二次函数与一元二次方程
22.2.1二次函数与一元二次方程
![22.2.1二次函数与一元二次方程](https://img.taocdn.com/s3/m/d0639ea8e45c3b3567ec8beb.png)
(3)若王强再一次从此处击球,要想让球飞行的最大 高度不变且球刚好进洞,则球飞行路线应满足怎样的抛 物线,求出其解析式.
解:(1) y 1 x2 8 x 1 (x 4)2 16
55
5
5
⸫抛物线开口向下,顶点为
4,16 5
,对称轴为x=4
(2)令y=0 ,得: 1 x2 8 x 0 55
(3)指出(2)的图像中,使y<0时, x的取值范围及使y >0时, x的取值范围
例2:王强在一次高尔夫球的练习中,在某处击球,其
飞行路线满足抛物线 y 1 x2 8 x ,其中y(m)是 55
球的飞行高度,x(m)是球飞出的水平距离,结果球离
球洞的水平距离还有2m.
(1)请写出抛物线的开口方 向、顶点坐标、对称轴.
的值永远为正的条件是__a_>_ 0,△<0 __
3.求抛物线 y=−2(x+1)2+8 ①与y轴的交点坐标; ②与x轴的两个交点间的距离.③何时y>0?
(1)抛物线y=x2+2x−3与x轴的交点有( C)
A.0个 B.1个
C.2个
D.3个
(2)抛物线y=mx2−3x+3m+m2经过原点,则其顶点坐标
图象:是一条抛物线。
图象的特点:(1)开口方向,开口大小; (2)对称轴; (3)顶点(最低点或最高点)。
y
y
o
x
o
x
二次函数y=ax2的图象与y=ax2+k的图象的关系
二次函数y=ax2+k的图象可由二次函数y=ax2 的图象向上(或向下)平移得到:
当k>0时,抛物线 y=ax2向上平移|k|个单 位,得y=ax2+k
九年级二次函数与一元二次方程的联系和区别
![九年级二次函数与一元二次方程的联系和区别](https://img.taocdn.com/s3/m/91283278a8114431b90dd882.png)
二次函数与一元二次方程的联系和区别一、二次函数1、自变量x 和因变量y 之间存在如下关系:y=ax 2+bx+c (a ,b ,c 为常数,a≠0,且a 决定函数的开口方向)①a>0时,开口方向向上 ②a<0时,开口方向向下③|a|还可以决定开口大小a 绝对值越大开口就越小,|a|越小开口就越大④一次项系数b 和二次项系数a 共同决定对称轴的位置。
当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右。
⑤常数项c 决定抛物线与y 轴交点。
抛物线与y 轴交于(0,c )⑥抛物线是轴对称图形。
对称轴为直线 x =2ab-,。
对称轴与抛物线唯一的交点为抛物线的顶点P 。
特别地,当b=0时,抛物线的对称轴是y 轴(即直线x=0)⑦抛物线有一个顶点P ,坐标为 P [2a b -,a b 4ac 42- ]。
当2ab -=0时,P 在y 轴上;当Δ= b 2-4ac=0时,P 在x 轴上。
2、二次函数的两种表达式①一般式:y=ax 2+bx+c (a ,b ,c 为常数,a≠0) ②顶点式:y=a(x-h)2+k [抛物线的顶点P (h ,k )] 3、抛物线与x 轴交点个数 Δ= b2-4ac >0时,抛物线与x 轴有2个交点。
Δ= b2-4ac=0时,抛物线与x 轴有1个交点。
Δ= b 2-4ac <0时,抛物线与x 轴没有交点。
二、一元二次方程y= ax 2+bx+c ,当y=0时,二次函数为关于x 的一元二次方程,即ax 2+bx+c=0 三、两者之间的联系①ax 2+bx+c=0,即为y= ax 2+bx+c ,y=0时 ②方程的根x 1,x 2是使ax 2+bx+c 为零的x 的取值③x 1,x 2对应图像上是y =ax 2+bx+c 函数与x 轴交点的横坐标。
④方程根的个数即是使ax 2+bx+c=0的x 的个数即是y= ax 2+bx+c y=0,为y= ax 2+bx+c 图像与x 轴的交点个数。
二次函数与一元二次方程的关系
![二次函数与一元二次方程的关系](https://img.taocdn.com/s3/m/1488e9f2524de518964b7d66.png)
(5)a+b+c的符号:因为x=1时,y=a+b+c,所以 a+b+c的符号由x=1时,对应的y值决定。 当x=1时,y>0,则a+b+c>0 当x=1时,y<0,则a+b+c<0 当x=1时,y=0,则a+b+c=0 (6)a-b+c的符号:因为x=-1时,y=a-b+c,所以a-b+c 的符号由x=-1时,对应的y值决定。 当x=-1,y>0,则a-b+c>0 当x=-1,y<0,则a-b+c<0 当x=-1,y=0,则a-b+c=0
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号: y
根据图像可得: 1、a>0
o
x
b 2、>0 2a
3、△=b² -4ac=0 4、C>0
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号: y
根据图像可得: 1、a>0
o
b 2、=0 2a
x
3、△=b² -4ac=0 4、C=0
若抛物线y=ax2+bx+c与x轴有交点,则
b2 – 4ac ≥0
例(1)如果关于x的一元二次方程 x2-2x+m=0有两个 1 相等的实数根,则m=____ ,此时抛物线 y=x21 2x+m与x轴有 8x +c的顶点在 x轴 16 上,则c=____ .
快速回答:
抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的 符号: y
根据图像可得: 1、a>0
二次函数与一元二次方程的关系
![二次函数与一元二次方程的关系](https://img.taocdn.com/s3/m/6fbf95dfcf84b9d529ea7a3e.png)
(2)取3和4的中间数3.5代入表达式 中试值.
当x=3.5时,y=3.52-2×3.5- 6=-0.75<0;
当x=4时,y>0,在3.5<x<4 范围内,
y随x的增大而增大,∴3.5<x2 <4.
• (3)取3.5和4的中间数3.75代入表达式 中试值.
• 当x=3.75时,y=3.752-2×3.75-6 =0.562 5>0; • 当x=3.5时,y<0.在3.5<x<3.75范 围内,
b2-4ac=0
有一个
有两个相等的实数根
b2-4ac<0
没有公共点
没有实数根
二次函数y=ax2+bx+c与x轴交点的横坐标就是 方程ax2+bx+c=0的根。
1 (中考·柳州)小兰画了一个函数y=x2+ax+b的图象 如图,则关于x的方程x2+ax+b=0的解是( D ) A.无解 B.x=1 C.x=-4 D.x=-1或x=4
• 2.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A (﹣1,p),B(4,q)两点,则关于x的不等式mx+n >ax2+bx+c的解集是 x<-1或x>4 .
• 3.二次函数y=x2+bx的图象如图,对称轴为直 线x=1,若关于x的一元二次方程x2+bx﹣t=0 (t为实数)在﹣1<x<4的范围内有解,则t的取
知识点 1 二次函数与一元二次方程的关系
二次函数y =x2+x-2,y=x2-6x+9,y =x2–x+1的图象如图所示.
(1)每个图象与x轴有几个交点? (2)一元二次方程 x2+x-2=0 ,x2-6x+9=0有几个根?
二次函数与一元二次方程、不等式
![二次函数与一元二次方程、不等式](https://img.taocdn.com/s3/m/dd1529732f3f5727a5e9856a561252d380eb2033.png)
2.3 二次函数与一元二次方程、不等式(一)教材梳理填空(1)一元二次不等式:一般地,我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.一元二次不等式的一般形式是ax 2+bx +c >0或ax 2+bx +c <0,其中a ,b ,c 均为常数,a ≠0.(2)二次函数的零点:一般地,对于二次函数y =ax 2+bx +c ,我们把使ax 2+bx +c =0的实数x 叫做二次函数y =ax 2+bx +c 的零点.(3)二次函数与一元二次方程、不等式的解的对应关系Δ>0 Δ=0 Δ<0y =ax 2+bx +c (a >0)的图象ax 2+bx +c =0 (a >0)的根 有两个不相等的实数根x 1,x 2(x 1<x 2) 有两个相等的实数根x 1=x 2=-b2a没有实数根ax 2+bx +c >0 (a >0)的解集 {x |x <x 1, 或x >x 2} ⎩⎨⎧x ⎪⎪⎭⎬⎫x ≠-b 2aRax 2+bx +c <0 (a >0)的解集 {x |x 1<x <x 2}∅∅(二)基本知能小试 1.判断正误(1)mx 2-5x <0是一元二次不等式.( )(2)若a >0,则一元二次不等式ax 2+1>0无解.( )(3)若一元二次方程ax 2+bx +c =0的两根为x 1,x 2(x 1<x 2),则一元二次不等式ax 2+bx +c <0的解集为{x |x 1<x <x 2}.( )(4)不等式x 2-2x +3>0的解集为R.( ) 2.不等式2x 2-x -1>0的解集是( )A .⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <1 B .{x |x >1} C .{x |x <1或x >2} D .⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12或x >1 3.不等式-2x 2+x +3<0的解集是( )A .{x |x <-1}B .⎩⎨⎧⎭⎬⎫x ⎪⎪ x >32C .⎩⎨⎧⎭⎬⎫x ⎪⎪ -1<x <32D .⎩⎨⎧⎭⎬⎫x ⎪⎪x <-1或x >32 4.若不等式ax 2+5x +c >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪13<x <12,则a ,c 的值分别为________,________.题型一 一元二次不等式的解法[学透用活][典例1] 解下列不等式:(1)-2x 2+x -6<0; (2)-x 2+6x -9≥0; (3)x 2-2x -3>0; (4)-4x 2+4x -1>0.[对点练清]1.(2018·全国卷Ⅰ)已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2} D .{x |x ≤-1}∪{x |x ≥2}2.不等式(x +5)(3-2x )≥6的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-1或x ≥92B.⎩⎨⎧⎭⎬⎫x ⎪⎪-1≤x ≤92C.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-92或x ≥1D.⎩⎨⎧⎭⎬⎫x ⎪⎪-92≤x ≤1 3.解不等式:-2<x 2-3x ≤10.题型二 二次函数与一元二次方程、不等式间的关系[学透用活][典例2] 已知关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3},求关于x 的不等式cx 2+bx +a <0的解集.[对点练清]1.[变结论]本例中条件不变,求关于x 的不等式cx 2-bx +a >0的解集.2.[变条件]若将本例的条件“关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3}”变为“关于x 的不等式ax 2+bx +c ≥0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪-13≤x ≤2”.求不等式cx 2+bx +a <0的解集.题型三一元二次不等式的实际应用[学透用活][典例3]某校园内有一块长为800 m,宽为600 m的长方形地面,现要对该地面进行绿化,规划四周种花卉(花卉带的宽度相同),中间种草坪,若要求草坪的面积不小于总面积的一半,求花卉带宽度的范围.[对点练清]1.某商品在最近30天内的价格y1与时间t(单位:天)的关系式是y1=t+10(0<t≤30,t ∈N);销售量y2与时间t的关系式是y2=-t+35(0<t≤30,t∈N),则使这种商品日销售金额z不小于500元的t的范围为________.2.在一个限速40 km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事发后现场测得甲车的刹车距离略超过12 m,乙车的刹车距离略超过10 m. 又知甲、乙两种车型的刹车距离S m与车速x km/h之间分别有如下关系:S甲=0.1x +0.01x2,S乙=0.05x+0.005x2.问超速行驶谁应负主要责任.[课堂一刻钟巩固训练]一、基础经典题1.下列不等式:①x 2>0;②-x 2-x ≤5;③ax 2>2;④x 3+5x -6>0;⑤mx 2-5y <0;⑥ax 2+bx +c >0.其中是一元二次不等式的有( )A .5个B .4个C .3个D .2个2.不等式-x 2-5x +6≥0的解集为( ) A .{x |x ≥6或x ≤-1} B .{x |-1≤x ≤6} C .{x |-6≤x ≤1}D .{x |x ≤-6或x ≥1}3.二次不等式ax 2+bx +c <0的解集是全体实数的条件是( )A.⎩⎪⎨⎪⎧ a >0,Δ>0B.⎩⎪⎨⎪⎧ a >0,Δ<0C.⎩⎪⎨⎪⎧a <0,Δ>0 D.⎩⎪⎨⎪⎧a <0,Δ<0 4.若a <0,则关于x 的不等式a (x +1)⎝⎛⎭⎫x +1a <0的解集为________. 5.若关于x 的不等式(k -1)x 2+(k -1)x -1<0恒成立,则实数k 的取值范围是________. 二、创新应用题6.解关于x 的不等式x 2-3ax -18a 2>0.[课下双层级演练过关]A 级——学考水平达标练1.设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则S ∩T =( )A .{x |2≤x ≤3}B .{x |x ≤2或x ≥3}C .{x |x ≥3}D .{x |0<x ≤2或x ≥3} 2.下列四个不等式:①-x 2+x +1≥0;②x 2-25x +5>0;③x 2+6x +10>0;④2x 2-3x +4<1.其中解集为R 的是( )A .①B .②C .③D .④3.若0<t <1,则不等式(x -t )⎝⎛⎭⎫x -1t <0的解集为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪ 1t <x <t B.⎩⎨⎧⎭⎬⎫x ⎪⎪ x >1t 或x <t C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <1t 或x >t D.⎩⎨⎧⎭⎬⎫x ⎪⎪t <x <1t 4.一元二次方程ax 2+bx +c =0的两根为-2,3,a <0,那么ax 2+bx +c >0的解集为( ) A .{x |x >3或x <-2} B .{x |x >2或x <-3} C .{x |-2<x <3}D .{x |-3<x <2}5.若产品的总成本y (万元)与产量x (台)之间的函数关系式是y =3 000+20x -0.1x 2(0<x <240),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是( )A .100台B .120台C .150台D .180台 6.要使17-6x -x 2有意义,则x 的解集为________.7.已知集合A ={x |3x -2-x 2<0},B ={x |x -a <0},且B ⊆A ,则a 的取值范围为________. 8.若关于x 的不等式ax 2-6x +a 2<0的非空解集为{x |1<x <m },则m =________. 9.解下列不等式:(1)2x 2+7x +3>0;(2)-4x 2+18x -814≥0; (3)-2x 2+3x -2<0; (4)-12x 2+3x -5>0.10.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏;若售价每提高1元,日销售量将减少2盏.为了使这批台灯每天能获得400元以上的销售收入,应怎样制定这批台灯的销售价格?B级——高考水平高分练1.设x2-2x+a-8≤0对于任意x∈{x|1≤x≤3}恒成立,则a的取值范围是________.2.对于实数x,当且仅当n≤x<n+1(n∈N*)时,[x]=n,则关于x的不等式4[x]2-36[x]+45<0的解集为________.3.解关于x的不等式x2-(a+a2)x+a3>0.4.某小商品在2018年的价格为8元/件,年销量是a件.现经销商计划在2019年将该商品的价格下调至5.5元/件到7.5元/件之间,经调查,顾客的期望价格是4元/件.经测算,该商品价格下调后新增的年销量与实际价格和顾客期望价格的差成反比,比例系数为k.该商品的成本价为3元/件.(1)写出该商品价格下调后,经销商的年收益y与实际价格x的关系式;(2)设k=2a,当实际价格最低定为多少时,仍然可以保证经销商2019年的收益比2018年至少增长20%?5.某热带风暴中心B 位于海港城市A 东偏南30°的方向,与A 市相距400 km.该热带风暴中心B 以40 km/h 的速度向正北方向移动,影响范围的半径是350 km.问:从此时起,经多少时间后A 市将受热带风暴影响,大约受影响多长时间?习题课(提升关键能力) 一元二次函数、方程和不等式高频考点一|比较大小[例1] (1)已知a, b 满足等式x =a 2+b 2+20, y =4(2b -a ), 则x, y 满足的大小关系是( )A .x ≤yB .x ≥yC .x <yD .x >y (2)对于a >0,b >0,下列不等式中不正确的是( ) A.ab 2<1a +1b B .ab ≤a 2+b 22 C .ab ≤⎝⎛⎭⎫a +b 22D.⎝⎛⎭⎫a +b 22≤a 2+b22(3)若角α,β满足-π2<α<π2,-π2<β<π2,则2α+β的取值范围是( )A .-π<2α+β<0B .-π<2α+β<πC .-3π2<2α+β<π2D .-3π2<2α+β<3π2[集训冲关]1.若a >b ,x >y ,下列不等式正确的是( )A .a +x <b +yB .ax >byC .|a |x ≥|a |yD .(a -b )x <(a -b )y 2.已知a +b <0,且a >0,则( )A .a 2<-ab <b 2B .b 2<-ab <a 2C .a 2<b 2<-abD .-ab <b 2<a 23.若0<a <1,0<b <1,且a ≠b ,则a +b,2ab ,2ab ,a 2+b 2中最大的一个是( ) A .a 2+b 2 B .2ab C .2ab D .a +b4.已知a <b <c ,试比较a 2b +b 2c +c 2a 与ab 2+bc 2+ca 2的大小.高频考点二|基本不等式及应用[例2] (1)已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .8(2)已知函数y =x -4+9x +1(x >-1),当x =a 时,y 取得最小值b ,则a +b =________. (3)某商品进货价每件50元,据市场调查,当销售价格(每件x 元)为50<x ≤80时,每天售出的件数为P =105(x -40)2,若要使每天获得的利润最多,销售价格每件应定为多少元?[集训冲关]1.(3-a )(a +6)(-6≤a ≤3)的最大值为( ) A .9 B.92 C .3 D.3222.设a >0,若对于任意的正数m ,n ,都有m +n =8,则满足1a ≤1m +4n +1的a 的取值范围是________.3.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/小时)与车流速度v (假设车辆以相同速度v 行驶,单位 m/s)、平均车长l (单位:m)的值有关,其公式为F =76 000vv 2+18v +20l.(1)如果不限定车型,l =6.05,则最大车流量为____辆/小时;(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/小时. 4.若正实数x ,y 满足2x +y +6=xy ,求2x +y 的最小值.高频考点三|一元二次不等式及其应用[例3] (1)解关于x 的不等式x 2+(1-a )x -a <0.(2)甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求1≤x ≤10),每小时可获得的利润是100⎝⎛⎭⎫5x +1-3x 元. ①要使生产该产品2小时获得的利润不低于 3 000元,求x 的取值范围;②要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.[集训冲关]1.若不等式-x 2+mx -1>0有解,则m 的取值范围是( ) A .m <-2或m >2 B .-2<m <2 C .m ≠±2D .1<m <32.关于x 的不等式x 2-ax -6a 2>0(a <0)的解集为{x |x <x 1或x >x 2},且x 2-x 1=52, 则a 的值为( )A .- 5B .-32C .- 2D .-523.某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应的提高比例为0.75x ,同时预计年销售量增加的比例为0.6x .已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的关系式;(2)为使本年度的年利润比上年度有所增加,问投入成本增加的比例x 应在什么范围内?高频考点四|一元二次函数、方程和不等式[例4] 若不等式x 2+ax +3-a >0对于满足-2≤x ≤2的一切实数x 恒成立,求实数a 的取值范围.[集训冲关]1.若关于x 的方程8x 2-(m -1)x +m -7=0的两根均大于1,则m 的取值范围是________.2.若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1}. (1)解不等式2x 2+(2-a )x -a >0;(2)b 为何值时,ax 2+bx +3≥0的解集为R .一、选择题1.若A =a 2+3ab ,B =4ab -b 2,则A ,B 的大小关系是( ) A .A ≤B B .A ≥B C .A <B 或A >B D .A >B2.设集合A ={x |x 2-x -2<0},集合B ={x |1<x <3},则A ∪B =( ) A .{x |-1<x <3} B .{x |-1<x <1} C .{x |1<x <2} D .{x |2<x <3}3.设m >1,P =m +4m -1,Q =5,则P ,Q 的大小关系为( ) A .P <Q B .P =Q C .P ≥QD .P ≤Q4.若不等式ax 2+bx -2>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-2<x <-14,则a +b 等于( ) A .-18 B .8 C .-13 D .15.当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的取值范围是( ) A .a ≤2 B .a ≥2 C .a ≥3D .a ≤36.《几何原本》第二卷中的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多代数的定理都能够通过图形实现证明,并称之为无字证明.现有如图所示的图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB .设AC =a ,BC =b ,则该图形可以完成的无字证明为( )A.a +b 2≥ab (a >0,b >0) B .a 2+b 2≥2ab (a >0,b >0)C.2aba +b≤ab (a >0,b >0) D.a +b 2≤a 2+b 22(a >0,b >0) 7.对任意实数x ,不等式(a -2)x 2+2(a -2)x -4<0恒成立,则a 的取值范围是( ) A .{a |-2<a ≤2} B .{a |-2≤a ≤2} C .{a |a <-2或a >2}D .{a |a ≤-2或a >2}8.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,则( )A .甲先到教室B .乙先到教室C .两人同时到教室D .谁先到教室不确定二、填空题 9.若a <b <0,则1a -b与1a 的大小关系为________. 10.已知x +mx -2(x >2)的最小值为6,则正数m 的值为________.11.关于x 的不等式ax -b >0的解集是{x |x >1},则关于x 的不等式(ax +b )(x -2)>0的解集是________.12.若m 2x -1mx +1<0(m ≠0)对一切x ≥4恒成立,则实数m 的取值范围是________.三、解答题13. 当x >3时,求2x 2x -3的取值范围.14.解关于x 的不等式56x 2+ax -a 2<0.15.已知a >0,b >0,1a +1b =1,求1a -1+9b -1的最小值.16. 国际上钻石的重量计量单位为克拉.已知某种钻石的价值(美元)与其重量(克拉)的平方成正比,且一颗重为3克拉的该钻石的价值为54 000美元.(1)写出钻石的价值y 关于钻石重量x 的关系式;(2)把一颗钻石切割成两颗钻石,若两颗钻石的重量分别为m 克拉和n 克拉, 试证明:当m =n 时,价值损失的百分率最大.(注:价值损失的百分率=原有价值-现有价值原有价值×100%;在切割过程中的重量损耗忽略不计)。
《二次函数与一元二次方程》说课稿
![《二次函数与一元二次方程》说课稿](https://img.taocdn.com/s3/m/29d8ce41ccbff121dd3683e6.png)
《二次函数与一元二次方程(第1课时)》说课稿一、教材分析《二次函数与一元二次方程》是人教版九年级上册第22章第二节的第1课时的内容。
教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数与一元二次方程之间的关系问题,并结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系。
这一节是反映函数与方程这两个重要数学概念之间的联系的内容。
本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。
用函数的观点看方程,可以把方程看成函数值为某个定值时的情况,所以,研究函数与方程的关系是对函数的进一步深化。
学生在一次函数时已经了解了一次函数与一元一次方程、一元一次不等式、二元一次不等式组之间的联系,本章专设一节,通过探讨二次函数与一元二次方程的联系,再次展示函数与方程之间的联系。
这样既深化学生对一元二次方程的认识,又可以运用二次函数解决一元二次方程的相关问题,体现了知识之间的联系。
二、学情分析学生已经学习了一元一次方程和一次函数,一元二次方程,二次函数的图像和性质等知识,对函数与方程的关系已有初步认识。
但是运用函数的思想解决问题的意识还不够,仍习惯于孤立地看待方程与不等式的问题。
本节学习可以帮助学生进一步建立函数与方程的联系,提升用函数思想解决问题的意识和能力。
三、教学目标1.了解一元二次方程的根的几何意义;理解抛物线与横轴的三种位置关系对应一元二次方程的根的三种情况.2.经历探索二次函数与一元二次方程关系的过程,结合图象,进一步体会函数与方程之间的联系。
3.运用函数思想解决问题,体会事物之间的转化,提升思维品质。
四、教学重难点重点:二次函数与一元二次方程的联系,利用函数解决方程的有关问题.难点:将方程问题转化为函数问题,运用函数的思想解决问题。
五、教学策略由一次函数与一元一次方程的关系说起,采用类比的方法研究二次函数与一元二次方程的关系。
以实际问题为情境从数与形两个角度理解函数与方程之间的联系。
二次函数与一元二次方程
![二次函数与一元二次方程](https://img.taocdn.com/s3/m/7ab14c09650e52ea5418980c.png)
二次函数与一元二次方程【知识梳理】(一)二次函数与一元二次方程的关系一元二次方程ax 2+bx+c=0(a ≠0)的解的情况等价于抛物线y=ax 2+bx+c(c ≠0)与直线y=0(即x 轴)的公共点的个数。
抛物线y=ax 2+bx+c(a ≠0)与x 轴的公共点有三种情况:两个公共点(即有两个交点),一个公共点,没有公共点,因此有:(1)抛物线y=ax 2+bx+c 与x 轴有两个公共点(x 1,0)(x 2,0)即:一元二次方程ax 2+bx+c=0有两个不等实根△=b 2-4ac >0。
(2)抛物线y=ax 2+bx+c 与x 轴只有一个公共点时,此公共点即:为顶点(2b a -,0)一元二次方程ax 2+bx+c=0有两个相等实根,122bx x a ==-240b ac -=(3)抛物线y =ax 2+bx +c 与x 轴没有公共点一元二次方程ax 2+bx+c=0没有实数根△=b 2-4ac <0.(二)二次函数关系式的确定⑴设一般式:y =ax 2+bx +c(a≠0).若已知条件是图象上三个点的坐标,则设一般式y =ax 2+bx +c (a ≠0),将已知条件代入,求出a ,b ,c 的值.⑵设顶点式:y =a(x -h)2+k(a≠0).若已知条件是图象顶点及另一点,则设顶点式y =a (x -h )2+k (a ≠0).,将已知条件代人,求解并化为一般形式.:⑶设交点式(或两点式):y =a(x -x 1)(x -x 2)(a ≠0).若已知条件是图象与x 轴的两个交点及另一点,则设交点式y =a (x -x 1)(x -x 2)(a ≠0).将已知条件代人,求解并化为一般形式.【考点剖析】考点一 二次函数与方程例1.小兰画了一个函数y=x 2+ax+b 的图象如图,则关于x 的方程x 2+ax+b=0的解是( )A . 无解B .x=1C .x=-4D .x=-1或x=4例2.已知抛物线y=x 2﹣4x +m ﹣1.(1)若抛物线与x 轴只有一个交点,求m 的值;(2)若抛物线与直线y=2x ﹣m 只有一个交点,求m 的值.例3.如图,二次函数y=x 2﹣6x+5的图象交x 轴于A 、B 两点,交y 轴于点C ,则△ABC 的面积为 .例3图 变1图【变式练习】1.已知二次函数y=-x 2+2x+m 的部分图象如图所示,则关于x 的一元二次方程022=++-m x x 的解为 。
二次函数与一元二次方程、不等式
![二次函数与一元二次方程、不等式](https://img.taocdn.com/s3/m/91ae166f83c4bb4cf7ecd158.png)
第1课时 二次函数与一元二次方程、 不等式
1.一元二次不等式的概念 只含有一个未知数,并且未知数的最高次数是2的不等 式,称为一元二次不等式. 一元二次不等式的一般形式是: ax2+bx+c>0(a≠0)或ax2+bx+c<0(a≠0).
【思考】 (1)不等式x2+ 2 >0是一元二次不等式吗?
【解析】原不等式转化为(x-2a)(x+a)<0. 对应的一元二次方程的根为x1=2a,x2=-a. ①当a>0时,x1>x2, 不等式的解集为{x|-a<x<2a}; ②当a=0时,原不等式化为x2<0,无解;
③当a<0时,x1<x2,不等式的解集为{x|2a<x<-a}. 综上,当a>0时,原不等式的解集为{x|-a<x<2a}; 当a=0时,原不等式的解集为∅; 当a<0时,原不等式的解集为{x|2a<x<-a}.
(2)当Δ =0时,不等式ax2+bx+c≥0(a>0)与ax2+bx+c≤0 (a>0)的解集分别是什么? 提示:R,{x|x=x1}
【素养小测】
1.思维辨析(对的打“√”,错的打“×”) (1)mx2-5x<0是一元二次不等式. ( ) (2)若方程ax2+bx+c=0(a<0)没有实数根,则不等式ax2+ bx+c>0的解集为R. ( )
(3)设二次方程f(x)=0的两解为x1,x2,则一元二次不等 式f(x)>0的解集不可能为{x|x1<x<x2}. ( ) (4)不等式ax2+bx+c≤0(a≠0)或ax2+bx+c≥0(a≠0)的 解集为空集,则函数f(x)=ax2+bx+c无零点. ( )
二次函数与一元二次方程优秀教案
![二次函数与一元二次方程优秀教案](https://img.taocdn.com/s3/m/f45bfc86998fcc22bcd10de0.png)
例 2:已知抛物线 y x2 6x a 的顶点在 x 轴上,则 a =_________;若抛物线与 x 轴有两
1/3
个交点,则 a 的范围是_________;与 x 轴最多只有一个交点,则 a 的范围是_________ 例 3:已知关于 x 的函数 y ax2 x 1 ( a 为常数)
二次函数与一元二次方程
【教学目标】
1.经历探索二次函数与一元二次方程关系的过程,体会方程与函数之间的关系。 2.理解二次函数的图象与 x 轴公共点的个数与相应的一元二次方程根的对应关系。 3.进一步体验数形结合的数学思想。
【教学重点】
体会方程与函数之间的联系。
【教学难点】
数形结合的数学思想。
【教学过程】
一、问题情景: 1.一次函数 y 2x 5 与 x 轴的交点坐标是什么?它与一元一次方程 2x 5 0 有什么关
系? 2.解下列方程: ① x2 2x 3 0
② x2 6x 9 0
③ x2 2x 3 0
3.下列三个二次函数:① y x2 2x 3 ② y x2 6x 9 ③ y x2 2x 3 与上述相应的一
10.已知关于 x 的二次函数 y x2 (2m 1)x m2 3m 4
2/3
(1)探究 m 满足什么条件时,二次函数的图象与 x 轴的交点的个数; (2)设二次函数的图象与 x 轴的交点为 A(x1, 0), B(x2 , 0) ,且 x12 x22 5 , 求二次函数的解析式。 四、课外作业 1.已知一元二次方程 x2 px q 1 0 的一根为 2. (1)求 q 关于 p 的关系式; (2)求证:抛物线 y x2 px q 与 x 轴有两个交点; (3)设抛物线 y x2 px q 的顶点为 M ,且与 x 轴相交于 A(x1, 0)、B(x2, 0) 两点,求使△ AMB 面积最小时的抛物线的解析式。 2.已知抛物线 y x2 kx 3 k 2 ( k 为常数,且 k 0 )。
一元二次方程、二次函数、一元二次不等式。知识归纳
![一元二次方程、二次函数、一元二次不等式。知识归纳](https://img.taocdn.com/s3/m/9cb9fb20a31614791711cc7931b765ce05087aeb.png)
一元二次方程、二次函数、一元二次不等式。
知识归纳高2017级(文科)数学一轮复《一元二次方程、二次函数、一元二次不等式》知识归纳一、一元二次方程一元二次方程的一般形式为ax^2+bx+c=0(a≠0),其中ax^2、bx、c分别称为二次项、一次项、常数项。
a、b、c分别称为二次项系数、一次项系数、常数项。
解法:1.直接开平方法:形如(x+m)^2=n(n≥0)的方程,可直接开平方求解。
2.“十字相乘”因式分解法:可化为(ax+m)(bx+n)=0的方程,求解。
3.公式法:一元二次方程ax^2+bx+c=0的求根公式为x=(-b±√(b^2-4ac))/2a(b^2-4ac≥0)。
4.配方法:当一元二次方程的二次项系数为1,一次项系数为偶数时,也可以考虑用配方法。
根的判别式:1.当Δ=b^2-4ac>0时,原方程有两个不相等的实数根。
2.当Δ=b^2-4ac=0时,原方程有两个相等的实数根。
3.当Δ=b^2-4ac<0时,原方程没有实数根。
根与系数的关系:若关于x的一元二次方程ax^2+bx+c=0(a≠0)有两个根分别为x1、x2,则x1+x2=-b/a;x1x2=c/a。
二、二次函数一般式:f(x)=ax^2+bx+c(a≠0)三顶点式:f(x)=a(x-h)^2+k(a≠0)(其中h=-b/2a,k=(4ac-b^2)/4a)两根式:f(x)=a(x-x1)(x-x2)(a≠0)(仅限于二次函数图形与x 轴有两个交点时)对称轴x=-b/2a,顶点坐标(-b/2a。
(4ac-b^2)/(4a))单调性:函数在(-∞,-b/2a]上递减,函数在(-∞,-b/2a]上递增,在[-b/2a,+∞)上递增,在[-b/2a,+∞)上递减。
三、二次函数在闭区间[m,n]上的最大、最小值问题探讨设f(x)=ax^2+bx+c(a>0),则二次函数在闭区间[m,n]上的最大、最小值有如下的分布情况:m<n<-b/2a:f(x)单调递增,最小值为f(n);m<-b/2a<n:顶点在区间内,最大值为f(-b/2a),最小值为f(n)或f(m);b/2a<m<n:顶点在区间内,最大值为f(-b/2a),最小值为f(m);m=n<-b/2a:f(x)取常数值f(m)=f(n);m=n>-b/2a:f(x)单调递减,最小值为f(n)。
二次函数与一元二次方程、不等式
![二次函数与一元二次方程、不等式](https://img.taocdn.com/s3/m/3aec257f814d2b160b4e767f5acfa1c7aa0082b4.png)
§2.3 二次函数与一元二次方程、不等式 二次函数与一元二次方程、不等式学习目标 1.从函数观点看一元二次方程.了解函数的零点与方程根的关系.2.从函数观点看一元二次不等式.经历从实际情景中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义.3.借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系.知识点一 二次函数与一元二次方程、不等式的解的对应关系 判别式Δ=b 2-4ac Δ>0 Δ=0 Δ<0二次函数y =ax 2+bx +c (a >0)的图象一元二次方程ax 2+bx +c =0(a >0)的根有两个不相等的实数根x 1,x 2(x 1<x 2)有两个相等的实数根x 1=x 2=-b2a没有实数根ax 2+bx +c >0(a >0)的解集 {x |x <x 1,或x >x 2}xx ≠-b 2a Rax 2+bx +c <0(a >0)的解集{x |x 1<x <x 2}∅ ∅思考 一元二次不等式与一元二次函数有什么关系?答案 一元二次不等式ax 2+bx +c >0(a >0)的解集就是一元二次函数y =ax 2+bx +c (a >0)的图象在x 轴上方的点的横坐标x 的集合;ax 2+bx +c <0(a >0)的解集就是一元二次函数y =ax 2+bx +c (a >0)的图象在x 轴下方的点的横坐标x 的集合. 知识点二 简单的分式不等式的解法 分式不等式的解法:思考 x -3x +2>0与(x -3)(x +2)>0等价吗?x -3x +2≥0与(x -3)(x +2)≥0等价吗? 答案x -3x +2>0与(x -3)(x +2)>0等价;x -3x +2≥0与(x -3)(x +2)≥0不等价,前者的解集中没有-2,后者的解集中有-2. 知识点三 一元二次不等式恒成立问题 1.转化为一元二次不等式解集为R 的情况,即ax 2+bx +c >0(a ≠0)恒成立⇔a >0,Δ<0;ax2+bx +c <0(a ≠0)恒成立⇔a <0,Δ<0.2.分离参数,将恒成立问题转化为求最值问题.1.不等式2x 2-x -1>0的解集是________. 答案xx <-12或x >1解析 ∵2x 2-x -1=(2x +1)(x -1),∴由2x 2-x -1>0得(2x +1)(x -1)>0, 解得x <-12或x >1, ∴不等式的解集为xx <-12或x >1. 2.若不等式ax 2+bx +c >0的解集为{x |-2<x <3},则方程ax 2+bx +c =0的两根分别为________. 答案 -2,3解析 不等式ax 2+bx +c >0的解集为{x |-2<x <3},所以方程ax 2+bx +c =0的两根分别-2,3. 3.不等式x -2x -1<0的解集为________. 答案 {x |1<x <2}解析 原不等式⇔(x -1)(x -2)<0,∴1<x <2. 4.不等式1x ≤1的解集为________. 答案 {x |x ≥1或x <0}解析 ∵1x ≤1,∴x -1x ≥0,∴x (x -1)≥0,x ≠0, ∴x ≥1或x <0.5.若方程x 2+ax +1=0的解集是∅,则实数a 的取值范围是________. 答案 -2<a <2解析 由题意可得a 2-4<0,所以-2<a <2.6.对∀x ∈R ,不等式x 2+2x +m >0恒成立,则实数m 的取值范围是________. 答案 m >1解析 由题意可得22-4m <0,所以m >1.一、一元二次不等式的解法 例1 解下列不等式: (1)-2x 2+x -6<0; (2)-x 2+6x -9≥0; (3)x 2-2x -3>0.解 (1)原不等式可化为2x 2-x +6>0.因为方程2x 2-x +6=0的判别式Δ=(-1)2-4×2×6<0,所以函数y =2x 2-x +6的图象开口向上,与x 轴无交点(如图所示).观察图象可得,原不等式的解集为R .(2)原不等式可化为x 2-6x +9≤0,即(x -3)2≤0,函数y =(x -3)2的图象如图所示,根据图象可得,原不等式的解集为{x |x =3}. (3)方程x 2-2x -3=0的两根是x 1=-1,x 2=3.函数y =x 2-2x -3的图象是开口向上的抛物线,与x 轴有两个交点(-1,0)和(3,0),如图所示.观察图象可得不等式的解集为{x |x <-1或x >3}.反思感悟 解一元二次不等式的一般步骤(1)将一元二次不等式化为一端为0的形式(习惯上二次项系数大于0). (2)求出相应一元二次方程的根,或判断出方程没有实根. (3)画出相应二次函数示意草图,方程有根的将根标在图中.(4)观察图象中位于x 轴上方或下方的部分,对比不等式中不等号的方向,写出解集. 跟踪训练1 解下列不等式: (1)x 2-5x -6>0; (2)(2-x )(x +3)<0.解 (1)方程x 2-5x -6=0的两根为x 1=-1,x 2=6.结合二次函数y =x 2-5x -6的图象知,原不等式的解集为{x |x <-1或x >6}. (2)原不等式可化为(x -2)(x +3)>0.方程(x -2)(x +3)=0的两根为x 1=2,x 2=-3.结合二次函数y =(x -2)(x +3)的图象知,原不等式的解集为{x |x <-3或x >2}. 二、含参数的一元二次不等式的解法例2 解关于x 的不等式ax 2-2≥2x -ax (x ∈R ). 解 原不等式可化为ax 2+(a -2)x -2≥0.①当a =0时,原不等式化为x +1≤0,解得x ≤-1. ②当a >0时,原不等式化为x -2a (x +1)≥0,解得x ≥2a 或x ≤-1.③当a <0时,原不等式化为x -2a (x +1)≤0.当2a >-1,即a <-2时,解得-1≤x ≤2a ; 当2a =-1,即a =-2时,解得x =-1; 当2a <-1,即-2<a <0,解得2a ≤x ≤-1.综上所述,当a =0时,不等式的解集为{x |x ≤-1};当a >0时,不等式的解集为xx ≥2a 或x ≤-1;当-a <0时,不等式的解集为x2a ≤x ≤-1;当a =-2时,不等式的解集为{-1}; 当a <-2时,不等式的解集为x-1≤x ≤2a . 反思感悟 解含参数的一元二次不等式的步骤特别提醒:对应方程的根优先考虑用因式分解确定,分解不开时再求判别式Δ,用求根公式计算.跟踪训练2 解关于x 的不等式x 2-(3a -1)x +(2a 2-2)>0. 解 原不等式可化为[x -(a +1)][x -2(a -1)]>0,讨论a +1与2(a -1)的大小.(1)当a +1>2(a -1),即a <3时,不等式的解为x >a +1或x <2(a -1). (2)当a +1=2(a -1),即a =3时,不等式的解为x ≠4.(3)当a +1<2(a -1),即a >3时,不等式的解为x >2(a -1)或x <a +1. 综上,当a <3时,不等式的解集为{x |x >a +1或x <2(a -1)},当a =3时,不等式的解集为{x |x ≠4},当a >3时,不等式的解集为{x |x >2(a -1)或x <a +1}. 三、二次函数与一元二次方程、不等式间的关系及应用例3 已知关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3},求关于x 的不等式cx 2+bx +a <0的解集.解 由不等式ax 2+bx +c >0的解集为{x |2<x <3}可知a <0,且2和3是方程ax 2+bx +c =0的两根,由根与系数的关系(韦达定理)可知b a =-5,ca =6. 由a <0知c <0,bc =-56, 故不等式cx 2+bx +a <0,即x 2+b c x +ac >0,即x 2-56x +16>0, 解得x <13或x >12,所以不等式cx 2+bx +a <0的解集为xx <13或x >12.延伸探究1.若本例中条件不变,求关于x 的不等式cx 2-bx +a >0的解集. 解 由根与系数的关系知ba =-5,c a =6且a <0.∴c <0,bc =-56,故不等式cx 2-bx +a >0, 即x 2-b c x +ac <0,即x 2+56x +16<0. 解得-12<x <-13,故原不等式的解集为x-12<x <-13.2.若将本例中的条件“关于x 的不等式ax 2+bx +c >0的解集为{x |2<x <3}”变为“关于x 的不等式ax 2+bx +c ≥0的解集是x-13≤x ≤2”.求不等式cx 2+bx +a <0的解集.解 方法一 由ax 2+bx +c ≥0的解集为x-13≤x ≤2知a <0.又-13×2=ca <0,则c >0.又-13,2为方程ax 2+bx +c =0的两个根, ∴-b a =53,∴b a =-53.又ca =-23,∴b =-53a ,c =-23a ,∴不等式cx 2+bx +a <0变为 -23a x 2+-53a x +a <0,即2ax 2+5ax -3a >0. 又∵a <0,∴2x 2+5x -3<0,故所求不等式的解集为x-3<x <12.方法二 由已知得a <0 且 -13+2=-b a ,-13×2=ca 知c >0,设方程cx 2+bx +a =0的两根分别为x 1,x 2, 则x 1+x 2=-b c ,x 1·x 2=ac , 其中a c =1-13×2=-32, -bc =-ba c a = -13+2-13×2=-52, ∴x 1=1-13=-3,x 2=12. ∴不等式cx 2+bx +a <0(c >0)的解集为x-3<x <12.反思感悟 已知以a ,b ,c 为参数的不等式(如ax 2+bx +c >0)的解集,求解其他不等式的解集时,一般遵循(1)根据解集来判断二次项系数的符号.(2)根据根与系数的关系把b ,c 用a 表示出来并代入所要解的不等式. (3)约去 a ,将不等式化为具体的一元二次不等式求解.跟踪训练3 已知关于x 的不等式x 2+ax +b <0的解集为{x |1<x <2},求关于x 的不等式bx 2+ax +1>0的解集.解 ∵x 2+ax +b <0的解集为{x |1<x <2},∴方程x 2+ax +b =0的两根为1,2.由根与系数的关系得-a =1+2,b =1×2,得a =-3,b =2, 代入所求不等式,得2x 2-3x +1>0. 解得x <12或x >1. ∴bx 2+ax +1>0的解集为xx <12或x >1. 四、简单的分式不等式的解法 例4 解下列不等式: (1)x +12x -1<0; (2)1-x3x +5≥0; (3)x -1x +2>1. 解 (1)原不等式可化为(x +1)(2x -1)<0,∴-1<x <12, 故原不等式的解集为x-1<x <12. (2)原不等式可化为x -13x +5≤0, ∴(x -1)(3x +5)≤0,3x +5≠0,∴-53≤x ≤1,x ≠-53,即-53<x ≤1. 故原不等式的解集为x-53<x ≤1. (3)原不等式可化为x -1x +2-1>0, ∴x -1-(x +2)x +2>0,-3x +2>0,则x <-2.故原不等式的解集为{x |x <-2}.反思感悟 分式不等式的解法(1)对于比较简单的分式不等式,可直接转化为一元二次不等式或一元一次不等式组求解,但要注意等价变形,保证分母不为零.(2)对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不要去分母),使之转 化为不等号右边为零,然后再用上述方法求解. 跟踪训练4 解下列不等式: (1)x +1x -3≥0; (2)5x +1x +1<3. 解 (1)不等式x +1x -3≥0可转化成不等式组(x +1)(x -3)≥0,x ≠3.解这个不等式组,可得x ≤-1或x >3.即知原不等式的解集为{x |x ≤-1或x >3}. (2)不等式5x +1x +1<3可改写为5x +1x +1-3<0, 即2(x -1)x +1<0. 可将这个不等式转化成2(x -1)(x +1)<0, 解得-1<x <1.所以,原不等式的解集为{x |-1<x <1}. 五、不等式的恒成立问题例5 对∀x ∈R ,不等式mx 2-mx -1<0,求m 的取值范围. 解 若m =0,显然-1<0恒成立;若m ≠0,则m <0,Δ=m 2+4m <0⇒解得-4<m <0. 综上,m 的取值范围为{m |-4<m ≤0}. 延伸探究1.在本例中,是否存在m ∈R ,使得∀x ∈R ,不等式mx 2-mx -1>0,若存在,求m 的取值范围;若不存在,说明理由. 解 显然m =0时不等式不成立;由题意可得m >0,Δ=m 2+4m <0,解得m ∈∅,所以不存在m ∈R ,使得∀x ∈R ,不等式mx 2-mx -1>0.2.在本例中,把条件“∀x ∈R ”改为“x ∈{x |2≤x ≤3}”,其余不变,求m 的取值范围. 解 由不等式mx 2-mx -1<0得m (x 2-x )<1,因为x ∈{x |2≤x ≤3},所以x 2-x >0, 所以m (x 2-x )<1可化为m <1x 2-x,因为x 2-x =x -122-14≤6,所以1x 2-x≥16,所以m <16. 即m 的取值范围是mm <16.反思感悟 一元二次不等式恒成立问题的解法(1)转化为对应的二次函数图象与x 轴的交点问题,考虑两个方面:x 2的系数和对应方程的判别式的符号.(2)转化为二次函数的最值问题:分离参数后,求相应二次函数的最值,使参数大于(小于)这个最值.跟踪训练5 若关于x 的不等式(k -1)x 2+(k -1)x -1<0恒成立,则实数k 的取值范围是________. 答案 {k |-3<k ≤1}解析 当k =1时,-1<0恒成立;当k ≠1时,由题意得k -1<0,(k -1)2+4(k -1)<0,解得-3<k <1,因此实数k 的取值范围为{k |-3<k ≤1}.1.不等式3x 2-2x +1>0的解集为( )A.x-1<x <13 B.x13<x <1C .∅ D .R2.不等式3+5x -2x 2≤0的解集为( )A.xx >3或x <-12 C.xx ≥3或x ≤-12 B.x-12≤x ≤3 D .R3.已知集合U ={x |x 2>1},集合A ={x |x 2-4x +3<0},∁U A 等于( ) A .{x |1<x <3} B .{x |x <1或x ≥3} C .{x |x <-1或x ≥3}D .{x |x <-1或x >3}4.若0<m <1,则不等式(x -m )x -1m <0的解集为( )A. x 1m <x <m C. x x >m 或x <1mB. x x >1m 或x <m D.x m <x <1m 5.不等式1+x 1-x≥0的解集为( ) A .{x |-1<x ≤1} B .{x |-1≤x <1}C .{x |-1≤x ≤1}D .{x 1<x <1} 6.若集合A ={x |-1≤2x +1≤3},B = x x -2x ≤0,则A ∩B 等于( )A .{x |-1≤x <0}B .{x |0<x ≤1}C .{x |0≤x <2}D .{x |0≤x ≤1}7.已知方程ax 2+bx +2=0的两根为-12和2,则不等式ax 2+bx -1>0的解集为________.8.不等式x +1x ≥5的解集是________.9.不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________.【答案与解析】1、答案 D 解析 因为Δ=(-2)2-4×3×1=4-12=-8<0,所以不等式3x 2-2x +1>0的解集为R .2、答案 C解析 3+5x -2x 2≤0⇒2x 2-5x -3≥0⇒(x -3)(2x +1)≥0⇒x ≥3或x ≤-12.3、答案 C解析 ∵U ={x |x 2>1}={x |x >1或x <-1},A ={x |x 2-4x +3<0}={x |1<x <3},∴∁U A ={x |x <-1或x ≥3}.4、答案 D解析 ∵0<m <1,∴1m >1>m ,故原不等式的解集为x m <x <1m . 5、答案 B解析 原不等式⇔(x +1)(x -1)≤0,x -1≠0,∴-1≤x <1.6、答案 B解析 ∵A ={x |-1≤x ≤1},B ={x |0<x ≤2}, ∴A ∩B ={x |0<x ≤1}.7、答案x 12<x <1 解析 ∵方程ax 2+bx +2=0的两根为-12和2,由根与系数的关系可得 -12+2=-b a ,-12×2=2a ,∴a =-2,b =3, ax 2+bx -1>0可变为-2x 2+3x -1>0,即2x 2-3x +1<0,解得12<x <1.8、答案x 0<x ≤14 解析 原不等式⇔x +1x -5≥0⇔4x -1x ≤0⇔ x (4x -1)≤0,x ≠0,解得0<x ≤14. 9、答案 a >4或a <-4解析 ∵x 2+ax +4<0的解集不是空集,即不等式x 2+ax +4<0有解,∴Δ=a 2-4×1×4>0,解得a >4或a <-4.1.知识清单:(1) 二次函数与一元二次方程、不等式的关系及应用.(2) 简单的分式不等式的解法.(3) 不等式的恒成立问题.2.方法归纳:数形结合、分类讨论、转化、恒等变形.3.常见误区:(1) 解含参数的二次不等式时找不到分类讨论的标准.(2) 解分式不等式要等价变形.。
二次函数与一元二次方程的关系
![二次函数与一元二次方程的关系](https://img.taocdn.com/s3/m/bc6b323a6f1aff00bfd51e5f.png)
解:(1)-1 x 3.
(2)设y=x2 -1,则y是x的二次函数.
a=1 0,抛物线开口向上.
又 当y=0时,x2 -1=0,
∴
>0
∴△>0,
∴无论 m取何值,抛物线总与x轴有两个交点.
温馨提示:为更好地满足您的学习和使用需求,课件在下载后可以自由编辑,请您根据实际情况进行调整!Thank you for
能力提升
5.已知二次函数 y kx2 6x 7 的图像与X轴
ห้องสมุดไป่ตู้
有两个不同的交点.
(1) 求k的取值范围
(2) 当k为何值时,这两个交点横坐标的平方和等
可由一元二次方程的根的判别式来判定二次函数图象与x 轴的交点的情况,由根与系数的关系来解决相关问题。
在函数问题中,往往需要解方程:反过来也可以利用函 数图象解方程。
课后练习
1.已知抛物线y x2 6x a与x轴有两个交点,则a的取值范围是多少? 2.已知抛物线y=x2 px q与x轴的两个交点为(2, 0), (3, 0),则p、q的 值分别是多少? 3.已知二次函数y x2 kx k 2. (1)判别上述抛物线与x轴的交点情况; (2)设抛物线与x轴交点之间的距离为2 5,求k的值. 4.设二次函数的图象与x轴交于A, B两点,与y轴交点点C,线段OA与OB 的长的积等于60(点O是坐标原点), 求m的值.
解得x =-1,x =1.
1
2
由此得抛物线的大致图象如图所示:
观察函数图象可知:
当x -1或x 1时,
二次函数与一元二次方程经典教学案+典型例题
![二次函数与一元二次方程经典教学案+典型例题](https://img.taocdn.com/s3/m/8079018783c4bb4cf6ecd189.png)
二次函数与一元二次方程教学案二次函数与一元二次方程之间的联系 1.二次函数与一元二次方程的关系(二次函数与X 轴交点情况):一元二次方程ax 2 ∙bx ∙ c =O 是二次函数y=a χ2∙b χ∙c 当函数值y=0时的特 殊情况.图象与X 轴的交点个数:①当A . =b 2 -4ac 0时,图象与X 轴交于两点A X i,0,B X 2,0 (X^-X 2),其中的X l ,X 2是一兀二次方程ax? ∙ bx C =0 a 严0的两根.这两点间的距离② 当应-0时,图象与X 轴只有一个交点; ③ 当.—:0时,图象与X 轴没有交点.1'当a 0时,图象落在X 轴的上方,无论X 为任何实数,都有y ∙0 ; 2'当a <0时,图象落在X 轴的下方,无论X 为任何实数,都有y :::0.2. 抛物线y =ax 2 ∙ bx C 的图象与y 轴一定相交,交点坐标为(0, C );3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与X 轴的交点坐标,需转化为一元二次方程;2例:二次函数y = x — 3x+2与X 轴有无交点?若有,请说出交点坐标;若 没有,请说明理由:⑵ 根据图象的位置判断二次函数中a , b ,C 的符号,或由二次函数中a , b , C 的符号判断图象的位置,要 数形结合;⑶二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称 的点坐标,或已知与X 轴的一个交点坐标,可由对称性求出另一个交点坐标 总结:⑴一元二次方程ax 2 bx ^0的实数根就是对应的二次函数AB 二 X ? - X i I 二b 2 -4acy = ax2 bx c 与X轴交点的_____ .⑵二次函数与一元二次方程的关系如下:(一元二次方程的实数根记为人、X2)⑶二次函数y =ax___________ .【例1】已知:关于X的方程mχ2-3(m T)x *2m-3=0 .(1求证:m取任何实数时,方程总有实数根;⑵若二次函数y1 =mx2 -3(m-1)x,2m-1的图象关于y轴对称.①求二次函数%的解析式;②已知一次函数W =2x-2 ,证明:在实数范围内,对于X的同一个值,这两个函数所对应的函数值y≥ y2均成立;⑶在⑵条件下,若二次函数y^ax2 bx c的图象经过点(-5 ,0),且在实数范围内,对于X的同一个值,这三个函数所对应的函数值yι≥ y3 ≥ y2 ,均成立,求二次函数y^ax2bx c的解析式.【思路分析】本题是一道典型的从方程转函数的问题,这是比较常见的关于一元二次方程与二次函数的考查方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习1.二次函数图象的一部分如图所示,其对称轴为直线,且过点.下列说法:①;② ;③;④若是抛物线上的两点,则.其中正确的是( )A.①②B.②③C.①②④D.②③④2.小轩从如图所示的二次函数的图象中,观察得到如下四个结论:① ;②;③ ;④.其中正确的结论是( )A.①②③B.②③④C.①②④D.①②③④3.已知二次函数的图象如图所示,它与x 轴的两个交点分别为(-1,0),(3,0).下列结论:①②b-2a=0;③;④ .其中正确的是( )A.③B.②③C.③④D.①②4.已知二次函数的图象如图所示,有下列结论:A.①②B.②③C.①②④D.①②③④二次函数与一元二次方程(讲义)➢ 课前预习学习一次函数与二元一次方程(组)的关系时,有以下结论:两个一次函数交点的坐标即为对应的二元一次方程组的解.3则一次函数 y =3x -3 与y =-3x +3的交点 P 的坐标是 _______ .请思考:一元二次方程ax 2 + bx + c = 0的根,可否看作是二次函数y = ax 2 +bx +c 与 x 轴交点的横 坐标,即方程组y = ax + bx + c 的解中x 的值.y =02. 两函数值比大小主要是借助数形结合,通过找交点、画直线、定左右来确定取值范围.比如:1. 如:已知方程组y -3x +3=02 y +3 x - 6 = 04的解为x =3 ,y =1以下结论:① ;② ;③c-a=2;④方程 有两个相等的实数根.其中正交点在(0,2)的下方.则下列结论:① ;② ;③ ;④ .其中正确的是( )(1)如图所示,函数 y 1=|x |和y 2 = 1 x + 4的图象相交于(-1,1),(2,2)两点.当 y 1>y 2时,x 的 取值范围是( )A .x >1B .-1<x <0C .-1<x <0 或 x >1D .x <-1 或 0<x <1知识点__________ 是研究函数、方程、不等式等的一种重要手段. 1. 方程的根是对应的两个 交点的 . 特别地,一元二次方程 ax 2+bx +c =0 的根是二次函数 ______ 的图象与 _______ 交点的横坐标,当 Δ0时,二次函数图象与x 轴有 ____ 个交点;当Δ = 0时,与x 轴有 _ 个交点;当Δ < 0时, 与x 轴 ____ 交点.2. 函数间求交点坐标,函数值比大小等问题通常是借助数形结合,以构造的方法将函数问题转化为 方程问题解决.➢ 精讲精练1. 如图,在同一平面直角坐标系中,二次函数 y =ax 2+bx +c 的图象与 x 轴分别交于 A (-1,0),B (3, 0)两点,与y 轴交于点C (0,-3),一次函数y = x - 3的图象与抛物线交于B ,C 两点. 1)一元二次方程 ax 2+bx +c =0 的根为 ____________ . 当 ax 2+bx +c >0 时,x 的取值范围为 ____________ . 当 ax 2+bx +c ≤0 时,x 的取值范围为 ___________ . 2)方程 ax 2 + bx + c = x - 3的根为 ____________ . 当 ___________时,一次函数值大于二次函数值. 3)该二次函数的表达式为 ________________ . 1)一元二次方程-x 2+8x -12=3的根为 _________ ,直线y =3 与抛物线 y =-x 2+8x -12的交点 坐标为 _______,不等式-x 2+8x -12>3 的解集为 _______________ . 2)直线 y =2x -1 与抛物线 y =x 2-x +1 的交点坐标为 ______ , 不等式 x 2-x +1≥2x -1 的解集为 ________________ .(3)若二次函数的图象经过点 A (4,0),B (-2,0),C (0,4),则该二次函数的表达式为 . 3. 已知二次函数y = x 2 + 2x + m 的图象C 1与x 轴有且只有一个交点,则m 的值为 _____ ;若二次函数y =x 2+2x +m 的图象与坐标轴有三个交点,则m 的取值范围为 __________ ;若y =x 2+2x +m 的求两个函数的交点坐标就是求对 应方程组的解.2.相 交 于 点 A ( 1 , 2 )函数值总为正数,则图象顶点在第___ 象限,m的取值范围是________ .4.若二次函数y = (m -1)x2+ 2x的图象与直线y = x -1没有交点,则m的取值范围是_____ .k5.如图,二次函数y = ax2+ bx与反比例函数y = - k的图象交于一点P,那么关于x的方程xkax2+bx+ =0的解为 _________ ;若一元二次方程ax2+ bx + m = 0有实数根,则m的取值范围为x6.用“描点法”画二次函数y = ax2+ bx + c的图象时,列了如下表格:x…-2-1012…y…3430-5…______________ .7.设一元二次方程(x-1)(x-2)=m(m0)的两根分别为,,且,则,满足()A.1 2 B.12C.1 2 D.1且28.已知二次函数y = (x - m)(x -n)+1(m n)的图象与x轴交于A(x1,0),B(x2,0)两点,且x1x2,则实数x1,x2,m,n的大小关系为____ .9.若关于x的一元二次方程(x-2)(x-3)=m有实数根x1,x2,且x1x2,有下列结论:①x1= 2,x2= 3;②m-1;③二次函数y = (x - x1)(x - x2)+ m的图象与x轴交点的坐标为(2,0)和(3,0).其中正确的是.10.已知抛物线y=x2-(4m+1)x+2m-1 与x轴交于两点,如果有一个交点的横坐标大于2,另一个交点的横坐标小于2,并且抛物线与y轴的交点在点(0,-1)的下方,那么m的取值范围是_ .11.已知抛物线y=x2+bx+c的对称轴为直线x=1,若关于x的一元二次方程x2-bx-c=0 在-3<x<2 的范围内有解,则c的取值范围是()A.c≥-1 B.-1≤c<3 C.3<c<8 D.-1≤c<812.函数y = x2- x + m(m0 )的图象如图所示,如果x = a时y0 ,那么x = a -1时,函数值()A.y0 B .0 y mC.y m D.y= mO x3.实数 x 1,x 2,m ,n 的大小关系为 .13. 已知二次函数y =-x 2 +x -1 ,当自变量x 取m 时,对应的函数值大于0,当自变量x 分别取m -1,m +1时,对应的函数值分别为y 1,y 2,则 y 1 __ 0,y 2 _____ 0.(选填“>”“ <”)14. 已知二次函数y = x 2 +bx + c ,当x ≤1 时,总有y ≥0,当 1≤x ≤3时,总有 y ≤0,那么c 的取值范 围是 ___________ . 随堂测试k如图,抛物线 y =x 2+1 与双曲线 y = k 的交点 A 的横坐标是 2,则关于 x x集是( )A .x >2B .x <-2C .0<x <2D .-2<x <0 已知二次函数 y =x 2-4x +a ,下列说法错误的是( ) 当 x < 1 时, y 随 x 的增大而减小 若图象与 x 轴有交点,则 a ≤4当 a =3 时,不等式 x 2 -4x +a <0 的解集是 1 <x <3若将图象向上平移1 个单位,再向左平移3 个单位后过点(1,-2),则 a =3 1.2.A .B .C .D .已知二次函数y=-(x-m)(x-n)-2(m<n)的图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2,则3.实数x1,x2,m,n的大小关系为.作业1. 二次函数 y =x 2-2x -3 的图象如图所示,当 y 0 时,自变量 x 的取值范围是( )2. 二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,若ax 2+bx +c +k = 0 (k ≠0)有两个不相等的实数根,则k 的取值范围是( ) A .k -3 B .k-3C .k 3D .k 33. 抛物线y =-x 2 + bx + c 的部分图象如图所示,若y0,则x 的取值范围是() A .-4x1 B .-3 x 1 C .x-4或x 14. 函数y =x 2-2x -2的图象如图所示,根据该图象提供的信息,可求得使y ≥1成立的 x 的取值范 围是( ) A . -1≤ x ≤ 3B .-1 x3 C .x -1或x 3 D .x ≤-1或x ≥3如图是二次函数y = ax 2 +bx +c 的部分图象,由图象可知不等式ax 2 +bx +c 0的解集是(kk 6. 如图,若抛物线y = x 2+ 1与双曲线y = k的交点A 的横坐标为1,则关于x 的不等式k +x 2+10 xx的解集是( ) A .x 1 B .x -1 C .0x 1 D .-1x 07. 坐标平面上,若平移二次函数 y =2(x -175)(x -176)+6 的图象,使其与 x 轴交于两点,且此两点的距 离为1 个单位,则平移方式可为下列哪一种( ) A . -1 x 3 B .x -1D . x-1 或 x3D . x-3 或 x15. A .-1 x 5 B .x5 D . x -1或x 5第2 题图A.向上平移3 个单位B.向下平移3 个单位C.向上平移6个单位D.向下平移6 个单位8.设一元二次方程(x -1)(x -3)= k(k0 )的两根分别为α,β,且,则α,β,1,3 之间的大小关系为 _____ ;(x-1)(x-3)k的解集为________ .9.若二次函数的图象y = (m-2)x2+ x与直线y = 2x -1没有交点,求m的取值范围.10.已知P(-3,m)和Q(1,m)是抛物线y = 2x2+bx+1上的两点.(1)求b的值;(2)将抛物线y=2x2+bx+1的图象先向上平移2 个单位,再向左平移1 个单位,请判断新抛物线与x轴的交点情况.11.已知二次函数y = x2+ 2x + m的图象C1与x轴有且只有一个交点,则C1的顶点坐标为______ .12.若关于x的一元二次方程x2-x-n=0无实数根,则函数y= x2- x - n的图象顶点在第______ 象限.13.抛物线y=ax2+ bx + c上部分点的横坐标x,纵坐标y的对应值如下表:x…-2-1012…y…0-4-408…1)根据上表填空:①一元二次方程ax2+ bx + c = 0的根为 ______________ .②抛物线经过点(-3, ___ );③在对称轴右侧,y随x的增大而______ .2)确定抛物线y =ax2+bx+c的解析式,并求出该函数的最值.。