人教版五年级上册多边形的面积《组合图形面积》

合集下载

第六单元 多边形的面积 —组合图形的面积

第六单元 多边形的面积 —组合图形的面积
5 × 7 - 2.5 × 2÷2 × 2 =35 - 5 =30(m2)
我的收获
计算组合图形的面积,一般是把它 们分割或添补成基本图形,如长方形、 正方形、三角形、梯形等,再计算它们 的面积之和或差。
这是我们学校将要开辟的一块草坪,如下图。 你能算出它的面积吗?
人教新课标五年级数学上册
长方形面积=长×宽 S=ab
正方形面积=边长×边长 S=a2
猜一猜,里面 都有哪些平面 图形?
平行四边形的面积=底×高 S=ah
三角形的面积=底×高÷2 S=ah ÷2
梯形的面积=(上底+下底) × 高÷2 S=(a+b) ×h ÷2
这些都是简单的、基本的图形。
由几个简单的图形组合而成的图形叫组合图形。
3m
7m
7m
7m
分割法
4m
6m 3m
7m
添补法
2m
5m
右图表示的是一间房子
侧面墙的形状。它的面
积是多少平方米?
5m
可以把它看成一个正方 形和一个三角形的组合 。
2m
5m
我的方法是:
5m
侧面墙的面积=(正方形面积)+( 三角形面积) 5×5+5×2÷2
=25+5 =30( m2 ) 答:它的面积是30平方米
它们分别是由哪些图形组成的?
这些都叫做什么图形呢? 组合图形
小华家新买了新房,计划在客厅和餐
厅铺木地板(平面图如下)。请大家帮他 出一下主意如何才能求出他家的地面面积?
4m
6m
四人一小组讨论: 可以把这个组合图形 转化成哪几个简单图 形,可以边说边画。
7m
3m
4m4mຫໍສະໝຸດ 4m6m6m

人教版五年级数学上册第六单元多边形的面积第4课时组合图形的面积

人教版五年级数学上册第六单元多边形的面积第4课时组合图形的面积
S=(a+b) ×h ÷2
第二步 新知引入
认识组合图形。
由几个简单的图形组合而成的图形叫组合图形。
阅读课本99页内容。
我们把这样的图形叫做组合图形。
少先队队旗可以看成是由哪些图 形组合而成的?
由两个完全一样 的梯形组合成的。
由一个长方形和 两个完全一样的 三角形组合成的。
一个长方形去 掉一个三角形 而得到的图形。
RJ 5年级上册
教材习题
1.新丰小学有一块菜地,形状如右图。这块菜地的面积是多 少平方米?(选题源于教材P101第1题)
50×33+35×12÷2=1860(m2) 答:这块菜地的面积是1860m2。
2.一面中国少年先锋队中队旗的面积是多少?
80×(30+30)-(30+30)×20÷2 =4200(cm2) 答:一面中国少年先锋队中队 旗的面积是4200cm2。 其他算法略。 (选题源于教材P101第2题)
= 4×2÷2
= 4(cm2)
4 + 4 = 8(cm2)
8cm
方法三:拼的方法
4cm
B
(8÷2)×(4÷2)
A
= 4×2
= 8(cm2 )
2.在一块梯形的地中间有一个长方形的游泳池,其 余的地方是草地。+40)×30÷2-30×15 = 110×30÷2-450 = 3300÷2-450 = 1650-450 = 1200(m2)
长方形面积 =(5+2)×5 = 7×5 = 35(m2)
两个三角形面积 = 5×2÷2 = 5(m2) 房子侧面面积 = 35-5 = 30(m2)
小结
方法一
方法二
方法三
方法四
解决组合图形的面积可以采取三种方法,就是 分、拼、挖。

新课标人教版数学五年级上册第六单元《多边形的面积》教材解读PPT

新课标人教版数学五年级上册第六单元《多边形的面积》教材解读PPT
《多边形的面积》教材解读
新人教版数学五年级上册第六单元
数与代数 图形与几何 统计与概率 综合与实践
目录 1
2 3 4 5
本单元的教学内容主要有:平行四边形的面积、三角形的 面积、梯形的面积、组合图形的面积、不规则图形面积的估计。
平行四边形、三角形和梯形面积计算是在学生掌握了这些 图形的特征以及长方形、正方形面积计算的基础上学习的,它 们是进一步学习圆面积和立体图形表面积的基础。到这一单元 结束,多边形面积的计算已经基本结束。
用数格子的方法求面积。面积计算的基本方法 就是单位面积度量法。这在学习长、正方形面 积计算时已经使用过,但是平行四边形的面积 该如何数?这是一个新问题。教材给出提示, 不满一格的都按半格计算。
通过同时数一个长方形和一个平行四边形的面 积,再对它们的底(长)、高(宽)和面积进 行比较,让学生观察:你发现了什么?沟通这 两个图形之间的联系,为学生进一步探寻平行 四边形面积的计算方法作准备。
学生通过观察主题图去发现认识的图形,巩固 和加深对已学过图形特征的认识,同时可以把 学习的内容与学生生活实际紧密联系起来,使 学生体会到自己生活的空间就是一个图形的世 界。
提出问题 探索问题 提供策略
从主题图中学校大门前的两个花坛(一个长方 形,一个平行四边形)引入一个实际问题:两个 花坛哪一个大?由于长方形面积学生已经会计 算了,那如何计算平行四边形面积呢?切入主 题。
主题图为本单元的学习提供现实的素材,图中 有要学习的各种图形。
教材呈现了一幅校园门口街景平面图,下部是 学校的大门内外,中部是街道,上部是住宅区。 首先让学生观察,然后根据聪聪提出的观察要 求“你发现了哪些图形?你会计算它们的面积 吗?”展开讨论。这样把本单元教学与已有图 形的认识联系起来,同时引入面积计算的教学。

五年级上册第五单元多边形的面积4组合图形的面积

五年级上册第五单元多边形的面积4组合图形的面积
注意书写格式
5.初步应用
4分钟
1.探究92页4个图形的面积求法。
2.完成教材第93页做一做。
运用新知识解决新问题提升新能力
三、
展示交流
20分钟
6.展示我精彩
板演5分钟,讲解15分钟
先讨论交流,解疑释难,然后板演展示并讲解。看哪个小组写的又快又好,讲解的清晰明白。
1、2组代表板演并讲解环节3;
3、4组代表板演并讲解环节4;
二、
自主学习
12分钟
独学8分钟对学群学4分钟
2.阅读教材
2分钟
学习内容教材第92、93页。
感知组合图形的面积计算过程
阅读教材主题图,理解图意。
专心致志才能有形、三角形、梯形面积公式及推导过程
请注意数学概念语言的严密和规范
学结构
用结构明类别得其法
4.解决问题
3分钟
复习平行四边形、三角形、梯形面积公式及推导过程,自学课本P92
5、6组代表板演并讲解环节5.
烂熟于心才能享受脱稿展示的潇洒
四、
点拨升华
6分钟
7.点拨我提升
6分钟
请同学们回顾本节课的知识,尝试画一下知识结构图吧~
图形名称
面积公式(文字)
面积公式(字母)
长方形
正方形
平行四边形
三角形
图形
零星知识结构化
知识才能学到家
五、
课堂作业
7分钟
8.作业当堂清
7分钟
1.想想生活中哪些地方有组合图形。
五年级上册第五单元《多边形的面积》导学案4
课题
组合图形的面积
课型
新授课
编制人
吴先春
班级
姓名
时间

人教版数学五年级上册第6单元《多边形的面积 4.组合图形的面积 第2课时》教案

人教版数学五年级上册第6单元《多边形的面积 4.组合图形的面积  第2课时》教案

人教版数学五年级上册第6单元《多边形的面积 4.组合图形
的面积第2课时》教案
一、教学目标
1.知识与技能:掌握组合图形的面积计算方法。

2.过程与方法:培养学生综合分析问题的能力。

3.情感态度价值观:培养学生合作学习、勇于探究的态度。

二、教学重难点
1.教学重点:掌握组合图形的面积计算方法。

2.教学难点:理解和应用组合图形面积计算方法解决问题。

三、教学过程
1. 导入新课
通过展示多个组合图形的图片,引导学生了解组合图形是由哪些基本图形组合
而成的。

2. 学习新知识
1.引导学生观察例题:一个由长方形和两个三角形组合而成的图形,让
学生尝试计算其面积。

2.教师进行讲解:介绍组合图形的面积计算方法,例如将复杂图形分解
为简单图形计算各部分面积再相加。

3. 分组合作
安排学生分组,让他们选择不同的组合图形进行面积计算,鼓励他们相互讨论、合作解决问题。

4. 总结归纳
让学生展示他们计算的过程和结果,引导他们总结组合图形面积计算的方法和
技巧。

四、课堂作业
练习册上相关练习题目,完成课后作业。

五、板书设计
•组合图形的面积计算方法
•分解为简单图形计算
•面积计算公式
六、教学反思
本节课通过引导学生观察、分析、计算组合图形的面积,培养了他们综合运用所学知识的能力。

在后续教学中,可以引导学生设计更复杂的组合图形进行面积计算,拓展他们的思维。

人教版小学数学五年级上册第六单元《多边形的面积 组合图形的面积》教学设计(含教学反思)

人教版小学数学五年级上册第六单元《多边形的面积  组合图形的面积》教学设计(含教学反思)

第6单元多边形的面积第4课时组合图形的面积【教学内容】教材P97例4。

【教学目标】1.结合生活实际认识组合图形,会把组合图形分解为学过的图形并计算面积。

2.综合运用平面图形面积计算的知识,进一步发展学生的空间观念。

3.培养学生认真观察、独立思考的能力。

【重点难点】重点:理解组合图形的多种面积计算方法,会找出计算每个简单图形所需的条件。

难点:根据组合图形的条件,有效地选择计算组合图形面积的方法。

【教学过程】一、情境导入师:在实际生活中,有些图形是由几个简单的图形组合而成的。

课件出示教材P97上各种图形。

师:下面这些组合图形里有哪些学过的图形?学生自由交流。

师:这节课我们就一起来学习求组合图形的面积。

(板题:组合图形的面积)二、探究新知课件出示教材P97例4。

1.分析题意。

师:读题,结合图说一说你得到了哪些信息。

【学情预设】已知一些边的长度,要求这个组合图形的面积。

师:怎样计算出这个组合图形的面积?2.探索组合图形面积的计算方法。

学生小组合作学习,交流讨论,集体汇报。

【学情预设】预设1:把组合图形分成一个正方形和一个三角形,先分别算出正方形和三角形的面积,再相加。

(课件同步展示图片)5×5+5×2÷2=25+5=30(m2)预设2:把这个组合图形分成两个完全一样的梯形。

先算出一个梯形的面积,再乘2就可以了。

(课件同步展示图片)(5+5+2)×(5÷2)÷2×2=12×2.5÷2×2=30(m2)教师鼓励学生算法的多样化,并选择自己喜欢的方法计算。

3.小结归纳。

师:回顾刚才的解题过程,你能说一说计算组合图形面积的方法吗?小组讨论,集体汇报。

师生共同小结:要根据已知条件对图形进行分解,转化成已经学过的简单图形,先分别计算出它们的面积,再求和或差。

三、巩固拓展1.计算下面图形的面积。

(单位:厘米)学生独立完成,集体订正。

新人教版小学五年级数学上册 第六单元 多边形的面积 第四节 组合图形的面积 公开课教学设计

新人教版小学五年级数学上册   第六单元  多边形的面积  第四节  组合图形的面积   公开课教学设计

4 组合图形的面积教学设计设计说明:组合图形的面积是在学生学习了长方形、正方形、平行四边形、三角形和梯形的面积计算的基础上进行教学的,是这些知识的发展,也是日常生活中经常需要解决的问题。

1、鼓励学生进行自主探究,充分发挥学生的主体作用。

根据《数学课程标准》的理念,在教学过程中,要充分发挥学生的主体作用,相信学生的能力,鼓励学生进行自主探究活动。

通过学生的自主探究活动,使学生有更多的发展空间,最大限度地提高学生的观察、思考和探究能力,增强学生学习数学的兴趣。

本课时的重点是使学生发现、理解并掌握计算简单组合图形面积的方法和策略,所以在教学中,重点放在让学生理解怎样把简单的组合图形分割或添补成已学过的图形,明确计算组合图形面积的方法。

2、组织学生动手操作,培养学生的估算意识。

《数学课程标准》指出:估算在日常生活和数学学习中都有着十分广泛的应用,培养学生的估算意识,发展学生的估算能力,让学生拥有良好的数感,具有重要的价值。

不规则图形不像规则图形,可以直接运用面积计算公式,所以我们只能估算出它的面积。

本节课的教学设计是让学生选择自己喜欢的估算方法,通过“数一数、比一比、想一想”得出数方格的方法,或者是将树叶转化成近似的平行四边形来估算,重点是让学生经历解决估算不规则图形面积的全过程,培养学生的估算意识,掌握估算的方法,体会估算策略和方法的多样性,并通过回顾与反思积累数学活动经验和方法。

教学目标:知识与能力:1、学生理解组合图形的含义,掌握组合图形面积的计算方法,并能正确的计算组合图形的面积。

2、培养学生的分析、综合能力。

过程与方法:经历组合图形的拼拆过程,体会各种图形之间的内在联系,知道生活中物体的组合规律。

情感态度与价值观:在学习活动中,体验图形之间组合关系,激发学习的兴趣,培养学生的审美观念。

教学重点:正确的计算组合图形的面积。

教学难点:掌握组合图形的拆分和组合,培养学生的空间观念。

教学准备:PPT课件等。

人教版五年级上《组合图形的面积》教案

人教版五年级上《组合图形的面积》教案

第六单元多边形的面积第4课时—组合图形的面积1 教学内容《义务教育课程标准实验教科书数学》(人教版)五年级上册第99页“组合图形的面积”。

2 教学目标2.1 知识与技能:明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。

2.2过程与方法:能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

2.3 情感态度与价值观:渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。

3 教学重点/难点/考点3.1 教学重点:在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。

3.2 教学难点:根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。

3.3 考点分析:能判断图形是由那些图形组合而成,并应用相应的公式解决实际问题,4 教学目标依据4.1 课程标准的要求:《新课标》指出:“学生有效的教学活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。

要做到把“生活经验数学化,数学问题生活化。

”变“课堂教学”为“课堂生活”,就必须把握教学规律、用活教材。

故而,教师应向学生提供充分从事教学活动的机会,帮助他们在自主探索与合作交流的过程中真正理解和掌握数学知识与技能、数学思想和方法,并获得数学活动经验。

根据这一教学理念,本课采用“主导-主体相结合”为特征的探究性教学模式,让学生在观察、猜想、验证、归纳、交流中获得新知并提高能力。

4.2 教材分析:《组合图形的面积》一课是《义务教育课程标准实验教科书数学》(人教版)五年级上册的教学内容。

在三年级时,学生已经学习了长方形、正方形的面积,在本册本单元也学习了平行四边形、三角形与梯形的面积计算,本课时的组合图形面积的计算是这方面知识的发展,也是日常生活中经常需要解决的问题。

本节课让学生经历从多角度思考,运用多种方法解决问题的过程,使学生展开讨论,根据自己已有的经验,逐步探讨出不同的方法,找到合理解决问题的策略;在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。

人教版五年级数学上册 第六单元 多边形的面积 第4课时 组合图形的面积 【名师教案】

人教版五年级数学上册 第六单元 多边形的面积 第4课时 组合图形的面积 【名师教案】

人教版五年级数学上册第六单元多边形的面积第4课时组合图形的面积教学目标】1.明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。

2.能根据各种组合图形的条件,有效地选择计算方法并进行正确解答。

3.渗透“转化”的数学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。

【教学重、难点】重点:在探索活动中,理解组合图形面积计算的多种方法,会找出计算每个简单图形的面积所需的条件。

难点:选择有效的计算方法解决实际问题。

【教学准备】七巧板、课件、简单图形学具,少先队中队旗实物。

【教学过程】一、七巧板拼图游戏,初步感知组合图形师:课前请大家用一些我们已学的简单图形的小纸板做一套七巧板。

都做好了吗?都有些什么图形?(预设)有正方形、长方形、平行四边形、三角形、梯形。

师:怎样计算它们的面积?指名让学生说出正方形、长方形、平行四边形、三角形、梯形的面积计算公式。

师:请用你准备的七巧板,动手摆一个图案,并说说你的图案都用了哪些简单图形?(教师参与到学生的七巧板活动中,特别是要关心后进生的动手情况。

)师:同桌互相看一看、说一说,你们拼的这个图形是由哪些图形拼成的?学生活动。

师:大家都有了自己的设计成果,来展示一下吧!选取几个有创意的图案在实物投影仪上展示,让学生分别汇报。

师:请仔细观察这些图案,它们有什么共同的地方?让学生发表意见。

师:说得真好!像这样由两个或两个以上简单的图形组合而成的图形,我们把它称为组合图形,今天我们就一起来探究组合图形面积的计算方法。

(板书课题:组合图形的面积)二、探索活动,寻求新知师:生活中有许多组合图形,老师准备了3幅图形,大家观察一下,这些组合图形是由哪些简单图形组成的?如果要求它们的面积可以怎样求?课件逐一出示图一、图二、图三,让学生发表意见。

预设:⎩⎪⎨⎪⎧图一:是由三角形、正方形再加上正方形中间的小正方形组成的,面积=三角形面积+正方形面积-小正方形面积。

五年级数学上册《多边形的面积--组合图形的面积》课件

五年级数学上册《多边形的面积--组合图形的面积》课件
(8÷2) ×(4÷2) = 4×2 = 8(cm2)
多边形的面积
B A
课堂练习
多边形的面积
在一块梯形的地中间有一个长方形的游泳池,其余
的地方是草地。草地的面积是多少平方米?
用什么方法解决这道题?
课堂练习
挖的方法 (70+40) ×30÷2-30×15
多边形的面积
= 110×30÷2-450 = 3300÷2-450
= 1650-450
= 1200(m2) 答:草地的面积是 1200 平方米。
课堂练习
多边形的面积
用不同的方法计算下图的面积。(单位:厘米) (用四种方法)
方法一: 3×4+(4+10)×(8-3)÷2 =12+35 =47(平方厘米)
方法二: 8×4+(8-3)×(10-4)÷2
=32+15 =47(平方厘米)
多边形的面积
探究新知
多边形的面积
方法四:从长方形中挖走两个小三角形
长方形面积 =(5+2) ×5 = 7×5 = 35 (m2)
两个三角形面积 = 5×2÷2 = 5(m2) 房子侧面面积 = 35 - 5 = 30(m2)
探究新知
多边形的面积
说一说:求组合图形面积的方法。
方法一
方法二
方法三
方法四
如图:已知长方形的长是8 cm,宽是4 cm,A、B 两点分别为长方形长、宽上的中点,求阴影部分的 面积是多少平方厘米?
B
A
用什么方法解决这道题,看谁的方法最巧妙?
课堂练习
多边形的面积
方法一:挖的方法
8×4 = 32(cm2)
B
(8÷2) ×4÷2 = 8(cm2)

人教版数学五年级上册第6单元《多边形的面积 4.组合图形的面积 第1课时》教案

人教版数学五年级上册第6单元《多边形的面积 4.组合图形的面积  第1课时》教案

人教版数学五年级上册第6单元《多边形的面积 4.组合图形
的面积第1课时》教案
一、教学目标
1.知识与技能:能够计算组合图形的面积。

2.过程与方法:能够灵活运用各种方法计算组合图形的面积。

3.情感态度价值观:培养学生观察问题、解决问题的能力,锻炼学生的
逻辑思维,培养学生的团队合作精神。

二、教学重点
1.计算组合图形的面积。

2.运用所学方法解决实际组合图形问题。

三、教学难点
1.灵活运用多边形面积计算方法解决组合图形面积问题。

四、教学准备
1.教材:人教版数学五年级上册
2.工具:黑板、彩色粉笔、教学PPT
五、教学过程
第一步:导入
1.老师通过一道简单的例题导入本节课内容,激发学生的学习兴趣。

第二步:讲解
1.老师讲解组合图形的面积计算方法,引导学生理解思路。

第三步:示范
1.老师通过示范计算几个典型的组合图形的面积,让学生更加清晰理解。

第四步:练习
1.学生进行练习,老师巡视指导,及时纠正错误。

第五步:总结
1.老师对本节课内容进行总结,强调重点,帮助学生回顾。

六、作业
1.布置作业:要求学生完成课后练习册上相关练习。

七、课堂小结
1.总结本节课教学内容,鼓励学生继续努力。

八、教学反思
1.教师对本节课的教学效果进行评估和反思,为下节课的教学做准备。

第六单元多边形的面积组合图形篇【七大考点】-五年级数学(解析版)人教版

第六单元多边形的面积组合图形篇【七大考点】-五年级数学(解析版)人教版

篇首寄语我们每位老师都希望把最好的教学资料留给学生,但面对琳琅满目的资料时,总是费时费力才能找到自己心仪的那份,编者也常常为此苦恼。

于是,编者就常想,如果是自己来创作一份资料又该怎样?再结合自身教学经验和学生实际情况后,最终创作出了一个既适宜课堂教学讲解,又适宜课后作业练习,还适宜阶段复习的大综合系列。

《2023-2024学年五年级数学上册典型例题系列》是基于教材知识点和常年考点真题总结与编辑而成的,该系列主要分为典型例题篇、专项练习篇、单元复习篇、分层试卷篇等四个部分。

1.典型例题篇,按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。

2.专项练习篇,从高频考题和期末真题中选取专项练习,其优点在于选题经典,题型多样,题量适中。

3.单元复习篇,汇集系列精华,高效助力单元复习,其优点在于综合全面,精炼高效,实用性强。

4.分层试卷篇,根据试题难度和不同水平,主要分为基础卷、提高卷、拓展卷三大部分,其优点在于考点广泛,分层明显,适应性广。

黄金无足色,白璧有微瑕,如果您在使用资料的过程中有任何宝贵意见,请留言于我改进,欢迎您的使用,谢谢!101数学工作室2023年11月1日2023-2024学年五年级数学上册典型例题系列第六单元多边形的面积·组合图形篇【七大考点】专题解读本专题是第六单元多边形的面积·组合图形篇。

本部分内容是组合图形的面积,题目综合性强,难度较大,建议根据学生掌握情况选择性进行讲解部分考点,一共划分为七个考点,欢迎使用。

目录导航目录【考点一】不规则图形的面积 (3)【考点二】加法分割思路求图形的面积:S=S1+S2 (7)【考点三】减法添补思路求图形的面积:S=S整体-S空白 (10)【考点四】容斥原理 (12)【考点五】平移法 (15)【考点六】差不变原理 (17)【考点七】一半模型:重叠等于未覆盖 (20)典型例题【考点一】不规则图形的面积。

小学数学人教版(2014秋)五年级上册第六单元 多边形的面积组合图形的面积-章节测试习题

小学数学人教版(2014秋)五年级上册第六单元 多边形的面积组合图形的面积-章节测试习题

章节测试题1.【答题】如图,阴影部分与空白部分面积相比较().A.相等B.空白部分的面积大C.阴影部分的面积大【答案】A【分析】由题意可知:因为三个阴影三角形的面积和与三个空白三角形的面积和都等于平行四边形的面积的一半,所以三个阴影三角形的面积和与三个空白三角形的面积和相等,据此即可进行解答.【解答】因为三个阴影三角形的面积和与三个空白三角形的面积和都等于平行四边形的面积的一半,所以三个阴影三角形的面积和与三个空白三角形的面积和相等.选A.2.【答题】在如图梯形中,甲的面积()乙的面积。

A.大于B.小于C.等于D.无法确定【答案】C【分析】由图可知,两个阴影三角形分别加上顶部的空白三角形后组成两个新的三角形,由于这两个新三角形是等底等高的,面积相等,所以两个阴影三角形的面积是相等的。

【解答】两个阴影三角形分别加上顶部的空白三角形后组成两个新的三角形,这两个新三角形是等底等高,面积相等,空白部分是公共部分,所以两个阴影三角形的面积相等;选C.3.【题文】求阴影部分的面积。

【答案】1300平方分米和330平方厘米【分析】(1)阴影部分的面积=长方形的面积-梯形的面积,利用长方形的面积=长×宽和梯形的面积=(上底+下底)×高÷2即可求解;(2)阴影部分的面积=梯形的面积-长方形的面积,利用长方形的面积公式长方形的面积=长×宽和梯形的面积=(上底+下底)×高÷2即可求解.【解答】52×34-(52+26)×12÷2=1300(平方分米)(20+40)×15÷2-15×8=330(平方厘米)答:阴影部分的面积分别是1300平方分米和330平方厘米。

4.【题文】如图,大正方形的边长是5厘米,小正方形的边长是3厘米,求阴影部分的面积.【答案】阴影部分的面积是12.5平方厘米【分析】要求阴影部分的面积,只要求出梯形CDFE和三角形BCD面积和,然后减去三角形BEF的面积,即可求得阴影部分的面积.【解答】(5+3)×3÷2+5×5÷2-3×(3+5)÷2=12.5(平方厘米)答:阴影部分的面积是12.5平方厘米.5.【题文】某市有一块工业园,地面形状如图,根据图上所标的长度计算这块地有多少平方米?【答案】125000平方米【分析】观察图形可知,这个工业园的面积等于上面的梯形的面积与下面的三角形的面积之和,据此根据梯形和三角形的面积公式进行计算即可解答问题。

人教版五年级数学上册第六单元多边形的面积 《组合图形的面积》

人教版五年级数学上册第六单元多边形的面积 《组合图形的面积》
已经学过的几种平面图形的面积计算公式
b
a
S=ab
a
a
S=a×a
h
a
S=ah
h
a
S=ah÷2
a
b
h
ba
S=(a+b)h÷2
本节课同学们将会
1.知道什么是组合图形 2.怎样计算组合图形的面积
像这样由几个简单的图形 组合而成的图形叫做组合 图形
这些组合图形是由哪些简单图形组成的?
图一
图二
图三
1、分割(添补)。 2、分别求。 3、求和(求差)。
ห้องสมุดไป่ตู้
组合图形面积怎样计算?
是由哪些简单图形组成的?同学们分组讨 论,四人一组。
中队旗面积 = 梯形面积 + 梯形面积
中队旗面积 = 长方形面积 + 三角形面积 × 2
分割法
中队旗面积 = 梯形面积 + 三角形面积
添补法
中队旗面积 = 长方形面积 — 三角形面积
我们身边的组合图形
例4:下图表示的是一间房子侧面墙的形状。
它的面积是多少平方米?
方法一:
5 2

5米 米
例4:
方法二:
米 5米

5 2
计算组合图形的面积的方法:
1、分割(添补)。 2、分别求。 3、求和(求差)。
利用新知识解决生活中的问题
1、新丰小学有一块菜地,形状如下图,这块菜 地的面积是多少平方米
50m
33m
⑵爱动脑筋的学生
要做一面这样的队旗需要多什么布?你能想出 几种方法?
3、利用今天所学的知识,选择一个 或多个完成以下练习。
我想做个________学生

五年级上册数学讲义-多边形的面积-人教版(含答案)

五年级上册数学讲义-多边形的面积-人教版(含答案)

多边形的面积学生姓名年级学科授课教师日期时段核心内容平行四边形面积、三角形面积#梯形的面积。

课型一对一教学目标理解各种平面图形的面积公式,会求各种平面图形的面积;能运用分割法、添补法、平移法、等积变形、间接计算等几种方法,求出多边形的面积。

重、难点求各种平面图形的面积;求组合图形的面积。

课首沟通提问:1、我们学习了哪几种平面图形?背诵它们的周长、面积公式。

2、求组合图形面积有哪几种常用的方法?知识导图课首小测1. 求下面各图中阴影部分的面积(单位:米)导学一:运用分割法、添补法、平移法、等积变形等方法,求多边形的面积。

知识点讲解 1:运用分割法、添补法求多边形面积。

运用分割法、添补法求多边形面积。

分割法:将一个多边形分割成两个或多个基本图形,再求这几个基本图形的面积和。

添补法:将一个多边形缺少的部分补上,变成一个基本图形,再求两个图形的面积差。

知识点讲解 2:运用平移法求多边形面积。

运用平移法求多边形面积。

平移法:当多边形中间出现大小均匀的间隔时,可将旁边零碎的图形平移后,拼成一个基本图形,再求面积。

知识点讲解 3:运用间接计算法或等积变形求多边形面积。

运用间接计算法或等积变形求多边形面积。

间接计算法:当一个图形不规则时,它的面积难以直接求出,就用整个图形的面积减去空白部分面积来求它的面积。

等积变形法:将一个面积不容易计算的多边形变为一个面积容易计算的多边形。

例 1. 老师新买了一套房子,客厅大概是下图这种形状。

准备铺上地板砖,大家能帮老师计算一下客厅的总面积吗?例 1. 如图,平行四边形BCEF中,BC=8cm,直角三角形中,AC=10cm,阴影部分面积比三角形ADH的面积大8平方厘米,求AH长多少厘米?我爱展示1.学校少先大队准备给每个班做一面“中队旗”,不知道该用多少布?请你帮忙。

2.求下图阴影部分的面积。

3.一块梯形草坪中间有一条长8m,宽1m的小路。

这个草坪的面积是多少平方米?4.下图中每个长方形小格的面积都是1平方厘米,求阴影部分的面积。

人教版数学五年级上册第六单元《多边形的面积4组合图形的面积》课件PPT

人教版数学五年级上册第六单元《多边形的面积4组合图形的面积》课件PPT
学以致用
12m
35m
33m
50m
S 平= ah
= 50×33=1650(m2)
S 三= a h ÷2
= 35×12÷2= 420÷2=210( m2 )
S组:
1650+210
=1860( m2)
新丰小学有一块菜地,形状如右图。这块菜地的面积是多少平方米?
学以致用
20
10
16
求下列图形的面积。(单位:cm)
12
(10+16) ×12÷2
20×(16-10) ÷2
+
=156+60
=216(cm2)
学以致用
计算组合图形的面积。
10-5=5(cm)10x5+(10+20)x5÷2=50+75=125(c㎡)
学以致用
(4+8)x4÷2=12x4÷2=48÷2=24(c㎡)答:阴影部分面积是24c㎡。
计算下面图形中阴影部分的面积。
学以致用
课堂小结
组合图形是由几个简单图形组合而成的。
1.把组合图形分割成已学过的简单图形,再算这些简单图形的面积的和,就是组合图形的面积。
2.估算不规则图形的面积可以先通过数方格确定面积的范围,再数一数满格的格数和不满格的格数;也可以转化为学过的图形来估算。
谢谢
探索新知
右图表示的是一间房子侧面墙的形状。它的面积是多少平方米?
我的算法是:
5×5+5×2÷2
=25+5
=30(㎡)
(5+2+5)×(5÷2)÷2×2
我的算法是:
=12×2.5÷2×2
=30(㎡)
可以把它看成一个正方形和一个三角形的组合。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20毫米
10 54×27—(20+30)×10÷2 =1458—50×10÷2 毫 米
=1458—250
=1208(平方毫米
30毫米 54毫米
毫 米
27
答:黑色部分的面积是1208平方毫米。
课堂小结
计算组合图形的面积时, 要根据图形本身的特点,灵 活地选择计算方法(分割法 和添补法)。
注意:分割后用加法 添补后用减法
4cm 8cm 4cm 8cm
测量并计算中队旗的面积
4、下图是一种机器零件的横截面图,求出画 斜线部分的面积是多少平方毫米。
20毫米
10毫米
30毫米
54毫米
54×27-(20+30)×10÷2 =1458-250 =1208(平方毫米)
27毫米
5、求阴影部分面积。
14米 3米
2米
8米 10米
12米
10m 20m
40m 24m 60m
30m
36m
2m 10m
S S S S S
=ab =a 2 =ah =ah÷2 =(a+b)h÷2
刷墙
粉刷一面墙,粉刷面积是多少平方 米?如果每平方米需用0.15千克涂料, 一共要用多少千克涂料?
5m
组合图形面积的计算
下图是一个机器零件横截面图,求黑色部分的面积
14×3÷2 + 10×12 -8×2 =1458-250 =1208(平方毫米)
一张硬纸板剪下4个边长是4厘米的小正方 形后,可以做成一个没有盖子的盒子。这 张硬纸板还剩下多大的面积?
26cm
20cm
下面各个图形可以分成哪些已学过的图形?
学校要油漆60扇教室的门的正面。 (单位:米) 需要油漆的面积一共是多少?
求下列图形中阴影部分的面积。
求下列图形中阴影部分的面积。
如图,有两个边长是8cm的正方形放在桌面 上,求被盖住的桌面的面积。
4m
6m 3m 7m
h s x b
4m
6-3=3m 6m
4×3=12(m2) 3 ×7=21(m2)
12+21=33( m2)
3m
7m
h s x b
4m
4×6=24( m2 )
3×3=9( m2 )
24+9=33 ( m2 )
6m
3m 7m 7-4=3m
h s x b
4m 6-3=3m 6m
(3+6)×4÷2=18( m2 )
(3+7)×3÷2=15 ( m2 )
18+15=33( m2 )
7-4=3m
3m
7m
h s x b
4m
7×6=42 (m2) 3×3=9 (m2)
42-9=33(m2)
6m 3m
7m
h s x b
有一块菜地的形状如图所示。①这块地 计算下列图形的面积 的面积是多少?②如果每平方米需施肥 40m 0.25kg,这块菜地共需施肥多少 kg?
小华家新买了住房,计划在客厅铺地板 (客厅平面图如下)。请你估计他家至少 要买多大面积的地板?再实际算一算。 4m
6m 3m
7m
4m
4m
6m 3m
6m 3m
7m
7m
分割成两个长方形
4m
4m
6m 3m
6m 3m
7m
7m
分割成两个梯形
补上一个小正方形
ห้องสมุดไป่ตู้
S S S S S
=ab 这是小华家客厅地面的平面图,现在准备在客 厅铺上木地板。小华的爸爸说:“你已经上五 =a 2 年级了,算算至少要买多少平方米的地板吧。” =ah 小华接受任务就开始思考,可他发现客厅的形 =ah÷2 状不是学过的平面图形。我们同学怎样才能帮 =(a+b)h÷2 小华算出客厅的面积呢?
相关文档
最新文档