《二次函数的图像与性质》word版 公开课一等奖教案 (8)
关于二次函数的图像与性质的数学教案(9篇)
关于二次函数的图像与性质的数学教案(9篇)二次函数的图像与性质的数学教案篇1【学问与技能】1.会用描点法画函数y=ax2(a>0)的图象,并依据图象熟悉、理解和把握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简洁的实际问题.【过程与方法】经受探究二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象讨论函数的阅历,培育观看、思索、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间沟通争论,到达对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,把握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步熟悉问题 1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么外形呢?问题2 如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思索探究,猎取新知探究1 画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互沟通、展现,表扬画得比拟标准的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和进展趋势.误区二:并非对称点,存在漏点现象,导致抛物线变形。
误区三:无视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延长,而并非到某些点停顿.二次函数的图像与性质的数学教案篇2一学习目标1、把握二次函数的图象及性质;2、会用二次函数的图象与性质解决问题;学习重点:二次函数的性质;学习难点:二次函数的性质与图像的应用;二学问点回忆:函数的性质函数函数图象a0a0性质三典型例题:例 1:已知是二次函数,求m的值例 2:(1)已知函数在区间上为增函数,求a的范围;(2)知函数的单调区间是,求a;例 3:求二次函数在区间[0,3]上的最大值和最小值;变式:(1)已知在[t,t+1]上的最小值为g(t),求g(t)的表达式。
二次函数的图象和性质课教案
二次函数的图象和性质优质课教案第一章:引言教学目标:1. 让学生了解二次函数的概念和重要性。
2. 引导学生通过实际问题情境,感受二次函数的应用。
教学内容:1. 引入二次函数的概念,给出一般形式的二次函数表达式:y = ax^2 + bx + c。
2. 通过实际问题情境,让学生观察二次函数的图象和性质。
教学活动:1. 引入二次函数的概念,引导学生理解二次函数的三个参数a、b、c的含义。
2. 通过实际问题情境,让学生观察二次函数的图象和性质,例如:抛物线的开口方向、顶点的坐标等。
教学评价:1. 检查学生对二次函数概念的理解程度。
2. 评估学生在实际问题情境中观察二次函数图象和性质的能力。
第二章:二次函数的图象教学目标:1. 让学生掌握二次函数图象的基本特征。
2. 培养学生通过图象分析二次函数性质的能力。
教学内容:1. 介绍二次函数图象的基本特征,包括开口方向、顶点、对称轴等。
2. 引导学生通过图象分析二次函数的增减性和最值问题。
教学活动:1. 利用多媒体展示不同a值的二次函数图象,引导学生观察开口方向的变化。
2. 让学生通过图象分析二次函数的增减性和最值问题,例如:找出函数的最大值或最小值。
教学评价:1. 检查学生对二次函数图象基本特征的掌握程度。
2. 评估学生在图象分析中解决问题的能力。
第三章:二次函数的性质教学目标:1. 让学生了解二次函数的顶点公式及其应用。
2. 培养学生通过二次函数性质解决实际问题的能力。
教学内容:1. 介绍二次函数的顶点公式:顶点坐标为(-b/2a, c b^2/4a)。
2. 引导学生通过二次函数的性质解决实际问题,例如:求函数的最值、对称轴等。
教学活动:1. 让学生通过实际问题情境,应用顶点公式求解二次函数的最值、对称轴等问题。
2. 引导学生利用二次函数的性质解决实际问题,例如:求解抛物线与直线的交点等。
教学评价:1. 检查学生对二次函数顶点公式的掌握程度。
2. 评估学生在实际问题中应用二次函数性质解决问题的能力。
《二次函数的图像和性质》公开课教案 (省一等奖)2022年人教版
二次函数)0(2≠++=a c bx ax y 的图像和性质教学目标知识与技能能通过配方把二次函数)0(2≠++=a c bx ax y 化成2)(h x a y -=+k 的形式,从而确定开口方向、对称轴和顶点坐标;会用公式确定)0(2≠++=a c bx ax y 对称轴和顶点坐标。
过程与方法让学生经历探索二次函数)0(2≠++=a c bx ax y 的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数)0(2≠++=a c bx ax y 的性质。
情感态度与价值观使学生了解与未知、特殊与一般的辩证关系;培养学生的创造型思维,突出表达辩证唯物主义观点。
重点用描点法画出二次函数)0(2≠++=a c bx ax y 的图象和通过配方确定抛物线的对称轴、顶点坐标难点 理解二次函数)0(2≠++=a c bx ax y 的性质以及它的对称轴,顶点坐标 教法、学法 引导、启发 自主学习、合作交流 课型新授课教学准备 小黑板 教学流程教师活动学生活动 二次备课 一、自主学习 1、知识回忆说出以下抛物线的开口方向、对称轴和顶点坐标:⑴3235312+⎪⎭⎫ ⎝⎛-=x y⑵()1.22.17.02-+-=x y ⑶()2010152++=x y⑷4321412-⎪⎭⎫ ⎝⎛--=x y用配方法把以下函数化为()k h x a y +-=2的形式: ⑴542++=x x y⑵ x x y 2412+-=回忆2、出示学习目标能通过配方把二次函数)0(2≠++=a c bx ax y 化成2)(h x a y -=+k 的形式,从而确定开口方向、对称轴和顶点坐标;会用公式确定)0(2≠++=a c bx ax y 对称轴和顶点坐标。
明确目标出示自学提纲⑴用配方法将函数542++=x x y 写成()k h x a y +-=2的形式。
根据顶点式确定抛物线开口方向向 ,对称轴是 ,顶点坐标是 。
⑵完成教材37页思考,归纳二次函数的一般形式)0(2≠++=a c bx ax y 的图像的画法。
(word完整版)《二次函数的图像和性质》教学设计与反思
《二次函数的图像和性质》教学设计与反思㈠抛物线及相关概念用描点发法画二次函数y=x2的图象.解:(1)列表:自变量x可以是任何实数,x的互为相反数的两个值对应的函数值相等,以0为中心,取几个自变量的整数值,并求出y值x…-3-2-10123…y…9410149…(2)用表里x、y对应值作为点的横纵坐标,在坐标平面中描点(3)连线:用平滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。
提问:观察这个函数的图象,它有什么特点?像投篮球或掷铅球时球在空中所经过的路线,只是开口向上,这样的曲线叫做抛物线.实际上,二次函数的图像都是抛物线,它们的开口向上或向下。
二次函数cbxaxy++=2的图像叫做抛物线cbxaxy++=2。
顶点:抛物线与它的对称轴的交点,是抛物线的最高点或最低点.㈡探索2axy=性质教师让学生观察,思考、讨论、交流,图像特点归结为:它是轴对称图形,有一条对称轴y轴,且对称轴和图象有一点交点.学生初步感知二次函数的图像是一条抛物线学生画图,并观察、比较。
教师指导感觉困难的学生,引导学生思考选几个点比较合适以及如何选点。
让学生发表不同的意见,达成共识.将发现的结论进行小组交流,得出结论:四个函数的图象都是抛物线,都关于y轴对称,顶点坐标都是(0,0).教师提出问题,学生思想、画图、观察、归纳总结出二次函数y=x2的图像,感受知识的发生发展过程,便于对新知识的理解和认识。
通过让学生自己动手画图,加深对二次函数图像的认识和理解,同时培养学生规范作图的习惯。
增强学生观察分析、归纳概括能力和表达能力,经历由感性认识到理性认识的思维过程.思维能力能类比一元一次方程的概念和解法、理解一元二次方程的有关概念及解二次方程的关键——降次,能用配方法推导出求根公式,掌握解一元二次方程的三种方法,能把实际问题转化成数学模型。
动手操作能力能够通过观察、分析、操作、交流、研讨等探讨出周长相等时哪种图形面积最大。
二次函数的图像与性质教案
二次函数的图像与性质教案教案标题:二次函数的图像与性质教案教案目标:1. 理解二次函数的基本概念和性质;2. 掌握二次函数图像的绘制方法;3. 能够分析二次函数的图像特征和性质。
教案步骤:步骤一:引入二次函数的概念和性质(10分钟)1. 引导学生回顾一次函数的概念和性质,然后引入二次函数的概念,解释二次函数与一次函数的区别。
2. 介绍二次函数的一般形式:f(x) = ax^2 + bx + c,并解释各项的含义。
3. 解释二次函数的性质:对称性、开口方向、顶点、轴等。
步骤二:绘制二次函数的图像(20分钟)1. 通过给定不同的a、b、c值,绘制不同形态的二次函数图像。
2. 详细解释如何确定二次函数的顶点、轴和开口方向。
3. 引导学生观察图像的变化规律,总结二次函数图像与a、b、c值的关系。
步骤三:分析二次函数的图像特征和性质(15分钟)1. 引导学生观察不同形态的二次函数图像,分析其对称性、最值、零点等特征。
2. 引导学生发现二次函数图像的对称轴与一次函数图像的x轴有何关系。
3. 引导学生讨论二次函数图像的开口方向与a值的关系,并总结规律。
步骤四:应用二次函数的图像与性质(15分钟)1. 给定实际问题,引导学生建立与之对应的二次函数模型。
2. 利用二次函数图像的性质,解决实际问题,如求最值、零点等。
3. 引导学生讨论二次函数图像在不同场景中的应用,如抛物线的运动轨迹、物体的抛射问题等。
步骤五:总结与拓展(10分钟)1. 让学生总结二次函数的图像特征和性质,包括对称性、开口方向、顶点、轴等。
2. 引导学生思考二次函数的应用领域,并拓展到其他数学知识的应用,如函数的复合、函数的逆运算等。
教学资源:1. 教材:包含二次函数相关知识的教材或教学参考书。
2. 白板、彩色笔等教学工具。
3. 实际问题的案例素材。
评估方式:1. 课堂练习:通过绘制二次函数图像、分析图像特征等练习,检查学生对二次函数的理解和应用能力。
《二次函数的图象和性质》教学教案设计一等奖
4、《二次函数的图象和性质》教学设计一等奖一、目的要求1.使学生能画出正比例函数与一次函数的图象,一次函数的图象和性质——初中数学第三册教案。
2.结合图象,使学生理解正比例函数与一次函数的性质。
3.在学习一次函数的图象和性质的基础上,使学生进一步理解正比例函数和一次函数的概念。
二、内容分析1、对函数的研究,在初中阶段,只能是初步的。
从方法上,是用初等方法,即传统的初等数学的方法,而不是用极限、导数等高等数学的基本工具,并且,比起高中对函数的研究,更多地依赖于图象的直观,从研究的内容上,通常,包括定义域、值域、函数的变化特征等方面。
关于定义域,只是在开始学习函数概念时,有一个一般的简介,在具体学习几种数时,就不一一单独讲述了,关于值域,初中暂不涉及,至于函数的变化特征,像上升、下降、极大、极小,以及奇、偶性、周期性,连续性等,初中只就一次函数与反比例函效的升降问题略作介绍,其它,在初中都不做为基本教学要求。
2、关于一次函数图象是直线的问题,在前面学习13.3节时,利用几何学过的角平分线的性质,对函数y=x的图象是一条直线做了一些说明,至于其它种类的一次函数,则只是在描点画图时,从直观上看出,它们的图象也都是一条直线,教科书没有对这个结论进行严格的论证,对于学生,只要求他们能结合y=x的图象以及其它一些一次函数图象的实例,对这个结论有一个直观的认识就可以了。
三、教学过程复习提问:1.什么是一次函数?什么是正比例函数?2.在同一直角坐标系中描点画出以下三个函数的图象:y=2x y=2x—1 y=2x+1新课讲解:1.我们画过函数y=x的图象,并且知道,函数y=x的图象上的点的坐标满足横坐标与纵坐标相等的条件,由几何上学过的角平分线的性质,可以判断,函数y=x,这是一个一次函数(也是正比例函数),它的图象是一条直线。
再看复习提问的第2题,所画出的三个一次函数的图象,从直观上看,也分别是一条直线。
一般地,一次函数的图象是一条直线。
二次函数的图象和性质教案市公开课一等奖省优质课获奖课件
第2页
1、列表: 观察y=x2表示式,选择适当x值,并计算
对应y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
第3页
2、描点
y
y=x2
10
8643、 Nhomakorabea线 2?
-4 -3 -2 -1 0 1 2 3 4 x
3 2
第8页
(2)当y=-8时,x值是多少? (3)当x<0时,伴随x值增大,y值怎样变
化?当x>0时,伴随x值增大,y值如 何改变?
(4)当x取何值时,y值最大?最大值是多 少?
7、已知y=mx m2 m是x二次函数。 (1)当m取何值时,该二次函数图像开口
向上?
(2)在(1)条件下,①当x取何值时,y>0? ②当x取何值时,在y2>y1时,总有x2>x1? ③当x取何值时,在y2>y1时,总有x2<x1?
-2
2、观察这个图象有什么特征?
3、你能画出y=-x2图象吗? 第4页
4、观察二次函数 与图象有什么共 同特征?
y
6
y=x2
4
2 -8 -6 -4 -2 0
-2
24 6
x 8
-4 -6
y=-x2
第5页
1、它们图象形状都是抛物线. 2、这些抛物线都是轴对称图形,它 们有开口向上有向下. 3、对称轴和抛物线交点我们叫做抛 物线顶点.
第9页
8、已知点A(3,a)在二次函数y=x2图像上。 (1)求a值;
(2)点B(3,-a)在二次函数y=x2图像上吗? 思索:
二次函数的图像与性质(教案)
二次函数的图像与性质(教案)教学目标:一. 知识与技能:1. 通过对二次函数性质习题的讲评,使学生熟练掌握二次函数的图像与性质2. 懂得从图像中获取有关的性质信息。
3. 使学生会通过图像求二次函数的解析式。
二. 过程与方法:通过数形结合理解二次函数的性质。
三. 情感态度与价值观:培养数形结合思想,体验函数具体解决现实问题的功能。
教学重点:如何在图像中获取有用的信息。
教学难点:性质的综合应用 教学过程:一. 引入:华罗庚说过:“数缺形时少直观,形少数时难入微”要真正的研究数学就应该数形结合,研究函数就是用数形结合的思想二次函数是函数问题中的主要内容,中考试题中年年考查,可以出简单题、中档题甚至于综合性难题,但实际上有相当一部分的题型都跟二次函数的图像与性质有关,本节课通过对我们做过的习题进行讲评,使同学们熟练掌握二次函数的图像与性质二.讲评: 一. 抛物线y=ax²+bx+c(a≠0)的性质: 1.图像位置一题.5. 在同一坐标系中,函数y=-x-1和y=x²+2x+1 的图像可能是()总结抛物线()20y ax bx c a =++≠的性质:b 同号 b=0 b 异号 0 040ac 40ac = 抛物线与40ac抛物线与A. C.24,24b ac b a a ⎛⎫-- ⎪⎝⎭ 决定顶点位置 0a 时,顶点纵坐标244ac b a-是二次函数的最小值。
0a 时,顶点纵坐标244ac b a-是二次函数的最大值。
242b b aca -±- 决定抛物线与x 轴交点的横坐标 当0y =时,即20ax bx c ++=,则抛物线与x轴的交点坐标为2244,0,,022b b ac b b ac a a ⎛⎫⎛⎫-+----⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【练习】已知反比例函数xy =的图像如下右图所示,则二次函数222k x kx y +-=的图像大致为( )【总结】灵活运用二次函数中24a b c b ac -、、、的性质在图像中解题,也就是根据抛物线确定二次函数解析式中字母系数的取值范围,很好地体现了数形结合的数学思想,这就需要大家对于二次函数的性质与图像要比较熟悉,并能在图像中从这些性质来思考解决问题的思路。
《二次函数的图象和性质》教学设计一等奖
《二次函数的图象和性质》教学设计一等奖《《二次函数的图象和性质》教学设计一等奖》这是优秀的教学设计一等奖文章,希望可以对您的学习工作中带来帮助!1、《二次函数的图象和性质》教学设计一等奖教学目标:1.能够利用描点法作出函数y=x2的图象,能根据图象认识和理解二次函数y=x2的性质.2.猜想并能作出y=-x2的图象,能比较它与y=x2的图象的异同.3.经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.4.在利用图象讨论二次函数的性质时,让学生尽可能多地合作交流,以便使学生能够从多个角度看问题,进而比较准确地理解二次函数的性质.教学重点:1.利用描点法作出函数y=x2的图象,根据图象认识和理解二次函数y=x2的性质.2.能够作出二次函数y=-x2的图象,并能比较它与y=x2的图象的异同.教学难点:经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.并把这种经验运用于研究二次函数y=-x2的图象与性质方面,实现探索经验运用的思维过程.教学过程:一、学前准备我们在学习了正比例函数,一次函数与反比例函数的定义后,研究了它们各自的图象特征.知道正比例函数的图象是_______________,一般的一次函数的图象是____________,反比例函数的图象是_________________.上节课我们学习了二次函数的一般形式为_________________________,那么它的图象是否也为直线或双曲线呢?本节课我们将一起来研究有关问题.二、探究活动(一)、作函数y=x2的图象.回忆画函数图象的一般步骤吗?(列表,描点,连线.)下面就请大家按上面的步骤作出y=x2的图象.(1)列表:x -3 -2 -1 0 1 2 3y 9 4 1 0 1 4 9(2)在直角坐标系中描点.(3)用光滑的,曲线连接各点,便得到函数y=x2的图象.(二)、议一议对于二次函数y=x2的图象, (1)你能描述图象的形状吗?与同伴进行交流.(2)图象与x轴有交点吗?如果有,交点坐标是什么?(3)当x0时,随着x值的增大,y的值如何变化?当x0时呢?(4)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?(5)图象是轴对称图形吗?如果是,它的'对称轴是什么?请你找出几对对称点,并交流.下面我们系统地总结:(三)y=x2的图象的性质.二次函数y=-x2的图象是什么形状?先想一想,然后作出它的图象.它与二次函数y=x2的图象有什么关系?与同伴进行交流.大家讨论之后系统地总结出y=x2的图象的所有性质.当堂练习:按照画图象的步骤作出函数y=-x2的图象.y=-x2的图象如右图,并让学生总结:形状是___________,只是它的开口方向____________,它与y=x2的图象形状________,方向________,这两个图形可以看成是__________对称.试着让学生讨论y=-x2的图象的性质.并尝试比较y=x2与y=-x2的图象,比较异同点.不同点:相同点:联系:(四)课堂练习:随堂练习(P47)三.学习体会1.本节课你有哪些收获?你还有哪些疑问?2.你认为老师上课过程中还有哪些须改进的地方?3.预习时的疑问解决了吗?四.自我测试1.在同一直角坐标系中画出函数y=x2与y=-x2的图象.2.下列函数中是二次函数的是 ( )A. y=2+5x2B.y=C.y=3x(x+5)2D. y=3.分别说出抛物线y=4x2与y=- x2的开口方向,对称轴与顶点坐标4、已知函数y=mxm2+m.(1)m取何值时,它的图象开口向上.(2)当x取何值时,y随x的增大而增大.(3)当x取何值时,y随x的增大而减小.(4)x取何值时,函数有最小值.2、《二次函数的图象和性质》教学设计一等奖教学目标:1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。
二次函数的性质的市公开课获奖教案省名师优质课赛课一等奖教案
二次函数的性质的教案一、教学目标1. 理解二次函数的定义和基本性质。
2. 掌握二次函数的图像、顶点、轴对称、判别式和零点。
3. 能够应用二次函数的性质解决实际问题。
二、教学重点1. 二次函数的基本性质。
2. 二次函数的图像和顶点。
3. 二次函数的轴对称、判别式和零点。
三、教学难点1. 解决实际问题时如何应用二次函数的性质。
2. 对二次函数图像和顶点的理解和应用。
四、教学方法1. 讲授法:通过讲解二次函数的定义和基本性质来引导学生理解。
2. 演示法:通过具体的案例演示二次函数的图像、顶点、轴对称、判别式和零点的求解过程。
3. 练习法:通过大量的练习题巩固学生对二次函数性质的理解和应用能力。
五、教学过程1. 引入:老师可以通过现实生活中的例子引入二次函数的概念,如抛物线的形状、物体的自由落体等,引发学生对二次函数的兴趣。
2. 讲解二次函数的定义和基本性质:首先介绍二次函数的定义:二次函数是形如f(x) = ax^2 + bx + c 的函数,其中a、b、c是实数且a不等于0。
然后讲解二次函数的基本性质:(1) 图像:二次函数的图像是一个抛物线,其开口方向由二次项的系数a 的正负号决定。
- 当a大于0时,抛物线开口向上;- 当a小于0时,抛物线开口向下。
(2) 顶点:二次函数的顶点坐标为(-b/2a, f(-b/2a))。
(3) 轴对称:二次函数的图像的轴对称轴是通过顶点的竖直线x = -b/2a。
(4) 判别式:二次函数的判别式是D = b^2 - 4ac,通过判别式可以判断二次函数的零点情况。
- 当D大于0时,二次函数有两个不相等的实数零点;- 当D等于0时,二次函数有一个重根;- 当D小于0时,二次函数无实数零点。
(5) 零点:二次函数的实数零点可以通过求解方程f(x) = 0得到。
3. 演示案例:选择几个典型的案例进行演示,如:(1) f(x) = x^2 - 3x + 2的图像和顶点;(2) f(x) = -2x^2 + 5x - 3的图像和顶点;(3) f(x) = 3x^2 - 6x + 3的轴对称轴和判别式。
二次函数的图象和性质课教案
二次函数的图象和性质优质课教案第一章:引言1.1 二次函数的定义引导学生回顾一次函数的定义,引入二次函数的概念。
通过示例说明二次函数的一般形式:f(x) = ax^2 + bx + c,其中a、b、c为常数,a ≠0。
1.2 二次函数的图象解释二次函数图象的形状和特点,如开口方向、顶点等。
利用图形展示二次函数的图象,让学生观察并理解二次函数的图象与函数表达式之间的关系。
第二章:二次函数的顶点2.1 顶点的定义解释二次函数图象的顶点概念,即图象的最高点或最低点。
通过示例说明如何找到二次函数的顶点。
2.2 顶点的性质探讨顶点在二次函数图象中的重要性,如顶点是图象的对称中心。
利用图形和数学推导说明顶点的性质,如顶点的横坐标是-b/2a。
第三章:二次函数的开口3.1 开口方向的定义解释二次函数开口的概念,即函数图象向上或向下的弯曲形状。
通过示例说明如何确定二次函数的开口方向。
3.2 开口与a的关系探讨开口方向与二次函数系数a的关系,如a > 0时开口向上,a < 0时开口向下。
利用图形和数学推导说明开口与a的关系。
第四章:二次函数的增减性4.1 增减性的定义解释二次函数增减性的概念,即函数值随自变量增大或减小的变化趋势。
通过示例说明如何判断二次函数的增减性。
4.2 增减性与a的关系探讨增减性与二次函数系数a的关系,如a > 0时函数先增后减,a < 0时函数先减后增。
利用图形和数学推导说明增减性与a的关系。
第五章:二次函数的零点5.1 零点的定义解释二次函数零点的概念,即函数图象与x轴的交点。
通过示例说明如何找到二次函数的零点。
5.2 零点与判别式的关系探讨零点与二次函数判别式b^2 4ac的关系,如判别式大于0时有两个不相等的零点。
利用图形和数学推导说明零点与判别式的关系。
第六章:二次函数的方程6.1 方程的定义解释二次函数方程的概念,即通过设置f(x) = 0来表示二次函数的零点。
二次函数的性质和图像教学设计一等奖
1.您的工作职位是( )
A教师B干部C学生D职员
E其他
2.您获得延庆教育新闻信息的媒介最多的是( )
A延庆教育信息网B 延庆政府网C 延庆电视台D 延庆报E市级电视台报纸G其他
3.让您最印象深刻的延庆教育新闻报道专题的是( )
A 13 家媒体集中采访报道延庆教育
B义务教育均衡发展评估验收宣传
C抗雪救灾事迹宣传
D延庆报每月一期教育专刊
E延庆电视台每周- -期延庆教育
F其他
4.您认为我县教育新闻宣传有实效性吗? ( )
A很有实效性B比较有实效性C-般D没有实效性
5.您觉得没有实效性的原因是( )
A新闻内容枯燥乏味B新闻报道面比较窄C 其他
6.您觉得教育新闻宣传对教育发展有什么作用?
A能够了解教育B 能够激励人们更好的学习与工作C 没什么效果
7.您认为教育新闻宣传能够引起你关注的兴趣吗? ( )
A能
B不能
8您认为教育新闻宣传不能引起你的兴趣的原因是( )
A新闻形式呆板、内容不活波
B网络新闻互动性差
C没有自己的特色
D其他
(二)问答题:
1.您印象最深刻、最能打动你的延庆教育新闻宣传报道有哪些? ( 列出三条)
答:(1)
( 2)
(3 )
2.您认为延庆教育新闻宣传对学校和师生的发展带来了什么影响? 答:。
二次函数的性质与图像教案
二次函数的性质与图像教案一、教学目标:1. 让学生理解二次函数的定义,掌握二次函数的一般形式;2. 引导学生探究二次函数的性质,包括对称性、单调性等;3. 让学生学会绘制二次函数的图像,并能分析图像的特点;4. 培养学生运用二次函数解决实际问题的能力。
二、教学重点与难点:重点:二次函数的定义、性质及图像特点;难点:二次函数图像的绘制及分析。
三、教学方法:1. 采用问题驱动法,引导学生探究二次函数的性质;2. 利用数形结合法,让学生直观地理解二次函数的图像特点;3. 采用实例分析法,培养学生解决实际问题的能力。
四、教学准备:1. 教师准备PPT,包括二次函数的定义、性质、图像等;2. 准备一些实际问题,用于巩固所学知识。
五、教学过程:1. 引入:通过一个实际问题,引导学生思考二次函数的应用;2. 讲解:介绍二次函数的定义、一般形式,引导学生探究二次函数的性质;3. 演示:利用PPT展示二次函数的图像,让学生直观地理解二次函数的图像特点;4. 练习:让学生绘制一些二次函数的图像,并分析其性质;5. 总结:对本节课的内容进行总结,强调二次函数的性质及图像的特点;6. 作业:布置一些练习题,巩固所学知识。
教学反思:在教学过程中,要注意引导学生主动探究二次函数的性质,培养学生的动手能力。
通过实际问题的分析,让学生感受二次函数在生活中的应用,提高学生的学习兴趣。
在讲解二次函数的图像时,要注重让学生理解顶点、对称轴等关键点的作用,以便能更好地分析二次函数的性质。
六、教学拓展:1. 引导学生探讨二次函数在实际生活中的应用,如抛物线运动、最优化问题等;2. 介绍二次函数与其他数学知识的关系,如导数、积分等;3. 引导学生思考二次函数在自然界中的体现,如物体的自由落体运动等。
七、课堂小结:1. 回顾本节课所学内容,让学生总结二次函数的性质及图像特点;2. 强调二次函数在实际问题中的应用价值;3. 提醒学生注意在学习过程中积累经验,提高解决问题的能力。
二次函数的图像与性质教案市公开课一等奖省优质课获奖课件
第15页
倍速课时学练
思索题: 将抛物线 y 2x2 左右平移,使得 它与x轴相交于点A,与y轴相交于
点B。 若△ABO面积为8,求平移后抛物线
解析式。
第16页
倍速课时学练
倍速课时学练
第8页
范例 例2、已知抛物线 y a(x 2)2经过点 (1,3),求: (1)抛物线关系式; (2)抛物线对称轴、顶点坐标; (3)x=3时函数值; (4)当x取何值时,y随x增大而增大。
第9页
倍速课时学练
提升题: 将抛物线 y ax2 向左平移后,所得 新抛物线顶点横坐标为-2,且新抛物 线经过点(1,3),求a值。
平移 个单位可得到y= 2(x+1)2
2、函数y= -5(x -4)2 图象。能够由抛物线
向
平移 4 个单位而得到。
倍速课时学练
第6页
• 请你总结二次函数y=a(x+ m)2图象和性质.
y ax 2 当m>0时,向左平移 当m<0时,向右平移
y a(x m)2
y a(x m) 2 图象
a>0时,开口________, 最 ____ 点是顶点; a<0时,开口________, 最 ____ 点是顶点;
第10页
倍速课时学练
小结 二次函数 y a(x h)2图象及性质: (1)形状、对称轴、顶点坐标; (2)开口方向、极值、开口大小; (3)对称轴两侧增减性。
第11页
倍速课时学练
1.函数y= –5(x–3)2,当x <3 时,y随x增大而增大; 2.对于函数y=2x2+8x+8, 当x= –2 时,函数值y有 最 小 值,为 0 。
初中九年级数学教案-二次函数的图像和性质【区一等奖】
二次函数y=a2+b的图象及其性质教学目标:1、使学生能利用描点法正确作出函数y=a2+b的图象2、让学生经历二次函数y=a2性质探究的过程,理解二次函数y=a2+b的性质及其与函数y=a2的关系重点难点:重点:会用描点法画出二次函数y=a2+b的图象,理解二次函数y=a2+b的性质,理解函数y=a2+b与函数y=a2的相互关系难点:正确理解二次函数y=a2+b的性质,理解抛物线y=a2+b与抛物线y=a2的关系教学过程:一、出示问题你想知道二次函数y=2+1和 y=2-1的图象与二次函数y=2 的图象开口方向、对称轴和顶点坐标有什么关系二、分析问题,解决问题你能在同一个直角坐标系中,画出函数y=2 与y=2+1和y=2-1的图象吗教学要点1.回顾二次函数画图的三个步骤,尝试让学生按照画图步骤画出函数y=2的图象2.教师在同一个平面坐标系内分别画出这三个函数的图像3.教师写出解题过程,同学生所画图象进行比较2描点:根据上表的各组对应值作为点的坐标,在平面直角坐标系中描点3连线:用光滑曲线顺次连接各点,得到函数y=2 和y=2+1和y=2-1的图象(图象见上图)问题3:当自变量取同一数值时,这两个函数的函数值之间有什么关系反映在图象上,相应的两个点之间的位置又有什么关系教师引导学生观察上表,当依次取-2,-1,0,1,2,时,两个函数的函数值之间有什么关系,由此让学生归纳得到,当自变量取同一数值时,函数y=2+1的函数值都比函数y=2的函数值大1,y=2-1的函数值都比函数y=2的函数值小1,教师引导学生观察函数y =2+1和y=2的图象,先研究点-1,2和点-1,3、点0,0和点0,1、点1,2和点1,3位置关系,让学生归纳得到:反映在图象上,函数y=2+1的图象上的点都是由函数y=2的图象上的相应点向上移动了一个单位。
函数y=2-1的图像上的点都是由函数y=2 的图像上的相应点向下移动了一个单位。
《二次函数的图像与性质》word优秀获奖教案(8)
按照新课程标准要求,学科核心素养作为现代教育体系的核心理论,提高学生的兴趣、学习的主动性,是当前教育教学研究所注重的重要环节之一。
2021年4月,教育部发布文件,对教育机构改革进行了深入和细致的解读。
从中我们不难看出,作为一线教师,教育教学手段和理论知识水平是下一步需要进一步提高的重要能力。
本课作为课本中比较重要的一环,对核心素养进行了贯彻,将课堂环节设计进行了细致剖析,力求达到学生乐学,教师乐教的理想状态。
2.1 建立二次函数模型教学目标:1.使学生能利用描点法画出二次函数y=a(x—h)2的图象。
2.让学生经历二次函数y=a(x-h)2性质探究的过程,理解函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的关系。
重点难点:重点:会用描点法画出二次函数y=a(x-h)2的图象,理解二次函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的关系是教学的重点。
难点:理解二次函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的相互关系是教学的难点。
教学过程:一、提出问题1.在同一直角坐标系内,画出二次函数y=-12x2,y=-12x2-1的图象,并回答:(1)两条抛物线的位置关系。
(2)分别说出它们的对称轴、开口方向和顶点坐标。
(3)说出它们所具有的公共性质。
2.二次函数y=2(x-1)2的图象与二次函数y=2x2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系?二、分析问题,解决问题问题1:你将用什么方法来研究上面提出的问题?(画出二次函数y=2(x-1)2和二次函数y=2x2的图象,并加以观察)问题2:你能在同一直角坐标系中,画出二次函数y=2x2与y=2(x-1)2的图象吗?教学要点1.让学生完成下表填空。
2.让学生在直角坐标系中画出图来:3.教师巡视、指导。
《二次函数的图象和性质》 word版 公开课一等奖教案
当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料.这些资料因为用的比拟少,所以在全网范围内,都不易被找到.您看到的资料,制作于2021年,是根据最新版课本编辑而成.我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品.本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品.本作品为珍贵资源,如果您现在不用,请您收藏一下吧.因为下次再搜索到我的时机不多哦!22.1 二次函数的图象和性质本课教学反思英语教案注重培养学生听、说、读、写四方面技能以及这四种技能综合运用的能力.写作是综合性较强的语言运用形式, 它与其它技能在语言学习中相辅相成、相互促进.因此, 写作教案具有重要地位.然而, 当前的写作教案存在" 重结果轻过程〞的问题, 教师和学生都把写作的重点放在习作的评价和语法错误的订正上,无视了语言的输入.这个话题很容易引起学生的共鸣,比拟贴近生活,能激发学生的兴趣, 在教授知识的同时,应注意将本单元情感目标融入其中,即保持乐观积极的生活态度,同时要珍惜生活的点点滴滴.在教授语法时,应注重通过例句的讲解让语法概念深入人心,因直接引语和间接引语的概念相当于一个简单的定语从句,一个清晰的脉络能为后续学习打下根底.此教案设计为一个课时,主要将安妮的处境以及她的精神做一个简要概括,下一个课时那么对语法知识进行讲解.在此教案过程中,应注重培养学生的自学能力,通过辅导学生掌握一套科学的学习方法,才能使学生的学习积极性进一步提高.再者,培养学生的学习兴趣,增强教案效果,才能防止在以后的学习中产生两极分化.在教案中任然存在的问题是,学生在"说〞英语这个环节还有待提高,大局部学生都不愿意开口朗读课文,所以复述课文便尚有难度,对于这一局部学生的学习成绩的提高还有待研究.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。
这些资料因为用的比较少,所以在全网范围内,都不易被找到。
您看到的资料,制作于2021年,是根据最新版课本编辑而成。
我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。
本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。
本作品为珍贵资源,如果您现在不用,请您收藏一下吧。
因为下次再搜索到我的机会不多哦!
2.1 建立二次函数模型
教学目标:
1.使学生能利用描点法画出二次函数y=a(x—h)2的图象。
2.让学生经历二次函数y=a(x-h)2性质探究的过程,理解函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的关系。
重点难点:
重点:会用描点法画出二次函数y=a(x-h)2的图象,理解二次函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的关系是教学的重点。
难点:理解二次函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的相互关系是教学的难点。
教学过程:
一、提出问题
1.在同一直角坐标系内,画出二次函数y=-1
2x
2,y=-
1
2x
2-1的图象,并回答:
(1)两条抛物线的位置关系。
(2)分别说出它们的对称轴、开口方向和顶点坐标。
(3)说出它们所具有的公共性质。
2.二次函数y=2(x-1)2的图象与二次函数y=2x2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系?
二、分析问题,解决问题
问题1:你将用什么方法来研究上面提出的问题?
(画出二次函数y=2(x-1)2和二次函数y=2x2的图象,并加以观察)
问题2:你能在同一直角坐标系中,画出二次函数y=2x2与y=2(x-1)2的图象吗?
教学要点
1.让学生完成下表填空。
2.让学生在直角坐标系中画出图来:3.教师巡视、指导。
问题3:现在你能回答前面提出的问题吗?
教学要点
1.教师引导学生观察画出的两个函数图象.根据所画出的图象,完成以下填空:
2.让学生分组讨论,交流合作,各组选派代表发表意见,达成共识:函数y=2(x-1)2与y=2x2的图象、开口方向相同、对称轴和顶点坐标不同;函数y=2(x一1)2的图象可以看作是函数y=2x2的图象向右平移1个单位得到的,它的对称轴是直线x=1,顶点坐标是(1,0)。
问题4:你可以由函数y=2x2的性质,得到函数y=2(x-1)2的性质吗?
教学要点
1.教师引导学生回顾二次函数y=2x2的性质,并观察二次函数y=2(x-1)2的图象;
2.让学生完成以下填空:
当x______时,函数值y随x的增大而减小;当x______时,函数值y随x的增大而增大;当x=______时,函数取得最______值y=______。
三、做一做
问题5:你能在同一直角坐标系中画出函数y=2(x+1)2与函数y=2x2的图象,并比较它们的联系和区别吗?
教学要点
1.在学生画函数图象的同时,教师巡视、指导; 2.请两位同学上台板演,教师讲评;
3.让学生发表不同的意见,归结为:函数y =2(x +1)2与函数y =2x 2的图象开口方向相同,但顶点坐标和对称轴不同;函数y =2(x +1)2的图象可以看作是将函数y =2x2的图象向左平移1个单位得到的。
它的对称轴是直线x =-1,顶点坐标是(-1,0)。
问题6;你能由函数y =2x2的性质,得到函数y =2(x +1)2的性质吗? 教学要点
让学生讨论、交流,举手发言,达成共识:当x <-1时,函数值y 随x 的增大而减小;当x >-1时,函数值y 随x 的增大而增大;当x =一1时,函数取得最小值,最小值y =0。
问题7:在同一直角坐标系中,函数y =-13(x +2)2图象与函数y =-1
3x 2的图象有何关
系?
(函数y =-13(x +2)2的图象可以看作是将函数y =-1
3x 2的图象向左平移2个单位得到
的。
)
问题8:你能说出函数y =-1
3(x +2)2图象的开口方向、对称轴和顶点坐标吗?
(函数y =-1
3(x 十2)2的图象开口向下,对称轴是直线x =-2,顶点坐标是(-2,0))。
问题9:你能得到函数y =1
3(x +2)2的性质吗?
教学要点
让学生讨论、交流,发表意见,归结为:当x <-2时,函数值y 随x 的增大而增大; 当x >-2时,函数值y 随工的增大而减小;当x =-2时,函数取得最大值,最大值y =0。
四、课堂练习: P11练习1、2、3。
五、小结:
1.在同一直角坐标系中,函数y =a(x -h)2的图象与函数y =ax 2的图象有什么联系和区别? 2.你能说出函数y =a(x -h)2图象的性质吗? 3.谈谈本节课的收获和体会。
六、作业
1.P19习题26.2 1(2)。
2.选用课时作业优化设计。
第二课时作业优化设计
1.在同一直角坐标系中,画出下列各组两个二次函数的图象。
(1)y =4x 2与y =4(x -3)2 (2)y =12(x +1)2与y =1
2
(x -1)2
2.已知函数y =-14x 2,y =-14(x +2)2和y =-1
4(x -2)2。
(1)在同一直角坐标中画出它们的函数图象;
(2)分别说出各个函数图象的开口方向、对称轴和顶点坐标;
(3)试说明,分别通过怎样的平移,可以由函数y =-1/4x2的图象得到函数y =-1
4(x +
2)2和函数y =-1
4(x -2)2的图象?
(4)分别说出各个函数的性质。
3.已知函数y =4x 2,y =4(x +1)2和y =4(x -1)2。
(1)在同一直角坐标系中画出它们的图象;
(2)分别说出各个函数图象的开口方向,对称轴、顶点坐标;
(3)试说明:分别通过怎样的平移,可以由函数y =4x 2的图象得到函数y =4(x +1)2和函数y =4(x -1)2的图象,
(4)分别说出各个函数的性质.
4.二次函数y =a(x -h)2的最大值或最小值与二次函数图象的顶点有什么关系?
本课教学反思
英语教案注重培养学生听、说、读、写四方面技能以及这四种技能综合运用的能力。
写作是综合性较强的语言运用形式 , 它与其它技能在语言学习中相辅相成、相互促进。
因此 , 写作教案具有重要地位。
然而 , 当前的写作教案存在“ 重结果轻过程”的问题 , 教师和学生都把写作的重点放在习作的评价和语法错误的订正上,忽视了语言的输入。
这个话题很容易引起学生的共鸣,比较贴近生活,能激发学生的兴趣 , 在教授知识的同时,应注意将本单元情感目标融入其中,即保持乐观积极的生活态度,同时要珍惜生活的点点滴滴。
在教授语法时,应注重通过例句的讲解让语法概念深入人心,因直接引语和间接引语的概念相当于一个简单的定语从句,一个清晰的脉络能为后续学习打下基础。
此教案设计为一个课时,主要将安妮的处境以及她的精神做一个简要概括,下一个课时则对语法知识进行讲解。
在此教案过程中,应注重培养学生的自学能力,通过辅导学生掌握一套科学的学习方法,才能使学生的学习积极性进一步提高。
再者,培养学生的学习兴趣,增强教案效果,才能避免在以后的学习中产生两极分化。
在教案中任然存在的问题是,学生在“说”英语这个环节还有待提高,大部分学生都不愿意开口朗读课文,所以复述课文便尚有难度,对于这一部分学生的学习成绩的提高还有待研究。