(完整)初中常用因式分解公式
因式分解的常用方法(基本公式法,分拆法,配方法,换元法,待定系数法)
因式分解方法归纳总结第一部分:方法介绍初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,进一步着重换元法,待定系数法的介绍.、提公因式法.:ma+mb=m(a+b)、运用公式法.(1) (a+b)(a -b) = a 2-b2 ---------- a 2-b2=(a+b)(a -b);, 2 2, 2 2 , 2,2(2) (a ± b) = a ± 2ab+b ----------------- a ± 2ab+b =(a ± b);(3) (a+b)(a 2-ab+b2) =a 3+b3------ a 3+b3=(a+b)(a 2-ab+b2);2 2、33 3 3 2 2、(4) (a -b)(a +ab+b ) = a -b -------------- a -b =(a -b)(a +ab+b ).F面再补充两个常用的公式:(5) a 2+b2+c2+2ab+2bc+2ca=(a+b+c) 2;3,3 3 2,2 2(6) a +b +c -3abc=(a+b+c)(a +b +c -ab-bc-ca);例.已知a, b, c是ABC的三边,且a2 b2 c2则ABC的形状是()(二)分组后能直接运用公式ab bc ca,A.直角三角形B等腰三角形C等边三角形D等腰直角三角形解: a2 b2 c2 ab bc ca 2 2 22a 2b 2c 2ab 2bc 2ca(a b)2 2 2(b c) (c a)三、,分组分解法例 2、分解因式:2ax 10ay 5by解法一:第、二项为一组;第三、四项为一组。
解:原式=(2ax 10ay) (5by bx)= 2a(x 5y) b(x 5y)=(x 5y)(2a b)bx解法二:第一、四项为一组;第二、三项为一组。
原式=(2ax bx) ( 10ay 5by) =x(2a b)5y(2a b) =(2a b)(x 5y)练习:分解因式1、a2 ab ac bc 2、xy x y 1例3、分解因式:x2 y2 ax ay分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。
初中数学因式分解公式大全
初中数学因式分解公式大全哎呀,亲爱的小伙伴们,今天咱们要来聊聊初中数学里超级重要的因式分解公式!这可真是个神奇又有趣的部分,就像是一把神奇的钥匙,能打开数学难题的大门。
你想想,因式分解就像是把一个复杂的大拼图拆分成一个个小的、简单的部分,是不是很神奇?比如说,平方差公式(a+b)(a - b)= a² - b² ,这就好像是一个魔法咒语,能把看似复杂的式子一下子变得清晰明了。
还记得有一次数学课上,老师在黑板上写下了一个长长的式子,大家都愁眉苦脸,不知道从哪儿下手。
结果老师轻轻一用平方差公式,嘿!那式子就像被施了魔法一样,变得简单极了!当时我就在想,这公式也太厉害了吧?再来说说完全平方公式(a ± b)² = a² ± 2ab + b² 。
这就好比是给式子穿上了一件合身的衣服,让它变得整整齐齐、漂漂亮亮的。
有一次做作业的时候,我碰到了一个难题,怎么都解不出来。
我抓耳挠腮,急得像热锅上的蚂蚁。
这时候,我突然想到了完全平方公式,一试,哇塞!难题迎刃而解,那种感觉,就像是在黑暗中突然看到了一束光,别提多兴奋了!还有立方和公式(a + b)(a² - ab + b²)= a³ + b³ ,立方差公式(a - b)(a² + ab + b²)= a³ - b³ ,它们就像是数学世界里的秘密武器,关键时刻总能派上大用场。
有一次和同桌一起讨论数学题,我俩因为一个式子的因式分解方法争论不休。
我坚持用立方和公式,他却觉得另有方法。
最后我俩一起请教老师,老师给我们详细讲解,才发现原来我们都只看到了一部分,而忽略了整体。
从那以后,我们知道了,讨论和交流是多么重要!总之,这些因式分解公式就像是数学王国里的宝藏,只要我们掌握了它们,就能在数学的海洋里畅游无阻。
小伙伴们,一定要好好记住这些公式,多练习,多运用,相信你们一定能在数学的世界里创造出属于自己的精彩!我的观点就是:这些公式是我们攻克初中数学难题的有力武器,掌握了它们,数学之路会越走越顺畅!。
初中因式分解基本方法
初中因式分解基本方法因式分解是一种将一个多项式表达式表示为若干个乘积的形式的数学运算方法。
初中阶段,学生主要学习了解一元一次方程、一元二次方程和一元二次函数,并能应用这些知识进行因式分解。
下面是初中因式分解的基本方法:一、公因式提取法公因式提取法是最基本的因式分解方法,它适用于多个项有公共因子的情况。
步骤:1.找出多个项的公因式。
2.提取公因式,并用括号括起来。
3.将提取后的公因式和剩余的部分相乘。
例如:1.因式分解4x+8y:公因式:4提取公因式:4(x+2y)2.因式分解3a+6b+9c:公因式:3提取公因式:3(a+2b+3c)二、配方法(特殊因式两项之和差公式)配方法适用于两个互为乘积的二次式(特殊因式)相加或相减的情况。
步骤:1.求出两个特殊因式。
2.将两个特殊因式用括号括起来,并根据所给的运算符号来进行相加或相减。
3.将特殊因式中的公因式提取出来。
4.化简提取后的公式。
例如:1.因式分解x²+5x+6:特殊因式:x²,6括号中根据加法结合律和交换律:(x+2)(x+3)2.因式分解x²-4x+4:特殊因式:x²,4括号中根据减法结合律和交换律:(x-2)(x-2)或(x-2)²三、公式法公式法适用于一些特定的公式或模板,例如完全平方公式、平方差公式、立方差公式等。
步骤:1.将给定的多项式改写为公式或模板中的形式。
2.运用对应的公式或模板进行因式分解。
3.将分解后的表达式化简。
例如:1.因式分解x²-4:平方差公式:a²-b²=(a+b)(a-b)将表达式改写为公式形式:x²-2²利用平方差公式:(x+2)(x-2)2.因式分解x³-8:立方差公式:a³-b³=(a-b)(a²+ab+b²)将表达式改写为公式形式:x³-2³利用立方差公式:(x-2)(x²+2x+4)以上是初中因式分解的基本方法,理解并掌握这些方法可以帮助学生更好地解决因式分解的问题。
八年级数学重点知识点(全)
文档初二数学知识点因式分解1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”. 3.公因式的确定:系数的最大公约数·相同因式的最低次幂.注意公式:a+b=b+a ; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3. 4.因式分解的公式:(1)平方差公式: a 2-b 2=(a+ b )(a- b );(2)完全平方公式: a 2+2ab+b 2=(a+b)2, a 2-2ab+b 2=(a-b)2. 5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字; (2)使用因式分解公式时要特别注意公式中的字母都具有整体性; (3)因式分解的最后结果要求分解到每一个因式都不能分解为止; (4)因式分解的最后结果要求每一个因式的首项符号为正; (5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式.6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.7.完全平方式:能化为(m+n )2的多项式叫完全平方式;对于二次三项式x 2+px+q , 有“ x 2+px+q 是完全平方式 ⇔ q 2p 2=⎪⎭⎫⎝⎛”.分式1.分式:一般地,用A 、B 表示两个整式,A ÷B 就可以表示为B A 的形式,如果B 中含有字母,式子BA 叫文档做分式.2.有理式:整式与分式统称有理式;即 ⎩⎨⎧分式整式有理式.3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义. 4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变; (2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;即 分母分子分母分子分母分子分母分子-=-=-=---(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式. 7.分式的乘除法法则:,bdacd c b a =⋅bcadc d b a d c b a =⋅=÷. 8.分式的乘方:为正整数)(n .b a b a n n n=⎪⎭⎫⎝⎛.9.负整指数计算法则: (1)公式: a 0=1(a ≠0), a -n=na 1(a ≠0); (2)正整指数的运算法则都可用于负整指数计算;(3)公式:nna b b a ⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛-,n m m n a b b a =--;(4)公式: (-1)-2=1, (-1)-3=-1.10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.文档11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂. 12.同分母与异分母的分式加减法法则: ;c b a c b c a ±=±bdbcad bd bc bd ad d c b a ±=±=±. 13.含有字母系数的一元一次方程:在方程ax+b=0(a ≠0)中,x 是未知数,a 和b 是用字母表示的已知数,对x 来说,字母a 是x 的系数,叫做字母系数,字母b 是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a 、b 、c 等表示已知数,用x 、y 、z 等表示未知数.14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序. 数的开方1.平方根的定义:若x 2=a,那么x 叫a 的平方根,(即a 的平方根是x );注意:(1)a 叫x 的平方数,(2)已知x 求a 叫乘方,已知a 求x 叫开方,乘方与开方互为逆运算. 2.平方根的性质:(1)正数的平方根是一对相反数; (2)0的平方根还是0; (3)负数没有平方根.文档3.平方根的表示方法:a 的平方根表示为a 和a -.注意:a 可以看作是一个数,也可以认为是一个数开二次方的运算.4.算术平方根:正数a 的正的平方根叫a 的算术平方根,表示为a .注意:0的算术平方根还是0. 5.三个重要非负数: a 2≥0 ,|a|≥0 ,a ≥0 .注意:非负数之和为0,说明它们都是0. 6.两个重要公式: (1)()a a 2=; (a ≥0)(2) ⎩⎨⎧<-≥==)0a (a )0a (a a a 2 .7.立方根的定义:若x 3=a,那么x 叫a 的立方根,(即a 的立方根是x ).注意:(1)a 叫x 的立方数;(2)a 的立方根表示为3a ;即把a 开三次方. 8.立方根的性质:(1)正数的立方根是一个正数; (2)0的立方根还是0; (3)负数的立方根是一个负数. 9.立方根的特性:33a a -=-.10.无理数:无限不循环小数叫做无理数.注意:π和开方开不尽的数是无理数. 11.实数:有理数和无理数统称实数.12.实数的分类:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数与无限循环小负有理数正有理数有理数实数0(2)⎪⎩⎪⎨⎧负实数正实数实数0 . 13.数轴的性质:数轴上的点与实数一一对应.14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:414.12= 732.13= 236.25=.三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)文档文档文档文档几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.二常识:1.三角形中,第三边长的判断:另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,文档实用标准文案文档而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段. 3.如图,三角形中,有一个重要的面积等式,即:若CD ⊥AB ,BE ⊥CA ,则CD ·AB=BE ·CA. 4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和. 6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.7.如图,双垂图形中,有两个重要的性质,即: (1) AC ·CB=CD ·AB ; (2)∠1=∠B ,∠2=∠A . 8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边. 10.等边三角形是特殊的等腰三角形.11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明. 12.符合“AAA ”“SSA ”条件的三角形不能判定全等.13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.15.会用尺规完成“SAS ”、“ASA ”、“AAS ”、“SSS ”、“HL ”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图. ※18.几何重要图形和辅助线: (1)选取和作辅助线的原则:① 构造特殊图形,使可用的定理增加;ABCEDA BCD 12实用标准文案文档② 一举多得;③ 聚合题目中的分散条件,转移线段,转移角; ④ 作辅助线必须符合几何基本作图.(2)已知角平分线.(若BD 是角平分线)(3)已知三角形中线(若AD 是BC 的中线)(4) 已知等腰三角形ABC 中,AB=AC(5)其它文档。
因式分解公式大全
公式及方法大全待定系数法(因式分解)待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.常用的因式分解公式:(“窗)匕+切=F +@+B)x+必(a±A)a = a2+ 2ab+b2(a±b)z = a3±3a2b + 3ab2±b za2-b2= (a-b)(a+b)dt3+i3= 0 ±3)(# 干必+ 沪)於-胪二严+住叫+严沪+…+必山+严)伪为正整数)… @+轨严-广%+广即-・・十严-円)©为偶数)d +护=@+切(旷1-<3叫)+旷护——沪 +尸)(讯为奇数)S+b + c)'二a1+ 沪 +/ +2必+2弘+ 2皿+ J3 4-c'1-3abc = (a +b +c)(a2 +i2 +(? -ab-bc-ca)例1 分解因式:x2+3xy+2y 2+4x+5y+3 .分析由于(x2+3xy+2y 2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m 和x+y+n 的形式,应用待定系数法即可求出n,使问题得到解决.解设x2+3xy+2y 2+4x+5y+3 =(x+2y+m)(x+y+n) =x 2 +3xy+2y2+(m+n)x+(m+2n)y+mn 比较两边对应项的系数,则有解之得m=3 , n=1 .所以原式=(x+2y+3)(x+y+1) .说明本题也可用双十字相乘法,请同学们自己解一下.例2 分解因式:x4-2x 3-27x 2-44x+7 .分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是土1 , ±7(7的约数), 经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ ax+b)(x 2+cx+d)的形式.解设原式=(x 2+ax+b)(x 2+cx+d)=x4+(a+c)x 3+(b+d+ac)x 2+(ad+bc)x+bd ,所以有由bd=7,先考虑b=1 , d=7 有所以原式=(x 2-7x+1)(x 2+5x+7)说明由于因式分解的唯一性,所以对b=-1 , d=-7等可以不加以考虑.本题如果b=1 , d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.求根法(因式分解)我们把形如anxn+an-1xn-1+ --+a1x+a0(n 为非负整数)的代数式称为关于x的一元多项式,并用f(x) , g(x),… 等记号表示,女口f(x)=x2-3x+2 , g(x)=x5+x2+6 ,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x) f(1)=12-3 x 我们把形如a n x n+a n-i x n-1 +…+玄i x+a o(n为非负整数)的代数式称为关于x的一元多项式,并用f(x) , g(x),…等记号表示,如f(x)=x 2-3x+2 , g(x)=x 5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=1 2-3 x i+2=0 ;f(-2)=(-2) 2-3 X(-2)+2=12 .若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理)若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a .根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a o的约数,q是a n的约数.特别地,当a o=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2分解因式:X3-4X2+6X-4分析这是一个整系数一元多项式,原式若有整数根,必是-4 的约数,逐个检验-4 的约数:± 1 ,±2 ,±4 ,只有f(2)=2 3-4 X22+6 X2-4=0 ,即x=2 是原式的一个根,所以根据定理1,原式必有因式x-2 .解法1 用分组分解法,使每组都有因式(x-2) .原式=(x 3-2x 2)-(2x 2-4X)+(2X-4)=x 2(x-2)-2x(x-2)+2(x-2)=(x-2)(x 2-2x+2) .解法2 用多项式除法,将原式除以(x-2) ,所以原式=(x-2)(x 2-2x+2)说明在上述解法中,特别要注意的是多项式的有理根一定是-4 的约数,反之不成立,即-4 的约数不一定是多项式的根.因此,必须对-4 的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x 3+7x 2-3x-2 .分析因为9的约数有土1 , ±3 , ±9; -2的约数有土1 ,为:所以,原式有因式9X2-3X-2 .解9x4-3X 3+7X2-3x-2=9X 4-3X3-2X2+9X2-3X-2=X 2(9X3-3X-2)+9X 2-3X-2=(9X 2-3X-2)(X2+1)=(3X+1)(3X-2)(X2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9X2-3X-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.双十字相乘法(因式分解)分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f) ,我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3 .我们将上式按x降幕排列,并把y当作常数,于是上式可变形为2x2-( 5+7y)x-(22y2-35y+3) , 可分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy 2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y 2-5x+35y-3 .我们将上式按x降幕排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y 2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即-22y 2+35y-3=(2y-3)(-11y+1)再利用十字相乘法对关于x 的二次三项式分解所以原式= [x+(2y-3) ][ 2x+(-11y+1) ] =(x+2y-3)(2x-11y+1) .上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x 2-7xy-22y 2;(x-3)(2x+1)=2x 2 -5x-3 ;(2y-3)(-11y+1)=-22y 2+35y-3 .这就是所谓的双十字相乘法.用双十字相乘法对多项式ax 2+bxy+cy 2+dx+ey+f 进行因式分解的步骤是:(1) 用十字相乘法分解ax 2 +bxy+cy 2,得到一个十字相乘图(有两列);(2) 把常数项f 分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey ,第一、第三列构成的十字交叉之积的和等于原式中的dx .例1 分解因式:(1) x 2-3xy-10y 2+x+9y-2 ;(2) x 2-y 2+5x+3y+4 ;(3) xy+y 2+x-y-2 ;(4) 6x 2- 7xy-3y 2-xz+7yz-2z 2.解(1)原式=(x-5y+2)(x+2y-1) .(2)原式=(x+y+1)(x-y+4) .(3) 原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2) .(4)原式=(2x-3y+z)(3x+y-2z) .说明(4)中有三个字母,解法仍与前面的类似.笔算开平方对于一个数的开方,可以不用计算机,也不用查表,直接笔算出来,下面通过一个例子来说明如何笔算开平方,对于其它数只需模仿即可例求316.4841 的平方根.第一步,先将被开方的数,从小数点位置向左右每隔两位用逗号,分段,如把数316.4841 分段成3,16.48,41.第二步,找出第一段数字的初商,使初商的平方不超过第一段数字,而初商加1 的平方则大于第一段数字,本例中第一段数字为3,初商为1,因为12=1<3 ,而(1+1)2=4>3.第三步,用第一段数字减去初商的平方,并移下第二段数字,组成第一余数,在本例中第一余数为216.第四步,找出试商,使(20 x初商+试商)x试商不超过第一余数,而【20 x初商+(试商+1)】x(试商+1)则大于第一余数第五步,把第一余数减去(20 x初商+试商)x试商,并移下第三段数字,组成第二余数,本例中试商为7,第二余数为2748. 依此法继续做下去,直到移完所有的段数,若最后余数为零,则开方运算告结束.若余数永远不为零,则只能取某一精度的近似值.第六步,定小数点位置,平方根小数点位置应与被开方数的小数点位置对齐.本例的算式如下:17.79^3,16 .48,41+ 93549 3 19 41 3549X9根式的概念【方根与根式】数a的n次方根是指求一个数,它的n次方恰好等于a.a的n次方根记为「~ (n为大于1的自然数).作为代数式称为根式.n称为根指数,a称为根底数.在实数范围内,负数不能开偶次方,一个正数开偶次方有两个方根,其绝对值相同,符号相反.【算术根】正数的正方根称为算术根.零的算术根规定为零.【基本性质】由方根的定义,有(烷y “■畅国根式运算【乘积的方根】乘积的方根等于各因子同次方根的乘积;反过来,同次方根的乘积等于乘积的同次方根,即【分式的方根】分式的方根等于分子、分母同次方根相除, 即【根式的乘方】5「一":‘>0)【根式化简】\/c +("运 + + “罷)^Jb —4-^/h^ct — b(QOQM 工切 >0,d R )(亦+而x 亦-亦)_(丘+ 7?)(亦-亦) (-7^ + .岳— ■馬、 ct — b【同类根式及其加减运算】 根指数和根底数都相同的根式 称为同类根式,只有同类根式才可用加减运算加以合并 .国进位制的基与数字任一正数可表为通常意义下的有限小数或无限小数,各数字 的值与数字所在的位置有关,任何位置的数字当小数点向右 移一位时其值扩大10倍,当小数点向左移一位时其值缩小 10倍•例如173.246 = lxlO a +7xlO+3+2xlO-1+4xlO-a +6xlO-5一般地,任一正数 a 可表为a = aA^'^a i a Q a -i a -2=xlO* *10小 +--- + ^1xlO + l 3o+ u_j x 10 i + a_2 xlO ' + …这就是10进数,记作a(10),数10称为进位制的基,式中 ai 在{0,1,2丄,9}中取值,称为10进数的数字,显然没有理由 说进位制的基不可以取\(C + -/d (a > QQ > O,a 工 b&>0,d >0)其他的数•现在取q为任意大于1的正整数当作进位制的基,于是就得到q 进数表示°⑷二Q严囲...W-x a-2...二诃+ +...+吗今+州+知g “ + a眞+ (1)式中数字ai在{0,1,2,…,q-1}中取值,a n a n-1…a〔a o称为q进数a(q)的整数部分,记作[a(q)];a-1a-2 ...称为a(q)的分数部分,记作{a(q)}.常用进位制,除10进制外,还有2进制、8进制、16进制等,其数字如下2进制0, 18 进制0, 1,2, 3, 4, 5, 6, 716 进制0, 1,2, 3, 4, 5, 6, 7, 8, 90,12,3,4/各种进位制的相互转换1q -10转换适用通常的10进数四则运算规则,根据公式⑴,可以把q进数a(q)转换为10进数表示例如743(6, =7x8a+4x8+3 = 448+32 + 3^483(^1011.101(2)=1X23+0X22+1X2+1+1X2^+0X2"°+1X2^=11.625 ㈣210 —q转换转换时必须分为整数部分和分数部分进行. 对于整数部分其步骤是:(1) 用q去除[a(10)],得到商和余数.(2) 记下余数作为q进数的最后一个数字.⑶用商替换[a(10)]的位置重复⑴和(2)两步,直到商等于零为止.对于分数部分其步骤是:(1) 用q 去乘{a(10)}.(2) 记下乘积的整数部分作为q进数的分数部分第一个数字. ⑶用乘积的分数部分替换{a(10)}的位置,重复⑴和⑵两步,直到乘积变为整数为止,或直到所需要的位数为止•例如:103.118(10)=147.074324 (8)整数部分的 分数部分的 草式草式J 18 83AA7,5523 p — q 转换 通常情况下其步骤是:a(p) — a(10)宀a(q).如果 p,q 是同一数s 的不同次幂,其步骤是:a(p) — a(s) — a(q). 例如,8进数127.653(8)转换为16进数时,由于 8=23, 16=24,所以s=2,其步骤是:首先把 8进数的每个数字根 据8-2转换表转换为2进数(三位一组)127.653(8)=001 010 111.110 101 011(2)然后把2进数的所有数字从小数点起 (左和右)每四位一组分组,从16-2转换表中逐个记下对应的16进数的数字,即127.653(8)=0101 0111 1101 0101 lOOO p )= 57.358(10)8103 | 71正多边形各量换算公式n为边数R为外接圆半径a为边长燎为内切圆半径为圆心角S为多边形面积重心G与外接圆心0重合正多边形各量换算公式表各量正三角形n为边数R为外接圆半径a为边长燎为内切圆半径『_ 360八必为圆心角I ”丿S为多边形面积重心G与外接圆心O重合正多边形各量换算公式表1或许你还对作图感兴趣:正多边形作图所谓初等几何作图问题,是指使用无刻度的直尺和圆规来作图.若使用尺规有限次能作出几何图形,则称为作图可能,或者说欧几里得作图法是可能的,否则称为作图不可能很多平面图形可以用直尺和圆规作出,例如上面列举的正五边形、正六边形、正八边形、正十边形等.而另一些就不能作出,例如正七边形、正九边形、正十一边形等,这些多边形只能用近似作图法•如何判断哪些作图可能,哪些作图不可能呢?直到百余年前,用代数的方法彻底地解决了这个问题,即给出一个关于尺规作图可能性的准则:作图可能的充分必要条件是,这个作图问题中必需求出的未知量能够由若干已知量经过有限次有理运算及开平方运算而算出•几千年来许多数学家耗费了不少的精力,企图解决所谓“几何三大问题”:立方倍积问题,即作一个立方体,使它的体积二倍于一已知立方体的体积.三等分角问题,即三等分一已知角.化圆为方问题,即作一正方形,使它的面积等于一已知圆的面积.后来已严格证明了这三个问题不能用尺规作图.代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1 .利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析x的值是通过一个一元二次方程给出的,若解出x 后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.解已知条件可变形为3X2+3X-仁0 ,所以6X4+15X 3+10X2=(6x 4+6X 3-2X 2)+(9X 3+9X2-3x)+(3x 2+3X-1)+1=(3X 2+3X-1)(2Z 2+3X+1)+1=0+1=1说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.例2已知a,b,c为实数,且满足下式:a2+b 2+ c2=1,①求a+b+c 的值.解将②式因式分解变形如下即所以a+b+c=0 或bc+ac+ab=0 .若bc+ac+ab=0 ,贝U(a+b+c) 2=a 2+b 2+c 2+2(bc+ac+ab)=a 2+b 2+c 2=1 ,所以a+b+c= ±1 .所以a+b+c 的值为0, 1 , -1 .说明本题也可以用如下方法对②式变形:前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1 ,最终都是将②式变形为两个式子之积等于零的形式.2 .利用乘法公式求值例3 已知x+y=m , x3+y 3=n , m T,求x2+ y2的值. 解因为x+y=m ,所以m 3=(x+y) 3=x 3+y 3+3xy(x+y)=n+3m •y ,所以求x2+6xy+y 2的值.分析将x , y的值直接代入计算较繁,观察发现,已知中x ,的值正好是一对共轭无理数,所以很容易计算出x+y 与xy的值,由此得到以下解法.解x2+6xy+y 2=x2 +2xy+y 2+4xy2=(x+y) +4xy3 .设参数法与换元法求值如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.有时也可把代数式中某一部分式子,用另外的一个字母来替换,这叫换元法.分析本题的已知条件是以连比形式出现,可引入参数k,用它表示连比的比值,以便把它们分割成几个等式.x = (a-b)k , y = (b-c)k , z = (c-a)k . 所以x+y+z=(a-b)k + (b-c)k+(c-a)k=0 u+v+w=1 ,①由②有把①两边平方得u2+v 2+w 2+2(uv+vw+wu)=1 所以u2+v 2+w 2=1 , 即两边平方有所以4 .利用非负数的性质求值若几个非负数的和为零,贝U每个非负数都为零,这个性质在代数式求值中经常被使用.例8 若x2-4x+|3x-y|=-4 ,求y x的值.分析与解x , y的值均未知,而题目却只给了一个方程,似乎无法求值,但仔细挖掘题中的隐含条件可知,可以利用非负数的性质求解.因为x2-4x+|3x-y|=-4 ,所以x2-4x + 4 + |3x-y|=0 ,即(x-2) 2+|3x-y|=0 .所以y x=6 2=36 .例9未知数x, y满足(x2+ y2)m 2-2y(x+n)m+y 2+n 2=0 , 其中m , n 表示非零已知数,求x, y的值.分析与解两个未知数,一个方程,对方程左边的代数式进行恒等变形,经过配方之后,看是否能化成非负数和为零的形式.将已知等式变形为m2x2+m 2y2-2mxy-2mny+y 2+n 2=0 ,(m 2x2-2mxy+y 2)+(m 2 y 2 -2mny+n 2)=0 ,即22(mx-y) +(my-n) =0 .5 .利用分式、根式的性质求值分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明.例10 已知xyzt=1 ,求下面代数式的值:分析直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.解根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.同理分析计算时应注意观察式子的特点,若先分母有理化,计算反而复杂.因为这样一来,原式的对称性就被破坏了.这里所言的对称性是分利用这种对称性,或称之为整齐性,来简化我们的计算.同样(但请注意算术根!)将①,②代入原式有练习六2.已知x+y=a ,x2+y 2=b 2,求x4+y 4的值.3 .已知a-b+c=3 ,a2+b 2+c 2=29 ,a3+b 3+c 3=45 ,求ab(a+b)+bc(b+c)+ca(c+a) 的值.5 .设a+b+c=3m ,求(m-a) 3+(m-b) 3+(m-c) 3-3(m-a)(m-b)(m-c) 的值.8 .已知13x2-6xy+y 2-4x+1=0 ,求(x+y)13 x10 的值.。
初二因式分解公式大全
初中因式分解的公式1、平方差公式a²-b²=(a+b)(a-b)2、完全平方公式a²+2ab+b²=(a+b)²3、立方和公式a³+b³=(a+b)(a²-ab+b²)4、立方差公式a³-b³=(a-b)(a²+ab+b²)5、完全立方和公式a³+3a²b+3ab²+b³=(a+b)³6、完全立方差公式a³-3a²b+3ab²-b³=(a-b)³7、三项完全平方公式a²+b²+c²+2ab+2bc+2ac=(a+b+c)²8、三项立方和公式a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)因式分解原则:1、分解因式是多项式的恒等变形,要求等式左边必须是多项式。
2、分解因式的结果必须是以乘积的形式表示。
3、每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。
4、结果最后只留下小括号,分解因式必须进行到每一个多项式因式都不能再分解为止。
5、结果的多项式首项一般为正。
在一个公式内把其公因子抽出,即透过公式重组,然后再抽出公因子。
6、括号内的首项系数一般为正。
7、如有单项式和多项式相乘,应把单项式提到多项式前。
如(b+c)a要写成a (b+c)。
8、考试时在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数。
口诀:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。
初中数学公式大汇总(完整版)
数学公式及性质(完整版)1.乘法与因式分解①(a+b)(a-b)=a2-b2;②(a±b)2=a2±2ab+b2;③(a+b)(a2-ab+b2)=a3+b3;④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab;(a-b)2=(a+b)2-4ab。
2.幂的运算性质①a m×a n=a m+n;②a m÷a n=a m-n;③(a m)n=a mn;④(ab)n=a n b n;⑤()n=;⑥a-n=,特别:()-n=()n;⑦a0=1(a≠0)。
3.二次根式①()2=a(a≥0);②=丨a丨;③=×;④=(a>0,b≥0)。
4.三角不等式|a|-|b|≤|a±b|≤|a|+|b|(定理);加强条件:||a|-|b||≤|a±b|≤|a|+|b|也成立,这个不等式也可称为向量的三角不等式(其中a,b分别为向量a和向量b)|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b<=>-b≤a≤b ;|a-b|≥|a|-|b|; -|a|≤a≤|a|;5.某些数列前n项之和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2;1+3+5+7+9+11+13+15+…+(2n-1)=n2;2+4+6+8+10+12+14+…+(2n)=n(n+1);12+22+32+42+52+62+72+82+…+n2=n(n+1) (2n+1)/6;13+23+33+43+53+63+…n3=n2(n+1)2/4; 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3;6.一元二次方程对于方程:ax2+bx+c=0:①求根公式是x=,其中△=b2-4ac叫做根的判别式。
当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根。
(完整版)因式分解知识点归纳
n m n a a +=同底数幂相乘,底数不变,指数相加。
注意底数可以是多项式或单项式。
35())a b b += 、幂的乘方法则:mnm aa ((n m ,都是正整数)幂的乘方,底数不变,指数相乘。
如:幂的乘方法则可以逆用:即考点四、十字相乘法(1)二次项系数为1的二次三项式2x px q ++中,如果能把常数项q 分解成两个因式a b 、的积,并且a b +等于一次项系数p 的值,那么它就可以把二次三项式2x px q ++分解成()()()b x a x ab x b a x q px x ++=+++=++22例题讲解1、分解因式:652++x x分析:将6分成两个数相乘,且这两个数的和要等于5。
由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即2+3=51 2 解:652++x x =32)32(2⨯+++x x 1 3 =)3)(2(++x x 1×2+1×3=5 用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一次项的系数。
例题讲解2、分解因式:672+-x x解:原式=)6)(1()]6()1[(2--+-+-+x x 1 -1=)6)(1(--x x 1 -6(-1)+(-6)= -7练习分解因式(1)24142++x x (2)36152+-a a (3)542-+x x(4)22-+x x (5)1522--y y (6)24102--x x2、二次项系数不为1的二次三项式——c bx ax ++2 条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c (3)1221c a c a b += 1221c a c a b +=分解结果:c bx ax ++2=))((2211c x a c x a ++例题讲解1、分解因式:101132+-x x分析: 1 -2 3 -5 (-6)+(-5)= -11解:101132+-x x =)53)(2(--x x分解因式:(1)6752-+x x (2)2732+-x x。
因式分解——运用公式法
因式分解——运用公式法因式分解是将一个多项式化简成一系列乘积的过程。
通常有两种方法用于进行因式分解:公式法和分组法。
公式法可以概括为以下几种常用的因式分解公式:1.a²-b²=(a+b)(a-b)这是平方差公式,用于因式分解差的平方。
例如,我们可以将x²-4分解为(x+2)(x-2)。
2. a³ + b³ = (a + b)(a² - ab + b²)这是立方和公式,用于因式分解和的立方。
例如,我们可以将x³+8分解为(x+2)(x²-2x+4)。
3. a³ - b³ = (a - b)(a² + ab + b²)这是立方差公式,用于因式分解差的立方。
例如,我们可以将x³-8分解为(x-2)(x²+2x+4)。
4. a⁴ + b⁴ = (a² + √2ab + b²)(a² - √2ab + b²)这是四次和公式,用于因式分解和的四次方。
例如,我们可以将x⁴+16分解为(x²+4√2x+4)(x²-4√2x+4)。
5. a⁴ - b⁴ = (a² - √2ab + b²)(a² + √2ab + b²)这是四次差公式,用于因式分解差的四次方。
例如,我们可以将x⁴-16分解为(x²-4√2x+4)(x²+4√2x+4)。
除了以上这些常用的因式分解公式外,还有一些其他形式的因式分解公式,以及一些特殊的因式分解技巧。
例如,对于一个二次方程式ax² + bx + c,我们可以使用求根公式x = (-b ± √(b² - 4ac)) / 2a 来因式分解。
根据求根公式,我们可以将二次方程ax² + bx + c 分解为两个因式的乘积 (x - x₁)(x - x₂),其中 x₁和 x₂是由求根公式得到的两个根。
初一年级数学公式:因式分解公式
【导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。
奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更⾼、更强。
国际数学奥林匹克作为⼀项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育⽔平,难度⼤⼤超过⼤学⼊学考试。
奥数对青少年的脑⼒锻炼有着⼀定的作⽤,可以通过奥数对思维和逻辑进⾏锻炼,对学⽣起到的并不仅仅是数学⽅⾯的作⽤,通常⽐普通数学要深奥⼀些。
下⾯是⽆忧考为⼤家带来的初⼀年级数学公式:因式分解公式,欢迎⼤家阅读。
初中数学公式a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)( 1 )请写出图 3 所表⽰的代数恒等式.( 2 )试画出⼀个⼏何图形,使它的⾯积能表⽰:( a + b )( a + 3b )= a2 + 4ab + 3b2 .( 3 )请仿照上述⽅法另写⼀个含有 a , b 的代数恒等式,并画出与之对应的⼏何图形.解:( 1 )( 2a + b )( a + 2b )= 2a2 + 5ab + 2b2 .( 2 )答案不唯— ,如( a + 2b )( a + b )= a2 + 3ab + 2b2 ,与之对应的⼏何图形如图 5 所⽰.因式分解的技巧已知 a 、 b 、 c 为有理数,且 a2 + b2 + c2 = ab + bc + ca ,试说出 a 、 b 、 c 之间的关系,并说明理由.解:∵ a2 + b2 + c2 = ab + bc + ca∴ a2 + b2 + c2 - ab - bc - ca = 0∴ 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0∴ ( a2 - 2ab + b2 )+ ( a2 - 2ca + c2 )+( b2 - 2bc + c2 )= 0∴ ( a - b ) 2 +( a - c ) 2 +( b - c ) 2 = 0∴ a - b = 0 且 a - c = 0 且 b - c = 0∴ a = b = c因式分解的应⽤若a+b=4,则2a2+4ab+2b2-6的值为( )A.36B.26C.16D.2思路分析:2a2+4ab+2b2-6=2(a+b)2-6=2×42-6=26答案:B1 . 下列四个式⼦中与多项式 2x2 - 3x 相等的是( )A. 2B. 2C. D.2 . 要使式⼦ 25a2 + 16b2 成为⼀个完全平⽅式,则应加上( ).A. 10abB. ±20abC. - 20abD. ±40ab3 . 多项式 2a2 + 4ab + 2b2 - 8c2 因式分解正确的是( ).A. 2 ( a + b - 2c )B. 2 ( a + b + c )( a + b - c )C. ( 2a + b + 4c )( 2a + b - 4c )D. 2 ( a + b + 2c )( a + b - 2c )4 . 下列计算中,正确的是( )A. an + 2÷an - 1 = a3B. 2a2 + 2a3 = 4a5C. ( 2a - 1 ) 2 = 4a2 - 1D. ( x - 1 )( x2 - x + 1 )= x3 - 15 . 将 4a - a2 - 4 分解因式,结果正确的是( ).A. a ( 4 - a )- 4B. -( a + 2 ) 2C. 4a -( a + 2 )( a - 2 )D. -( a - 2 ) 26.不论 x , y 取什么实数, x2 + y2 + 2x ⼀ 4y + 7 的值( ).A. 总不⼩于 7B. 总不⼩于 2C. 可为任何实数D. 可能为负数。
初中常用因式分解公式
初中常用因式分解公式因式分解方法:1、提公因法如果一个多项式的各项都含有相同因式,那么就可以把这个相同因式提出来,从而将多项式化成两个因式乘积的形式。
例1、分解因式 x2-2x 解:x2-2x =x(xb)= a2-b2-------a2-b2=(a+b)(a-b);(2)(ab)2 = a22ab+b2 — a22ab+b2=(ab)2;(3)(a+b)(a2-ab+b2)=a3+b3------ a3+b3=(a+b)(a2-ab+b2);(4)(a-b)(a2+ab+b2)= a3-b3----a3-b3=(a-b)(a2+ab+b2)、(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m +5n-mn-5m 解:m +5n-mn-5m= mmn+5n = (mmn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)注意该方法的核心是分组后能提取公因式!4、字相乘法对于mx +px+q形式的多项式,如果ab=m,cd=q 且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x26 分析:121=-19 解:7x26=(7x+2)(x-3)5、配凑法对于那些不能利用公式法的多项式,有的可以利用将其配成一个我们已经会的分式分解方法,然后就能将其因式分解。
例5、分解因式解原式= = = 到这儿我们就可以提公因式了 = =6、拆、添项法可以把多项式拆成若干部分,再进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7、求根法令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x ) 例7、分解因式x2 +x2=0 通过综合除法可知,f(x)=0根为2= (x+2)(x-1)加粗部分是关键,务必多加注意!3、基础训练;对下列各因式就行分解(1)4a2-b2+6a-3b;(2)x3-2x2-3x;(3)4x(a-b)+(b2-a2);(4)x2-x-2;(5)x2+y2+z2+2xy+2xz+2yz; (6)x+5y-xy-5x;。
(完整版)因式分解公式大全
公式及方法大全待定系数法(因式分解)待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.常用的因式分解公式:例1 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例2 分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.求根法(因式分解)我们把形如anxn+an-1xn-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x) f(1)=12-3×我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,为:所以,原式有因式9x2-3x-2.解 9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.双十字相乘法(因式分解)分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y 当作常数,于是上式可变形为 2x2-(5+7y)x-(22y2-35y+3),可分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解 (1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明 (4)中有三个字母,解法仍与前面的类似.笔算开平方对于一个数的开方,可以不用计算机,也不用查表,直接笔算出来,下面通过一个例子来说明如何笔算开平方,对于其它数只需模仿即可例求316.4841的平方根.第一步,先将被开方的数,从小数点位置向左右每隔两位用逗号,分段,如把数316.4841分段成3,16.48,41.第二步,找出第一段数字的初商,使初商的平方不超过第一段数字,而初商加1的平方则大于第一段数字,本例中第一段数字为3,初商为1,因为12=1<3,而(1+1)2=4>3.第三步,用第一段数字减去初商的平方,并移下第二段数字,组成第一余数,在本例中第一余数为216.第四步,找出试商,使(20×初商+试商)×试商不超过第一余数,而【20×初商+(试商+1)】×(试商+1)则大于第一余数.第五步,把第一余数减去(20×初商+试商)×试商,并移下第三段数字,组成第二余数,本例中试商为7,第二余数为2748.依此法继续做下去,直到移完所有的段数,若最后余数为零,则开方运算告结束.若余数永远不为零,则只能取某一精度的近似值.第六步,定小数点位置,平方根小数点位置应与被开方数的小数点位置对齐.本例的算式如下:根式的概念【方根与根式】数a的n次方根是指求一个数,它的n次方恰好等于a.a的n次方根记为(n为大于1的自然数).作为代数式,称为根式.n称为根指数,a称为根底数.在实数范围内,负数不能开偶次方,一个正数开偶次方有两个方根,其绝对值相同,符号相反.【算术根】正数的正方根称为算术根.零的算术根规定为零.【基本性质】由方根的定义,有根式运算【乘积的方根】乘积的方根等于各因子同次方根的乘积;反过来,同次方根的乘积等于乘积的同次方根,即≥0,b≥0)【分式的方根】分式的方根等于分子、分母同次方根相除,即≥0,b>0)【根式的乘方】≥0)【根式化简】≥0)≥0,d≥0)≥0,d≥0)【同类根式及其加减运算】根指数和根底数都相同的根式称为同类根式,只有同类根式才可用加减运算加以合并.进位制的基与数字任一正数可表为通常意义下的有限小数或无限小数,各数字的值与数字所在的位置有关,任何位置的数字当小数点向右移一位时其值扩大10倍,当小数点向左移一位时其值缩小10倍.例如一般地,任一正数a可表为这就是10进数,记作a(10),数10称为进位制的基,式中ai在{0,1,2,L,9}中取值,称为10进数的数字,显然没有理由说进位制的基不可以取其他的数.现在取q为任意大于1的正整数当作进位制的基,于是就得到q进数表示(1)式中数字ai在{0,1,2,...,q-1}中取值,a n a n-1...a1a0称为q 进数a(q)的整数部分,记作[a(q)];a-1a-2 ...称为a(q)的分数部分,记作{a(q)}.常用进位制,除10进制外,还有2进制、8进制、16进制等,其数字如下2进制 0, 18进制 0, 1, 2, 3, 4, 5, 6, 716进制 0, 1, 2, 3, 4, 5, 6, 7, 8, 9各种进位制的相互转换1 q→10转换适用通常的10进数四则运算规则,根据公式(1),可以把q进数a(q)转换为10进数表示.例如2 10→q转换转换时必须分为整数部分和分数部分进行. 对于整数部分其步骤是:(1) 用q去除[a(10)],得到商和余数.(2) 记下余数作为q进数的最后一个数字.(3) 用商替换[a(10)]的位置重复(1)和(2)两步,直到商等于零为止.对于分数部分其步骤是:(1)用q去乘{a(10)}.(2)记下乘积的整数部分作为q进数的分数部分第一个数字.(3)用乘积的分数部分替换{a(10)}的位置,重复(1)和(2)两步,直到乘积变为整数为止,或直到所需要的位数为止.例如:103.118(10)=147.074324 (8)整数部分的草式分数部分的草式3 p→q转换通常情况下其步骤是:a(p)→a(10)→a(q).如果p,q是同一数s 的不同次幂,其步骤是:a(p)→a(s)→a(q).例如,8进数127.653(8)转换为16进数时,由于8=23,16=24,所以s=2,其步骤是:首先把8进数的每个数字根据8-2转换表转换为2进数(三位一组)127.653(8)=001 010 111.110 101 011(2)然后把2进数的所有数字从小数点起(左和右)每四位一组分组,从16-2转换表中逐个记下对应的16进数的数字,即正多边形各量换算公式n为边数R为外接圆半径 a为边长爎为内切圆半径为圆心角 S为多边形面积重心G与外接圆心O重合正多边形各量换算公式表各量正三角形n为边数R为外接圆半径a为边长爎为内切圆半径为圆心角 S为多边形面积重心G与外接圆心O重合正多边形各量换算公式表各正三角正方形正五边形正六边正n边量形形形图形Sa RR ar或许你还对作图感兴趣:正多边形作图所谓初等几何作图问题,是指使用无刻度的直尺和圆规来作图.若使用尺规有限次能作出几何图形,则称为作图可能,或者说欧几里得作图法是可能的,否则称为作图不可能.很多平面图形可以用直尺和圆规作出,例如上面列举的正五边形、正六边形、正八边形、正十边形等.而另一些就不能作出,例如正七边形、正九边形、正十一边形等,这些多边形只能用近似作图法.如何判断哪些作图可能,哪些作图不可能呢?直到百余年前,用代数的方法彻底地解决了这个问题,即给出一个关于尺规作图可能性的准则:作图可能的充分必要条件是,这个作图问题中必需求出的未知量能够由若干已知量经过有限次有理运算及开平方运算而算出.几千年来许多数学家耗费了不少的精力,企图解决所谓“几何三大问题”:立方倍积问题,即作一个立方体,使它的体积二倍于一已知立方体的体积.三等分角问题,即三等分一已知角.化圆为方问题,即作一正方形,使它的面积等于一已知圆的面积.后来已严格证明了这三个问题不能用尺规作图.代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析 x的值是通过一个一元二次方程给出的,若解出x 后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.解已知条件可变形为3x2+3x-1=0,所以6x4+15x3+10x2=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1=(3x2+3x-1)(2z2+3x+1)+1=0+1=1.说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.例2 已知a,b,c为实数,且满足下式:a2+b2+c2=1,①求a+b+c的值.解将②式因式分解变形如下即所以a+b+c=0或bc+ac+ab=0.若bc+ac+ab=0,则(a+b+c)2=a2+b2+c2+2(bc+ac+ab)=a2+b2+c2=1,所以 a+b+c=±1.所以a+b+c的值为0,1,-1.说明本题也可以用如下方法对②式变形:即前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式.2.利用乘法公式求值例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值.解因为x+y=m,所以m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy,所以求x2+6xy+y2的值.分析将x,y的值直接代入计算较繁,观察发现,已知中x,y的值正好是一对共轭无理数,所以很容易计算出x+y 与xy的值,由此得到以下解法.解 x2+6xy+y2=x2+2xy+y2+4xy=(x+y)2+4xy3.设参数法与换元法求值如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.有时也可把代数式中某一部分式子,用另外的一个字母来替换,这叫换元法.分析本题的已知条件是以连比形式出现,可引入参数k,用它表示连比的比值,以便把它们分割成几个等式.x=(a-b)k,y=(b-c)k,z=(c-a)k.所以x+y+z=(a-b)k+(b-c)k+(c-a)k=0.u+v+w=1,①由②有把①两边平方得u2+v2+w2+2(uv+vw+wu)=1,所以u2+v2+w2=1,即两边平方有所以4.利用非负数的性质求值若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.例8 若x2-4x+|3x-y|=-4,求y x的值.分析与解x,y的值均未知,而题目却只给了一个方程,似乎无法求值,但仔细挖掘题中的隐含条件可知,可以利用非负数的性质求解.因为x2-4x+|3x-y|=-4,所以x2-4x+4+|3x-y|=0,即 (x-2)2+|3x-y|=0.所以 y x=62=36.例9 未知数x,y满足(x2+y2)m2-2y(x+n)m+y2+n2=0,其中m,n表示非零已知数,求x,y的值.分析与解两个未知数,一个方程,对方程左边的代数式进行恒等变形,经过配方之后,看是否能化成非负数和为零的形式.将已知等式变形为m2x2+m2y2-2mxy-2mny+y2+n2=0,(m2x2-2mxy+y2)+(m2y2-2mny+n2)=0,即(mx-y)2+(my-n)2=0.5.利用分式、根式的性质求值分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明.例10 已知xyzt=1,求下面代数式的值:分析直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.解根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.同理分析计算时应注意观察式子的特点,若先分母有理化,计算反而复杂.因为这样一来,原式的对称性就被破坏了.这里所言的对称性是分利用这种对称性,或称之为整齐性,来简化我们的计算.同样(但请注意算术根!)将①,②代入原式有练习六2.已知x+y=a,x2+y2=b2,求x4+y4的值.3.已知a-b+c=3,a2+b2+c2=29,a3+b3+c3=45,求ab(a+b)+bc(b+c)+ca(c+a)的值.5.设a+b+c=3m,求(m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)的值.8.已知13x2-6xy+y2-4x+1=0,求(x+y)13·x10的值.。
初中数学整式的乘除与因式分解知识点归纳
初中数学整式的乘除与因式分解知识点归纳一、整式的乘法:1.普通整式相乘:将每一项的系数相乘,同时将每一项的指数相加。
2.平方整式相乘:先将每一项平方,再将每一项相乘得到结果。
3.完全平方的平方差公式:(a-b)(a+b)=a²-b²。
4. 公式展开:通过公式展开可求两个或多个整式的乘积,例如(a+b)²=a²+2ab+b²。
二、整式的除法:1.整式相除的概念:整式A除以整式B,若存在整式C,使得B×C=A,那么C称为A除以B的商式。
2.用辗转相除法进行整式的除法计算。
三、因式分解:1.抽象公因式法:将多项式中的每一项提取出公因式,然后将剩下的部分合并。
2.公式法:运用一些常用的公式,如平方差公式、完全平方公式等进行因式分解。
3.分组法:将多项式中的项进行分组,使每一组都有一个公因式,然后进行合并。
4. 二次三项式的因式分解:对于二次三项式a²+2ab+b²或a²-2ab+b²,可以因式分解为(a±b)²。
5.因式定理和余式定理:若(x-a)是多项式P(x)的因式,则P(a)=0。
根据这一定理可以找到多项式的因式。
四、常见整式的因式分解:1.平方差公式:a²-b²=(a+b)(a-b)。
2. 完全平方公式:a²+2ab+b²=(a+b)²,a²-2ab+b²=(a-b)²。
3. 符号"相反"公式:a²-2ab+b²=(b-a)²。
4. 三项平方公式:a³+b³=(a+b)(a²-ab+b²),a³-b³=(a-b)(a²+ab+b²)。
5. 公因式公式:a²+ab=a(a+b)。
初中数学因式分解公式
初中数学因式分解公式因式分解在初中数学里那可是相当重要的一部分!它就像是一把神奇的钥匙,能帮我们打开解决很多数学难题的大门。
咱们先来说说最常见的平方差公式:(a + b)(a - b) = a² - b²。
这就好比是两个小伙伴,一个叫“a + b”,另一个叫“a - b”,他们手拉手一合作,就变出了“a² - b² ”这个神奇的结果。
比如说,给你一个式子 25x² - 16 ,这时候咱们就可以把 25x²看成(5x)²,16 看成 4²,那它不就是 (5x + 4)(5x - 4) 嘛!这就像是拼图游戏,找到了关键的拼接点,一下子就拼对了。
再来说说完全平方公式:(a ± b)² = a² ± 2ab + b²。
这个公式就像是给一个小房子搭建框架,“a”和“b”是两根重要的梁柱,按照这个公式搭建起来,房子就稳稳当当的。
我记得有一次给学生们讲这部分内容的时候,有个学生特别迷糊,怎么都搞不明白。
我就给他举了个例子,假如我们要给一个正方形的花坛围上篱笆,花坛的边长是“a”米,每条边都向外延伸“b”米,那现在围篱笆的总面积不就是 (a + b)²嘛。
然后我们一步一步算,算出了结果a² + 2ab + b²,这孩子一下子就恍然大悟了,那兴奋的小眼神我到现在都还记得。
还有立方和与立方差公式:a³ + b³ = (a + b)(a² - ab + b²) ,a³ - b³ = (a- b)(a² + ab + b²) 。
这两个公式虽然看起来有点复杂,但其实也有它的规律。
比如说,分解 x³ + 8 ,我们把 8 看成 2³,这不就变成了 x³ + 2³嘛,然后就能用立方和公式分解为 (x + 2)(x² - 2x + 4) 。
初中数学因式分解方法汇总(共12种,中考必背,全掌握计算题不再怕)
初中数学因式分解方法汇总1提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.例1、分解因式x -2x -xx -2x -x=x(x -2x-1)2 应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式.例2、分解因式a +4ab+4ba +4ab+4b =(a+2b)3分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n) 例3、分解因式m +5n-mn-5mm +5n-mn-5m= m -5m -mn+5n= (m -5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4 十字相乘法对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x -19x-6分析:1 -37 22-21=-197x -19x-6=(7x+2)(x-3)5配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解.例5、分解因式x +3x-40解x +3x-40=x +3x+( ) -( ) -40=(x+ ) -( )=(x+ + )(x+ - )=(x+8)(x-5)6拆、添项法可以把多项式拆成若干部分,再用进行因式分解.例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)=c(c-a)(b+a)+b(a+b)(c-a)=(c+b)(c-a)(a+b)7换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来.例7、分解因式2x -x -6x -x+22x -x -6x -x+2=2(x +1)-x(x +1)-6x=x [2(x + )-(x+ )-6令y=x+ ,x [2(x + )-(x+ )-6= x [2(y -2)-y-6]= x (2y -y-10)=x (y+2)(2y-5)=x (x+ +2)(2x+ -5)= (x +2x+1) (2x -5x+2)=(x+1) (2x-1)(x-2)8求根法令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )例8、分解因式2x +7x -2x -13x+6令f(x)=2x +7x -2x -13x+6=0通过综合除法可知,f(x)=0根为 ,-3,-2,1则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)9图象法令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )例9、因式分解x +2x -5x-6令y= x +2x -5x-6作出其图象,见右图,与x轴交点为-3,-1,2则x +2x -5x-6=(x+1)(x+3)(x-2)10 主元法先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解.例10、分解因式a (b-c)+b (c-a)+c (a-b)分析:此题可选定a为主元,将其按次数从高到低排列a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)=(b-c) [a -a(b+c)+bc]=(b-c)(a-b)(a-c)11利用特殊值法将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式.例11、分解因式x +9x +23x+15令x=2,则x +9x +23x+15=8+36+46+15=105将105分解成3个质因数的积,即105=3×5×7注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值则x +9x +23x+15=(x+1)(x+3)(x+5)12待定系数法首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解.例12、分解因式x -x -5x -6x-4分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式.设x -x -5x -6x-4=(x +ax+b)(x +cx+d)= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd所以解得则x -x -5x -6x-4 =(x +x+1)(x -2x-4)。
(完整版)因式分解公式大全
公式及方法大全待定系数法(因式分解)待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.常用的因式分解公式:例1 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例2 分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.求根法(因式分解)我们把形如anxn+an-1xn-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x) f(1)=12-3×我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,为:所以,原式有因式9x2-3x-2.解9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.双十字相乘法(因式分解)分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解(1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明(4)中有三个字母,解法仍与前面的类似.笔算开平方对于一个数的开方,可以不用计算机,也不用查表,直接笔算出来,下面通过一个例子来说明如何笔算开平方,对于其它数只需模仿即可例求316.4841的平方根.第一步,先将被开方的数,从小数点位置向左右每隔两位用逗号,分段,如把数316.4841分段成3,16.48,41.第二步,找出第一段数字的初商,使初商的平方不超过第一段数字,而初商加1的平方则大于第一段数字,本例中第一段数字为3,初商为1,因为12=1<3,而(1+1)2=4>3.第三步,用第一段数字减去初商的平方,并移下第二段数字,组成第一余数,在本例中第一余数为216.第四步,找出试商,使(20×初商+试商)×试商不超过第一余数,而【20×初商+(试商+1)】×(试商+1)则大于第一余数.第五步,把第一余数减去(20×初商+试商)×试商,并移下第三段数字,组成第二余数,本例中试商为7,第二余数为2748.依此法继续做下去,直到移完所有的段数,若最后余数为零,则开方运算告结束.若余数永远不为零,则只能取某一精度的近似值.第六步,定小数点位置,平方根小数点位置应与被开方数的小数点位置对齐.本例的算式如下:根式的概念【方根与根式】数a的n次方根是指求一个数,它的n次方恰好等于a.a的n次方根记为(n为大于1的自然数).作为代数式,称为根式.n称为根指数,a称为根底数.在实数范围内,负数不能开偶次方,一个正数开偶次方有两个方根,其绝对值相同,符号相反.【算术根】正数的正方根称为算术根.零的算术根规定为零.【基本性质】由方根的定义,有根式运算【乘积的方根】乘积的方根等于各因子同次方根的乘积;反过来,同次方根的乘积等于乘积的同次方根,即≥0,b≥0)【分式的方根】分式的方根等于分子、分母同次方根相除,即≥0,b>0)【根式的乘方】≥0)【根式化简】≥0)≥0,d≥0)≥0,d≥0)【同类根式及其加减运算】根指数和根底数都相同的根式称为同类根式,只有同类根式才可用加减运算加以合并.进位制的基与数字任一正数可表为通常意义下的有限小数或无限小数,各数字的值与数字所在的位置有关,任何位置的数字当小数点向右移一位时其值扩大10倍,当小数点向左移一位时其值缩小10倍.例如一般地,任一正数a可表为这就是10进数,记作a(10),数10称为进位制的基,式中ai在{0,1,2,L,9}中取值,称为10进数的数字,显然没有理由说进位制的基不可以取其他的数.现在取q为任意大于1的正整数当作进位制的基,于是就得到q进数表示(1)式中数字ai在{0,1,2,...,q-1}中取值,a n a n-1...a1a0称为q进数a(q)的整数部分,记作[a(q)];a-1a-2 ...称为a(q)的分数部分,记作{a(q)}.常用进位制,除10进制外,还有2进制、8进制、16进制等,其数字如下2进制0, 18进制0, 1, 2, 3, 4, 5, 6, 716进制0, 1, 2, 3, 4, 5, 6, 7, 8, 9各种进位制的相互转换1 q→10转换适用通常的10进数四则运算规则,根据公式(1),可以把q进数a(q)转换为10进数表示.例如2 10→q转换转换时必须分为整数部分和分数部分进行.对于整数部分其步骤是:(1) 用q去除[a(10)],得到商和余数.(2) 记下余数作为q进数的最后一个数字.(3) 用商替换[a(10)]的位置重复(1)和(2)两步,直到商等于零为止.对于分数部分其步骤是:(1)用q去乘{a(10)}.(2)记下乘积的整数部分作为q进数的分数部分第一个数字.(3)用乘积的分数部分替换{a(10)}的位置,重复(1)和(2)两步,直到乘积变为整数为止,或直到所需要的位数为止.例如:103.118(10)=147.074324 (8)整数部分的草式分数部分的草式3 p→q转换通常情况下其步骤是:a(p)→a(10)→a(q).如果p,q是同一数s 的不同次幂,其步骤是:a(p)→a(s)→a(q).例如,8进数127.653(8)转换为16进数时,由于8=23,16=24,所以s=2,其步骤是:首先把8进数的每个数字根据8-2转换表转换为2进数(三位一组)127.653(8)=001 010 111.110 101 011(2)然后把2进数的所有数字从小数点起(左和右)每四位一组分组,从16-2转换表中逐个记下对应的16进数的数字,即正多边形各量换算公式n为边数 R为外接圆半径a为边长爎为内切圆半径为圆心角S为多边形面积重心G与外接圆心O重合正多边形各量换算公式表各量正三角形n为边数 R 为外接圆半径a为边长爎为内切圆半径为圆心角S为多边形面积重心G与外接圆心O重合正多边形各量换算公式表各量正三角形正方形正五边形正六边形正n边形图形Sa RR ar或许你还对作图感兴趣:正多边形作图所谓初等几何作图问题,是指使用无刻度的直尺和圆规来作图.若使用尺规有限次能作出几何图形,则称为作图可能,或者说欧几里得作图法是可能的,否则称为作图不可能.很多平面图形可以用直尺和圆规作出,例如上面列举的正五边形、正六边形、正八边形、正十边形等.而另一些就不能作出,例如正七边形、正九边形、正十一边形等,这些多边形只能用近似作图法.如何判断哪些作图可能,哪些作图不可能呢?直到百余年前,用代数的方法彻底地解决了这个问题,即给出一个关于尺规作图可能性的准则:作图可能的充分必要条件是,这个作图问题中必需求出的未知量能够由若干已知量经过有限次有理运算及开平方运算而算出.几千年来许多数学家耗费了不少的精力,企图解决所谓“几何三大问题”:立方倍积问题,即作一个立方体,使它的体积二倍于一已知立方体的体积.三等分角问题,即三等分一已知角.化圆为方问题,即作一正方形,使它的面积等于一已知圆的面积.后来已严格证明了这三个问题不能用尺规作图.代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析x的值是通过一个一元二次方程给出的,若解出x 后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.解已知条件可变形为3x2+3x-1=0,所以6x4+15x3+10x2=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1=(3x2+3x-1)(2z2+3x+1)+1=0+1=1.说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.例2 已知a,b,c为实数,且满足下式:a2+b2+c2=1,①求a+b+c的值.解将②式因式分解变形如下即所以a+b+c=0或bc+ac+ab=0.若bc+ac+ab=0,则(a+b+c)2=a2+b2+c2+2(bc+ac+ab)=a2+b2+c2=1,所以a+b+c=±1.所以a+b+c的值为0,1,-1.说明本题也可以用如下方法对②式变形:即前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式.2.利用乘法公式求值例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值.解因为x+y=m,所以m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy,所以求x2+6xy+y2的值.分析将x,y的值直接代入计算较繁,观察发现,已知中x,y的值正好是一对共轭无理数,所以很容易计算出x+y 与xy的值,由此得到以下解法.解x2+6xy+y2=x2+2xy+y2+4xy=(x+y)2+4xy3.设参数法与换元法求值如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.有时也可把代数式中某一部分式子,用另外的一个字母来替换,这叫换元法.分析本题的已知条件是以连比形式出现,可引入参数k,用它表示连比的比值,以便把它们分割成几个等式.x=(a-b)k,y=(b-c)k,z=(c-a)k.所以x+y+z=(a-b)k+(b-c)k+(c-a)k=0.u+v+w=1,①由②有把①两边平方得u2+v2+w2+2(uv+vw+wu)=1,所以u2+v2+w2=1,即两边平方有所以4.利用非负数的性质求值若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.例8 若x2-4x+|3x-y|=-4,求y x的值.分析与解x,y的值均未知,而题目却只给了一个方程,似乎无法求值,但仔细挖掘题中的隐含条件可知,可以利用非负数的性质求解.因为x2-4x+|3x-y|=-4,所以x2-4x+4+|3x-y|=0,即(x-2)2+|3x-y|=0.所以y x=62=36.例9 未知数x,y满足(x2+y2)m2-2y(x+n)m+y2+n2=0,其中m,n表示非零已知数,求x,y的值.分析与解两个未知数,一个方程,对方程左边的代数式进行恒等变形,经过配方之后,看是否能化成非负数和为零的形式.将已知等式变形为m2x2+m2y2-2mxy-2mny+y2+n2=0,(m2x2-2mxy+y2)+(m2y2-2mny+n2)=0,即(mx-y)2+(my-n)2=0.5.利用分式、根式的性质求值分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明.例10 已知xyzt=1,求下面代数式的值:分析直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.解根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.同理分析计算时应注意观察式子的特点,若先分母有理化,计算反而复杂.因为这样一来,原式的对称性就被破坏了.这里所言的对称性是分利用这种对称性,或称之为整齐性,来简化我们的计算.同样(但请注意算术根!)将①,②代入原式有练习六2.已知x+y=a,x2+y2=b2,求x4+y4的值.3.已知a-b+c=3,a2+b2+c2=29,a3+b3+c3=45,求ab(a+b)+bc(b+c)+ca(c+a)的值.5.设a+b+c=3m,求(m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)的值.8.已知13x2-6xy+y2-4x+1=0,求(x+y)13·x10的值.。
因式分解的常用方法
因式分解的常用方法因式分解是一种将一个数、一个代数式或一个多项式表达为乘积形式的方法。
它在数学中有着广泛的应用,尤其在代数运算和方程的求解中起着重要的作用。
以下是因式分解的常用方法:一、因式分解整数:1.分解质因数法:将一个正整数分解为若干个质因数的乘积。
例如,将60分解为质因数的乘积:60=2×2×3×52.综合除法法:用综合除法将一个整数除以数列中的质数,直到商为1为止,最后将所除的质数写成因数的乘积。
例如,将60分解为质因数的乘积:60=2×2×3×5二、因式分解代数式:1.提公因式法:将一个代数式中的公因式提出来,写成公因式与余因式的乘积形式。
例如,将2x+4y分解为公因式与余因式的乘积:2x+4y=2(x+2y)。
2.差的平方公式:对于具有形式a^2-b^2的二次差,可以分解为(a+b)(a-b)的乘积形式。
例如,将x^2-4分解为差的平方公式:x^2-4=(x+2)(x-2)。
3.和的平方公式:对于具有形式a^2+2ab+b^2的二次和,可以分解为(a+b)^2的乘积形式。
例如,将x^2+6x+9分解为和的平方公式:x^2+6x+9=(x+3)^24.两个平方差公式:(1)平方差的平方根公式:对于一个具有形式a^2-b^2的二次差,可以分解为两个平方根的乘积形式(a+b)(a-b)。
例如,将9x^2-4分解为平方差的平方根公式:9x^2-4=(3x+2)(3x-2)。
(2)平方差公式:对于一个具有形式a^2-b^2的二次差,可以分解为两个平方和的乘积形式(a+b)(a-b)。
例如,将25x^2-16分解为平方差公式:25x^2-16=(5x+4)(5x-4)。
三、因式分解多项式:1.提公因式法:将一个多项式中的公因式提出来,写成公因式与余因式的乘积形式。
例如,将2x^2+4xy分解为公因式与余因式的乘积:2x^2+4xy=2x(x+2y)。
初中常用因式分解公式
初中常用因式分解公式编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初中常用因式分解公式)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初中常用因式分解公式的全部内容。
初中常用因式分解公式2013。
6.6一.因式分解概念:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
二.因式分解方法:1、提公因法如果一个多项式的各项都含有相同因式,那么就可以把这个相同因式提出来,从而将多项式化成两个因式乘积的形式。
例1、分解因式 x2-2x解:x2-2x =x(x —2)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式.例2、分解因式a2+4ab+4b 解:a2 +4ab+4b =(a+2b)(a+2b) 完全平方公式最常用的公式:(1)(a+b)(a-b) = a2-b2 -—-———-—-a2—b2=(a+b)(a-b);(2) (a±b)2 = a2±2ab+b2—-— a2±2ab+b2=(a±b)2;(3) (a+b)(a2-ab+b2) =a3+b3--——-- a3+b3=(a+b)(a2-ab+b2);(4) (a-b)(a2+ab+b2) = a3—b3 --—--—a3—b3=(a-b)(a2+ab+b2).(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2—ab-bc—ca);3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m +5n—mn-5m 解:m +5n—mn—5m= m -5m —mn+5n = (m -5m )+(-mn+5n) =m(m—5)—n(m-5) =(m—5)(m-n)注意该方法的核心是分组后能提取公因式!4、十字相乘法对于mx +px+q 形式的多项式,如果a×b=m ,c×d=q 且ac+bd=p ,则多项式可因式分解为(ax+d)(bx+c )例4、分解因式7x 2 -19x —6分析: 1 -3 7 2 交差相乘再相加 2—21=-19解:7x 2 -19x-6=(7x+2)(x-3)5、配凑法 对于那些不能利用公式法的多项式,有的可以利用将其配成一个我们已经会的分式分解方法,然后就能将其因式分解.例5、分解因式解原式= = = 到这儿我们就可以提公因式了 ==6、拆、添项法 可以把多项式拆成若干部分,再进行因式分解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中常用因式分解公式
2013.6.6
一.因式分解概念:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
二.因式分解方法:
1、提公因法
如果一个多项式的各项都含有相同因式,那么就可以把这个相
同因式提出来,从而将多项式化成两个因式乘积的形式。
例1、分解因式x2-2x
解:x2-2x =x(x -2)
2、应用公式法
由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a2 +4ab+4b
解:a2 +4ab+4b =(a+2b)(a+2b)完全平方公式
最常用的公式:
(1)(a+b)(a-b) = a2-b2 ---------a2-b2=(a+b)(a-b);
(2) (a±b)2 = a2±2ab+b2——— a2±2ab+b2=(a±b)2;
(3) (a+b)(a2-ab+b2) =a3+b3------ a3+b3=(a+b)(a2-ab+b2);
(4) (a-b)(a2+ab+b2) = a3-b3 ------a3-b3=(a-b)(a2+ab+b2).
(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;
(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);
3、分组分解法
要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)
例3、分解因式m +5n-mn-5m
解:m +5n-mn-5m= m -5m -mn+5n
= (m -5m )+(-mn+5n)
=m(m-5)-n(m-5)
=(m-5)(m-n)
注意该方法的核心是分组后能提取公因式!
4、十字相乘法
对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)
例4、分解因式7x2 -19x-6
分析: 1 -3
7 2
交差相乘再相加2-21=-19
解:7x2 -19x-6=(7x+2)(x-3)
5、配凑法
对于那些不能利用公式法的多项式,有的可以利用将其配成一个我们已经会的分式分解方法,然后就能将其因式分解。
例5、分解因式4323+-x x
解原式=444323++--x x x x
=)44()43(2++--x x x x
=)1(4)4)(1(++-+x x x x 到这儿我们就可以提公因式了 =)44)(1(2+-+x x x
=2)2)(1(-+x x
6、拆、添项法
可以把多项式拆成若干部分,再进行因式分解。
例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)
解:bc(b+c)+ca(c-a)-ab(a+b)
=bc(c-a+a+b)+ca(c-a)-ab(a+b)
=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)
=c(c-a)(b+a)+b(a+b)(c-a)
=(c+b)(c-a)(a+b)
7、 求根法
令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x -x )
例7、分解因式x 2 +x -2
解:令f(x)= x 2 +x -2=0
通过综合除法可知,f(x)=0根为 -2,1
则x 2 +1x -2= (x+2)(x-1)
加粗部分是关键,务必多加注意!
三.基础训练;
对下列各因式就行分解
(1)4a2-b2+6a-3b;(2)x3-2x2-3x;(3)4x(a-b)+(b2-a2);(4)x2-x-2;
(5) x2+y2+z2+2xy+2xz+2yz; (6)x+5y-xy-5x;。