热力学基本定律讲解

合集下载

化学热力学的基本定律

化学热力学的基本定律

化学热力学的基本定律化学热力学是研究化学反应中热现象的科学,它揭示了物质在化学反应中的热变化规律。

在化学热力学的研究中,有一些基本定律被广泛应用,帮助我们理解和预测化学反应中的热现象。

本文将介绍化学热力学中的基本定律,包括热力学第一定律、热力学第二定律和熵增定律。

热力学第一定律是热力学的基本定律之一,也称为能量守恒定律。

它表明在一个系统中,能量的总量是守恒的,能量既不能被创造也不能被毁灭,只能从一种形式转化为另一种形式。

热力学第一定律的数学表达式可以写为ΔU = q + w,其中ΔU表示系统内能的变化,q表示系统吸收或释放的热量,w表示系统对外界做功。

根据热力学第一定律,系统吸收热量时内能增加,释放热量时内能减少;系统对外界做功时内能减少,被外界做功时内能增加。

热力学第一定律的一个重要应用是热力学循环的分析。

热力学循环是指一系列经过一定步骤后最终回到原始状态的过程,常见的热力学循环包括卡诺循环、斯特林循环等。

通过热力学第一定律,我们可以分析热力学循环中能量的转化过程,计算循环的效率等重要参数,为工程实践提供理论依据。

热力学第二定律是热力学中的另一个基本定律,它揭示了自然界中热现象发生的方向性。

热力学第二定律有多种表述方式,其中最常见的是克劳修斯表述和开尔文表述。

克劳修斯表述指出热量不可能自发地从低温物体传递到高温物体,即热量不可能自发地从热源吸收而完全转变为功。

开尔文表述则指出在一个孤立系统中,不可逆过程的熵总是增加的,系统朝着熵增的方向发展。

熵增定律是热力学第二定律的一个重要推论,它表明在一个孤立系统中,不可逆过程的熵总是增加的。

熵是描述系统无序程度的物理量,熵增定律指出自然界中的过程总是朝着无序性增加的方向进行。

熵增定律也被称为熵不减定律,它揭示了自然界中熵增加的普遍趋势,是热力学第二定律的一个重要体现。

总的来说,化学热力学的基本定律包括热力学第一定律、热力学第二定律和熵增定律。

这些定律揭示了能量守恒、热现象发生方向性和熵增加的规律,帮助我们理解和预测化学反应中的热现象。

化学热力学的基本定律

化学热力学的基本定律

化学热力学的基本定律化学热力学是研究化学反应中能量变化和热力学性质的科学。

它是化学的一个重要分支,通过研究物质在不同条件下的能量变化,揭示了化学反应的本质和规律。

在化学热力学中,有一些基本定律被广泛应用于实际问题的解决和理论模型的建立。

一、热力学第一定律热力学第一定律,也称为能量守恒定律,是热力学中最基本的定律之一。

它表明在一个封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式。

换句话说,系统的内能变化等于系统所吸收或放出的热量与做功之和。

数学表达式为:ΔU = Q - W其中,ΔU表示系统内能的变化,Q表示系统吸收或放出的热量,W表示系统所做的功。

二、热力学第二定律热力学第二定律是描述自然界中不可逆过程方向性的定律。

它指出自然界中热量只能从高温物体传递到低温物体,而不能反向传递。

这个定律还提出了一个重要的概念——熵。

熵是描述系统无序程度的物理量,它随着时间的推移而增加。

数学表达式为:ΔS ≥ 0其中,ΔS表示系统熵的变化。

三、热力学第三定律热力学第三定律是描述物质在绝对零度时的性质的定律。

它指出当温度趋近于绝对零度时,物质的熵趋近于零。

也就是说,在绝对零度下,物质的无序程度最小。

这个定律对于研究低温物理和凝聚态物理非常重要,它揭示了物质在极低温下的行为和性质。

四、吉布斯自由能定律吉布斯自由能是描述系统在恒温恒压条件下可用能量的一种函数。

它是判断化学反应是否可逆进行的重要指标。

根据吉布斯自由能定律,当系统的吉布斯自由能减小时,化学反应是可逆的;当系统的吉布斯自由能增大时,化学反应是不可逆的。

数学表达式为:ΔG = ΔH - TΔS其中,ΔG表示系统的吉布斯自由能变化,ΔH表示系统的焓变,T表示温度,ΔS表示系统的熵变。

五、平衡常数定律平衡常数是描述化学反应平衡程度的物理量。

根据平衡常数定律,对于一个化学反应:aA + bB ⇌ cC + dD其平衡常数K可以通过以下公式计算:K = [C]c[D]d / [A]a[B]b其中,[A]、[B]、[C]、[D]分别表示反应物A、B和生成物C、D的浓度。

热力学的三大定律

热力学的三大定律

热力学的三大定律是热力学基本原理中的三个基本定理,它们对热力学的研究有着重要的意义。

三大定律的内涵深刻,各自有着不同的物理意义和应用场景。

下面,我们将逐一介绍这三个定律。

第一定律:能量守恒定律热力学第一定律(能量守恒定律)是热力学的最基本原理之一,它表明了能量不能被创造也不能消失,只能由一种形式转变为另一种形式。

也就是说,在任何物理过程中,系统中的能量的总量是守恒的。

如果能量从一个物理系统流出,那么就必须有等量的能量流入另一个物理系统,而不是在宇宙中消失。

这个定律还表明,能量的转移可以通过两种途径:热量传递和工作转移。

热量传递是指发生温度差时,系统中的热量会从高温区域流向低温区域的过程。

工作转移是指机械能可以被转化成其他形式的能量,例如电能、化学能或热能。

第二定律:热力学第二定律热力学第二定律是热力学基本原理中的一个非常重要的基本定理,它规定了自然界的不可逆过程。

热力学第二定律有多种表述,其中一种比较普遍的表述是符合柯尔莫哥洛夫-克拉芙特原理,即热力学第二定律表明了所有自然过程都是非平衡的,在任何自然过程中,总是存在一些能量转化的损失。

这个定律很大程度上影响了热力学的发展。

它是关于热力学过程不可逆性的集中表述。

热力学第二定律规定,热量只能从高温区域流向低温区域,自然过程总是向熵增加方向进行。

其意义在于说明热机的效率是受限的,这是由于机械能被转化成其他形式能量的过程存在热量和能量损失。

第三定律:热力学第三定律热力学第三定律是一个非常深刻的定律,它是热力学中的一个核心原理。

这个定律规定了绝对零度状态是不可能达到的。

绝对零度是指元素或化合物的热力学温度为零时,其原子或分子的平均热运动变为最小值的状态。

热力学第三定律是由瓦尔特·纳图斯于1906年提出的。

热力学第三定律的一个重要应用是在处理理想晶体的热力学问题时,可以将温度下限设为零开尔文(绝对零度)。

这个定律也为固体物理学的研究提供了基础理论。

大学热学物理知识点总结

大学热学物理知识点总结

大学热学物理知识点总结1.热力学基本定律热力学基本定律是热学物理的基础,它包括三个基本定律,分别是热力学第一定律、热力学第二定律和热力学第三定律。

(1)热力学第一定律热力学第一定律是能量守恒定律的热学表述,它规定了热力学系统能量的守恒性质。

简单地说,热力学第一定律表明了热力学系统能量的增减只与系统对外界做功和与外界热交换有关。

热力学第一定律的数学表达式为ΔU=Q-W,其中ΔU表示系统内能的增量,Q表示系统吸热的大小,W表示系统对外界所作的功。

由此可以看出,系统的内能变化量等于吸收热量减去做的功。

(2)热力学第二定律热力学第二定律是热力学系统不可逆性的表述,它规定了热力学系统内部的熵增原理,即系统的熵不会减小,而只会增加或保持不变。

简单地说,热力学第二定律表明了热力学系统内部的任何一种热力学过程都是不可逆的。

这意味着热力学系统永远无法使热量全部转化为功,总会有一部分热量被转化为无效热。

热力学第二定律还表明了热力学过程的方向性,即热量只能从高温物体传递到低温物体,而不能反向传递。

(3)热力学第三定律热力学第三定律规定了当温度趋于绝对零度时,任何物质的熵都将趋于一个有限值,这个有限值通常被定义为零。

简单地说,热力学第三定律表明了在绝对零度时,任何系统的熵都将趋于零。

热力学第三定律的提出对于热学物理的研究具有非常重要的意义,它为我们理解热学系统的性质提供了重要的基础。

2.热力学过程热力学过程是指热力学系统内部发生的一系列变化,包括各种状态参数的变化和热力学系统对外界的能量交换。

常见的热力学过程有等温过程、绝热过程、等容过程和等压过程等。

这些过程在日常生活以及工业生产中都有着广泛的应用。

(1)等温过程等温过程是指在恒定温度下进行的热力学过程。

在等温过程中,系统对外界做的功和吸收的热量之比是一个常数。

这意味着等温过程的压强和体积成反比,在P-V图上表现为一条双曲线。

常见的等温过程有等温膨胀和等温压缩等。

(2)绝热过程绝热过程是指在无热交换的情况下进行的热力学过程。

热力学基础原理解析

热力学基础原理解析

热力学基础原理解析热力学是物理学中的一个分支,研究的是热力学态,也就是宏观状态下的热学性质。

热力学有基本原理和基本概念,其中基本原理包括热力学第一定律和热力学第二定律。

本文将着重介绍热力学基础原理的解析和应用。

一、热力学第一定律热力学第一定律,也称为能量守恒定律。

能量守恒定律是指在一个封闭系统中,系统的能量总量不变。

这个定律是由玻尔兹曼在19世纪中叶提出的。

它表明,能量不能够被创建或者消灭,它只能够被转化为其他形式。

热力学第一定律可以用一个简单的公式来表示:ΔU = Q - W其中,ΔU是系统的内能变化量,Q是系统吸收的热量,W是系统对外做的功。

热力学第一定律表明系统的内能变化量等于系统吸收的热量与系统对外做的功的差值。

在热力学中,我们常常使用焓(enthalpy)来代替内能。

焓可以定义为系统内能与系统对外做功之和。

则热力学第一定律可以简单地写成:ΔH = Q + W其中,ΔH是系统的焓变化量,Q是系统吸收的热量,W是系统对外做的功。

二、热力学第二定律热力学第二定律是热力学的核心定律,也是能源效率的基本原理。

热力学第二定律描述了内在的热力学不可逆性,并被认为是物理学中最基本的原理之一。

热力学第二定律包括两个重要概念:熵(entropy)和能量的可用性。

熵是指能量的不可逆流动性。

它描述了系统在吸收热量和放出热量过程中发生的无序变化。

熵是一个度量系统混沌程度的因素,可以用热力学第二定律的数学表达式来描述。

热力学第二定律的数学表达式为:dS = dQ/T其中,dS是系统的熵增量,dQ是热量的微小增量,T是系统的温度。

能量的可用性是指能量是否能够被完全利用。

热力学第二定律指出,所有的能量都会自发地流向更高的熵状态。

这意味着,所有的能量都有一定的分散和无序性,不能百分百地被利用。

三、热力学基础原理的应用热力学基础原理在工程、化学、物理、生物领域都有广泛的应用。

热力学第一定律和第二定律对于工程和物理学都有极其重要的应用价值。

能量守恒定律 热力学第一定律

能量守恒定律 热力学第一定律

能量守恒定律热力学第一定律
能量守恒定律是热力学中的基本定律之一,也称为热力学第一定律。

它表明,在任何系统中,能量既不能被创造,也不能被毁灭,只能在不同形式之间转化。

换句话说,系统中的能量总量保持不变,即能量守恒。

这个定律适用于所有物理系统,包括热力学系统。

在热力学系统中,能量可以以多种形式存在,如热能、动能、势能、化学能等。

热力学第一定律表明,系统中的能量总量等于输入和输出的能量之和,即能量守恒。

因此,热力学第一定律可以用来描述热能的转移和转化。

例如,在一个封闭的容器中,当热源向其中输入热量时,其内部的能量总量增加,而当它向外界释放热量时,其内部的能量总量减少。

这个过程中,能量的总量始终保持不变。

总之,能量守恒定律是热力学中最基本的定律之一,它揭示了能量在物理系统中的本质和特性,具有重要的理论和实际意义。

- 1 -。

热力学3大定律

热力学3大定律

热力学3大定律一、热力学第一定律1. 内容- 也称为能量守恒定律。

其表述为:热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。

- 数学表达式为Δ U = Q+W,其中Δ U表示系统内能的变化量,Q表示系统吸收的热量,W表示外界对系统做的功。

如果系统对外界做功,则W取负值;如果外界对系统做功,则W取正值。

如果系统吸收热量,则Q取正值;如果系统放出热量,则Q取负值。

2. 实例- 例如在热机中,燃料燃烧产生热量Q,一部分热量转化为对外做的功W,另一部分热量被废气带走或者用来加热机器本身等,总的能量是守恒的。

- 再如对一定质量的理想气体进行等压膨胀过程,根据W = pΔ V(p是压强,Δ V是体积变化量),气体对外做功W>0,同时根据理想气体状态方程pV = nRT (n是物质的量,R是普适气体常量,T是温度),温度升高,内能Δ U>0,根据Δ U = Q+W,可知系统吸收热量Q=Δ U - W。

3. 意义- 它是自然界普遍的基本定律之一,从本质上表明了各种形式的能量在相互转换过程中的守恒关系,奠定了热力学的基础,也为能量的合理利用和转换提供了理论依据。

二、热力学第二定律1. 克劳修斯表述- 热量不能自发地从低温物体传到高温物体。

这里强调“自发”,如果有外界做功是可以实现热量从低温物体传到高温物体的,例如冰箱制冷,是通过压缩机做功,将热量从低温的冰箱内部传到高温的外部环境。

2. 开尔文表述- 不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响。

例如热机工作时,从高温热源吸收热量Q_1,一部分用来对外做功W,另一部分Q_2要释放到低温热源,不可能将吸收的热量Q_1全部转化为功W而不向低温热源放热。

3. 意义- 它表明了自然界中与热现象有关的宏观过程是有方向性的。

同时也为提高热机效率等实际工程问题提供了理论限制,热机效率eta=(W)/(Q_1)=1 -(Q_2)/(Q_1),由于Q_2不能为零,所以热机效率总是小于1。

第二章热力学基本详解

第二章热力学基本详解

B
C
1
T2 T1
W Q1
热机A’:任意不可逆循环,任意工质
A'
W' Q1
取Q1相等,以便比较
定理2:即A ' B
§2.8 多热源可逆循环
1. 热源多于两个的可逆循环
任意可逆循环,如左图之1H2L1。
T
H

•2 1•
L• s
吸热过程: 1H2,工质温度变化,为可逆,
需热源温度时时与工质相等,这样就 要有无限多个热源。
AMNB逆行: Q Q
BNMA T
AMNB T
上已导出:
Q
APQB T
Q
BNMA T
0
显然, δQ/T 是一个状态参数。 1865年,克劳修斯引入entropy
Q
APQB T
Q
AMNB T
与路径无关, 满足积分特性
T
δPQ1 Q
1923年,I.R. Plank来华讲学,东南大
B
胡刚复教授根据entropie的定义“热 A
Q2
两式相加,得: Q1 Q2 0
T1 T2
S1
S2 S
∵ Q已作正负号规定, Q1、 Q2可统一写成Q;
T1、 T2可为热源温度(=工质温度),可统一写成T
∴ Q 0
T
2、任意可逆循环的Q/T
T
δPQ1 Q
B
过作P、Q等熵线PM、QN,构 成微元可逆循环PQNMP
A N
MδQ2
S
当P→Q时, T P→TQ , P-Q →等温过程。则PQNMP为微元
是循环净功之比,表示多热 源可逆循环接近同温限间卡诺循 环的程度。
卡诺定理的意义

热力学的基本原理

热力学的基本原理

热力学的基本原理
热力学的基本原理是热力学第一定律和第二定律:
1. 热力学第一定律(能量守恒定律):能量不会被创造或消失,只会在物质之间进行转化或传递。

它表达了能量在系统中的守恒原理,即能量的增加等于输入系统的热量和对外界做功的总和。

数学表达式可以写作ΔU = Q - W,其中ΔU表示系统内能量的变化,Q表示系统获得的热量,W表示系统对外界做的功。

2. 热力学第二定律:热量不会自行从低温物体传递到高温物体,而是反过来从高温物体传递到低温物体。

热力学第二定律主要包括两个重要原理:
- 热力学第二定律的Kelvin-Planck表述:不能从单一热源中完全获取热量并将其全部转化为功而不引起其他效果。

简单来说,不可能制造一个只吸收热量而不产生其他影响的永动机。

- 热力学第二定律的Clausius表述:热量不能自行从低温物体传递到高温物体,而是需要借助外界做功或通过一个温度比它更高的热源。

简单来说,热量只能由高温物体向低温物体传递,不可能自行逆向流动。

这些基本原理为热力学提供了数学工具和理论基础,用于描述和解释能量转化和传递的过程,以及系统内的热力学性质和热力学平衡状态。

《工程热力学》第二章—热力学基本定律

《工程热力学》第二章—热力学基本定律

在孤立系统中,能的形式可以相互转换, ● 在孤立系统中,能的形式可以相互转换,但能 的总量保持不变。 的总量保持不变。 第一类永动机是不可能制成的。 ● 第一类永动机是不可能制成的。 ● 工程热力学中常以热力系统为对象来研究能量 的传递、转换和守恒。 的传递、转换和守恒。 对任一热力系统,热力学第一定律可表述为: ● 对任一热力系统,热力学第一定律可表述为: 进入系统的能量 - 离开系统的能量 = 系统中储存能量的变化
2
热力学基本定律
2.1 热力学第一定律的实质
能量守恒与转换定律: ● 能量守恒与转换定律:自然界中的一切物质都具有 能量,能量既不可能被创造,也不可能被消灭; 能量,能量既不可能被创造,也不可能被消灭;但 它可以从一种形式转变为另一种形式,从一个物体 它可以从一种形式转变为另一种形式, 传递给另一个物体,在转换和传递过程中, 传递给另一个物体,在转换和传递过程中,能的总 量保持不变。 量保持不变。 第一定律的实质: ● 第一定律的实质:能量守恒与转换定律在热现象中 的应用。 的应用。
2.2.3 储存能
能量是物质运动的量度, ● 能量是物质运动的量度,运动是物质存 在的形式,因此一切物质都有能量。 在的形式,因此一切物质都有能量。 物质本身具有的能量称为储存能 储存能。 ● 物质本身具有的能量称为储存能。
◆ 外部储存能 内部储存能(内能) ◆ 内部储存能(内能)
一、外部储存能
2.2.1 功
一、定义
● 在力学中,功的定义为:物体所受的力F和物体在 在力学中,功的定义为:物体所受的力 和物体在 力的方向下的位移X的乘积, 力的方向下的位移 的乘积,即W=FX。 的乘积 。 ●在热力学中,系统与外界相互作用而传递的能量, 在热力学中,系统与外界相互作用而传递的能量, 若其全部效果可表现为使外界物体改变宏观运动状 态,则这种传递的能量称为功。 则这种传递的能量称为功。

热力学中的热力学定律

热力学中的热力学定律

热力学中的热力学定律热力学是研究能量转化和能量运动规律的学科,其研究对象包括热、功和能量等。

在热力学领域中,有许多重要的定律来描述能量的转移和转化过程。

本文将介绍热力学中的几个基本定律,包括热力学第一定律、热力学第二定律和热力学第三定律。

一、热力学第一定律热力学第一定律,也称能量守恒定律,是热力学中最基本的定律之一。

它表明在一个孤立系统中,能量不能被创造或破坏,只能从一种形式转化为另一种形式。

换句话说,能量的总量在任何一个系统中是恒定的。

根据热力学第一定律,能量可以被转化为热量和功。

当系统从外界吸收热量时,内部的能量增加;当系统对外界做功时,内部的能量减少。

这个定律为我们理解自然界中能量的转化过程提供了基础。

二、热力学第二定律热力学第二定律是描述能量转移和转化方向的定律。

它表明在一个孤立系统中,自发过程的熵不会减少,即系统趋向于向更高熵的状态发展。

熵是一个描述系统混乱程度的物理量。

热力学第二定律指出,自然趋向于从有序向无序的方向发展,即系统的熵增加。

这个定律揭示了自然界中存在的不可逆过程,如热量从高温物体传递到低温物体的热传导。

热力学第二定律还引申出了热力学效率的概念。

热力学效率是指在能量转化过程中有用能量与总输入能量之比。

根据热力学第二定律,任何热机的效率都不可能达到100%。

这是因为在能量转换过程中总会有一部分能量转化为无用的热量。

三、热力学第三定律热力学第三定律是热力学中最后一个基本定律。

它描述了温度趋向绝对零度时的行为,即系统在绝对零度时(0K)达到熵的最小值。

根据热力学第三定律,当温度趋近于绝对零度时,物质的熵趋近于零。

这个定律也成为Nernst定理,它为实现绝对零度提供了理论基础。

热力学第三定律的意义在于揭示了温度趋于绝对零度时物质的行为,也为材料科学和凝聚态物理学领域的研究提供了重要理论支持。

总结热力学中的热力学定律包括热力学第一定律、热力学第二定律和热力学第三定律。

热力学第一定律描述了能量的转移和转化,热力学第二定律指明了能量转移的方向,热力学第三定律揭示了温度趋近于绝对零度时系统的行为。

热力学三大定律知识总结

热力学三大定律知识总结

热力学三大定律总结热力学第一定律是能量守恒定律。

热力学第二定律有几种表述方式:克劳修斯表述为热量可以自发地从温度高的物体传递到温度低的物体,但不可能自发地从温度低的物体传递到温度高的物体;开尔文-普朗克表述为不可能从单一热源吸取热量,并将这热量完全变为功,而不产生其他影响。

以及熵增表述:孤立系统的熵永不减小。

热力学第三定律通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零,或者绝对零度(T=0)不可达到。

一、第一定律热力学第一定律也就是能量守恒定律。

自从焦耳以无以辩驳的精确实验结果证明机械能、电能、内能之间的转化满足守恒关系之后,人们就认为能量守恒定律是自然界的一个普遍的基本规律。

1、内容一个热力学系统的内能U增量等于外界向它传递的热量Q与外界对它做功A的和。

(如果一个系统与环境孤立,那么它的内能将不会发生变化。

)2、符号规律热力学第一定律的数学表达式也适用于物体对外做功,向外界散热和内能减少的情况,因此在使用:△E=-W+Q时,通常有如下规定:①外界对系统做功,A>0,即W为正值。

②系统对外界做功,A<0,即W为负值。

③系统从外界吸收热量,Q>0,即Q为正值④系统从外界放出热量,Q<0,即Q为负值⑤系统内能增加,△U>0,即△U为正值⑥系统内能减少,△U<0,即△U为负值3、理解从三方面理解(1)如果单纯通过做功来改变物体的内能,内能的变化可以用做功的多少来度量,这时系统内能的增加(或减少)量△U就等于外界对物体(或物体对外界)所做功的数值,即△U=A(2)如果单纯通过热传递来改变物体的内能,内能的变化可以用传递热量的多少来度量,这时系统内能的增加(或减少)量△U就等于外界吸收(或对外界放出)热量Q的数值,即△U=Q(3)在做功和热传递同时存在的过程中,系统内能的变化,则要由做功和所传递的热量共同决定。

在这种情况下,系统内能的增量△U 就等于从外界吸收的热量Q和外界对系统做功A之和。

热力学基础知识

热力学基础知识

二、压力 垂直作用在单位面积上的力称为压力,以符号P表示,这就 是物理学上所称的压强.按分子运动论的观点,压力是气体的 大量分子向容器壁面撞击所产生的平均结果。若气体作用在 器壁面积A上的垂直作用力为F,那么该壁上的压力为: P=F/A 压力通常用各种压力计来测定。这些压力计的测量原理部是 建立在力的平衡的基础上。由于压力计本身处于大气压力Pb 作用下,因此压力计上测得的压力是工质的真实压力和大气 压力Pb的差值,是一个相对压力,称为表压力或工作压力, 用符号Pg表示,而工质的实际压力称绝对压力,用P表示。 P, Pg 和Pb之间的关系是: P=Pb+Pg
热力学基础识
樟洋电厂 运行部
第一节

热力学定律
一、热力学第零定律 定义:与第三个系统处于热平衡的两个系统,彼此也处于 热平衡。 热力学第零定律是进行体系测量的基本依据。1)、 可以通过使两个体系相接触,并观察这两个体系的性质是 否发生变化而判断这两个体系是否已经达到平衡。2)、 当外界条件不发生变化时,已经达成热平衡状态的体系, 其内部的温度是均匀分布的,并具有确定不变的温度值。 3)、一切互为平衡的体系具有相同的温度,所以,一个 体系的温度可以通过另一个与之平衡的体系的温度来表达; 或者也可以通过第三个体系的温度来表达。
t,c
w0 q2 T2 1 1 q1 q1 T1
即:
q2 q1 T2 T1
对于任意的可逆循环, 如图所示循环1A2B1。假 如用一组可逆绝热线将它分 割成无数个微元循环,当绝 热线间隔极小时,例如绝热 线ad与 bc 间隔极小,ab 段温度差极小,接近于定温 过程,同理cd段也是定温 过程,那么微元循环abcda。 就是由两个可逆绝热过程与 两个可逆定温过程组成的微 小卡诺循环。

热力学三个定律(3篇)

热力学三个定律(3篇)

第1篇热力学是研究热现象及其与物质运动、能量转换和传递之间相互关系的科学。

热力学有三个基本定律,分别是热力学第一定律、热力学第二定律和热力学第三定律。

这三个定律在物理学和工程学等领域有着广泛的应用。

一、热力学第一定律热力学第一定律也称为能量守恒定律,它揭示了能量在不同形式之间的相互转换和守恒。

具体来说,热力学第一定律可以表述为:在一个封闭系统中,能量不能被创造或消灭,只能从一种形式转换为另一种形式。

1. 热力学第一定律的数学表达式设一个封闭系统在一段时间内吸收的热量为Q,对外做功为W,系统内能的增加为ΔU,则热力学第一定律可以表示为:ΔU = Q - W其中,ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统对外做的功。

2. 热力学第一定律的应用热力学第一定律在许多领域都有广泛的应用,以下列举几个例子:(1)热机:热机是将热能转换为机械能的装置。

根据热力学第一定律,热机在工作过程中,必须从高温热源吸收热量,并将部分热量转化为机械能,同时将部分热量排放到低温热源。

(2)热泵:热泵是一种利用外部能量将低温热源的热量转移到高温热源的装置。

根据热力学第一定律,热泵在工作过程中,必须消耗一定的外部能量,以实现热量转移。

(3)能源利用:热力学第一定律揭示了能源的守恒规律,对于能源的开发、利用和节约具有重要意义。

二、热力学第二定律热力学第二定律揭示了热现象的不可逆性,即热量不能自发地从低温物体传递到高温物体。

具体来说,热力学第二定律可以表述为:1. 热力学第二定律的表述(1)开尔文-普朗克表述:不可能从单一热源吸收热量,使之完全变为功而不引起其他变化。

(2)克劳修斯表述:热量不能自发地从低温物体传递到高温物体。

2. 热力学第二定律的应用热力学第二定律在许多领域都有广泛的应用,以下列举几个例子:(1)制冷技术:制冷技术利用热力学第二定律,将热量从低温物体传递到高温物体,实现制冷效果。

(2)热力学第三定律:热力学第三定律是热力学第二定律的一个特例,它揭示了在绝对零度时,物体的熵趋于零。

热力学基本定律温度热量与热平衡

热力学基本定律温度热量与热平衡

热力学基本定律温度热量与热平衡热力学基本定律温度、热量与热平衡热力学是一门研究能量转化与传递的学科,它涉及到许多基本定律,其中包括热力学的三大基本定律。

本文将重点探讨热力学的基本定律之一:温度、热量与热平衡。

一、热力学第一定律:能量守恒定律热力学第一定律,也被称为能量守恒定律,表明了能量在物体和系统中的转化和传递过程中会保持不变。

根据这个定律,对于封闭系统来说,系统内部的能量增量等于系统吸收的热量减去系统对外做功。

数学表达式如下:ΔE = Q - W其中,ΔE代表系统内部能量的变化,Q代表系统吸收的热量,W代表系统对外做的功。

二、热力学第二定律:热量不能自发地从低温物体传递到高温物体热力学第二定律是热力学中最重要的定律之一,它规定了热量传递的方向,即热量不能自发地从低温物体传递到高温物体。

这个定律提出了熵增原理,即孤立系统的熵总是不会减少,而是不断增加。

根据热力学第二定律,我们可以得出一个重要的结论:热量只会自发地从高温物体传递到低温物体。

这个结论被称为热力学第二定律的表述。

三、热力学第三定律:绝对零度无法达到热力学第三定律规定了绝对零度是不可能实现的。

它指出,在有限步骤内,任何系统都无法被冷却到绝对零度,即零开尔文(-273.15摄氏度)以下的温度。

这个定律的提出是基于一种被称为"冷凝定律"的现象。

根据这个定律,当物体被冷却到很低的温度时,它的熵会变得非常接近于零。

而根据热力学第二定律的熵增原理,熵必然会不断增加,所以无法将物体冷却到绝对零度。

在温度、热量与热平衡的基础上,热力学发展出了许多重要的概念和定律,如焓、熵和自由能等,这些概念和定律为我们研究能量转化和传递提供了有力的工具和方法。

总结:通过对热力学基本定律的探讨,我们可以看到温度、热量和热平衡在能量转化与传递中起到了重要的作用。

热力学第一定律告诉我们能量守恒,热力学第二定律规定了热量传递的方向,而热力学第三定律告诉我们绝对零度是无法实现的。

热力学三大基本定律是什么?一文带你搞懂

热力学三大基本定律是什么?一文带你搞懂

热力学三大基本定律是什么?一文带你搞懂虽然从远古时期人类早就学会了取火和用火,人们就注意探究热、冷现象本身。

但是热力学成为一门系统的学科却要到19世纪,在19世纪40年代前后,人们已经形成了这样的观念:自然界的各种现象间都是相互联系和转化的。

人们对热的研究也不再是孤立地进行,而是在热与其他现象发生转化的过程中认识热,特别是在热与机械功的转比中认识热。

热力学在发展过程中形成了三大基本定律,它们构成了热力学的核心。

热力学第一定律:能量守恒定律德国物理学家迈尔从1840年起就开始研究自然界各种现象间的转化和联系。

在他的论文《与有机运动相联的新陈代谢)中,把热看作“力”(能量)的一一种形式,他指出'热是能够转比为运动的力“。

他还根据当时的气体定压和定容比热的资料,计算出热的机械功当量值为367kgm/千k。

在论文中,迈尔详细考察了当时已知的几种自然现象的相互转化,提出了“力“不灭思想,迈尔是最早表述了能量守恒定律也就是热力学第一定律的科学家。

1847年,德国科学家亥姆霍兹发表了著作《论力的守恒》。

他提出一切自然现象都应该用中心力相互作用的质点的运动来解释,这个时候热力学第一定律也就是能量守恒定律已经有了一个模糊的雏形。

1850年,克劳修斯发表了《论热的动力和能由此推出的关于热学本身的定律》的论文。

他认为单一的原理即“在一切由热产生功的情况,有一个和产生功成正比的热量被消耗掉,反之,通过消耗同样数量的功也能产生这样数量的热。

” 加上一个原理即“没有任何力的消耗或其它变化的情况下,就把任意多的热量从一个冷体移到热体,这与热素的行为相矛盾”来论证。

把热看成是一种状态量。

由此克劳修斯最后得出热力学第一定律的解析式:dQ=dU-dW从1854年起,克劳修斯作了大量工作,努力寻找一种为人们容易接受的证明方法来解释这条原理。

经过重重努力,1860年,能量守恒原理也就是热力学第一定律开始被人们普遍承认。

能量守恒原理表述为一个系统的总能量的改变只能等于传入或者传出该系统的能量的多少。

热学三个定律

热学三个定律

热学三个定律热学三个定律是指热力学中的三个基本定律,它们分别为热力学第一定律、热力学第二定律和热力学第三定律。

这些定律是理解和应用热力学的基础。

一、热力学第一定律热力学第一定律也称为能量守恒定律,它表明能量在物理系统中不能被创造或毁灭,只能从一个形式转换为另一个形式。

该定律可以表示为:在任何过程中,能量的总量保持不变。

这个定律可以用来解释许多自然现象,例如化学反应、机械运动和电子运动等。

在化学反应中,发生的化学反应会使化合物之间的键断裂和形成,这些过程涉及到能量的转移。

根据热力学第一定律,在化学反应中消耗的能量必须等于生成的能量。

同样,在机械运动中,机械系统所消耗的能量必须等于所产生的功。

二、热力学第二定律热力学第二定律是指在任何可逆过程中,系统总是趋向于更高的无序状态。

这个定律也可以表述为热量不能从低温体传到高温体而不产生其他影响。

这个定律是热力学的一个基本原理,它解释了为什么一些过程是不可逆的。

例如,热量不能从低温物体自动转移到高温物体,因为这将违反热力学第二定律。

在一个封闭系统中,如果没有外部能量输入,系统会趋向于均匀分布其内部能量。

这样的过程是不可逆的,因为它增加了系统的无序度。

三、热力学第三定律热力学第三定律是指在绝对零度下,任何纯晶体都具有相同的零点熵值。

这个定律也可以表述为:当温度趋近于绝对零度时,所有物质的熵趋近于一个常数值。

这个定律解释了物质在极低温度下的行为,并提供了一种方法来计算和比较材料之间的熵差异。

例如,在制备超导材料时,需要知道材料在极低温度下的行为和性质。

总结:热学三个定律是理解和应用热力学的基础。

其中,热力学第一定律表明能量在物理系统中不能被创造或毁灭,只能从一个形式转换为另一个形式;热力学第二定律解释了为什么一些过程是不可逆的;热力学第三定律解释了物质在极低温度下的行为,并提供了一种方法来计算和比较材料之间的熵差异。

这些定律是理解自然现象和应用科学技术的基础。

热学三定律

热学三定律

浅析热力学三大定律一、第一定律热力学第一定律也叫能量不灭原理,就是能量守恒定律。

简单的解释如下:ΔU = Q+ W或ΔU=Q-W(目前通用这两种说法,以前一种用的多)定义:能量既不会凭空产生,也不会凭空消灭,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。

基本内容:热可以转变为功,功也可以转变为热;消耗一定的功必产生一定的热,一定的热消失时,也必产生一定的功。

普遍的能量转化和守恒定律在一切涉及热现象的宏观过程中的具体表现。

热力学的基本定律之一。

热力学第一定律是对能量守恒和转换定律的一种表述方式。

热力学第一定律指出,热能可以从一个物体传递给另一个物体,也可以与机械能或其他能量相互转换,在传递和转换过程中,能量的总值不变。

表征热力学系统能量的是内能。

通过作功和传热,系统与外界交换能量,使内能有所变化。

根据普遍的能量守恒定律,系统由初态Ⅰ经过任意过程到达终态Ⅱ后,内能的增量ΔU应等于在此过程中外界对系统传递的热量Q 和系统对外界作功A之差,即UⅡ-UⅠ=ΔU=Q-W或Q=ΔU+W这就是热力学第一定律的表达式。

如果除作功、传热外,还有因物质从外界进入系统而带入的能量Z,则应为ΔU=Q-W+Z。

当然,上述ΔU、W、Q、Z均可正可负(使系统能量增加为正、减少为负)。

对于无限小过程,热力学第一定律的微分表达式为δQ=dU+δW因U是态函数,dU是全微分[1];Q、W是过程量,δQ和δW只表示微小量并非全微分,用符号δ以示区别。

又因ΔU或dU只涉及初、终态,只要求系统初、终态是平衡态,与中间状态是否平衡态无关。

热力学第一定律的另一种表述是:第一类永动机是不可能造成的。

这是许多人幻想制造的能不断地作功而无需任何燃料和动力的机器,是能够无中生有、源源不断提供能量的机器。

显然,第一类永动机违背能量守恒定律。

二、第二定律1.定义①热不可能自发地、不付代价地从低温物体传到高温物体(不可能使热量由低温物体传递到高温物体,而不引起其他变化,这是按照热传导的方向来表述的)。

热力学三大定律内容及公式

热力学三大定律内容及公式

热力学三大定律内容及公式
热力学三大定律,又称玻尔定律,是热力学的基础,也是物质传递的基本原理和实验原理。

热力学三大定律分别是第一定律、第二定律和第三定律,它们分别提出了物质传递和能量传递的基本原理,为热力学的发展奠定了基础。

第一定律,也称为热力学定律,即热力学系统的总能量是守恒的,即能量守恒定律。

它定义了保守特性,即热力学系统内外能量发生变化时,系统外能量的增加与系统内能量的减少之和等于零。

记做:ΔE+ΔI=0 其中,ΔE表示系统外的能量的变化,ΔI表示系统内的能量的变化。

第二定律即增温定律,指所有的热耗散都会引起热力学系统的温度升高。

它提出了热机械效率的概念,即热机械效率应与完全机械效率一样,必然<1,记做
η<1。

它定义了热机械过程的不可逆性,即作任何单向热机械过程的逆过程,其热机械效率必然<1,记做η<1。

第三定律即热大定律,也称为热死亡定律,它指出:任何物质最终可以达到的最低温度是一个恒定的,记做T0,它是热源的无穷大与绝热物体的温度。

它定义了热力学系统的无穷小,就是热源的无穷大与绝热物体的温度之间的温差,记做ΔT=T/T0。

热力学三大定律是热力学发展过程中被公认的理论框架,它们就是热力学概念的基本单元,也是我们理解和探究物质传递和能量传递的基础。

热力学的四大定律及其应用

热力学的四大定律及其应用

热力学的四大定律及其应用热力学是物理学的一个分支,主要研究热、能量和物质之间的相互转化及其规律。

热力学的四大定律是热力学基本定律,也是热力学研究的基础。

本文将详细介绍热力学的四大定律及其应用。

第一定律:能量守恒定律能量守恒定律是热力学的基本定律之一,它说明了一个封闭系统的能量总量是恒定的。

在一个封闭系统中,能量只能由一种形式转化为另一种形式,不能被新产生也不能被破坏。

例如,当一个汽车引擎燃烧汽油时,化学能被转化为机械能,但热能也会被产生,这些热能最终会被散发到环境中。

因此,能量的总量不会变化,只会从一种形式转化为另一种形式。

能量守恒定律的应用非常广泛,例如在工业生产、环境保护、能源消耗等方面。

在工业生产中,为了减少能源消耗和减少环境污染物的排放,人们通常会采取节约能源、改善工艺流程等措施。

在环境保护方面,人们通常会采取减少工业化污染、提高能源利用率等措施。

在能源消耗方面,人们通常会采取减少石油、煤炭等化石燃料的使用,提高可再生资源的利用率等措施。

这些措施都是基于能量守恒定律的基本原理。

第二定律:熵增加定律熵是物质的一种物理量,它反映了分子的无序程度。

熵增加定律是热力学的基本定律之一,它说明了热能只能从高温的物体流向低温的物体,而不可能相反。

这就是大家常说的“热量不能自己流回去”。

熵增加定律在工业生产中的应用也非常广泛,例如在汽车制造、钢铁制造、机械制造等方面。

例如,汽车引擎在工作时会产生大量的热能,这些热能必须通过散热器散发到环境中,否则引擎就会过热而损坏。

同样,冶炼钢铁时,需要消耗大量能量来将矿石烧成熔融的钢铁,而这些热能也必须通过散热器散发出去。

这些应用都是基于熵增加定律的基本原理。

第三定律:绝对零度不可达定律绝对零度是温度的最低限度,它等于-273.15摄氏度。

第三定律是热力学的基本定律之一,它说明了在理论上无论如何降低温度,也无法将物体的温度降到绝对零度以下。

这是因为当温度趋近于绝对零度时,物质的分子运动将变得非常缓慢,它们几乎不会再产生热能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 热力学平衡态 不存在宏观量的流,不随时间变化的状态。简
称平衡态 满足:热平衡,力学平衡,相平衡,化学平衡
• 稳态或定态 非平衡态中,虽然有宏观量的流(如金属棒
中的热流),但系统中各点的宏观性质不随时间 变化的状态
热平衡:如果没有绝热壁存在,系统内各部分 之间以及系统与环境之间没有温度的差别。
力平衡:如果没有刚性壁存在,系统各部分之 间,系统与环境之间没有不平衡的力存在,在 不考虑重力场与其它外场作用的情况下,系统 内部处处压力相等。 相平衡:若在一个多相系统中,各相的组成及 数量均不随时间而变化,则称该系统处于相平 衡。 化学平衡:若系统中各物质之间存在化学反应, 当系统组成不随时间而变化时,系统处于化学 平衡。
1 2
H2
1 2
Cl2
HCl
质的量显然不同。
6、热力学能(内能) (internal energy)
定义:是系统内所具有的各种能量的总 和。体系内分子运动的平动能、转动能、 振动能、电子及核的能量以及分子与分 子相互作用的位能等能量。用符号 U 表示,单位焦耳(J)
注意点:
(1)U是状态函数, 确定的状态下U值 一定。
(2)U可以表示成U =f (T, V) 或 U =f (T, p)。
(3)U是广延性质的量,具有加和性。
(4)U的绝对值无法确定。
7、 热量(heat) 和功(work)
热:是系统与环境之间因温度差异而传递 的能量(Q)
4、状态函数(state function)
描述系统的各热力学性质的量均是状 态的函数,因此也称其为状态函数。
状态函数所具有的特点: 1)取决于系统所处的平衡态 2)从一个状态变至另一个状态,
其变化值只取决于初末态。
3)系统只要回到原来状态,则状态函 数也恢复原值。
4)状态函数(F )的微分是全微分
• 系统——即作为研究对象的物质。 (or 体系) • 环境——体系之外,与体系密切相关影响
(物质交换和能量交换)所及的部分。
物质交换 敞开(开放)系统 有 (open system) 封闭(密闭)系统 无 (closed system) 隔离(孤立)系统 无 (isolated system)
能量交换 有
1949年:美国人W.F. Giauque (吉奥克)研究超低 温下的物质的行为。
1968年:美籍挪威人L. Onsager (昂萨格)提出倒易 关系式,是不可逆过程热力学的基础。
1977年:比利时人I. Prigogine (普利高津)提出耗 散结构理论。
二、热力学基本概念
1、系统与环境 (system and surroundings)
溶液化学(化学势、拉乌尔定律、亨利定律、 稀溶液的依数性)
相平衡(Gibbs相律、相图、分配定律、萃取)
化学平衡(化学反应的方向和限度、平衡常数 的计算、平衡移动问题)
统计热力学 非平衡态热力学 分子热力学
热力学发展简史
19世纪取得了飞速的发展,奠定了基础。
20世纪4个Nobel奖
1920年:德国人W. Nernst (能斯特)提出热力学第 三定律。
强度性质的量: 与物质的量无关,不具加和性 如:p、T、ρ(密度)、电导率、粘度
两者的关系: 广度量与广度量的比是强度性质,
例如,定压热容, Cp,为广度量,物质的量n 为广度量,摩尔定压热容Cp , m为强度量
3.状态(state)
指体系总的宏观性质。
通常用体系的宏观可测性质(V、p、T、ρ 密度……)来描述体系的热力学状态。



相(phase):系统中物理状态和化学组成均 匀一致的部分
均相系统(homogeneous phase) 多相系统(heterogeneous phase)
2、系统的性质(property)
热力学性质:这里指宏观性质 pVT、热容、表面张力、内能、焓、熵等
广延性质的量: 与物质的量成正比,具有加和性 如:体积、质量、分子个数、U、H
G,0
t t,
nD
nE
nF nG
20世纪初比利时的Dekonder引进反应进度 的定义为:

nB nB,0
B
d dnB B
单位:mol
nB,0 和 nB 分别代表任一组分B 在起始和 t 时刻的物 质的量。 B 是任一组分B的化学计量数,对反应物取
负值,对生成物取正值。 ξ:克西
在反应进行到任意时刻,可以用任一反应物
若: F=f(T, p),则
dF
F T
p
dT
F p
T
dp
5、过程与途径(process & path)
状态的变化——过程
等温过程:Ti=Tf=T环=常数 等压过程:pi=pf=p外=常数
定容过程:V=常数
绝热过程:Q=0 (系统与外界无热交
换) 循环过程:初末态相同 实现一个过程的具体步骤叫作途径
• 准静态过程:每一时刻都处于平衡态 • 可逆过程:体系与环境的可复原性 • 热力学过程性质的改变值( Z)
Z Z终态-Z初态
r Zm
r表示:反应; m表示:mol1
• 反应进度(extent of reaction )
设某反应
DD EE FF GG
t 0, 0
nD,0
nE,0
n n F,0
热力学基本定律
一、热力学概论
热力学:是研究宏观系统在能量相互转化过程
中所遵循的规律的学科
化学热力学:用热力学的基本原理来研究化
学反应及物理变化的现象
研究对象:大量分子的集合体;只能对现象之
间的联系做宏观的描述,不能做出微观的说明
特点:它是一种唯象的宏观理论,具有高度
的可靠性和普遍性。不涉及时间概念
化学热力学解决什么问题
1.反应的方向 (△rGm ø﹤0 ?) 指定条件下,正反应可否自发进行
2. 反应的限度——如果能,正反应能否进 行到底 (K大小)
3. 反应过程的能量转换——放热?吸热? ( △rHm﹤0,放热; △rHm﹥0,吸热)
主要内容
热力学三大定律(第一、第二、第三定律、第0 定律、内能、焓、熵、自由能)
或生成物来表示反应进行的程度,所得的值都是
相同的,即: d dnD dnE dnF dnG
D E F G
反应进度被应用于反应热的计算、化学平衡
和反应速率的定义等方面。
应用反应进度,必须与化学反应计量
方程相对应。
例如: H2 Cl2 2HCl
当 都等于1 mol 时,
两个方程所发生反应的物
相关文档
最新文档