B .2C .3D .4【答案】B【解析】【分析】根据平行线的判定定理逐个分析即可.【详解】根据“内错角相等,两直线平行”可得②∠2=∠3,可推出AD ∥BC ;根据“同旁内角互补,两直线平行”可得⑤∠A+∠ABC=180°,可推出AD ∥BC ;其他条件不能推出AD ∥BC ;故选B【点睛】熟记平行线的判定定理.9.下列说法:(1)同一平面内,两条直线不平行就相交,(2)两条直线被第三条直线所截,同位角相等,(3)过一点有且只有一条直线垂直于已知直线,(4)如果两条直线都和第三条直线平行,那么这两条直线平行.其中错误的说法有( )A .1个B .2个C .3个D .4个 【答案】A【解析】【分析】根据直线平行和相交的定义以及平行线的性质和平行公理进行分析判断.【详解】解:(1)同一平面内,两条直线不平行就相交,正确;(2)两条平行线被第三条直线所截,同位角相等,故原说法错误;(3)过一点有且只有一条直线垂直于已知直线,正确;(4)如果两条直线都和第三条直线平行,那么这两条直线平行,正确,错误的有一个,故选:A.【点睛】本题主要考查了学生对概念和公理的掌握,准确记忆各知识点是解题关键.10.若使分式1x x -有意义,x 的取值是( ) A .0x =B .1x =C .0x ≠D .1x ≠ 【答案】D【解析】【分析】根据分母不等于0列式进行计算即可得解.【详解】根据题意得,x-1≠0,解得x≠1.故选D .【点睛】从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.二、填空题11.已知30AOB ∠=︒,点P 在AOB ∠的内部,1P 与P 关于OA 对称,2P 与P 关于OB 对称,12POP ∠=____________︒.【答案】60【解析】【分析】根据轴对称的性质即可得到结论.【详解】解:如图:∵P为∠AOB内部一点,点P关于OA、OB的对称点分别为P1、P2,∴∠P1OP2=2∠AOB=60°,故答案为60°.【点睛】此题考查了轴对称的性质,注意掌握对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.12.如图,OA的方向是北偏东15°,若∠AOC=∠AOB,则OB的方向是_____.【答案】北偏东70°.【解析】【分析】先根据角的和差得到∠AOC的度数,根据∠AOC=∠AOB得到∠AOB的度数,再根据角的和差得到OB的方向.【详解】∵OA的方向是北偏东15°,OC的方向是北偏西40°,∴∠AOC=15°+40°=55°,∵∠AOC=∠AOB,∴∠AOB=55°,15°+55°=70°,故OB的方向是北偏东70°.故答案为:北偏东70°.【点睛】本题主要考查了方向角的定义及表达方式,解答此题的关键是理解方位角,再结合各角的互余互补或和差关系求解..13.如图,点D 在AOB ∠的平分线OC 上,点E 在OA 上,//ED OB ,50AOB ∠=︒,则ODE ∠的度数是_______.【答案】25︒【解析】【分析】利用角平分线与平行线的性质得到ODE AOC BOC ∠=∠=∠即可得到答案.【详解】解:OC 平分AOB ∠,AOC BOC ∠=∠∴//ED OB ,,BOC ODE ∴∠=∠50AOB ∠=︒1252ODE AOC BOC AOB ∴∠=∠=∠=∠=︒. 故答案为:25︒.【点睛】本题考查的是角平分线的性质,平行线的性质是中考必考的一个考点,掌握此相关联的性质是解题的关键. 14.在数轴上,如果点A 、点B 所对应的数分别为3-、2,那么A 、B 两点的距离AB =_______.【答案】5【解析】【分析】利用A ,B 对应的数,进而求出两点之间的距离.【详解】A ,B 两点之间的距离为2-(-3)=2+3=1.故答案为:1.【点睛】此题主要考查了实数与数轴,得出异号两点之间距离求法是解题关键.15.如果关于x 的不等式 4ax <的解集为4x a>,写出一个满足条件的a 的值:__________. 【答案】-1【解析】【分析】利用不等式的基本性质判断即可确定出a的值.【详解】∵关于x的不等式ax>4的解集为x<4a,∴a<0,则一个满足条件a=-1,故答案为:-1【点睛】此题考查了解一元一次不等式,熟练掌握不等式的基本性质是解本题的关键.16.已知21xy=⎧⎨=-⎩是方程组36mx yx ny-=⎧⎨-=⎩的解,则mn的值为_____.【答案】1 【解析】【分析】把21xy=⎧⎨=-⎩代入方程组即可得到关于m,n的方程组,即可进行求解.【详解】解:将x=2,y=﹣1代入方程组36 mx yx ny-=⎧⎨-=⎩,得:21326mn+=⎧⎨+=⎩解得14mn=⎧⎨=⎩,则mn=1.故答案为:1.【点睛】此题主要考查二元一次方程组的求解,解题的关键是熟知加减消元法解二元一次方程组.17.4的平方根是_____.【答案】±2;0.1.【解析】【分析】依据平方根、立方根的定义解答即可.【详解】∵(±2)2=4,∴4的平方根是±2.∵0.11=0.027,=0.1.故答案是:±2;0.1.【点睛】主要考查的是平方根、立方根的定义,熟练掌握相关概念是解题的关键.三、解答题18.某商场柜台销售每台进价分别为160元、120元的A、B两种型号的电器,下表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入—进货成本)(1)求A、B两种型号的电器的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电器共50台,求A种型号的电器最多能采购多少台?(3)在(2)中商场用不多于7500元采购这两种型号的电器共50台的条件下,商场销售完这50台电器能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【答案】(1)A型电器销售单价为200元,B型电器销售单价150元;(2)最多能采购37台;(3)方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.【解析】【分析】(1)设A、B两种型号电器的销售单价分别为x元、y元,根据3台A型号4台B型号的电器收入1200元,5台A型号6台B型号的电器收入1900元,列方程组求解;(2)设采购A种型号电器a台,则采购B种型号电器(50−a)台,根据金额不多余7500元,列不等式求解;(3)根据A型号的电器的进价和售价,B型号的电器的进价和售价,再根据一件的利润乘以总的件数等于总利润列出不等式,再进行求解即可得出答案.【详解】解:(1)设A型电器销售单价为x元,B型电器销售单价y元,则341200 561900x yx y+=⎧⎨+=⎩,解得:200150 xy=⎧⎨=⎩,答:A型电器销售单价为200元,B型电器销售单价150元;(2)设A型电器采购a台,则160a+120(50−a)≤7500,解得:a≤752,则最多能采购37台;(3)设A型电器采购a台,依题意,得:(200−160)a+(150−120)(50−a)>1850,解得:a>35,则35<a≤752,∵a是正整数,∴a=36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.19.(1)读读做做:平行线是平面几何中最基本、也是非常重要的图形.在解决某些平面几何问题时,若能依据问题的需要,添加恰当的平行线,往往能使证明顺畅、简洁.请根据上述思想解决教材中的问题:如图①,AB∥CD,则∠B+∠D∠E(用“>”、“=”或“<”填空);(2)倒过来想:写出(1)中命题的逆命题,判断逆命题的真假并说明理由.(3)灵活应用:如图②,已知AB∥CD,在∠ACD的平分线上取两个点M、N,使得∠AMN=∠ANM,求证:∠CAM=∠BAN.【答案】(1)=;(2)若∠B+∠D=∠BED,则AB∥CD,该逆命题为真命题,见解析;(3)见解析【解析】【分析】(1)过E作EF∥AB,则EF∥AB∥CD,由平行线的性质得出∠B=∠BEF,∠D=∠DEF,即可得出结论;(2)过E作EF∥AB,则∠B=∠BEF,证出∠D=∠DEF,得出EF∥CD,即可得出结论;(3)过点N作NG∥AB,交AM于点G,则NG∥AB∥CD,由平行线的性质得出∠BAN=∠ANG,∠GNC =∠NCD,由三角形的外角性质得出∠AMN=∠ACM+∠CAM,证出∠ACM+∠CAM=∠ANG+∠GNC,得出∠ACM+∠CAM=∠BAN+∠NCD,由角平分线得出∠ACM=∠NCD,即可得出结论.【详解】(1)解:过E作EF∥AB,如图①所示:则EF∥AB∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠B+∠D=∠BEF+∠DEF,即∠B+∠D=∠BED;故答案为:=;(2)解:逆命题为:若∠B+∠D=∠BED,则AB∥CD;该逆命题为真命题;理由如下:过E作EF∥AB,如图①所示:则∠B=∠BEF,∵∠B+∠D=∠BED,∠BEF+∠DEF=∠BED,∴∠D=∠BED﹣∠B,∠DEF=∠BED﹣∠BEF,∴∠D=∠DEF,∴EF∥CD,∵EF∥AB,∴AB∥CD;(3)证明:过点N作NG∥AB,交AM于点G,如图②所示:则NG∥AB∥CD,∴∠BAN=∠ANG,∠GNC=∠NCD,∵∠AMN是△ACM的一个外角,∴∠AMN=∠ACM+∠CAM,又∵∠AMN=∠ANM,∠ANM=∠ANG+∠GNC,∴∠ACM+∠CAM=∠ANG+∠GNC,∴∠ACM+∠CAM=∠BAN+∠NCD,∵CN平分∠ACD,∴∠ACM=∠NCD,∴∠CAM=∠BAN.【点睛】本题考查了命题与定理、平行线的性质与判定、逆命题、三角形的外角性质、角平分线定义等知识;熟练掌握平行线的判定与性质,作出辅助平行线是解决问题的关键.20.如图,点C是线段AB上一点,AC<AB,M,N分别是AB和CB的中点,AC=8,NB=5,求线段MN 的长.【答案】1.【解析】【分析】根据线段中点的性质,可得BC的长,根据线段的和差,可得AB的长,再根据线段中点的性质,可得BM 的长,根据线段的和差,可得答案.【详解】解:由N是CB的中点,NB=5,得BC=2NB=2.由线段的和差,得AB=AC+BC=8+2=3.由M是AB的中点,得MB=AB=×3=4.由线段的和差,得MN=MB﹣NB=4﹣5=1.考点:两点间的距离.∠=︒,∠B:∠C =1:1.求∠B的度数.21.如图,△ABC中,A60【答案】∠B=20°.【解析】 【分析】首先根据∠B:∠C=1:1,再根据三角形内角和为180°可得方程∠B +∠C +∠C =180°,算出∠B 的值即可 【详解】∵∠A+∠B+∠C=180°,∠A=60°, ∴∠B+∠C=180°-60°=120°, ∵∠B :∠C=1:1, ∴∠B+1∠B=120°, ∴∠B=200; 【点睛】此题主要考查了三角形内角和定理,关键是掌握三角形内角和为180° 22.阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,但是由于1<2<2,所以的整数部分为1,将2减去其整数部分1,所得的差就是其小数部分2-1,根据以上的内容,解答下面的问题:(1)5的整数部分是 ,小数分部是 ; (2)1+2的整数部分是 ,小数小数分部是 ; (3)若设2+3整数部分是x ,小数部分是y ,求y ﹣x 的值. 【答案】(1)1,52- (1)1,21- (3)34- 【解析】试题分析:(1)求出的范围是1<<3,即可求出答案;(1)求出的范围是1<<1,求出1+的范围即可;(3)求出的范围,推出1+的范围,求出x 、y 的值,代入即可.解:(1)∵1<<3,∴的整数部分是1,小数部分是﹣1,故答案为1,﹣1. (1)∵1<<1,∴1<1+<3,∴1+的整数部分是1,小数部分是1+﹣1=﹣1,故答案为1,.(3)∵1<<1,∴3<1+<4,∴x=3,y=1+﹣3=﹣1,∴x﹣y=3﹣(﹣1)=.点评:本题考查了估计无理数的大小,不等式的性质,代数式求值等知识点的应用,关键是关键题意求出无理数的取值范围,如1<<3,1<<1,1<<1.23.农村中学启动“全国亿万青少年学生体育运动”以来,掀起了青少年参加阳光体育运动的热潮,要求青少年学生每天体育锻炼的时间不少于 1 小时。

2018-2019学年度初一年级第二学期数学期末复习试卷含参考答案

2018-2019学年度初一年级第二学期数学期末复习试卷含参考答案

第15题2018-2019学年度初一年级第二学期数学期末复习试卷一.选择题 (每题2分,共16分)1.某球形流感病毒的直径约为0.000 000 085 m ,用科学记数法表示该数据为( )A. 8.5-8B. 85 × 10-9C. 0.85 ×10-7D. 8.5 ×10-8 2.下列各式中,不能用平方差公式计算的是( )A .(2x ﹣y )(2x + y )B .(x ﹣y )(﹣y ﹣x )C .(b ﹣a )(b + a )D .(﹣x + y )(x ﹣y ) 3.下列从左到右的变形,属于分解因式的是( )A .(a + 3)(a ﹣3)=a 2﹣9B .x 2 + x ﹣5= x (x ﹣1)﹣5C .a 2 + a =a (a + 1)D .x 3 y =x ·x 2·y 4.若实数a ,b ,c 在数轴上对应点的位置如图所示,则下列 不等式成立的是( )A .ac>bcB .ab>cbC .a + c>b + cD .a + b>c + b5.当x =1时,代数式ax 3﹣3bx +4的值是7,则当x =﹣1时,这个代数式的值是( )A .7B .3C .1D .﹣76.在ABC ∆中,23A B C ∠=∠=∠,则ABC ∆是( )A.锐角三角形B.直角三角形C.钝角三角形D.都有可能 7.一个多边形的内角和大于1100°,小于1400°这个多边形的边数是( )A .6B .7C .8D .98.若关于x 的不等式组{0521x a x -≤-<.的整数解只有1个,则a 的取值范围是( )A .2<a <3B .3≤a <4C .2<a ≤3D .3<a ≤4 二.填空题 (每题2分,共16分)9. x 5÷x 3= . 10.分解因式:2x-4y = . 11.已知m + n =5,m n =3,则m 2 n + m n 2= .12.二元一次方程x -y =l 中,若x 的值大于0,则y 的取值范围是 . 13.写出命题“对顶角相等”的逆命题: 14.若x —2y —3=0,则2x ÷4y = .15. 如图,△ABC ≌△ADE ,BC 的延长线交DA 于F ,交DE 于G ,∠D =25°,∠E =105°,∠DAC =16°,则 ∠DGB 的度数为 .B 、C 分别是线段1A B A 1B 1C 1的面积是a ,那么△ABC 的16.如图,A 、面积是 .(用a 的代数式表示)B 1三.解答题17. 计算(每题3分,共6分)(1) (π-1)0-112-⎛⎫ ⎪⎝⎭-22 (2) (-3a )2﹒a 4 +(-2a 2)318.将下列各式分解因式:(每题3分,共9分)(1) 224x xy - (2) 3244y y y -+ (3) 222(1)(1)x y y -+-19. 解下列方程组或不等式(组)(每题3分,共9分)(1){23431y x x y =--= (2)22523x x x +--≤ (3)253(2),1.23x x x x +≤+⎧⎪-⎨<⎪⎩, 并写出其整数解20.(6分)先化简,再求值:(2a + b )(2a ﹣b )+3(2a ﹣b )2+(﹣3a )(4a ﹣3b ),其中a =-1, b =-221.(6分)如图,已知AB ∥CD ,BC 平分∠ABE ,∠C =27°,求∠BED 的度数.22.(8分)己知方程组5214x y ax y a+=+⎧⎨-=-⎩的解x 、y 的值的符号相反. 求a 的取值范围;23.(8分)如图1,△ABC 中,∠C=900,BC=3,AC=4,AB=5,将△ABC 绕着点B 旋转一定的角度,得到 △DEB(1)、若点F 为AB 边上中点,连接EF ,则线段EF 的范围为(2)、如图2当△DEB 直角顶点E 在AB 边上时,延长DE ,交AC 边于点G ,请问线段DE 、EG 、AG 具有怎样的数量关系,请写出探索过程24.(8分)小明同学有关租车问题的对话:45座的贵150元.”小芳:“八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到苏州博物馆参观,一天的租G金共计5100元.”小明:“如果我们七年级租用45座的客车a辆,那么还有15人没有座位;如果租用60座的客车可少租2辆,且正好坐满.”根据以上对话,解答下列问题:(1)参加此次活动的七年级师生共有________人;(2)客运公司60座和45座的客车每辆每天的租金分别是多少元?(3)若同时租用两种或一种客车,要使每位师生都有座位,且每辆客车恰好坐满,问有几种租车方案?哪一种租车最省钱?25.(8分)已知如图1梯形ADEB中,AD⊥MN,BE⊥MN,垂足分别为点D、点E,点C在MN上,CD=BE,∠ACB=90°.(1)求证:∠ACD=∠CBE(2)若DE=8,求梯形ADEB的面积(3)如图2,设梯形ADEB的周长为....,沿着O→A→D→E...m.,AB边中点O处有两个动点P、Q同时出发→B→O的方向移动,点P的速度是点Q的3.倍.,当点Q第一次到达....移动......B.点.时,两点同时停止①两点同时停止时,点P移动的路程与点Q移动的路程之差2m(填“<”,“>”或“=”)②移动过程中,点P能否和点Q相遇?如果能,则用直线错误!未找到引用源。

福建省莆田市七年级数学下学期期末试题(扫描版) 新人教版

福建省莆田市七年级数学下学期期末试题(扫描版) 新人教版

福建省莆田市2017-2018学年七年级数学下学期期末试题⎩⎨⎧-==-=-===-=202,42)2(00884y x y y x x x 故原方程的解为中得,代入把秀屿区2017-2018学年度第二学期期末检测七年级数学参考答案一、选择题(共 10 小题,每题 4 分,满分 40分;每小题只有一个正确选项) 1、B 2、D 3、B 4、A 5、D 6、B 7、A 8、B 9、A 10、C 二、填空题(每题 4 分,满分 24 分) 11、023<-x 12、< 13、(3,2) 14、15 15、125 16、︒20三、解答题(10大题,共 86 分) 17、(6分).................3分 ................6分18、(6分)(两直线平行,同位角相等) .................1分 (已知) .................2分DEF BDE ∠=∠ .................3分(等量代换) .................4分(内错角相等,两直线平行) .................5分(两直线平行,同位角相等) .................6分19、(6分)解:①+②2⨯得 .................2分.................4分.................6分20、(8分).................3分.................5分.................6分 13233-=-+-=解:1001212216-43)1(≤≤∴≥+≥+-≤≥-x x x x x x x 得,)得,由(解得得,解:由3,35)2(49)3(40)152()3)(1(2±=+=+∴==-++则它的平方根是这个正实数是得,解:m m m m m.................8分21、(8分)................3 .................4分.................8分22、(8分).................3分.................6分则,1φ1=-35+24=-11 .................8分23、(10分)(1)如图, .................3分 (2)如图.................5分(3) .................10分⎩⎨⎧=-=⎩⎨⎧=+=+243528741553b a b a b a 解得,解:依题意得,229325103061215121542165=---=⨯⨯-⨯⨯-⨯⨯-⨯=∆EBD S24、(10分)(1)500.................2分 (2)如图.................4分(3)10,30.................6分 (4)540.................10分. 25、(12分).................4分.................6分.................8分................12分辆。

2018-2019(下)期末七年级数学考试试卷(含参考答案)

2018-2019(下)期末七年级数学考试试卷(含参考答案)

2018-2019学年度第二学期期末学情分析样题七年级数学(满分:100分 考试时间:100分钟)一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡...相应位置上.....) 1.下列计算正确的是( ▲ ) A .a 2+a 3=a 5 B .a 2•a 3=a 6 C .a 3÷a 2=a D .(a 3 ) 2=a 92.若a <b ,则下列不等式中,一定正确的是( ▲ )A . a +2>b +2B .-a <-bC .a -2<b +2D .a 2<ab3 -2204.下列各式能用平方差公式计算的是( ▲ ) A .(-a +b ) (a -b ) B .(a +b ) (a -2b ) C .(a +b ) (-a -b ) D .(-a -b ) (-a +b )5.下列命题中,真命题的有 ( ▲ ) (1)内错角相等; (2)锐角三角形中任意两个内角的和一定大于第三个内角; (3)相等的角是对顶角; (4)平行于同一直线的两条直线平行.6.若某n 边形的每个内角都比其外角大120°,则n 等于( ▲ )7.如图,给出下列条件:①∠1=∠2; ②∠3=∠4;③AD ∥BE ,且∠D =∠B ;④AD ∥BE ,∠DCE =∠DA . c >a >bB .b >c >aC .a >c >bD . a >b >c A .(1)(2)B .(2)(3)C .(2)(4)D .(3)(4)A .6B .10C .12D .15A . ①②B .②③C . ③④D .②③④A . a ≤3B .-3<a ≤3C . -3≤a <3D .-3 <a <3 (第7题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷...相应位置....上) 9.计算: 30+ (13)-2= ▲ .10.不等式-2x +1 ≤ 3的解集是 ▲ .11.命题“同旁内角互补,两直线平行”的逆命题是 ▲ .12. 某种感冒病毒的直径是0. 000 000 12米,用科学记数法表示为 ▲ 米.13. 若⎩⎨⎧x =2,y =1,是关于x 、y 的二元一次方程kx -y =k 的解,则k 的值为 ▲ .14. 已知a -b =2 ,a +b =3.则a 2+b 2= ▲ .15. 关于x 的方程﹣2x +5=a 的解小于3,则a 的范围 ▲ .16. 如图,a ∥b ,将30°的直角三角板的30°与60°的内角顶点分别放在直线a 、b 上,若∠1+∠2=110°,则∠1= ▲ °.17. 如图,∠A =32°,则∠B +∠C +∠D +∠E = ▲ °.18. 若不等式组⎩⎨⎧≥-≤02x ax 有3个整数解,则a 的范围为 ▲ .(第17题)(第16题)21 abA CDB三、解答题(本大题共10小题,共64分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(8分)因式分解:(1)a 3-a ; (2)m 3-2m 2+m .20. (5分)先化简,再求值:(x -1)2 -2(x +1)(x -1),其中x =-1.21. (5分)解方程组⎩⎪⎨⎪⎧2x +y =4,x +2y =5.22.(6分)解不等式组 ⎩⎪⎨⎪⎧2-x >0,5x +12+1≥2x -13,并把解集在数轴上表示出来.23.(6分) 运输两批救灾物资,第一批360t ,用6节火车车皮和15辆汽车正好装完;第二批440t , 用8节火车车皮和10辆汽车正好装完。

2018-2019学年七年级(下)期末数学试卷及答案详解

2018-2019学年七年级(下)期末数学试卷及答案详解

2018-2019学年七年级(下)期末数学试卷一、选择题(共14小题,每小题3分,满分42分)1.(3分)如图所示,把河水引向水池M ,要向水池M 点向河岸AB 画垂线,垂足为N ,再沿垂线MN 开一条渠道才能使渠道最短.其依据是( )A .垂线段最短B .过一点确定一条直线与已知直线垂直C .两点之间线段最短D .以上说法都不对2.(3分)实数27-的立方根是( )A .3-B .3±C .3D .13- 3.(3分)如图,在平面直角坐标系中,小猫遮住的点的坐标可能是( )A .(2,1)-B .(2,3)C .(3,5)-D .(6,2)--4.(3分)如图,点E 在四边形ABCD 的边BC 的延长线上,则下列两个角是同位角的是()A .BAC ∠和ACB ∠ B .B ∠和DCE ∠C .B ∠和BAD ∠ D .B ∠和ACD ∠5.(3分)下列各图中, 能够由12∠=∠得到//AB CD 的是( )A .B .C .D .6.(3分)有下列说法中正确的说法的个数是( )(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数,零,负无理数;(4)无理数都可以用数轴上的点来表示.A .1B .2C .3D .47.(3分)若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P的坐标是( )A .(4,3)-B .(4,3)-C .(3,4)-D .(3,4)-8.(3分)如图,//a b ,点B 在直线b 上,且AB BC ⊥,135∠=︒,那么2(∠=)A .45︒B .50︒C .55︒D .60︒9.(380;3π327227;1.1010010001⋯,无理数的个数是( ) A .5 B .4 C .3 D .210.(3分)在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3)11.(3分)如果点(3,1)P m m ++在x 轴上,则点P 的坐标为( )A .(0,2)B .(2,0)C .(4,0)D .(0,4)-12.(3分)如图,若12∠=∠,//DE BC ,则:①//FG DC ;②AED ACB ∠=∠;③CD 平分ACB ∠;④190B ∠+∠=︒;⑤BFG BDC ∠=∠,⑥FGC DEC DCE ∠=∠+∠,其中正确的结论是( )A .①②③B .①②⑤⑥C .①③④⑥D .③④⑥13.(3分)观察下列各数:1,43,97,1615,⋯,按你发现的规律计算这列数的第6个数为( )A .2531B .3635C .47D .626314.(3分)定义:直线a 与直线b 相交于点O ,对于平面内任意一点M ,点M 到直线a 与直线b 的距离分别为p 、q ,则称有序实数对(,)p q 是点M 的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是( )A .1B .2C .3D .4二、填空题(共5小题,每小题3分,满分15分)15.(3分)81的平方根是 .16.(3分)如图,在ABC ∆中,BE 、CE 分别是ABC ∠和ACB ∠的平分线,过点E 作//DF BC 交AB 于D 、交AC 于F ,若4AB =,3AC =,则ADF ∆周长为 .17.(3分)点(,)p q 到y 轴距离是 .18.(3 3.65 1.91036.5 6.042365000≈ .19.(3分)已知//AB x 轴,A 点的坐标为(3,2)-,并且4AB =,则B 点的坐标为 .三、解答题(共7小题,满分63分)20.(6分)完成下面的证明 (在 括号中注明理由) .已知: 如图,//BE CD ,1A ∠=∠,求证:C E ∠=∠.证明://BE CD (已 知) ,2∴∠= ( )又1A ∠=∠(已 知) ,//AC ∴ ( ),2∴∠= ( ),C E ∴∠=∠(等 量代换)21.(8分)求下列x 的值:(1)2(32)16x +=(2)3(21)27x -=-.22.(8分)如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分.(1)直接写出图中AOC ∠的对顶角: ,EOB ∠的邻补角:(2)若70AOC ∠=︒且:2:3BOE EOD ∠∠=,求AOE ∠的度数.23.(9分)如图是小明所在学校的平面示意图,请你以教学楼为坐标原点建立平面直角坐标系,描述学校其它建筑物的位置.24.(10分)将一副直角三角板如图放置, 已知//AE BC ,求AFD ∠的度数 .25.(10分)已知:如图,12∠=∠,3E ∠=∠.求证://AD BE .26.(12分)ABC ∆与△A B C '''在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A ' ;B ' ;C ' ;(2)说明△A B C '''由ABC ∆经过怎样的平移得到? .(3)若点(,)P a b 是ABC ∆内部一点,则平移后△A B C '''内的对应点P '的坐标为 ;(4)求ABC ∆的面积.参考答案与试题解析一、选择题(共14小题,每小题3分,满分42分)1.(3分)如图所示,把河水引向水池M ,要向水池M 点向河岸AB 画垂线,垂足为N ,再沿垂线MN 开一条渠道才能使渠道最短.其依据是( )A .垂线段最短B .过一点确定一条直线与已知直线垂直C .两点之间线段最短D .以上说法都不对【分析】根据垂线段的性质,可得答案.【解答】解:把河水引向水池M ,要向水池M 点向河岸AB 画垂线,垂足为N ,再沿垂线MN 开一条渠道才能使渠道最短.其依据是垂线段最短,故选:A .【点评】本题考查了垂线段最短,利用垂线段的性质是解题关键.2.(3分)实数27-的立方根是( )A .3-B .3±C .3D .13- 【分析】根据立方根的定义进行解答.【解答】解:3(3)27-=-,27∴-3273-=-,故选:A .【点评】本题主要考查了立方根的定义,找出立方等于27-的数是解题的关键.3.(3分)如图,在平面直角坐标系中,小猫遮住的点的坐标可能是( )A .(2,1)-B .(2,3)C .(3,5)-D .(6,2)--【分析】根据平面直角坐标系内各象限内点的坐标特点解答即可.【解答】解:由图可知小猫位于坐标系中第四象限,所以小猫遮住的点的坐标应位于第四象限,故选:C .【点评】本题主要考查点的坐标,掌握平面直角坐标系内各象限内点的坐标特点是解题的关键.4.(3分)如图,点E 在四边形ABCD 的边BC 的延长线上,则下列两个角是同位角的是()A .BAC ∠和ACB ∠ B .B ∠和DCE ∠C .B ∠和BAD ∠ D .B ∠和ACD ∠【分析】利用同位角、内错角及同旁内角的定义分别判断后即可确定正确的选项.【解答】解:A 、BAC ∠和ACB ∠是同旁内角,不符合题意;B 、B ∠和DCE ∠是同位角,符合题意;C 、B ∠和BAD ∠是同旁内角,不符合题意;D 、B ∠和ACD ∠不属于同位角、内错角及同旁内角的任何一种,不符合题意,故选:B .【点评】本题考查了同位角、内错角及同旁内角的知识,牢记它们的定义是解答本题的关键,难度不大.5.(3分)下列各图中, 能够由12∠=∠得到//AB CD 的是( )A .B .C .D .【分析】根据对等角相等可得13∠=∠,再由12∠=∠,可得32∠=∠,根据同位角相等, 两直线平行可得//AB CD .【解答】解:13∠=∠,12∠=∠,32∴∠=∠,//AB CD ∴,故选:B .【点评】此题主要考查了平行线的判定, 关键是掌握平行线的判定定理 .6.(3分)有下列说法中正确的说法的个数是( )(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数,零,负无理数;(4)无理数都可以用数轴上的点来表示.A .1B .2C .3D .4【分析】(1)根据无理数的定义即可判定;(2)根据无理数的定义即可判定;(3)根据无理数的分类即可判定;(4)根据无理数和数轴上的点对应关系即可判定.【解答】解:(1)开方开不尽的数是无理数,但是无理数不仅仅是开方开不尽的数,故(1)说法错误;(2)无理数是无限不循环小数,故(2)说法正确;(3)0是有理数,故(3)说法错误;(4)无理数都可以用数轴上的点来表示,故(4)说法正确.故选:B .【点评】此题主要考查了无理数的定义.无理数就是无限不循环小数.初中范围内学习的无理数有:π,开方开不尽的数,以及像0.1010010001⋯,等有这样规律的数.7.(3分)若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P的坐标是( )A .(4,3)-B .(4,3)-C .(3,4)-D .(3,4)-【分析】首先根据题意得到P 点的横坐标为负,纵坐标为正,再根据到x 轴的距离与到y 轴的距离确定横纵坐标即可. 【解答】解:点P 在第二象限,P ∴点的横坐标为负,纵坐标为正,到x 轴的距离是4,∴纵坐标为:4,到y 轴的距离是3,∴横坐标为:3-,(3,4)P ∴-,故选:C .【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握其特点是解题关键.8.(3分)如图,//a b ,点B 在直线b 上,且AB BC ⊥,135∠=︒,那么2(∠=)A .45︒B .50︒C .55︒D .60︒【分析】先根据135∠=︒,//a b 求出3∠的度数,再由AB BC ⊥即可得出答案.【解答】解://a b ,135∠=︒,3135∴∠=∠=︒.AB BC ⊥,290355∴∠=︒-∠=︒.故选:C .【点评】本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.9.(380;3π327227;1.1010010001⋯,无理数的个数是( ) A .5 B .4 C .3 D .2【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 80不是无理数;3π3273=不是无理数;227不是无理数;1.1010010001⋯是无理数,故选:C .【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001⋯,等有这样规律的数.10.(3分)在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3) 【分析】根据A 点的坐标及对应点的坐标可得线段AB 向右平移4个单位,然后可得B '点的坐标.【解答】解:(1,1)A --平移后得到点A '的坐标为(3,1)-,∴向右平移4个单位,(1,2)B ∴的对应点坐标为(14,2)+,即(5,2).故选:B .【点评】此题主要考查了坐标与图形的变化--平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.11.(3分)如果点(3,1)++在x轴上,则点P的坐标为()P m mA.(0,2)B.(2,0)C.(4,0)D.(0,4)-【分析】根据点P在x轴上,即0y=,可得出m的值,从而得出点P的坐标.【解答】解:点(3,1)++在x轴上,P m m∴=,y∴+=,m10解得:1m=-,∴+=-+=,3132m∴点P的坐标为(2,0).故选:B.【点评】本题考查了点的坐标,注意平面直角坐标系中,点在x轴上时纵坐标为0,得出m 的值是解题关键.12.(3分)如图,若12∠=∠,//∠=∠;③CD平FG DC;②AED ACBDE BC,则:①//分ACB∠=∠+∠,其中正∠=∠,⑥FGC DEC DCE∠+∠=︒;⑤BFG BDC∠;④190B确的结论是()A.①②③B.①②⑤⑥C.①③④⑥D.③④⑥【分析】由平行线的性质得出内错角相等、同位角相等,得出②正确;再由已知条件证出∠=∠,得出//FG DC,①正确;由平行线的性质得出⑤正确;进而得出⑥2DCB∠=∠+∠正确,即可得出结果.FGC DEC DCE【解答】解://DE BC,∠=∠,故②正确;1∴∠=∠,AED ACBDCB∠=∠,12∴∠=∠,2DCBFG DC∴,故①正确;//∴∠=∠,故⑤正确;BFG BDC∴∠=∠+∠,故⑥正确;FGC DEC DCE而CD不一定平分ACB∠,1B∠+∠不一定等于90︒,故③,④错误;故选:B.【点评】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.13.(3分)观察下列各数:1,43,97,1615,⋯,按你发现的规律计算这列数的第6个数为()A.2531B.3635C.47D.6263【分析】观察数据,发现第n个数为221nn-,再将6n=代入计算即可求解.【解答】解:观察该组数发现:1,43,97,1615,⋯,第n个数为221nn-,当6n=时,22664 21217nn==--.故选:C.【点评】本题考查了数字的变化类问题,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键是发现第n个数为221nn-.14.(3分)定义:直线a与直线b相交于点O,对于平面内任意一点M,点M到直线a与直线b的距离分别为p、q,则称有序实数对(,)p q是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是()A.1B.2C.3D.4【分析】画出两条相交直线,到a的距离为1的直线有2条,到b的距离为2的直线有2条,看所画的这些直线的交点有几个即为所求的点的个数.【解答】解:如图所示,所求的点有4个,故选:D.【点评】综合考查点的坐标的相关知识;得到到直线的距离为定值的直线有2条是解决本题的突破点.二、填空题(共5小题,每小题3分,满分15分)15.(3分)81的平方根是 3± .【分析】根据平方根、算术平方根的定义即可解决问题.【解答】解:819=,9的平方根是3±,∴81的平方根是3±.故答案为3±.【点评】本题考查算术平方根、平方根的定义,解题的关键是记住平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根,属于基础题,中考常考题型.16.(3分)如图,在ABC ∆中,BE 、CE 分别是ABC ∠和ACB ∠的平分线,过点E 作//DF BC 交AB 于D 、交AC 于F ,若4AB =,3AC =,则ADF ∆周长为 7 .【分析】根据角平分线的定义可得EBD EBC ∠=∠,ECF ECB ∠=∠,再根据两直线平行,内错角相等可得EBC BED ∠=∠,ECB CEF ∠=∠,然后求出EBD DEB ∠=∠,ECF CEF ∠=∠,再根据等角对等边可得ED BD =,EF CF =,即可得出DF BD CF =+;求出ADF ∆的周长AB AC =+,然后代入数据进行计算即可得解.【解答】解:E 是ABC ∠,ACB ∠平分线的交点,EBD EBC ∴∠=∠,ECF ECB ∠=∠,//DF BC ,DEB EBC ∴∠=∠,FEC ECB ∠=∠,DEB DBE ∴∠=∠,FEC FCE ∠=∠,DE BD ∴=,EF CF =,DF DE EF BD CF ∴=+=+,即DE BD CF =+,ADF ∴∆的周长()()AD DF AF AD BD CF AF AB AC =++=+++=+,4AB =,3AC =,ADF ∴∆的周长437=+=,故答案为7.【点评】本题考查了等腰三角形的判定与性质,平行线的性质,主要利用了角平分线的定义,等角对等边的性质,两直线平行,内错角相等的性质,熟记各性质是解题的关键.17.(3分)点(,)p q 到y 轴距离是 ||p .【分析】点到y 轴的距离等于横坐标的绝对值.【解答】解:点(,)p q 到y 轴距离||p =故答案为||P .【点评】本题考查点的坐标,记住点到坐标轴的距离与坐标的关系是解题的关键.18.(3 3.65 1.91036.5 6.042365000≈ 604.2 .【分析】根据被开方数扩大100倍,算术平方根扩大10倍,可得答案. 3.65 1.910≈36.5 6.042≈365000604.2,故答案为:604.2.【点评】本题考查了算术平方根,利用被开方数与算术平方根的关系是解题关键.19.(3分)已知//AB x 轴,A 点的坐标为(3,2)-,并且4AB =,则B 点的坐标为 (1,2)或(7,2)- .【分析】在平面直角坐标系中与x 轴平行,则它上面的点纵坐标相同,可求B 点纵坐标;与x 轴平行,相当于点A 左右平移,可求B 点横坐标.【解答】解://AB x 轴,∴点B 纵坐标与点A 纵坐标相同,为2,又4AB =,可能右移,横坐标为341-+=-;可能左移横坐标为347--=-,B ∴点坐标为(1,2)或(7,2)-,故答案为:(1,2)或(7,2)-.【点评】此题考查平面直角坐标系中平行特点和平移时坐标变化规律,解决本题的关键是分类讨论思想.三、解答题(共7小题,满分63分)20.(6分)完成下面的证明 (在 括号中注明理由) .已知: 如图,//BE CD ,1A ∠=∠,求证:C E ∠=∠.证明://BE CD (已 知) ,2∴∠= C ∠ ( )又1A ∠=∠(已 知) , //AC ∴ ( ),2∴∠= ( ),C E ∴∠=∠(等 量代换)【分析】先根据两直线平行, 得出同位角相等, 再根据内错角相等, 得出两直线平行, 进而得出内错角相等, 最后根据等量代换得出结论 .【解答】证明://BE CD (已 知)2C ∴∠=∠(两 直线平行, 同位角相等)又1A ∠=∠(已 知)//AC DE ∴(内 错角相等, 两直线平行)2E ∴∠=∠(两 直线平行, 内错角相等)C E ∴∠=∠(等 量代换)【点评】本题主要考查了平行线的性质, 解题时注意区分平行线的性质与平行线的判定的区别, 条件与结论不能随意颠倒位置 .21.(8分)求下列x 的值:(1)2(32)16x +=(2)3(21)27x -=-.【分析】(1)利用平方根的定义,即可求得32x +,即可转化成一元一次方程即可求得x 的值;(2)利用立方根的定义,即可转化成一元一次方程即可求得x 的值.【解答】解:(1)2(32)16x +=,324x +=±, 23x ∴=或2x =;(2)3(21)27x -=-,213x -=-,1x ∴=-.【点评】本题考查了平方根与立方根的定义,理解定义是关键.22.(8分)如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分.(1)直接写出图中AOC ∠的对顶角: BOD ∠ ,EOB ∠的邻补角:(2)若70AOC ∠=︒且:2:3BOE EOD ∠∠=,求AOE ∠的度数.【分析】(1)根据对顶角和邻补角的定义直接写出即可;(2)根据对顶角相等求出BOD ∠的度数,再根据:2:3BOE EOD ∠∠=求出BOE ∠的度数,然后利用互为邻补角的两个角的和等于180︒即可求出AOE ∠的度数.【解答】解:(1)AOC ∠的对顶角是BOD ∠,EOB ∠的邻补角是AOE ∠,故答案为:BOD ∠,AOE ∠;(2)70AOC ∠=︒,70BOD AOC ∴∠=∠=︒,:2:3BOE EOD ∠∠=, 2702832BOE ∴∠=⨯︒=︒+, 18028152AOE ∴∠=︒-︒=︒.AOE ∴∠的度数为152︒.【点评】本题主要考查了对顶角和邻补角的定义,利用对顶角相等的性质和互为邻补角的两个角的和等于180︒求解是解答此题的关键.23.(9分)如图是小明所在学校的平面示意图,请你以教学楼为坐标原点建立平面直角坐标系,描述学校其它建筑物的位置.【分析】根据题意建立平面直角坐标系进而得出各点坐标即可.【解答】解:如图所示:实验楼(2,2)-,行政楼(2,2)--,大门(0,4)-,食堂(3,4),图书馆(4,2)-.【点评】此题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.24.(10分)将一副直角三角板如图放置, 已知//AE BC ,求AFD ∠的度数 .【分析】根据平行线的性质及三角形内角定理解答 .【解答】解: 由三角板的性质, 可知45EAD ∠=︒,30C ∠=︒,90BAC ADE ∠=∠=︒.因为//AE BC ,所以30EAC C ∠=∠=︒,所以453015DAF EAD EAC ∠=∠-∠=︒-︒=︒,所以180180901575AFD ADE DAF ∠=︒-∠-∠=︒-︒-︒=︒.【点评】本题考查的是平行线的性质及三角形内角和定理, 解题时注意: 两直线平行, 内错角相等 .25.(10分)已知:如图,12∠=∠,3E ∠=∠.求证://AD BE .【分析】先根据题意得出132E ∠+∠=∠+∠,再由25E ∠+∠=∠可知,135∠+∠=∠,即5ADC ∠=∠,据此可得出结论.【解答】证明:12∠=∠,3E ∠=∠,132E ∴∠+∠=∠+∠.25E ∠+∠=∠,135∴∠+∠=∠,5ADC ∴∠=∠,//AD BE ∴.【点评】本题考查的是平行线的判定,用到的知识点为:同位角相等,两直线平行.26.(12分)ABC∆与△A B C'''在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A'(3,1)-;B';C';(2)说明△A B C'''由ABC∆经过怎样的平移得到?.(3)若点(,)P a b是ABC∆内部一点,则平移后△A B C'''内的对应点P'的坐标为;(4)求ABC∆的面积.【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对应点A、A'的变化写出平移方法即可;(3)根据平移规律逆向写出点P'的坐标;(4)利用ABC∆所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【解答】解:(1)(3,1)A'-;(2,2)B'--;(1,1)C'--;(2)先向左平移4个单位,再向下平移2个单位;或:先向下平移2个单位,再向左平移4个单位;(3)(4,2)P a b'--;(4)ABC∆的面积111 23131122 222=⨯-⨯⨯-⨯⨯-⨯⨯6 1.50.52=---2=.故答案为:(1)(3,1)-,(2,2)--,(1,1)--;(2)先向左平移4个单位,再向下平移2个单位;(3)(4,2)a b--.【点评】本题考查了利用平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键.。

2018-2019学年度七年级下期末数学试卷及答案

2018-2019学年度七年级下期末数学试卷及答案

12AE D BC2018---2019学年度第二学期期末考试七年级数学试卷一、选择题(每小题3分,本题共30分)1.一个一元一次不等式组的解集在数轴上表示如图所示,则该不等式组的解集为 A .2x -> B . 3≤x C .32<≤-x D .32≤<-x 2. 下列计算中,正确的是A .3412()x x =B .236a a a ⋅=C .33(2)6a a =D .336a a a += 3. 已知a b <,下列不等式变形中正确的是A .22a b ->-B .22a b ->-C .22a b> D .3131a b +>+ 4. 下列各式由左边到右边的变形中,是因式分解的是A. 2632(3)3xy xz x y z ++=++B. 36)6)(6(2-=-+x x xC.)(2222y x x xy x +-=--D. )b a (3b 3a 32222+=-5. 如图,点C 是直线AB 上一点,过点C 作⊥CD CE ,那么图中1∠和2∠的关系是 A. 互为余角 B. 互为补角 C. 对顶角 D. 同位角6. 已知⎩⎨⎧==21y x 是方程3=-ay x 的一个解,那么a 的值为A .1B . -1C .-3D .37. 为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中10是 A .个体B .总体C .总体的样本D .样本容量8. 如图,直线a ∥b ,直线l 与a ,b 分别交于点A ,B ,过点A 作AC ⊥b 于点C ,若1=50∠°,则2∠的度数为 A .130°B .50°21Ca A l BC.40°D.25°9. 为了解游客在野鸭湖国家湿地公园、松山自然保护区、玉渡山风景区和百里山水画廊这四个风景区旅游的满意率,数学小组的同学商议了几个收集数据的方案:方案一:在多家旅游公司调查400名导游;方案二:在野鸭湖国家湿地公园调查400名游客;方案三:在玉渡山风景区调查400名游客;方案四:在上述四个景区各调查100名游客.在这四个收集数据的方案中,最合理的是A. 方案一B. 方案二C.方案三D.方案四10. 数学小组的同学为了解“阅读经典”活动的开展情况,随机调查了50名同学,对他们一周的阅读时间进行了统计,并绘制成下图.这组数据的中位数和众数分别是A. 中位数和众数都是8小时B. 中位数是25人,众数是20人C. 中位数是13人,众数是20人,D. 中位数是6小时,众数是8小时二、填空题(每小题2分,本题共16分)11. 一种细胞的直径约为0.000052米,将0.000052用科学记数法表示为.12 计算:2(36)3a a a-÷=.13. 分解因式:错误!未找到引用源。

2018-2019学年度下学期期末质量检测初一数学答案

2018-2019学年度下学期期末质量检测初一数学答案

2018~2019学年度初一下学期期末考试数学试题参考答案一、选择题:(本大题共10小题,每小题3分,共30分.)二、填空题:本大题共10小题,每小题3分,共30分.)11. 6 12.○3④ 13.1/2 、4 14.55° 15.116. 6 17.3 18.11或5 19.-14、-2、0 20.12-3x三、解答题(本大题共8小题,共60分.)21、作图:图略,(1)、(2)(3)各2分。

………………6分22、计算:(1)-45;………………5分(2)9.………………5分23、(1)-a3-3a2+4a+5;………………3分原式=-1 ………………3分(2)x=8 ;………………4分24、 (1)M=25/4 -………………4分(2) M=-4/3 ………………3分25、解:(1)10 …………………………2分(2)图略,每图各2分…………………………6分(3)32×5×5=800cm2 …………………………8分26、解:(1 )+5-3+10-8-9+12-10=-3 (厘米),所以小虫最后没有回到出发点,在出发点左3厘米处。

…………………………3分(2 )经计算比较得+5-3+10=12是最远的。

……………………6分(3 )│+5 │+ │-3 │+ │10 │+ │-8 │+ │-9 │+ │12 │+ │-10 │=57 厘米57 ×2=114( 粒) ,故小虫一共能得到114粒芝麻。

…………………9分27、解:(1)∵AB=16cm,C点为AB的中点∴AC=BC=8cm∵点D、E分别是AC和BC的中点∴CD=CE=4cm∴DE=8cm …………………3分(2)∵AB=16cm∴AC=4cm∴BC=12cm∵点D、E分别是AC和BC的中点∴CD=2cm,CE=6cm说明:如果学生有不同的解题方法。

只要正确,可参照本评分标准,酌情给分.。

2018-2019学年七年级下期末考试数学试卷及答案

2018-2019学年七年级下期末考试数学试卷及答案

228.如果 (x 1)2 2 ,那么代数式 x 2 2x 7的值是 A . 8B . 92018--2019 学年第二学期期末考试初一数学试卷考 生 须 知 1.本试卷共 6 页,共三道大题, 27道小题。

满分 100分。

考试时间 90分钟。

2.在试卷和答题卡上认真填写学校名称、姓名和考号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4. 在答题卡上,选择题、做图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共 30 分,每小题 3分)第 1-10 题均有四个选项,符合题意的选项只有..一个.1.根据北京小客车指标办的通报,截至 2017年 6月 8日 24时,个人普通小客车指标的基准中签几率继续创新低,约为 0.001 22,相当于 817 人抢一个指标,小客车指标中签难 度继续加大 .将 0.001 22 用科学记数法表示应为A .1.22 ×10-5B .122 ×10-3C . 1.22 ×10-3D .1.22 ×10-2 2. a 3 a 2 的计算结果是A . a 9B .a 6C . a 5D . a3.不等式 x 1 0 的解集在数轴上表示正确的是4. 如果-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3-3 -2 -1 0 1 2 35.6.7.A .3如图, A .a 21,是关于 x 和 y 的二元一次方程 ax2y 1 的解,那么 a 的值是B .1C .-1D .-32×3 的网格是由边长为32B . aa 的小正方形组成,那么图中阴影部分的面积是C . 2a 2D . 3a 2如图,点 O 为直线 AB 上一点, OC ⊥OD. 如果∠ 1=35°, 那么∠ 2 的度数是 A . 35° B . 45° C . 55°D . 65°某冷饮店一天售出各种口味冰淇淋份数的扇形统计图如图所示知道香草口味冰淇淋一天售出 200 份,那么芒果口味冰淇淋 的份数是A . 80B . 40C .20D . 10,b14.右图中的四边形均为长方形 . 根据图形的面积关系,写出一个正 确的等式: ______________________ .15.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基 本框架.它的代数成就主要包括开放术、正负术和方程术.其中方程 术是《九章算术》最高的数学成就. 《九章算术》中记载: “今有共买 鸡,人出八,盈三;人出七,不足四 . 问人数、鸡价各几何?” 译文:“今天有几个人共同买鸡,每人出 8 钱,多余 3 钱,每人出 钱,还缺 4 钱.问人数和鸡的价钱各是多少?”设人数有 x 人,鸡的价钱是 y 钱,可列方程组为 ____________ .16.同学们准备借助一副三角板画平行线 . 先画一条直线 MN ,再按如图所示的 样子放置三角板 . 小颖认为 AC ∥DF ;小静认为 BC ∥EF.C .10D . 119.一名射箭运动员统计了 45 次射箭的成绩,并绘制了如图所示的折线统计图 . 则在射箭成绩的这组数据中,众数和中位数分别是A .18,18B . 8,8C .8, 9D . 18,810.如图,点 A ,B 为定点,直线 l ∥AB ,P 是 直线l 上一动点 . 对于下列各值: ①线段 AB 的长②△PAB 的周长 ③△PAB 的面积④∠APB 的度数其中不.会.随点 P 的移动而变化的是A .① ③B .① ④C .② ③D .② ④二、填空题(本题共 18 分,每小题 3 分)311.因式分解: 2m 3 8m . 12.如图,一把长方形直尺沿直线断开并错位,点 E ,D ,B , F 在同一条直线上.如果∠ ADE =126 °,13.关于 x 的不等式 ax b 的解集是 xb b. 写出一组满足条件的 a ,b 的值:aBD你认为的判断是正确的,依据是.三、解答题(本题共52分,第17- 21小题,每小题4分,第22- 26小题,每小题 5 分,第27 小题7 分)2017 0 1 17.计算:( 1)2017(3 )02 1.2 1 218.计算:6ab(2a2b - ab2).35x 17 8(x 1),19.解不等式组:x 10x 6 ,2并写出它的所有正整.数.解...20.解方程组:2x 3y 1,x 2y4.21.因式分解:- 3a3b- 27ab318a2b2 .22.已知m -1,求代数式(2m43)(2m 1) -(2m 1)2(m 1)(m 1)的值EF⊥BC,垂足为F,过点D作DG∥AB交AC于点G.(1)依题意补全图形;( 2)请你判断∠ BEF 与∠ ADG 的数量关系,并加以证明.24.《中共中央国务院关于深化教育改革全面推进素质教育的决定》中明确指出:“健康体魄是青少年为祖国和人民服务的基本前提,是中华民族旺盛生命力的体现. ”王老师所在的学校为23.已知:如图,在ABC中,过点A作AD⊥BC,垂足为D,E 为AB 上一点,过点E作加强学生的体育锻炼,需要购买若干个足球和篮球. 他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买. 三次购买足球和篮球的数量和费用如下表:1)王老师是第次购买足球和篮球时,遇到商场打折销售的;2)求足球和篮球的标价;3)如果现在商场均以标价的 6 折对足球和篮球进行促销,王老师决定从该商场一次性购买足球和篮球60 个,且总费用不能超过2500 元,那么最多可以购买个篮球.25.阅读下列材料:为了解北京居民使用互联网共享单车(以下简称“共享单车” )的现状,北京市统计局采用拦截式问卷调查的方式对全市16 个区,16-65 周岁的1000 名城乡居民开展了共享单车使用情况及满意度专项调查.在被访者中,79.4%的人使用过共享单车,39.9%的人每天至少使用 1 次,32.5%的人2-3 天使用1 次.从年龄来看,各年龄段使用过共享单车的比例如图所示.从职业来看,IT 业人员、学生以及金融业人员使用共享单车的比例相对较高,分别为97.8% 、93.1% 和92.3%.∴∠ A+∠ B+∠ ACB =180°.使用过共享单车的被访者中, 满意度(包括满意、 比较满意和基本满意) 达到 97.4% , 其中“满意”和“比较满意”的比例分别占 41.1% 和 40.1% ,“基本满意”占 16.2%. 从分项满意度评价结果看,居民对共享单车的“骑行”满意度评价最高,为97.9% ;对“付费 /押金”和“找车 /开锁 /还车流程”的满意度分别为 96.2% 和 91.9% ; 对“管理维护”的满意度较低,为 72.2%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:1)现在北京市 16-65 周岁的常住人口约为 1700 万,请你估计每天共享单车骑行人数至少约为 万;2)选择统计表或统计图,将使用共享单车的被访者的分项满意度表示出来; 3)请你写出现在北京市共享单车使用情况的特点(至少一条) .26.如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180 °”的结论 . 小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过 证明来确认它的正确性.请你参考小明解决问题的思路与方法,写出通过实验方法 2 证明该结论的过程受到实验方法 1的启发,小明形成了证明该结论的想法: 实验 1 的拼接方法直观上看, 是把∠1 和∠2 移动到∠ 3 的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象 为几何图形,那么利用平行线的性质就可以解决问题了 小明的证明过程如下:已知:如图, ABC .求证:∠ A+∠B+∠C =180°. 证明:延长 BC ,过点 C 作 CM ∥BA.∴∠ A=∠ 1(两直线平行,内错角相等), ∠ B=∠ 2(两直线平行,同位角∵∠ 1+∠2+∠ACB =180 °(平角定义),27.对x,y定义一种新运算T,规定:T(x,y)(mx ny)(x 2y)(其中m,n 均为非零常数).例如:T (1,1) 3m 3n.(1)已知T(1,1) 0,T (0,2) 8.① 求m,n 的值;T(2p,2 p) 4,② 若关于p的不等式组恰好有 3 个整数解,求a的取值范围;T(4p,3 2p) a(2)当x2y2时,T(x,y) T(y,x)对任意有理数x,y都成立,请直接写出m,n 满足的关系式.∴正整数解为 1,2.17.解:原式=1 2分34分18.解:原式=3212a 3b 223 2a 2b 3.19.解: 5x 17 8(x 1),①x 10. ② 2由①,x 3. 1分 由②,x 2. 2分 2.3分解得 y 1. 把 y1代入③,∴原方程组的解是21.解:原式= 3ab (a 222.解:原式= 4m 22m 2分3ab(a 6m 32. 2, 1.9b23b)2.(4m 23分 4分6ab) ⋯2 分4分4m 1) m 2 12=m 4m 1.3分20.解: 2x 由②, 3y 1,①2y 4.②得x 4 2y .③ 1分当m12 4 1时,原式 =( )44 1165分2018-2019学年度第二学期期末练习 初一数学评分标准及参考答案 、选择题(本题共 30 分,每小题 3分)二、填空题(本题共 18分,每小题 3分)把③代入①,得 8 4y 3y 1.三、23.(1)如图. ⋯⋯1分(2)判断:∠ BEF=∠ADG. ⋯⋯2 分证明:∵ AD⊥BC,EF ⊥BC,∴∠ ADF =∠EFB=90∴ AD∥ EF (同位角相等,两直线平行).∴∠ BEF=∠BAD(两直线平行,同位角相等).⋯⋯3分∵DG∥ AB ,∴∠BAD = ∠ADG (两直线平行,内错角相等).⋯⋯4分∴∠ BEF =∠ ADG. ⋯⋯5 分24.解:(1)三;(2)设足球的标价为x 元,篮球的标价为y 元.⋯⋯1分根据题意,得6x 5y700,3x 7y710.解得:x 50,y 80.答:足球的标价为50 元,篮球的标价为80元;⋯⋯ 4 分(3)最多可以买38 个篮球.⋯⋯5分25.解:(1)略.1分项目骑行付费/ 押金找车/ 开锁/还车流程管理维护满意度97.9%96.2%91.9%72.2% 2)使用共享单车分项满意度统计表3)略.26.已知:如图,ABC .求证:∠ A+∠B+∠C =180 °.证明:过点A作MN ∥BC. ⋯⋯1 分∴∠ MAB=∠ B,∠NAC=∠C(两直线平行,内错角相等).⋯3 分∵∠ MAB +∠ BAC+∠NAC=180°(平角定义),∴∠ B +∠BAC+∠C =180°.5分m 1, ⋯⋯2分 n1.(2p 2 p)(2p 4 2p) 4①, (4p 3 2p)(4 p 6 4p) a ②.∵恰好有 3 个整数解,42 a 54.2) m 2n27.解:①由题意,得 (m n) 0,8n 8. ②由题意,得解不等式①,得 p 解不等式②,得 p1. a 18123分1pa 18 12 4分a 18 123.6分 7分。

2018-2019学年七年级下期末考试数学试卷(含答案)

2018-2019学年七年级下期末考试数学试卷(含答案)

2018-2019学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是( ) A.沙漠 B.体温 C.时间 D.骆驼2.两根长度分别为3cm 、7cm 的钢条,下面为第三根的长,则可组成一个三角形框架的是( )3.计算2x 2·(-3x 3)的结果是( )A.-6x 3 C.-2x 64.如图,已知∠1=70°,如果CD 列事件中是必然事件的是( )A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据用科学记数法表示为( )×10-7 下列世界博览会会徽图案中是轴对称图形的是( )A. B C. D.1A BCD E8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是()A.(ab)2=a2b2(a+1)=2a+1 +a3=a6÷a2=a310.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADCB.∠B=∠C=DC=ACB12C11.如图,在锐角△ABC中,CD、BE分别是AB、AC边上的高,CD、BE交于点P,∠A=50°,则∠BPC是()°°°°PE DBA C12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) 或1214.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log nN (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( )A.32B.2315.如图,四边形ABCD 是边长为2cm 的正方形,动点P 在ABCD 的边上沿A →B →C →D 的路径以1cm/s 的速度运动(点P 不与A ,D 重合)。

2018-2019学年七年级下期末考试数学试卷(含答案)

2018-2019学年七年级下期末考试数学试卷(含答案)

2018-2019学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是( ) A.沙漠 B.体温 C.时间 D.骆驼2.两根长度分别为3cm 、7cm 的钢条,下面为第三根的长,则可组成一个三角形框架的是( )3.计算2x 2·(-3x 3)的结果是( )A.-6x 3 C.-2x 64.如图,已知∠1=70°,如果CD 列事件中是必然事件的是( )A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据用科学记数法表示为( )×10-7 下列世界博览会会徽图案中是轴对称图形的是( )A. B C. D.1A BCD E8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是()A.(ab)2=a2b2(a+1)=2a+1 +a3=a6÷a2=a310.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADCB.∠B=∠C=DC=ACB12C11.如图,在锐角△ABC中,CD、BE分别是AB、AC边上的高,CD、BE交于点P,∠A=50°,则∠BPC是()°°°°PE DBA C12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) 或1214.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log nN (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( )A.32B.2315.如图,四边形ABCD 是边长为2cm 的正方形,动点P 在ABCD 的边上沿A →B →C →D 的路径以1cm/s 的速度运动(点P 不与A ,D 重合)。

福建省莆田市七年级下学期数学期末考试试卷

福建省莆田市七年级下学期数学期末考试试卷

福建省莆田市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2011·衢州) ﹣2的相反数为()A . 2B .C . ﹣2D . -2. (2分) (2019七下·端州期末) 为了解2018年某市参加中考的21000名学生的视力情况,从中抽查了1000名学生的视力进行统计分析,下面判断正确的是()A . 21000名学生是总体B . 上述调查是普查C . 每名学生是总体的一个个体D . 该1000名学生的视力是总体的一个样本3. (2分) (2016七上·绍兴期中) 估计30的立方根在哪两个整数之间()A . 2与3B . 3与4C . 4与5D . 5与64. (2分)下面给出了5个式子:①3>0,②4x+3y>O,③x=3,④x﹣1,⑤x+2≤3,其中不等式有()A . 2个B . 3个C . 4个D . 5个5. (2分)如果一个实数的平方根与它的立方根相等,则这个数是()A . 0B . 正整数C . 0和1D . 16. (2分)下列数中,0.4583,, 3.14,,,,0.373373337… 是无理数的有()A . 2个B . 3个C . 4个D . 5个7. (2分) (2017七下·揭西期末) 如图,△ABC中,∠A=36°,∠B=60°,EF∥BC,FG平分∠AFE,则∠AFG 的度数为()A . 36°B . 37°C . 42°D . 47°8. (2分)如图,在下列条件中,能判断AD∥BC的是()A . ∠DAC=∠BCAB . ∠DCB+∠ABC=180°C . ∠ABD=∠BDCD . ∠BAC=∠ACD9. (2分)下列说法中,正确的是().A . 16的算术平方根是-4B . 25的平方根是5C . 1的立方根是±1D . -27的立方根是-310. (2分) (2020九下·凤县月考) 在数轴上表示不等式组的解集是()A .B .C .D .11. (2分)下列命题中,正确的是()A . 两个无理数的和是无理数B . 两个无理数的积是实数C . 无理数是开方开不尽的数D . 两个有理数的商有可能是无理数12. (2分)下列说法正确的是()A . 真命题的逆命题都是真命题B . 在同圆或等圆中,同弦或等弦所对的圆周角相等C . 等腰三角形的高线、中线、角平分线互相重合D . 对角线相等且互相平分的四边形是矩形二、填空题 (共7题;共9分)13. (1分) (2017七下·建昌期末) 写出一个解为的二元一次方程是________.14. (1分)如图,在平面直角坐标系中,点A(0,)、B(﹣1,0),过点A作AB的垂线交x轴于点A1 ,过点A1作AA1的垂线交y轴于点A2 ,过点A2作A1A2的垂线交x轴于点A3…按此规律继续作下去,直至得到点A2015为止,则点A2015坐标为________.15. (1分)(2018·岳阳) 如图,直线a∥b,∠l=60°,∠2=40°,则∠3=________.16. (1分) (2018八上·郑州期中) 点P(2,a-3)在第四象限,则a的取值范围是________.17. (3分)平移是由平移的________和平移的________决定的,所以在平移作图时,首先要明确图形原来的位置及平移的________,再进行画图.18. (1分)如图,在平面直角坐标系中,△AA1C1是边长为1的等边三角形,点C1在y轴的正半轴上,以AA2=2为边长画等边△AA2C2;以AA3=4为边长画等边△AA3C3 ,…,按此规律继续画等边三角形,则点An的坐标为________.19. (1分)已知下列命题:①若a>b ,则a2>b2;②若a>1,则(a-1) 0 =1;③若a>b ,则c-a<c-b;④能够完全重合的两个三角形的面积相等;⑤每一个外角都等于60°的多边形是六边形.其中原命题与逆命题均为真命题是________(填序号).三、解答题 (共7题;共74分)20. (5分)甲、乙两人共同解方程组,由于甲看错了方程①中的a,得到方程组的解为乙看错了方程②中的b,得到方程组的解为,试计算a2015+(﹣ b)2016 .21. (11分)(2018·内江) 为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩分布情况进行处理分析,制成频数分布表如下(成绩得分均为整数):组别成绩分组频数频率频数120.05240.1030.24100.255660.15合计40 1.00根据表中提供的信息解答下列问题:(1)频数分布表中的 ________, ________, ________;(2)已知全区八年级共有200个班(平均每班40人),用这份试卷检测,108分及以上为优秀,预计优秀的人数约为________,72分及以上为及格,预计及格的人数约为________,及格的百分比约为________;(3)补充完整频数分布直方图.22. (15分) (2016九上·连城期中) 某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?23. (10分)一个正方形在平面直角坐标系内的位置如图所示,已知点 A 的坐标为(3,0),线段 AC与 BD 的交点是 M.(1)写出点 M、B、C、D 的坐标;(2)当正方形中的点 M 由现在的位置经过平移后,得到点 M(﹣4,6)时,写出点 A、B、C、D 的对应点A′、B′、C′、D′的坐标,并求出四边形A′B′C′D′的面积24. (7分) (2019八上·铁西期末) 为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A、B两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥,A、B两个果园分别需要110吨和70吨有机化肥.甲仓库到A、B两个果园的路程分别为15千米和25千米,乙仓库到A、B两个果园的路程都是20千米.设甲仓库运往A果园x吨有机化肥,解答下列问题:(1)甲仓库运往B果园________吨有机化肥,乙仓库运往B果园________吨有机化肥;(2)若汽车每吨每千米的运费为2元,设总运费为y元,求y关于x的函数表达式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省?此时的总运费是多少元?25. (11分)如图,AB∥DE.(1)试问:∠B、∠E、∠BCE有什么关系.解:∠B+∠E=∠BCE过点C作CF∥AB,则∠B=∠________(________)又∵AB∥DE,AB∥CF,∴________(________)∴∠E=∠________(________)∴∠B+∠E=∠1+∠2即∠B+∠E=∠BCE.(2)如图:当∠B、∠E、∠BCE有什么关系时,有AB∥DE?26. (15分) (2017七下·阜阳期末) 如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共7题;共9分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共7题;共74分)20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。

莆田市七年级下学期数学期末考试试卷

莆田市七年级下学期数学期末考试试卷

莆田市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2015七下·宽城期中) 把方程4y+ =1+x写成用含x的代数式表示y的形式,以下各式正确的是()A . y= +1B . y= +C . y= +1D . y= +2. (2分) 25的平方根是()A . 5B . ﹣5C . ±D . ±53. (2分)已知点M(m﹣1, 2m﹣1)关于y轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()A .B .C .D .4. (2分) (2019八上·黄冈月考) 如图,点E在AB的延长线上,下列条件中能判断AB∥CD的是()A . ∠DAB=∠CBEB . ∠ADC=∠ABCC . ∠ACD=∠CAED . ∠DAC=∠ACB5. (2分) (2017七下·三台期中) 线段EF是由线段PQ平移得到的,点P(﹣1,4)的对应点为E(4,7),则点Q(﹣3,1)的对应点F的坐标为()A . (﹣8,﹣2)B . (﹣2,﹣2)C . (2,4)D . (﹣6,﹣1)6. (2分)在方差的计算公式s2=[(x1-20)2+(x2-20)2+…+(x10-20)2]中,数字10和20分别表示的意义可以是()A . 数据的个数和方差B . 平均数和数据的个数C . 数据的个数和平均数D . 数据组的方差和平均数7. (2分)若a>0,b<-2,则点(a,b+2)应在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限8. (2分) (2016七上·龙口期末) 已知三角形的两边长分别为4cm和7cm,则此三角形的第三边长可能是()A . 3cmB . 11cmC . 7cmD . 15cm9. (2分) (2017七下·自贡期末) 方程5x+2y=﹣9与下列方程构成的方程组的解为的是()A . .x+2y=1B . 3x+2y=﹣8C . 5x+4y=﹣3D . 3x﹣4y=﹣810. (2分)如图所示是测量一物体体积的过程:步骤一,将180ml的水装进一个容量为300ml的杯子中.步骤二,将三个相同的玻璃球放入水中,结果水没有满.步骤三,同样的玻璃球再加一个放入水中,结果水满溢出.根据以上过程,推测一颗玻璃球的体积在下列哪一范围内(1ml=1cm3)()A . 10cm3以上,20cm3以下B . 20cm3以上,30cm3以下C . 30cm3以上,40cm3以下D . 40cm3以上,50cm3以下二、填空题 (共8题;共10分)11. (1分) (2019七上·萧山月考) 已知关于x的方程与的解互为相反数,则m的值为________.12. (3分)在二元一次方程x﹣3y=5中,若x=0,则y=________;若x=10,则y=________,若y=﹣3,由x=________.13. (1分)有六张完全相同的卡片,其正面分别标有数字:﹣2,,π,0,,,将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数字为无理数的概率是________.14. (1分)(2017·绵阳模拟) 如图,AB∥CD,∠A=60°,∠C=25°,G、H分别为CF、CE的中点,则∠1=________度.15. (1分)已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为________ .16. (1分)根据环保公布的重庆市2014年至2015年PM2.5的主要来源的数据,制成扇形统计图,其中所占百分比最大的主要来源是________ (观察图形填主要来源的名称).17. (1分) (2017八上·哈尔滨月考) 使得有意义的x的取值范围为________18. (1分)某班有40个同学,同时参加一场数学考试,已知该次考试的平均分为80分,则不及格(小于60分)的学生最多有________个.(注意:所有的分数都是整数)三、解答题 (共8题;共47分)19. (7分) (2018八上·衢州期中) 如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x-1=0,② ③x-(3x+1)=-5 中,不等组的关联方程是________(2)若不等式组的一个关联方程的根是整数,则这个关联方程可以是________(写出一个即可)(3)若方程 3-x=2x,3+x= 都是关于 x 的不等式组的关联方程,直接写出 m 的取值范围.20. (5分) (2017九上·亳州期末) 如图,一艘海轮位于灯塔P的南偏东60°方向,距离灯塔40海里的A 处,它计划沿正北方向航行,去往位于灯塔P的北偏东45°方向上的B处.问B处距离灯塔P有多远?(结果精确到0.1海里)(参考数据:≈1.414,≈1.732,≈2.449)21. (5分)如图所示,点B、E分别在AC、DF上,BD、CE均与AF相交,∠1=∠2,∠C=∠D,求证:∠A=∠F.22. (5分)某中学开展“阳光体育一小时”活动,根据学校实际情况,决定开设A:踢毽子;B:篮球;C:跳绳;D:乒乓球四种运动项目.为了解学生最喜欢哪一种运动项目,随机抽取了一部分学生进行调查,并将调查结果绘制成如下两个统计图.请结合图中的信息解答下列问题:(1)本次共调查了多少名学生?(2)请将两个统计图补充完整.(3)若该中学有1200名学生,喜欢篮球运动项目的学生约有多少名?23. (5分)如图,在平面直角坐标系中,△AOB为直角三角形,A(0,4),B(﹣3,0).按要求解答下列问题:(1)在平面直角坐标系中,先将Rt△AOB向上平移6个单位,再向右平移3个单位,画出平移后的Rt△A1O1B1;(2)在平面直角坐标系中,将Rt△A1O1B1绕点O1顺时针旋转90°,画出旋转后的Rt△A2O1B2;(3)用点A1旋转到点A2所经过的路径与O1A1、O1A2围成的扇形做成一个圆锥的侧面,求这个圆锥的高.(保留精确值)24. (5分) (2019八下·郑州月考) 解不等式组,并把它的解集在数轴上表示出来.25. (5分) (2016八上·六盘水期末) 随着国家“亿万青少年学生阳光体育运动”活动的启动,某市各中小学也开创了体育运动的一个新局面.某校八年级(1)、(2)两个班共有100人,在两个多月的长跑活动之后,学校对这两个班的体能进行了测试,大家惊喜的发现(1)班的合格96%,(2)班的合格率为90%,而两个班的总合格率为93%,求八年级(1)、(2)班各有多少人?26. (10分)(2017·淮安模拟) 水果店王阿姨到水果批发市场打算购进一种水果销售,经过还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.①求y与x之间的函数关系式;②请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?(利润=销售收入﹣进货金额)参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共47分)19-1、19-2、19-3、20-1、21-1、22-1、23-1、24-1、25-1、26-1、26-2、。

2018-2019学年人教版七年级第二学期期末数学试卷及答案详解

2018-2019学年人教版七年级第二学期期末数学试卷及答案详解

2018-2019学年人教版七年级第二学期期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)在下列各组数中2,π-,17-,25,0.131131113⋯(相邻两个3之间多一个1),无理数有()A.2个B.3个C.4个D.52.(3分)如图,下列说法中,正确的是()A.因为180A D∠+∠=︒,所以//AD BC B.因为180C D∠+∠=︒,所以//AB CD C.因为180A D∠+∠=︒,所以//AB CD D.因为180A C∠+∠=︒,所以//AB CD 3.(3分)下列各组数中互为相反数的是()A.3-与13B.(2)--与|2|--C.5与25-D.2-与38-4.(3分)同一个平面内,若a b⊥,c b⊥,则a与c的关系是()A.平行B.垂直C.相交D.以上都不对5.(3分)81的算术平方根是()A.9±B.3±C.9D.36.(3分)如图,把一张长方形纸片ABCD沿EF折叠后,点C,D分别落在C,D的位置上,EC交AD于点G,已知58EFG∠=︒,则BEG∠等于()A.58︒B.116︒C.64︒D.74︒7.(3分)如图,直线//a b,射线DC与直线a相交于点C,过点D作DE b⊥于点E,已知125∠=︒,则2∠的度数为()A .115︒B .125︒C .155︒D .165︒8.(3分)下列方程组中是二元一次方程组的是( )A .22102x y y x +=⎧⎨=⎩B .150x y x y ⎧+=⎪⎨⎪+=⎩ C .00x y y z +=⎧⎨+=⎩ D .31x y =⎧⎨=⎩9.(3分)已知实数a 在数轴上的位置如图,则化简2|1|a a -+的结果为()A .1B .1-C .12a -D .21a -10.(3分)如图,在Rt ABC ∆中,90C ∠=︒,4AC =,将ABC ∆沿CB 向右平移得到DEF ∆,若四边形ABED 的面积等于8,则平移距离等于( )A .2B .4C .8D .1611.(3分)已知坐标平面内的点(2,4)A -,如果将平面直角坐标系向左平移3个单位长度,再向上平移2个单位长度,那么平移后点A 的坐标是( )A .(1,6)B .(5,6)-C .(5,2)-D .(1,2)12.(3分)有一个数值转换器,程序如图所示,当输入的数x 为81时,输出的数y 的值是()A .9B .3C .3D .3± 二、填空题(本题8小题,每小题3分,共24分)13.(3分)若方程||1(2)5a x a y -+-=是关于x ,y 的二元一次方程,则a 的值为 .14.(3分)比较大小:3718- 13-. 15.(3分)已知一个数的平方根为3a +与215a -,则这个数是 .16.(3分)若点(24,33)P m m ++在x 轴上,则点P 的坐标为 .17.(3分)把命题“同旁内角互补”写成“如果⋯,那么⋯.”的形式为 .18.(3分)已知5的小数部分是a ,7的整数部分是b ,则a b += .19.(3分)已知第二象限内的点A 到x 轴的距离为6,到y 轴的距离为3,则点A 的坐标 .20.(3分)如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动(2,0),第3次接着运动到点(3,2),⋯,按这样的运动规律,经过第2018次运动后,动点P 的坐标是 .三、解答题(共60分)21.(10分)如图,ABC ∆在直角坐标系中,(1)请写出ABC ∆各点的坐标;(2)若把ABC ∆向上平移2个单位,再向左平移1个单位得到△A B C ''',在图中画出三角形ABC 变化后的位置,写出A '、B '、C '的坐标;(3)求出ABC ∆的面积.22.(12分)计算:(1)2(1)(23)|32|---+-(2)22312()2564|2|2-⨯++-÷- 23.(8分)已知21a b =⎧⎨=⎩是方程组2(1)21a mb na b +-=⎧⎨+=⎩的解,求2018()m n +的平方根. 24.(8分)阅读下列解答过程,在横线上填入恰当内容.解方程:2(1)4x -=解:2(1)4x -=Q (1)12x ∴-=,(2) 3x ∴=.(3) 上述过程中有没有错误?若有,错在步骤 (填序号)原因是请写出正确的解答过程.25.(10分)已知:如图,在ABC ∆中,BD AC ⊥于点D ,E 为BC 上一点,过E 点作EF AC ⊥,垂足为F ,过点D 作//DH BC 交AB 于点H .(1)请你补全图形.(2)求证:BDH CEF ∠=∠.26.(12分)如图,已知//AB CD ,//EF MN ,1115∠=︒.(1)求2∠和4∠的度数;(2)本题隐含着一个规律,请你根据(1)的结果进行归纳,试着用文字表述出来.(3)利用(2)的结论解答:如果两个角的两边分别平行,其中一角是另一个角的2倍多6 ,求这两个角的大小.参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)在下列各组数中2,π-,17-,25,0.131131113⋯(相邻两个3之间多一个1),无理数有( )A .2个B .3个C .4个D .5【分析】根据无理数的定义逐个判断即可.【解答】解:无理数有2,π-,0.131131113⋯(相邻两个3之间多一个1),共3个, 故选:B .【点评】本题考查了无理数的定义,能理解无理数的定义的内容是解此题的关键,注意:无理数包括三方面的数:①开方开不尽的根式,②含π的,③一些有规律的根式.2.(3分)如图,下列说法中,正确的是( )A .因为180A D ∠+∠=︒,所以//AD BCB .因为180CD ∠+∠=︒,所以//AB CDC .因为180AD ∠+∠=︒,所以//AB CD D .因为180A C ∠+∠=︒,所以//AB CD【分析】A 、B 、C 、根据同旁内角互补,判定两直线平行;D 、A ∠与C ∠不能构成三线八角,因而无法判定两直线平行.【解答】解:A 、C 、因为180A D ∠+∠=︒,由同旁内角互补,两直线平行,所以//AB CD ,故A 错误,C 正确;B 、因为180CD ∠+∠=︒,由同旁内角互补,两直线平行,所以//AD BC ,故B 错误; D 、A ∠与C ∠不能构成三线八角,无法判定两直线平行,故D 错误.故选:C .【点评】平行线的判定:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.3.(3分)下列各组数中互为相反数的是( )A .3-与13B .(2)--与|2|--C .5D .2-【分析】首先根据绝对值的定义化简,然后根据相反数的定义即可解答.【解答】解:A 、3-与13不符合相反数的定义,故选项错误; B 、(2)2--=,|2|2--=-只有符号相反,故是相反数,故选项正确.C 无意义,故选项错误;D 、22-=-2=-相等,不符合相反数的定义,故选项错误.故选:B .【点评】此题主要考查相反数的定义:只有符号相反的两个数互为相反数,0的相反数是其本身.4.(3分)同一个平面内,若a b ⊥,c b ⊥,则a 与c 的关系是( )A .平行B .垂直C .相交D .以上都不对【分析】由已知a b ⊥,c b ⊥进而得出a 与c 的关系.【解答】解:a b ⊥Q ,c b ⊥,//a c ∴.故选:A .【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.5.(3( )A .9±B .3±C .9D .3【解答】解:Q9=,又2(3)9±=Q ,9∴的平方根是3±,9∴的算术平方根是3.3.故选:D .【点评】此题主要考查了算术平方根的定义,解题的关键是知道81实际上这个题是求9的算术平方根是3.注意这里的双重概念.6.(3分)如图,把一张长方形纸片ABCD沿EF折叠后,点C,D分别落在C,D的位置上,EC交AD于点G,已知58∠等于()EFG∠=︒,则BEGA.58︒B.116︒C.64︒D.74︒【分析】根据平行线的:两直线平行,内错角相等.可知58∠=∠=︒,再根据EFAFE FEC 是折痕可知58∠=︒利用平角的性质就可求得所求的角.FEG【解答】解://Q,AD BC58∴∠=∠=︒.AFE FEC而EF是折痕,∴∠=∠.FEG FEC又58Q,∠=︒EFG∴∠=︒-∠=︒-⨯︒=︒.180218025864BEG FEC故选:C.【点评】本题考查平行线的性质、翻折变换、矩形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.(3分)如图,直线//⊥于点E,已a b,射线DC与直线a相交于点C,过点D作DE b知125∠的度数为()∠=︒,则2A.115︒B.125︒C.155︒D.165︒【分析】如图,过点D作//c a.由平行线的性质进行解题.【解答】解:如图,过点D作//c a.则125CDB ∠=∠=︒.又//a b ,DE b ⊥,//b c ∴,DE c ⊥,290115CDB ∴∠=∠+︒=︒.故选:A .【点评】本题考查了平行线的性质.此题利用了“两直线平行,同位角相等”来解题的.8.(3分)下列方程组中是二元一次方程组的是( )A .22102x y y x+=⎧⎨=⎩ B .150x y x y ⎧+=⎪⎨⎪+=⎩ C .00x y y z +=⎧⎨+=⎩ D .31x y =⎧⎨=⎩【分析】直接利用二元一次方程组的定义进而分析得出答案.【解答】解:A 、22102x y y x +=⎧⎨=⎩,是二元二次方程组,故此选项错误; B 、150x y x y ⎧+=⎪⎨⎪+=⎩,含有分式方程,故此选项错误; C 、00x y y z +=⎧⎨+=⎩,是三元一次方程组,故此选项错误; D 、31x y =⎧⎨=⎩,是二元一次方程组,故此选项正确. 故选:D .【点评】此题主要考查了二元一次方程组的定义,正确把握定义是解题关键.9.(3分)已知实数a 在数轴上的位置如图,则化简2|1|a a -+( )A .1B .1-C .12a -D .21a -【分析】直接利用二次根式的性质化简得出答案.【解答】解:由数轴可得:10a -<<, 则2|1|112a a a a a -+=--=-.故选:C .【点评】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.10.(3分)如图,在Rt ABC ∆中,90C ∠=︒,4AC =,将ABC ∆沿CB 向右平移得到DEF ∆,若四边形ABED 的面积等于8,则平移距离等于( )A .2B .4C .8D .16【分析】根据平移的性质,经过平移,对应点所连的线段平行且相等,可得四边形ABED 是平行四边形,再根据平行四边形的面积公式即可求解.【解答】解:Q 将ABC ∆沿CB 向右平移得到DEF ∆,四边形ABED 的面积等于8,4AC =, ∴平移距离842=÷=.故选:A .【点评】本题主要考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.11.(3分)已知坐标平面内的点(2,4)A -,如果将平面直角坐标系向左平移3个单位长度,再向上平移2个单位长度,那么平移后点A 的坐标是( )A .(1,6)B .(5,6)-C .(5,2)-D .(1,2)【分析】根据题意,将平面直角坐标系向左平移3个单位长度,再向上平移2个单位长度,依据坐标的变化规律即可求解.【解答】解:Q 坐标平面内点(2,4)A -,将坐标系先向左平移3个单位长度,再向上平移2个单位长度,∴点A 的横坐标增大3,纵坐标减小2,∴点A 变化后的坐标为(1,2).故选:D .【点评】此题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.将坐标系向右、向上平移,相当于将原来坐标系中的点向左、向下平移.12.(3分)有一个数值转换器,程序如图所示,当输入的数x 为81时,输出的数y 的值是()A .9B .3C 3D .3±【分析】根据开方运算,可得算术平方根. 81993=,3y =故选:C .【点评】本题考查了算术平方根,求算术平方根,依据程序进行计算是解题的关键.二、填空题(本题8小题,每小题3分,共24分)13.(3分)若方程||1(2)5a x a y -+-=是关于x ,y 的二元一次方程,则a 的值为 2- .【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程. 【解答】解:根据题意得:1120a a ⎧-=⎨-≠⎩, 解得:2a =-.故答案是:2-.【点评】要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.14.(33718- 13-.【分析】利用立方根定义,以及两个负数比较大小方法判断即可.12-, 11||||23->-Q , 1123∴-<-, 故答案为:<【点评】此题考查了实数大小比较,熟练掌握运算法则是解本题的关键.15.(3分)已知一个数的平方根为3a +与215a -,则这个数是 49 .【分析】根据两个平方根互为相反数,即可列方程得到a 的值,然后根据平方根的定义求得这个数.【解答】解:根据题意得:3(215)0a a ++-=,解得:4a =,则这个数是22(3)(43)49a +=+=.故答案是:49.【点评】本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数,正确求得a 的值是关键.16.(3分)若点(24,33)P m m ++在x 轴上,则点P 的坐标为 (2,0) .【分析】根据x 轴上点的坐标的特点0y =,计算出m 的值,从而得出点P 坐标.【解答】解:Q 点(24,33)P m m ++在x 轴上,330m ∴+=,1m ∴=-,242m ∴+=,∴点P 的坐标为(2,0),故答案为(2,0).【点评】本题主要考查了在x 轴上的点的坐标的特点0y =,难度适中.17.(3分)把命题“同旁内角互补”写成“如果⋯,那么⋯.”的形式为 如果两个角是同旁内角.那么这两个角是互补 .【分析】任何一个命题都可以写成“如果⋯那么⋯”的形式,如果是条件,那么是结论.分清题目的条件与结论,即可解答.【解答】解:把命题“同旁内角互补”改写为“如果⋯那么⋯”的形式是:如果两个角是同旁内角.那么这两个角是互补;故答案为:如果两个角是同旁内角.那么这两个角是互补.【点评】本题考查了命题与定理,命题由题设和结论两部分组成,命题可写成“如果⋯那么⋯”的形式,其中如果后面的部分是题设,那么后面的部分是结论,难度适中.18.(3的小数部分是a b,则a b++计算即可.a、b的值,再代入a b【解答】解:23<<,Q,23∴=,2a2b=,+=+a b22.键.19.(3分)已知第二象限内的点A到x轴的距离为6,到y轴的距离为3,则点A的坐标-.(3,6)【分析】根据坐标的表示方法由点A到x轴的距离为6,到y轴的距离为3,且它在第二象限内即可得到点A的坐标为(3,6)-.【解答】解:Q点A到x轴的距离为6,到y轴的距离为3,且它在第二象限内,-.∴点A的坐标为(3,6)故答案为(3,6)-.【点评】本题考查了点的坐标:在直角坐标系中,过一点分别作x轴和y轴的垂线,用垂足在x轴上的坐标表示这个点的横坐标,垂足在y轴上的坐标表示这个点的纵坐标;在第二象限,横坐标为负数,纵坐标为正数.20.(3分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动(2,0),第3次接着运动到点(3,2),⋯,按这样的运动规律,经过第2018次运动后,动点P的坐标是(2018,0).【分析】利用点的坐标变换得到点的横坐标与运动的次数相同,纵坐标为1,0,2,0循环,则利用201845042=⨯+可确定第2018次运动后的纵坐标,问题得解.【解答】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则201850442=⨯+,所以,前504次循环运动点P共向右运动50442016⨯=个单位,剩余两次运动向右走2个单位,且在x轴上.故点P坐标为(2018,0)故答案为:(2018,0).【点评】本题考查了规律型:点的坐标:解答此题的关键是确定运动的点的横、纵坐标的循环变换规律.三、解答题(共60分)21.(10分)如图,ABC∆在直角坐标系中,(1)请写出ABC∆各点的坐标;(2)若把ABC∆向上平移2个单位,再向左平移1个单位得到△A B C''',在图中画出三角形ABC变化后的位置,写出A'、B'、C'的坐标;(3)求出ABC∆的面积.【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据网格结构找出点A、B、C平移后的对应点A'、B'、C'的位置,然后顺次连接即可,再根据平面直角坐标系写出点A'、B'、C'的坐标;(3)利用ABC∆所在的矩形的面积减去四周三个直角三角形的面积,列式计算即可得解.【解答】解:(1)(2,2)A --,B (3,1),(0,2)C ;(2)△A B C '''如图所示,(3,0)A '-、(2,3)B ',(1,4)C '-;(3)ABC ∆的面积11154245313222=⨯-⨯⨯-⨯⨯-⨯⨯, 2047.5 1.5=---,2013=-,7=.【点评】本题考查了利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键. 22.(12分)计算:(12(1)(23)32|-+(2)22312()2564|2|2-⨯-- 【分析】(1)先计算算术平方根、去括号、去绝对值符号,再计算加减可得;(2)先计算乘方、算术平方根、立方根、取绝对值符号,再计算乘法和加减可得.【解答】解:(1)原式123231=-;(2)原式145424=-⨯+-÷ 152=-+-2=.【点评】本题主要考查实数的运算,解题的关键是掌握实数的混合运算顺序和运算法则及绝对值的性质.23.(8分)已知21a b =⎧⎨=⎩是方程组2(1)21a mb na b +-=⎧⎨+=⎩的解,求2018()m n +的平方根. 【分析】将a 与b 代入值代入方程组计算求出m 与n 的值即可.【解答】解:将21a b =⎧⎨=⎩代入方程组2(1)21a mb na b +-=⎧⎨+=⎩, 可得:412211m n +-=⎧⎨+=⎩, 解得:1m =-,0n =,所以2018()1m n +=,所以2018()m n +的平方根是1±.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.24.(8分)阅读下列解答过程,在横线上填入恰当内容.解方程:2(1)4x -=解:2(1)4x -=Q (1)12x ∴-=,(2) 3x ∴=.(3) 上述过程中有没有错误?若有,错在步骤 (2) (填序号)原因是请写出正确的解答过程.【分析】本题考查了解一元二次方程,能选择适当的方程解一元二次方程是解此题的关键.【解答】解:上述过程中有没有错误?若有,错在步骤(2),原因是正数的平方根有两个,它们互为相反数,正确的解答过程为:2(1)4x -=,12x -=±,13x =,21x =-,故答案为:(2),正数的平方根有两个,它们互为相反数.【点评】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.25.(10分)已知:如图,在ABC⊥,∆中,BD AC⊥于点D,E为BC上一点,过E点作EF AC 垂足为F,过点D作//DH BC交AB于点H.(1)请你补全图形.(2)求证:BDH CEF∠=∠.【分析】(1)根据题意,完成几何图形;(2)根据垂直的定义和平行线的判定得到//DH BC得∠=∠,再由//BD EF,则CEF CBD到BDH CBD∠=∠.∠=∠,于是有BDH CEF【解答】解:(1)如图,(2)证明:BD AC⊥,⊥Q,EF AC∴,//BD EF∴∠=∠,CEF CBDDH BCQ,//∴∠=∠,BDH CBD∴∠=∠.BDH CEF【点评】本题考查了平行线的判定与性质:平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.也考查了垂线.26.(12分)如图,已知//∠=︒.AB CD,//EF MN,1115(1)求2∠的度数;∠和4(2)本题隐含着一个规律,请你根据(1)的结果进行归纳,试着用文字表述出来如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补.(3)利用(2)的结论解答:如果两个角的两边分别平行,其中一角是另一个角的2倍多6︒,求这两个角的大小.【分析】(1)由平行线的性质可求得2∠,再求得4∠;(2)由(1)的结果可得到这两个角相等或互补;(3)根据(2)的规律可知这两个角互补,利用方程可求得这两个角.【解答】解:(1)//AB CD Q ,21115∴∠=∠=︒,//EF MN Q ,42180∴∠+∠=︒,4180265∴∠=︒-∠=︒;(2)由(1)可知:如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故答案为:如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补;(3)由(2)可知这两个角互补,设一个角为x ︒,则另一个角为26x ︒+︒,根据两个角互补可得,26180x x ++=,解得58x =,∴这两个角分别为58︒和122︒.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,解题时注意:①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④//a b ,////b c a c ⇒.。

2019-20208学年福建省重点中学七年级(下)期末数学试卷 含答案

2019-20208学年福建省重点中学七年级(下)期末数学试卷 含答案

2017-2018学年七年级(下)期末数学试卷一、选择题(本大题共10小题,每小题4分,共40分.每小题的四个选项中,只有一项符合题目要求)1.(4分)如图,点O在直线AB上,若∠1=42°,则∠2的大小为()A.48°B.58°C.138°D.148°2.(4分)为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中10是()A.个体B.总体C.总体的样本D.样本容量3.(4分)的算术平方根为()A.±4B.±C.D.﹣a4.(4分),是二元一次方程2x+ay=3的一个解,则a的值为()A.3B.C.1D.﹣15.(4分)若点P在第二象限,它到x轴,y轴的距离分别为3,1,则点P的坐标为()A.(1,3)B.(﹣3,1)C.(﹣1,3)D.(3,﹣1)6.(4分)如图,点E在AB的延长线上,下列条件中能判断AD∥BC的是()A.∠1=∠2B.∠3=∠4C.∠C=∠CBE D.∠C+∠ABC=180°7.(4分)下列各式正确的是()A.B.C.D.8.(4分)把一些书分给几名同学,若________;若每人分11本,则不够.依题意,设有x名同学,可列不等式9x+7<11x,则横线上的信息可以是()A.每人分7本,则可多分9个人B.每人分7本,则剩余9本C.每人分9本,则剩余7本D.其中一个人分7本,则其他同学每人可分9本9.(4分)已知点P(a+1,2a﹣3)在第四象限,则a的取值范围是()A.a<﹣1B.﹣1<a<C.﹣<a<1D.a>10.(4分)已知a,b,c都是实数,则关于三个不等式:a>b,a>b+c,c<0的逻辑关系的表述,下列正确的是()A.因为a>b+c,所以a>b,c<0B.因为a>b+c,c<0,所以a>bC.因为a>b,a>b+c,所以c<0D.因为a>b,c<0,所以a>b+c二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)请写出一个大于3的无理数.12.(4分)专家提醒:目前我国从事脑力劳动的人群中,“三高”(高血压,高血脂,高血糖)现象必须引起重视.这个结论是通过得到的.13.(4分)不等式2x+1≥3的解集是.14.(4分)已知a,b是两个连续整数,且a<<b,则a+b=.15.(4分)若不等式组的解集为x<3k﹣3,则k的取值范围是.16.(4分)若二元一次方程组的解中x与y的值相等,则a=.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(8分)计算:+﹣.18.(8分)解不等式组:,并把它的解集在数轴上表示出来.19.(8分)如图,将平行四边形ABCD向左平移3个单位长度,然后向上平移2个单位长度,可以得到平行四边形A′B′C′D′,画出平移后的图形,并指出其各个顶点的坐标.20.(8分)我国古代数学著作《九章算术》的“方程”一章里,一次方程组是由算筹布置而成的.如图1,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组的形式表述出来,就是请你根据图2所示的算筹图,列出方程组,并求解.21.(8分)某地为提倡节约用水,准备实行“阶梯水价”,每户居民每月用水不超出基本用水量的部分享受基本价格,超出部分加价收费.为更好地决策,当地自来水公司随机抽取部分居民某月的用水量数据,并绘制了如图1和图2所示的不完整的统计图(每组数据均只含最大值而不含最小值),请根据题意,解答下列问题.(Ⅰ)此次调查抽取了多少户居民的用水量数据?(Ⅱ)补全频数分布直方图,求图2中“25﹣30”部分对应的扇形圆心角的度数;(Ⅲ)如果自来水公司将基本用水量定为每户每月25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?22.(10分)甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按a折收费;在乙商场累计购物超过50元后,超过50元的部分按95%收费.若王老师到甲商场购物150元,实际支付145元.(1)求a的值;(2)请你分析顾客到哪家商场购物更合算?23.(10分)如图,已知CD⊥DA,DA⊥AB,∠1=∠2.试说明DF∥AE.请你完成下列填空,把证明过程补充完整.证明:∵,∴∠CDA=90°,∠DAB=90°().∴∠1+∠3=90°,∠2+∠4=90°.又∵∠1=∠2,∴(),∴DF∥AE().24.(12分)如图,点C在∠AOB的一边OA上,过点C的直线DE平行直线OB,CF平分∠ACD,CG⊥CF于点C.(Ⅰ)若∠O=50°,求∠ACE的度数;(Ⅱ)求证:CG平分∠OCD;(Ⅲ)当∠O为多少度时,CD平分∠OCF,并说明理由.25.(14分)对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).(Ⅰ)点P(﹣2,3)的“3属派生点”P′的坐标为;(Ⅱ)若点P的“5属派生点”P′的坐标为(3,﹣9),求点P的坐标;(Ⅲ)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且线段PP′的长度为线段OP长度的2倍,求k的值.参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.每小题的四个选项中,只有一项符合题目要求)1.(4分)如图,点O在直线AB上,若∠1=42°,则∠2的大小为()A.48°B.58°C.138°D.148°【分析】根据邻补角的性质解答即可.【解答】解:∵∠1=42°,∴∠2=180°﹣∠1=180°﹣42°=138°,故选:C.【点评】此题考查角的概念,关键是根据邻补角的性质解答.2.(4分)为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中10是()A.个体B.总体C.总体的样本D.样本容量【分析】根据总体:我们把所要考察的对象的全体叫做总体;样本:从总体中取出的一部分个体叫做这个总体的一个样本;样本容量:一个样本包括的个体数量叫做样本容量可得答案.【解答】解:为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中,数字10是样本容量,故选:D.【点评】此题主要考查了总体、个体、样本、样本容量,关键是掌握定义.3.(4分)的算术平方根为()A.±4B.±C.D.﹣a【分析】根据算术平方根的定义得出即可.【解答】解:的算术平方根是,故选:C.【点评】本题考查了算术平方根,能熟记算术平方根的定义是解此题的关键.4.(4分),是二元一次方程2x+ay=3的一个解,则a的值为()A.3B.C.1D.﹣1【分析】将x与y的值代入方程即可求出a的值.【解答】解:将x=1,y=3代入2x+ay=3得:2+3a=3,解得:a=.故选:B.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.(4分)若点P在第二象限,它到x轴,y轴的距离分别为3,1,则点P的坐标为()A.(1,3)B.(﹣3,1)C.(﹣1,3)D.(3,﹣1)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度求出点P的横坐标与纵坐标,从而得解.【解答】解:∵点P在第二象限且到x轴,y轴的距离分别为3,1,∴点P的横坐标为﹣1,纵坐标为3,∴点P的坐标为(﹣1,3).故选:C.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.6.(4分)如图,点E在AB的延长线上,下列条件中能判断AD∥BC的是()A.∠1=∠2B.∠3=∠4C.∠C=∠CBE D.∠C+∠ABC=180°【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【解答】解:当∠1=∠2时,AD∥BC,故A选项正确;当∠3=∠4或∠C=∠CBE或∠C+∠ABC=180°时,AB∥CD,故B、C、D选项错误;故选:A.【点评】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.7.(4分)下列各式正确的是()A.B.C.D.【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:=5,故选项A错误,=﹣2,故选项B错误,已经是最简的三次根式,故选项C错误,=±3,故选项D正确,故选:D.【点评】本题考查立方根、平方根、算术平方根,解答本题的关键是明确它们各自的计算方法.8.(4分)把一些书分给几名同学,若________;若每人分11本,则不够.依题意,设有x名同学,可列不等式9x+7<11x,则横线上的信息可以是()A.每人分7本,则可多分9个人B.每人分7本,则剩余9本C.每人分9本,则剩余7本D.其中一个人分7本,则其他同学每人可分9本【分析】根据不等式表示的意义解答即可.【解答】解:由不等式9x+7<11x,可得:把一些书分给几名同学,若每人分9本,则剩余7本;若每人分11本,则不够;故选:C.【点评】本题考查根据实际问题列不等式,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.9.(4分)已知点P(a+1,2a﹣3)在第四象限,则a的取值范围是()A.a<﹣1B.﹣1<a<C.﹣<a<1D.a>【分析】根据第四象限点的坐标符号特点得出关于a的不等式组,解不等式组即可得.【解答】解:∵点P(a+1,2a﹣3)在第四象限,∴,解不等式①,得:a>﹣1,解不等式②,得:a,∴不等式组的解集为﹣1<a<,故选:B.【点评】本题考查的是坐标系内点的坐标符号特点和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.10.(4分)已知a,b,c都是实数,则关于三个不等式:a>b,a>b+c,c<0的逻辑关系的表述,下列正确的是()A.因为a>b+c,所以a>b,c<0B.因为a>b+c,c<0,所以a>bC.因为a>b,a>b+c,所以c<0D.因为a>b,c<0,所以a>b+c【分析】举反例说明A、B、C错误;利用不等式的性质证明D正确.【解答】解:A、例如a=5,b=1,c=2,满足条件a>b+c,但是不满足结论c<0,故本选项错误;B、例如a=5,b=8,c=﹣6,满足条件a>b+c,c<0,但是不满足结论a>b,故本选项错误;C、例如a=5,b=1,c=2,满足条件a>b,a>b+c,但是不满足结论c<0,故本选项错误;D、∵c<0,∴a+c<a,即a>a+c,∵a>b,∴a+c>b+c,∴a>b+c,故本选项正确.故选:D.【点评】本题考查了不等式的性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;不等式的传递性:若a>b,b>c,则a>c.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)请写出一个大于3的无理数.【分析】根据这个数即要比3大又是无理数,解答出即可.【解答】解:由题意可得,>3,并且是无理数.故答案为:.【点评】本题考查了实数大小的比较及无理数的定义,任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.12.(4分)专家提醒:目前我国从事脑力劳动的人群中,“三高”(高血压,高血脂,高血糖)现象必须引起重视.这个结论是通过抽样调查得到的.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:这个调查个体数量多,范围广,工作量大,不宜采用普查,只能采用抽样调查.故填抽样调查.【点评】本题考查的是调查方法的选择;正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析.13.(4分)不等式2x+1≥3的解集是x≥1.【分析】直接利用解一元一次不等式的方法即可得出结论.【解答】解:移项得,2x≥3﹣1,合并同类项得,2x≥2,系数化为1得,x≥1,故答案为:x≥1.【点评】此题主要考查了解一元一次不等式的方法和步骤,熟练掌握解一元一次不等式的步骤是解本题的关键.14.(4分)已知a,b是两个连续整数,且a<<b,则a+b=9.【分析】由a<<b,可得出a=4、b=5,将其代入a+b中即可求出结论.【解答】解:∵42=16,52=25,a<<b,∴a=4,b=5,∴a+b=9.故答案为:9.【点评】本题考查估算无理数的大小,利用逼近法找出a、b的值是解题的关键.15.(4分)若不等式组的解集为x<3k﹣3,则k的取值范围是k≤.【分析】利用不等式取解集的方法确定出k的范围即可.【解答】解:不等式组整理得:,由不等式组的解集为x<3k﹣3,得到3k﹣3≤k,解得:k≤,故答案为:k≤【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.16.(4分)若二元一次方程组的解中x与y的值相等,则a=11.【分析】根据题意可知x=y,只要把x用y代入(或把y用x代入)解出y(或x)的值,再代入ax+(a﹣1)y=3中,即可解出a的值.【解答】解:依题意得:x=y∴4x+3y=4x+3x=7x=1∴x==y∵ax+(a﹣1)y=3即a+(a﹣1)=3∴a=3+=∴a=11【点评】本题考查的是对二元一次方程组的解的计算,根据题意列出x=y,解出x,y的值,再在方程中代入x,y的值即可得出a三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(8分)计算:+﹣.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式=0.3﹣2﹣=﹣2.2【点评】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.18.(8分)解不等式组:,并把它的解集在数轴上表示出来.【分析】求不等式组中每个不等式的解集,利用数轴求公共部分.【解答】解:解不等式①得:x≤﹣2,解不等式②得:,不等式①、②的解集在数轴上表示如下:∴不等式组的解集是:x≤﹣2.【点评】本题主要考查了解一元一次不等式组,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.19.(8分)如图,将平行四边形ABCD向左平移3个单位长度,然后向上平移2个单位长度,可以得到平行四边形A′B′C′D′,画出平移后的图形,并指出其各个顶点的坐标.【分析】利用平移变换的性质画出图形即可解决问题;【解答】解:如图所示平行四边形A′B′C′D′四个顶点的坐标分别是:A'(﹣4,0),B'(0,0),C'(1,3),D'(﹣3,3)【点评】本题考查平移变换,平行四边形的性质等知识,解题的关键是学会正确作图,属于中考常考题型.20.(8分)我国古代数学著作《九章算术》的“方程”一章里,一次方程组是由算筹布置而成的.如图1,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组的形式表述出来,就是请你根据图2所示的算筹图,列出方程组,并求解.【分析】观察图2,列出关于x、y的二元一次方程组,解之即可得出结论.【解答】解:依题意,得由①,得y=7﹣2x.③把③代入②,得x+3(7﹣2x)=11解这个方程,得x=2.把x=2代入①,得y=3.∴这个方程组的解是.【点评】本题考查了二元一次方程组的应用,观察图形,正确列出二元一次方程组是解题的关键.21.(8分)某地为提倡节约用水,准备实行“阶梯水价”,每户居民每月用水不超出基本用水量的部分享受基本价格,超出部分加价收费.为更好地决策,当地自来水公司随机抽取部分居民某月的用水量数据,并绘制了如图1和图2所示的不完整的统计图(每组数据均只含最大值而不含最小值),请根据题意,解答下列问题.(Ⅰ)此次调查抽取了多少户居民的用水量数据?(Ⅱ)补全频数分布直方图,求图2中“25﹣30”部分对应的扇形圆心角的度数;(Ⅲ)如果自来水公司将基本用水量定为每户每月25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?【分析】(Ⅰ)依据“10﹣15”部分的数据,即可得到此次调查抽取了多少户居民的用水量数据;(Ⅱ)求得“15﹣20”部分的用户数,即可补全频数分布直方图,并利用公式求得“25﹣30”部分对应的扇形圆心角的度数;(Ⅲ)依据基本用水量不超过25吨的用户所占的比例,即可估计该地20万用户中约有多少用户的用水全部享受基本价格.【解答】解:(Ⅰ)10÷10%=100;(Ⅱ)“15﹣20”部分有用户:100﹣(10+30+25+9)=26,补全频数分布直方图如图所示.“25﹣30”部分对应的扇形圆心角的度数为:;(Ⅲ),∴约有13.2万用户的用水全部享受基本价格.【点评】本题考查了扇形统计图,频数分布直方图,频数、频率和总量的关系,求扇形圆心角,用样本估计总体.解题时注意:扇形圆心角的度数=部分占总体的百分比×360°.22.(10分)甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按a折收费;在乙商场累计购物超过50元后,超过50元的部分按95%收费.若王老师到甲商场购物150元,实际支付145元.(1)求a的值;(2)请你分析顾客到哪家商场购物更合算?【分析】(1)优惠金额:(150﹣145)元;(2)先设顾客累计花费x元,根据三种情况进行讨论,当x≤50时,若50<x≤100,若x≥100,分别进行分析,即可得出答案.【解答】(1)依题意得:解得:a=9;(2)当累计购物不超过50元时,到两商场购物花费一样;当累计购物超过50元而不超过100元时,到乙商场购物花费少;当累计购物超过100元时,设累计购物x(x>100)元,则甲商场购物需:100+0.9(x﹣100)元,乙商场购物需:50+0.95(x﹣50)元①若50+0.95(x﹣50)=100+0.9(x﹣100)解得:x=150当累计购物150元时,到两商场购物花费一样.②若到甲商场购物花费少:50+0.95(x﹣50)>100+0.9(x﹣100)解得:x>150即:累计购物超过150元时,到甲商场购物合算.③若到乙商场购物花费少:50+0.95(x﹣50)<100+0.9(x﹣100)解得:x<150即:累计购物超过100元不到150元时,到乙商场购物合算.【点评】此题考查了一元一次不等式的应用,关键是读懂题意,列出不等式,再根据实际情况分段进行讨论,不要漏项.23.(10分)如图,已知CD⊥DA,DA⊥AB,∠1=∠2.试说明DF∥AE.请你完成下列填空,把证明过程补充完整.证明:∵CD⊥DA,DA⊥AB,,∴∠CDA=90°,∠DAB=90°(垂直定义).∴∠1+∠3=90°,∠2+∠4=90°.又∵∠1=∠2,∴∠3=∠4(等角的余角相等),∴DF∥AE(内错角相等,两直线平行).【分析】先根据垂直的定义,得到∠1+∠3=90°,∠2+∠4=90°,再根据等角的余角相等,得出∠3=∠4,最后根据内错角相等,两直线平行进行判定即可.【解答】证明:∵CD⊥DA,DA⊥AB,∴∠CDA=90°,∠DAB=90°,(垂直定义)∴∠1+∠3=90°,∠2+∠4=90°.又∵∠1=∠2,∴∠3=∠4,(等角的余角相等)∴DF∥AE.(内错角相等,两直线平行)故答案为:CD⊥DA,DA⊥AB,垂直定义,∠3=∠4,等角的余角相等,内错角相等,两直线平行.【点评】本题主要考查了平行线的判定以及垂直的定义,解题时注意:内错角相等,两直线平行.24.(12分)如图,点C在∠AOB的一边OA上,过点C的直线DE平行直线OB,CF平分∠ACD,CG⊥CF于点C.(Ⅰ)若∠O=50°,求∠ACE的度数;(Ⅱ)求证:CG平分∠OCD;(Ⅲ)当∠O为多少度时,CD平分∠OCF,并说明理由.【分析】(Ⅰ)由两直线平行得到同位角相等,由∠O=50°,求出∠ACE的度数即可;(Ⅱ)由CG与CF垂直,利用垂直的定义得到一个直角,再由CF为角平分线,利用等角的余角相等即可得证;(Ⅲ)法1:当∠O为60度时,CD平分∠OCF,由平行线的性质及角平分线定义验证即可;法2:由角平分线定义,等量代换,以及平行线的性质验证即可.【解答】(Ⅰ)解:∵DE∥OB,∴∠ACE=∠O,∵∠O=50°,∴∠ACE=50°;(Ⅱ)证明:∵CG⊥CF,∴∠FCG=90°,∴∠DCF+∠DCG=90°,又∵∠GCO+∠GCD+∠FCA+∠FCD=180°(平角定义),∴∠GCO+∠FCA=90°,∵CF平分∠ACD,∴∠FCA=∠DCF,∴∠GCO=∠DCG(等角的余角相等),即CG平分∠OCD;(Ⅲ)结论:当∠O=60°时,CD平分∠OCF,法1:当∠O=60°时,∵DE∥OB,∴∠DCO=∠O=60°,∴∠ACD=120°,又∵CF平分∠ACD,∴∠DCF=60°,∴∠DCO=∠DCF,即CD平分∠OCF;法二:若CD平分∠OCF,∴∠DCO=∠DCF,∵∠ACF=∠DCF,∴∠ACF=∠DCF=∠DCO,∵∠AOC=180°,∴∠DCO=60°,∵DE∥OB,∴∠O=∠DOC,∴∠O=60°.【点评】此题考查了平行线的性质,以及垂线,熟练掌握平行线的性质是解本题的关键.25.(14分)对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k为常数,且k≠0),则称点P′为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).(Ⅰ)点P(﹣2,3)的“3属派生点”P′的坐标为(7,﹣3);(Ⅱ)若点P的“5属派生点”P′的坐标为(3,﹣9),求点P的坐标;(Ⅲ)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且线段PP′的长度为线段OP长度的2倍,求k的值.【分析】(Ⅰ)根据“k属派生点”计算可得;(Ⅱ)设点P的坐标为(x、y),根据“k属派生点”定义及P′的坐标列出关于x、y 的方程组,解之可得;(Ⅲ)先得出点P′的坐标为(a,ka),由线段PP′的长度为线段OP长度的2倍列出方程,解之可得.【解答】解:(Ⅰ)点P(﹣2,3)的“3属派生点”P′的坐标为(﹣2+3×3,﹣2×3+3),即(7,﹣3),故答案为:(7,﹣3);(Ⅱ)设P(x,y),依题意,得方程组:,解得,∴点P(﹣2,1).(Ⅲ)∵点P(a,b)在x轴的正半轴上,∴b=0,a>0.∴点P的坐标为(a,0),点P′的坐标为(a,ka),∴线段PP′的长为点P′到x轴距离为|ka|,∵P在x轴正半轴,线段OP的长为a,根据题意,有|PP'|=2|OP|,∴|ka|=2a,∵a>0,∴|k|=2.从而k=±2.【点评】本题主要考查坐标与图形的性质,熟练掌握新定义并列出相关的方程和方程组是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年福建省莆田一中七年级(下)期末数学试卷姓名:得分:日期:一、选择题(本大题共 10 小题,共 40 分)1、(4分) 若a>b,则下列不等式正确的是()A.2a<2bB.ac>bcC.-a+1>-b+1D.a3+1>b3+12、(4分) 将2x-y=1,用含有x的式子表示y,下列式子正确的是()A.y=1-2xB.y=2x-1C.x=1+y2D.x=1−y23、(4分) 为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中,数字10是()A.个体B.总体C.样本容量D.总体的样本4、(4分) 以下沿AB折叠的方法中,不一定能判定纸带两条边a,b互相平行的是()A.如图①,展开后测得∠1=∠2B.如图②,展开后测得∠1=∠2,且∠3=∠4C.如图③,展开后测得∠1=∠2,且∠3=∠4D.如图④,展开后测得∠1+∠2=180°5、(4分) 下列命题的逆命题为真命题的是()A.对顶角相等B.内错角相等,两直线平行C.直角都相等D.如果x=3,那么|x|=36、(4分) 一个容量为72的样本最大值是125,最小值是50,取组距为10,则可以分成( ) A.8组 B.7组 C.6组 D.5组7、(4分) 在514,−√5,π2,3.14,-√9,0,1.010010001…,√63……中,无理数的个数是( ) A.3个 B.4个 C.5个 D.6个8、(4分) 将点A (2,-2)向上平移4个单位得到点B ,再将点B 向左平移4个单位得到点C ,则下列说法正确的是( ) ①点C 的坐标为(-2,2)②点C 在第二、四象限的角平分线上; ③点C 的横坐标与纵坐标互为相反数; ④点C 到x 轴与y 轴的距离相等. A.1个 B.2个 C.3个 D.4个9、(4分) 如图,直线AB 与直线CD 相交于点O ,OE⊥AB ,垂足为O ,若∠EOD=13∠AOC ,则∠BOC=( )A.112.5°B.135°C.140°D.157.5°10、(4分) 以{x =3y =1z =−1为解建立一个三元一次方程,不正确的是( )A.3x-4y+2z=3B.13x-y+z=-1 C.x+y-z=-2 D.x 2-23y-z=156二、填空题(本大题共 6 小题,共 24 分) 11、(4分) 36的算术平方根是______.12、(4分) 一个班级有40人,一次数学考试中,优秀的有12人,在扇形图中表示优秀的人数所占百分比的扇形的圆心角的度数是______.13、(4分) 如图,在平面直角坐标系中,已知长方形ABCD的顶点坐标:A(-4,-4),B(12,6),D(-8,2),则C点坐标为______.14、(4分) 已知{x=2y=1,是二元一次方程组{mx+ny=8nx−my=1的解,则m+3n的平方根为______.15、(4分) 若关于x的一元一次不等式组{x−a>01−x>x−1无解,则a的取值范围是______.16、(4分) 如图,已知A1(1,0)、A2(1,1)、A3(-1,1)、A4(-1,-1)、A5(2,-1)、….则点A2019的坐标为______.三、解答题(本大题共 8 小题,共 76 分)17、(6分) 计算:√36-√273+|1-√3|18、(8分) 解不等式组{2x>1−x①x+2<4x−1②,并在数轴上表示出解集19、(8分) 画图并填空:如图,请画出自A地经过B地去河边l的最短路线.(1)确定由A地到B地最短路线的依据是______.(2)确定由B地到河边l的最短路线的依据是______.20、(8分) 已知:如图,∠1=∠B,∠2+∠3=180°,∠DEF:∠EFH=5:4,求∠DEF的度数.21、(10分) 为了解九年级女生的身高(单位:cm)情况,某中学对部分九年级女生身高进行了一次测量,所得数据整理后列出了频数分布表,并画了部分频数分布直方图(图、表如图):根据以上图表,回答问题.(1)M=______,m=______,N=______,n=______;(2)补全频数分布直方图;(3)若九年级有600名学生,则身高在161.5-165.5范围约为多少人?22、(10分) 某商场购进A、B两种型号的智能扫地机器人共60个,这两种机器人的进价、售价如表所示.A型B型类型价格进价(元/个)2000 2600售价(元/个)2800 3700(1)若恰好用掉14.4万元,那么这两种机器人各购进多少个?(2)在每种机器人销售利润不变的情况下,若该商场计划销售这批智能扫地机器人的总利润不少于53000元,问至少需购进B型智能扫地机器人多少个?23、(12分) 对于平面直角坐标系xOy中的点P(a,b),若点P”(a+kb,ka+b),若P'(a+kb,ka+b)(其中k为常数,且k≠0),则称点P″为点P的“k属派生点”.例如:P (1,4)的“2属派生点”为P″(1+2×4,2×1+4),即P (9,6).(1)点P(-2,3)的“3属派生点”P''的坐标为______.(2)若点P的“5属派生点”P''的坐标为(3,-9),求点P的坐标.(3)若点P在x轴的正半轴上,点P的“k属派生点”为P''点,且线段PP''的长度为线段OP长度的2倍,求k的值.24、(14分) 直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B在射线OM上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(2)如图2,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线相交于E、F,则∠EAF=______°;在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.四、计算题(本大题共 1 小题,共 8 分)25、(8分) 解方程:{x+3y=5 3x+y=−12018-2019学年福建省莆田一中七年级(下)期末数学试卷【第 1 题】【答案】D【解析】解:∵a>b,∴2a>2b,∴选项A不符合题意;∵a>b,c<0时,ac<bc,∴选项B不符合题意;∵a>b,∴-a<-b,∴-a+1<-b+1,∴选项C不符合题意;∵a>b,∴a 3>b3,∴a 3+1>b3+1,∴选项D符合题意.故选:D.根据不等式的性质,逐项判断即可.此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.【第 2 题】【答案】B【解析】解:方程2x-y=1,解得:y=2x-1,故选:B.把x看做已知数求出y即可.此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.【第 3 题】【答案】C【解析】解:为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中,数字10是样本容量,根据总体:我们把所要考察的对象的全体叫做总体;样本:从总体中取出的一部分个体叫做这个总体的一个样本;样本容量:一个样本包括的个体数量叫做样本容量可得答案.此题主要考查了总体、个体、样本、样本容量,关键是掌握定义.【第 4 题】【答案】C【解析】解:A、∵∠1=∠2,∴a∥b,(内错角相等,两直线平行),故正确;B、∵∠1=∠2且∠3=∠4,由图可知∠1+∠2=180°,∠3+∠4=180°,∴∠1=∠2=∠3=∠4=90°,∴a∥b(内错角相等,两直线平行),故正确;C、测得∠1=∠2,且∠3=∠4∵∠1与∠2,∠3=∠4,即不是内错角也不是同位角,∴不一定能判定两直线平行,故错误;D、∵∠1+∠2=180°,∴a∥b,(同旁内角互补,两直线平行),故正确.故选:C.根据平行线的判定定理,进行分析,即可解答.本题考查了平行线的判定,解决本题的关键是熟记平行线的判定定理.【第 5 题】【答案】B【解析】解:A、对顶角相等的逆命题是相等的角是对顶角,是假命题;B、内错角相等,两直线平行的逆命题是两直线平行,内错角相等,是真命题;C、直角都相等的逆命题是相等的角是直角,是假命题;D、如果x=3,那么|x|=3的逆命题是如果|x|=3,那么x=3,是假命题;交换原命题的题设与结论部分得到四个命题的逆命题,然后分别根据命题的真假判断即可.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.【第 6 题】【答案】A【解析】解:在样本数据中最大值为125,最小值是50,它们的差是125-50=75,已知组距为10,那么由于 75÷10=7.5,故可以分成8组.故选:A.求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.本题考查频率分布表中组数的确定,关键是求出最大值和最小值的差,然后除以组距,用进一法取整数值就是组数.【第 7 题】【答案】B【解析】解:−√5,π2,1.010010001…,√63,都是无理数,共4个,故选:B.利用无理数的定义判断即可.此题考查了无理数,弄清无理数的定义是解本题的关键.【第 8 题】【答案】D【解析】解:将点A(2,-2)向上平移4个单位得到点B(2,-2+4)即(2,2),再将点B向左平移4个单位得到点C(2-4,2),即(-2,2),①点C的坐标为(-2,2)说法正确;②点C在第二、四象限的角平分线上,说法正确;③点C的横坐标与纵坐标互为相反数,说法正确;④点C到x轴与y轴的距离相等,说法正确.故选:D.首先根据平移方法可得C(2-4,-2+4),进而得到C点坐标,再根据C点坐标分析四个说法即可.此题主要考查了平移变换与坐标变化;关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.【第 9 题】【答案】A【解析】解:∵∠COD=180°,OE⊥AB,∴∠AOC+∠AOE+∠EOD=180°,∠AOE=90°,∴∠AOC+∠EOD=90°,①∠AOC,②又∵∠EOD=13由①、②得,∠AOC=67.5°,∵∠BOC与∠AOC是邻补角,∴∠BOC=180°-∠AOC=112.5°.故选:A.∠AOC联立,求出根据平角、直角及角的和差关系可求出∠AOC+∠EOD=90°,再与已知∠EOD=13∠AOC,利用互补关系求∠BOC.此题主要考查了对顶角、余角、补角的关系.解题时注意运用邻补角的性质:邻补角互补,即和为180°.【第 10 题】【答案】C【解析】解:将{x=3y=1z=−1代入x+y-z=-2,左边=3+1+1=5,右边=-2,左边≠右边,故选:C.将方程的解分别代入四个选项,等式成立的即为方程的解.因为四个选项中的方程均为不定方程,无法直接解答,只能逐一验证.【第 11 题】【答案】6【解析】解:36的算术平方根是6.故答案为:6.根据算术平方根的定义,即可解答.本题考查了算术平方根,解决本题的关键是熟记算术平方根的定义.【第 12 题】【答案】108°【解析】解:扇形图中表示优秀的人数所占百分比的扇形的圆心角的度数是1240×360°=108°,故答案为:108°.优秀的人数所占的百分比的圆心角的度数等于优秀率乘以周角度数.本题考查了扇形统计图的知识,了解扇形统计图中扇形所占的百分比的意义是解题的关键.【第 13 题】【答案】(8,13)【解析】解:设点C的坐标为(x,y),根据矩形的性质,AC、BD的中点为矩形的中心,所以,−4+x2=12−82,−4+y 2=6+22,解得x=8,y=13,所以,点C的坐标为(8,13).故答案为:(8,13).设点C的坐标为(x,y),根据矩形的对角线互相平分且相等,利用中点公式列式计算即可得解.本题考查了坐标与图形性质,主要利用了矩形的对角线互相平分且相等的性质,以及中点公式.【第 14 题】【答案】±3【解析】解:把{x=2y=1代入方程组得:{2m+n=8①2n−m=1②,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9,9的平方根是±3,故答案为:±3把x与y的值代入方程组求出m与n的值,即可求出所求.此题考查了二元一次方程组的解,以及平方根,熟练掌握运算法则是解本题的关键.【第 15 题】【答案】a≥1【解析】解:由x-a>0得,x>a;由1-x>x-1得,x<1,∵此不等式组的解集是空集,∴a≥1.故答案为:a≥1.先求出各不等式的解集,再与已知解集相比较求出a的取值范围.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.【第 16 题】【答案】(-505,505)【解析】解:观察图形,可知:点A3的坐标为(-1,1),点A7的坐标为(-2,2),点A11的坐标为(-3,3),…,∴点A4n-1的坐标为(-n,n)(n为正整数).又∵2019=4×505-1,∴点A2019的坐标为(-505,505).故答案为:(-505,505).观察图形,由第二象限点的坐标的变化可得出“点A4n-1的坐标为(-n,n)(n为正整数)”,再结合2019=4×505-1,即可求出点A2019的坐标.本题考查了规律型:点的坐标,根据点的坐标的变化,找出变化规律“点A4n-1的坐标为(-n,n)(n为正整数)”是解题的关键.【第 17 题】【答案】解:原式=6-3+√3-1=2+√3.【解析】直接利用立方根的性质以及绝对值的性质和算术平方根的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.【第 18 题】【答案】解:{2x>1−x①x+2<4x−1②∵由不等式①得:x>13,由不等式②得:x>1,∴不等式组的解集是x>1,在数轴上表示为:.【解析】先求出不等式组的解集,再在数轴上表示出来即可.本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能求出不等式组的解集是解此题的关键.【第 19 题】【答案】解:自A地经过B地去河边l的最短路线,如图所示.(1)确定由A地到B地最短路线的依据是两点之间线段最短.(2)确定由B地到河边l的最短路线的依据是垂线段最短.根据两点之间线段最短,垂线段最短即可解决问题.【解析】本题考查作图-应用与设计,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【第 20 题】【答案】解:如图所示,延长CB、FH交于M点.∵∠1=∠ABC,∴FG∥BC,∴∠2=∠M,又∵∠2+∠3=180°,∴∠M+∠3=180°,∴FM∥DE,∴∠DEF+∠EFH=180°,∵∠DEF:∠EFH=5:4,×180°=100°.∴∠DEF=59【解析】如图所示,延长CB、FH交于M点.首先证明FM∥DE,利用平行线的性质即可解决问题.本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.【第 21 题】【答案】=0.15;解:(1)M=3÷0.05=60,m=60×0.25=15,N=1,n=960故答案为:60,15,1,0.15;(2)补全频数分布直方图如图所示;(3)600×0.15=90(人)答:身高在161.5-165.5范围约为90人.【解析】(1)根据第一组的频数是3,频率是0.05,依据频率=频数总数,即可求得总数M的值,然后利用公式即可求得m、n的值;(2)根据(1)中m的值即可作出统计图;(3)利用600乘以身高在161.5-165.5范围的频率即可求解.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.以及公式:频率=频数÷总数,用样本估计整体让整体×样本的百分比即可.【第 22 题】【答案】解:(1)设购进A型智能扫地机器人x个,购进B型智能扫地机器人y个,根据题意得:{x+y=602000x+2600y=144000,解得:{x=20 y=40.答:购进A型智能扫地机器人20个,购进B型智能扫地机器人40个.(2)设购进B型智能扫地机器人m个,则购进A型智能扫地机器人(60-m)个,根据题意得:(3700-2600)m+(2800-2000)(60-m)≥53000,解得:m≥503.∵m为整数,∴m≥17.答:至少需购进B型智能扫地机器人17个.【解析】(1)设购进A 型智能扫地机器人x 个,购进B 型智能扫地机器人y 个,根据总价=单价×数量结合购进A 、B 两种型号的智能扫地机器人60个共花费14.4万元,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进B 型智能扫地机器人m 个,则购进A 型智能扫地机器人(60-m )个,根据总利润=单台利润×购进数量结合总利润不少于53000元,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,取其中最小的整数即可得出结论.本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量间的关系,正确列出一元一次不等式.【 第 23 题 】【 答 案 】解:(1)点P (-2,3)的“3属派生点”P′的坐标为(-2+3×3,-2×3+3),即(7,-3), 故答案为:(7,-3);(2)设P 点的坐标是(a ,b ),依题意得;{a +5b =35a +b =−9, 解得:{a =−2b =1, ∴点P 的坐标是(-2,1);(2)∵点P 在x 轴的正半轴上,∴设P 点的坐标为(a ,0)(a >0)又∵点P 的“k 属派生点”为P''点,∴设P''的坐标为(a ,ka ),又∵线段PP''的长度是OP 长度的2倍∴PP''=2OP ,即:|ka|=|2a|,又∵a >0,∴k=±2.【 解析 】(1)根据“k 属派生点”计算可得;(2)设点P 的坐标为(x 、y ),根据“k 属派生点”定义及P′的坐标列出关于x 、y 的方程组,解之可得;(3)先得出点P′的坐标为(a ,ka ),由线段PP′的长度为线段OP 长度的2倍列出方程,解之可得.本题主要考查坐标与图形的性质,熟练掌握新定义并列出相关的方程和方程组是解题的关键.【 第 24 题 】【 答 案 】解:(1)∠AEB 的大小不变,∵直线MN 与直线PQ 垂直相交于O ,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE 、BE 分别是∠BAO 和∠ABO 角的平分线,∴∠BAE=12∠OAB ,∠ABE=12∠ABO ,∴∠BAE+∠ABE=12(∠OAB+∠ABO )=12×90°=45°,∴∠AEB=135°;(2)∵AE 、AF 分别是∠BAO 和∠OAG 的角平分线,∴∠EAO=12∠BAO ,∠FAO=12∠GAO ,∴∠EAF=12(∠BAO+∠GAO )=12×180°=90°.故答案为:90;∵∠BAO 与∠BOQ 的角平分线相交于E ,∴∠EAO=12∠BAO ,∠EOQ=12∠BOQ , ∴∠E=∠EOQ -∠EAO=12(∠BOQ -∠BAO )=12∠ABO ,即∠ABO=2∠E ,在△AEF 中,∵有一个角是另一个角的3倍,故分四种情况讨论:①∠EAF=3∠E ,∠E=30°,则∠ABO =60°;②∠EAF=3∠F ,∠E=60°,∠ABO=120°(舍去);③∠F=3∠E ,∠E=22.5°,∠ABO=45°;④∠E=3∠F ,∠E=67.5°,∠ABO=135°(舍去).∴∠ABO 为60°或45°.【 解析 】(1)根据直线MN 与直线PQ 垂直相交于O 可知∠AOB=90°,再由AE 、BE 分别是∠BAO 和∠ABO 角的平分线得出∠BAE=12∠OAB ,∠ABE=12∠ABO ,由三角形内角和定理即可得出结论;(2)由∠BAO 与∠BOQ 的角平分线相交于E 可知∠EAO=12∠BAO ,∠E OQ=12∠BOQ ,进而得出∠E 的度数,由AE 、AF 分别是∠BAO 和∠OAG 的角平分线可知∠EAF=90°,在△AEF 中,由一个角是另一个角的3倍分四种情况进行分类讨论.本题考查的是三角形内角和定理、三角形外角性质以及角平分线的定义的运用,熟知三角形内角和是180°是解答此题的关键.【 第 25 题 】【 答 案 】解:{x +3y =5①3x +y =−1②, 由①得:x=5-3y③,将③代入②得:3(5-3y )+y=-1,解得:y=2,将y=2代入③得:x=-1,∴原方程组的解为{x =−1y =2. 【 解析 】方程组变形后,利用代入消元法求出解即可.此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.。

相关文档
最新文档