高考数学模拟试题
2024年高考数学模拟试题与答案解析
2024年高考数学模拟试题与答案解析一、选择题1.设集合A={x|x=2k,k∈Z},B={x|x=3k,k∈Z},则A∩B={()}A.{x|x=6k,k∈Z}B.{x|x=2k,k∈Z}C.{x|x=3k,k∈Z}D.{x|x=k,k∈Z}【答案】B解析:集合A包含所有2的倍数,集合B包含所有3的倍数。
A ∩B表示同时属于A和B的元素,即同时是2和3的倍数的数,也就是6的倍数。
所以A∩B={x|x=6k,k∈Z},故选B。
2.若函数f(x)=x²-4x+c的图像的对称轴是x=2,则c的值为()A.4B.3C.2D.1【答案】A解析:函数f(x)=x²-4x+c的图像的对称轴是x=-b/2a,即x=2。
根据对称轴的公式,得到-(-4)/(21)=2,解得c=4。
故选A。
3.已知等差数列的前n项和为Sn=n(a1+an)/2,若S3=18,S6-S3=24,则a4的值为()A.6B.8C.10D.12【答案】B解析:根据等差数列的前n项和公式,得到S3=3(a1+a3)/2=18,即a1+a3=12。
又因为S6-S3=24,得到a4+a5+a6=24。
由等差数列的性质,a3+a6=a4+a5。
将a3+a6替换为a4+a5,得到3a4+3a5=48,即a4+a5=16。
解方程组a1+a3=12和a4+a5=16,得到a4=8。
故选B。
二、填空题4.若|x-2|≤3,则|x+1|的取值范围是______【答案】-2≤x≤5解析:由|x-2|≤3,得到-3≤x-2≤3,即-1≤x≤5。
再由|x+1|的图像可知,当-3≤x≤5时,|x+1|的取值范围是-2≤x≤5。
5.已知函数f(x)=2x²-3x+1,求f(1/2)的值。
【答案】3/4解析:将x=1/2代入函数f(x),得到f(1/2)=2(1/2)²-3(1/2)+1=2/4-3/2+1=3/4。
三、解答题6.(1)求证:对任意正整数n,都有n²+2n+1≥n+2。
全国卷高考数学模拟卷(含答案)
全国卷高考数学模拟卷(含答案)全国卷-数学本试题卷共6页,23题(含选考题),全卷满分150分,考试用时120分钟。
注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5.考试结束后,请将答题卡上交。
一、选择题:1.已知集合A={x|x-1>0}。
B={-2.2-1.1},则A∩B=?A。
{-2.-1} B。
{-2} C。
{-1.1} D。
{0.1}2.设复数z=-1+ i(i是虚数单位),z的共轭复数为z,则(1+z)/(1-z)=?A。
-12/55+i/55 B。
-12/55-i/55 C。
12-i/55 D。
-12+i/553.若sin(α-π/4)=4/32,α∈(0,π/2),则cosα的值为?A。
4-2√7/27 B。
4-√7/3 C。
4+√7/3 D。
4+2√7/274.已知双曲线(x^2/a^2)-(y^2/b^2)=1(a>0,b>0)的一个焦点为F(0,-2),一条渐近线的斜率为3,ab,则该双曲线的方程为?A。
(y-2)^2/9 - x^2/4 = 1 B。
x^2/9 - (y-2)^2/4 = 1 C。
-x^2/9 + (y-2)^2/4 = 1 D。
(y+2)^2/9 - x^2/4 = 15.某空间几何体的三视图如图所示,则该几何体的体积为?A。
56-8π/3 B。
64-8π/3 C。
64-4π/3 D。
高考数学模拟试题含答案详解
高考数学模拟试题含答案详解一、选择题1. 已知函数 $ f(x) = x^2 4x + 3 $,求 $ f(2) $ 的值。
答案:将 $ x = 2 $ 代入函数 $ f(x) $,得 $ f(2) = 2^2 4\times 2 + 3 = 1 $。
2. 已知等差数列 $\{a_n\}$ 的首项为 $a_1 = 3$,公差为 $d = 2$,求第 $n$ 项 $a_n$ 的表达式。
答案:等差数列的通项公式为 $a_n = a_1 + (n 1)d$,代入$a_1 = 3$ 和 $d = 2$,得 $a_n = 3 + (n 1) \times 2 = 2n + 1$。
3. 已知等比数列 $\{b_n\}$ 的首项为 $b_1 = 2$,公比为 $q = 3$,求第 $n$ 项 $b_n$ 的表达式。
答案:等比数列的通项公式为 $b_n = b_1 \times q^{n1}$,代入 $b_1 = 2$ 和 $q = 3$,得 $b_n = 2 \times 3^{n1}$。
4. 已知三角形的两边长分别为 $a = 5$ 和 $b = 8$,夹角为$60^\circ$,求第三边长 $c$。
答案:利用余弦定理 $c^2 = a^2 + b^2 2ab \cos C$,代入 $a = 5$,$b = 8$,$C = 60^\circ$,得 $c^2 = 5^2 + 8^2 2 \times5 \times 8 \times \cos 60^\circ = 49$,所以 $c = 7$。
5. 已知函数 $ g(x) = \frac{1}{x} $,求 $ g(x) $ 的定义域。
答案:由于 $x$ 不能为 $0$,所以 $g(x)$ 的定义域为 $x \neq 0$。
二、填空题1. 已知函数 $ h(x) = \sqrt{4 x^2} $,求 $ h(x) $ 的定义域。
答案:由于根号内的值不能为负,所以 $4 x^2 \geq 0$,解得$2 \leq x \leq 2$。
2024年高考数学精选模拟试卷及答案
2024年高考数学精选模拟试卷及答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.现要完成下列2项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查;①东方中学共有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本. 较为合理的抽样方法是( )4.现将5个代表团人员安排至甲、乙、丙三家宾馆入住,要求同一个代表团人员住同一家宾馆,且每家宾馆至少有一个代表团入住.若这5个代表团中,A B 两个代表团已经入住甲宾馆且不再安排其他代表团入住甲宾馆,则不同的入住方案种数为( ) A .6B .12C .16D .185.下列命题中正确的个数是①命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠; ①“0a ≠”是“20a a +≠”的必要不充分条件; ①若p q ∧为假命题,则p ,q 为假命题;①若命题2000:,10p x R x x ∃∈++<,则:p x ⌝∀∈R ,210x x ++≥.二、多选题三、填空题四、解答题16.2018年茂名市举办“好心杯”少年美术书法作品比赛,某赛区收到200件参赛作品,为了解作品质量,现从这些作品中随机抽取12件作品进行试评.成绩如下:67,82,78,86,96,81,73,84,76,59,85,93. (1)求该样本的中位数和方差;(2)若把成绩不低于85分(含85分)的作品认为为优秀作品,现在从这12件作品中任意抽取3件,求抽到优秀作品的件数的分布列和期望.17.某市司法部门为了宣传《宪法》举办法律知识问答活动,随机对该市18~68岁的人群抽取一个容量为n 的样本,并将样本数据分成五组:[)1828,,[)2838,,[)3848,,[)4858,,[)5868,,再将其按从左到右的顺序分别编号为第1组,第2组,…,第5组,绘制了样本的频率分布直方图;并对回答问题情况进行统计后,结果如下表所示.(1)分别求出a,x的值;(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖概率.18.某食品公司在八月十五来临之际开发了一种月饼礼盒,礼盒中共有7个两种口味的月饼,其中4个五仁月饼和3个枣泥月饼.(1)一次取出两个月饼,求两个月饼为同一种口味的概率;(2)依次不放回地从礼盒中取2个月饼,求第1次、第2次取到的都是五仁月饼的概率;(3)依次不放回地从礼盒中取2个月饼,求第2次取到枣泥月饼的概率.19.在某项娱乐活动的海选过程中评分人员需对同批次的选手进行考核并评分,并将其得分作为该选手的成绩,成绩大于等于60分的选手定为合格选手,直接参加第二轮比赛,大于等于90分的选手将直接参加竞赛选拔赛.已知成绩合格的100名参赛选手成绩的60,70,80,90,90,100的频率构成等比数列.频率分布直方图如图所示,其中[)[)[](2)若试剂A在连续进行的三轮测试中,都有2X ,则认为该试剂对药品B的酸碱值检测效果是稳定的,求出出现这种现象的概率.参考答案:a4)中位数为81.5,方差为,x=9(2)。
2024年普通高等学校招生全国统一考试数学模拟试题(一)(新高考九省联考题型)(高频考点版)
一、单选题1. 设集合 A={ x|﹣3≤2x ﹣1≤3},集合 B 为函数 y=lg ( x ﹣1)的定义域,则 A∩B=( )A .(1,2)B .[1,2]C .[1,2)D .(1,2]2. 已知正四棱台的上下底面边长分别为4,6,高为,E是的中点,则下列说法正确的个数是()①正四棱台的体积为;②平面平面;③平面;④正四棱台的外接球的表面积为A .1B .2C .3D .43. “数独九宫格”原创者是18世纪的瑞士数学家欧拉,它的游戏规则很简单,将1到9这九个自然数填到如图所示的小九宫格的9个空格里,每个空格填一个数,且9个空格的数字各不相同,若中间空格已填数字4,且只填第二行和第二列,并要求第二行从左至右及第二列从上至下所填的数字都是从大到小排列的,则不同的填法种数为( )4A .70B .120C .140D .1444.若,则有( )A.B.C.D.5. 一个四面体的三视图如图所示,则该几何体的外接球的表面积与体积之和为()A.B.C.D.6.已知直线与, 轴的正半轴分别交于点,,与直线交于点,若(为坐标原点),则, 的值分别为A .,B .,C .,D.,7. 已知函数(,)的图象如图所示,则的值是()2024年普通高等学校招生全国统一考试数学模拟试题(一)(新高考九省联考题型)(高频考点版)2024年普通高等学校招生全国统一考试数学模拟试题(一)(新高考九省联考题型)(高频考点版)二、多选题三、填空题A.B.C.D.8. 定义区间,,,的长度为.如果一个函数的所有单调递增区间的长度之和为,那么称这个函数为“函数”,下列四个命题:①函数是“函数”;②函数是“函数”;③函数是"m 函数",且“函数,且”;④函数是“函数,且”.其中正确的命题的个数为( )A .4个B .3个C .2个D .1个9. 如图,正方形ABCD 的边长为1,M ,N 分别为BC ,CD 的中点,将正方形沿对角线AC 折起,使点D 不在平面ABC 内,则在翻折过程中,以下结论中正确的是()A .异面直线AC 与BD 所成的角为定值B .三棱锥的外接球的表面积为C .存在某个位置,使得直线AD 与直线BC 垂直D .三棱锥体积的最大值为10. 设函数,且相邻两条对称轴之间的距离为,,,则( )A .,B.在区间上单调递增C.将的图象向左平移个单位长度,所得图象关于轴对称D .当时,函数取得最大值11. 下列关于余弦函数说法正确的是( )A.最小正周期是B .最小正周期是C.值域是D.值域是E .定义域是R 12. 一块斯里兰卡月光石的截面可近似看成由半圆和半椭圆组成,如图所示,在平面直角坐标系中,半圆的圆心在坐标原点,半圆所在的圆过椭圆的右焦点,椭圆的短轴与半圆的直径重合.若直线与半圆交于点A,与半椭圆交于点,则下列结论正确的是()A.椭圆的离心率是B .线段长度的取值范围是C .面积的最大值是D .的周长存在最大值13. 已知函数在区间上有且仅有3个对称中心,给出下列四个结论:四、解答题①的值可能是3; ②的最小正周期可能是;③在区间上单调递减; ④图象的对称轴可能是.其中所有正确结论的序号是________.14.若的展开式中常数项为,则自然数__________.15.已知函数.若存在2个零点,则的取值范围是__________16. 如图,圆柱的轴截面ABCD 是正方形,点E 在底面圆周上,,F为垂足.(1)求证:.(2)当直线DE 与平面ABE 所成角的正切值为2时,①求二面角E —DC —B 的余弦值;②求点B 到平面CDE 的距离.17.已知正项等比数列的前项和为,且,(1)求的公比;(2)若,求数列的前项和.18. 手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行评分,评分的频数分布表如下:女性用户区间频数2040805010男性用户区间频数4575906030(1)完成下列频率分布直方图,计算女性用户评分的平均值,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);(2)把评分不低于70分的用户称为“评分良好用户”,能否有90%的把握认为“评分良好用户”与性别有关?参考公式:,其中0.100.0500.0100.0012.7063.841 6.63510.82819.已知双曲线的左、右焦点分别为,,虚轴长为,离心率为,过的直线与双曲线的右支交于,两点.(1)求双曲线的方程;(2)已知,若的外心的横坐标为0,求直线的方程.20. 医生的专业能力参数可有效衡量医生的综合能力,越大,综合能力越强,并规定: 能力参数不少于30称为合格,不少于50称为优秀.某市卫生管理部门随机抽取300名医生进行专业能力参数考核,得到如图所示的能力的频率分布直方图:(Ⅰ)求出这个样本的合格率、优秀率;(Ⅱ)现用分层抽样的方法从中抽出一个样本容量为20的样本,再从这20名医生中随机选出2名.①求这2名医生的能力参数为同一组的概率;②设这2名医生中能力参数为优秀的人数为,求随机变量的分布列和期望.21. 无土栽培由于具有许多优点,在果蔬种植行业得到大力推广,无土栽培的类型主要有水培、岩棉培和基质培三大类.某农科院为了研究某种草苺最适合的无土栽培方式,种植了株这种草苺进行试验,其中水培、岩棉培、基质培的株数分别为、、.草苺成熟后,按照栽培方式用分层抽样的方法抽取了株作为样本,统计其单株产量,数据如下:(1)求、、的值;(2)从样本中单株产量在内的草莓中随机抽取株,求这株草莓中恰有株草莓采用了岩棉培的概率.。
高考数学模拟试题(六)
一、选择题1.设集合A ={}x |y =1-x ,B ={x |(x +1)()x -2}<0,则A ⋂B =().A.[)1,2B.(]-1,1C.()-1,1D.()-1,22.复数z 满足(1+i )z =|-2i |,则z =().A.2+2i B.1+i C.2-2i D.1-i 3.已知直线m ⊥平面α,则“直线n ⊥m ”是“n ∥α”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.上海地铁2号线早高峰时每隔4.5分钟一班,其中含列车在车站停留的0.5分钟,假设乘客到达站台的时刻是随机的,则该乘客到达站台立即能乘上车的概率为().A.17B.18C.19D.1105.《孙子算经》中曾经记载,中国古代诸侯的等级从高到低分为:公、侯、伯、子、男,共有五级.若给有巨大贡献的甲、乙两人进行封爵,则甲比乙获封等级高的概率为().A.25B.15C.45 D.356.已知MOD 函数是一个求余数函数,MOD ()m ,n ()m ∈N +,n ∈N +表示m 除以n的余数,例如MOD ()8,3=2.如图1是某个算法的程序框图,若输入m 的值为28,则输出的值为().A.3B.4C.5D.67.已知a,b 是不共线的向量,OA =λa +μb , OB =2a -b ,OC =a -2b,若A 、B 、C 三点共线,则λ、μ满足().A.λ=μ-3B.λ=μ+3C.λ=μ+2D.λ=μ-28.已知变量x ,y 满足ìíîïï0≤x ≤3,x +y ≥0,x -y +3≤0,则z =2x -3y的最大值为().A.-9B.9C.-12D.129.已知函数f ()x =2sin ωx ()ω>0在x ∈[]a ,2()a <0上最大值为1且递增,则2-a 的最大值为().A.6B.7C.9D.810.已知函数f (x )=(x 2-2x )sin(x -1)+xx -1在[-1,3]上的最大值为M ,最小值为m ,则M +m =().A.1B.2C.3D.411.在直角坐标系xOy 中,F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1()a >0,b >0的左、右焦点,点P ()x 0,y 0是双曲线右支上的一点,满足 PF 1∙PF 2=0,若点P 的横坐标取值范围是x 0∈æèöø54a ,43a ,则双曲线C 的离心率取值范围为().A.æèöø54,43 B.æèöø167,92C.èøD.èø12.已知对任意实数x 都有f ′()x =3e x +f ()x ,f ()0=-1,若不等式f ()x <a ()x -2(其中a <1)的解集中恰有两个整数,则a 的取值范围是().A.éëöø43e ,12 B.éëöø43e ,1 C.éëêöø÷74e 2,43e D.éëêöø÷74e 2,12二、填空题13.若直线2x -cy +1=0是抛物线x 2=y 的一条切线,则c =______.14.一个棱长为2的正方体中有一个实心圆柱体,圆柱的上、下底面在正方体的上、下底面上,侧面与正方体的侧面相切,则在正方体与圆柱的空隙中能够放置的最大球的半径为______.15.已知{}a n ,{}b n 都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=______.16.一只蚂蚁从一个正四面体ABCD 的顶点A 出发,每次从一个顶点爬行到另一个顶点,则蚂蚁爬行五次还在点A 的爬行方法种数是______.三、解答题(一)必考题17.已知f ()x =4tan x sin æèöøπ2-x cos æèöøπ3-x -3,ΔABC 的内角A ,B ,C 的对边分别为a ,b ,c ,B 为锐角,何小敏图152且f ()B =3.(1)求角B 的大小;(2)若b =3,a =2c ,求ΔABC 的面积.18.如图2,在四棱锥P -ABCD 中,PD ⊥面ABCD ,AB //DC ,AB ⊥AD ,DC =6,AD =8,BC =10,∠PAD =45∘,E 为PA 的中点.(1)求证:DE //面PBC ;(2)线段AB 上是否存在一点F ,满足CF ⊥DB ?若存在,试求出二面角F -PC -D 的余弦值;若不存在,说明理由.19.在贯彻中共中央、国务院关于精准扶贫政策的过程中,某单位在某市定点帮扶某村100户贫困户.为了做到精准帮扶,工作组对这100户村民的年收入情况、危旧房情况、患病情况等进行调查,并把调查结果转化为各户的贫困指标x .将指标x 按照[)0,0.2,[)0.2,0.4,[)0.4,0.6,[)0.6,0.8,[]0.8,1.0分成五组,得到如图3所示的频率分布直方图.规定若0≤x <0.6,则认定该户为“绝对贫困户”,否则认定该户为“相对贫困户”;当0≤x <0.2时,认定该户为“亟待帮住户”.工作组又对这100户家庭的受教育水平进行评测,家庭受教育水平记为“良好”与“不好”两种.图3(1)完成下面的列联表,并判断是否有95%的把握认为绝对贫困户数与受教育水平不好有关:绝对贫困户相对贫困户总计受教育水平良好2受教育水平不好52总计100(2)上级部门为了调查这个村的特困户分布情况,在贫困指标处于[)0,0.4的贫困户中,随机选取两户,用X 表示所选两户中“亟待帮助户”的户数,求X 的分布列和数学期望EX .附:K 2=n ()ad -bc 2()a +b ()c +d ()a +c ()b +d ,其中n =a +b+c +d .P ()K 2≥k 0k 00.152.0720.102.7060.053.8410.0255.02420.如图4,已知椭圆C :x 2a 2+y 2b2=1()a >b >0的离心率为,其右顶点为A ,下顶点为B ,定点C ()0,2,ΔABC 的面积为3,过点C 作与y 轴不重合的直线l 交椭圆C 于P ,Q 两点,直线BP ,BQ 分别与x 轴交于M ,N 两点.(1)求椭圆C 的方程;(2)试探究M ,N 的横坐标的乘积是否为定值,说明理由.图421.已知函数f ()x =-a ln x +x +4-2ax.(1)当a ≥4时,求函数f ()x 的单调区间;(2)设g ()x =e x +mx 2-6,当a =e 2+2时,对任意x 1∈[)2,+∞,存在x 2∈[)1,+∞,使得f ()x 1+2e 2≥g ()x 2,求实数m 的取值范围.(二)选考题22.已知曲线C 的参数方程为ìíîx =3cos θ,y =sin θ,(θ为参数),在同一平面直角坐标系中,将曲线C 上的点按坐标变换ìíîïïx ',y '=y ,得到曲线C ',以原点为极点,x 轴的正半轴为极轴,建立极坐标系.设A 点的极坐标为æèöø32,π.(1)求曲线C '的极坐标方程;(2)若过点A 且倾斜角为π6的直线l 与曲线C '交于M ,N 两点,求||AM ∙||AN 的值.23.已知实数正数x ,y 满足x +y =1.(1)解关于x的不等式||x +2y +||x -y ≤52;(2)证明:æèçöø÷1x 2-1æèçöø÷1y 2-1≥9.图253参考答案与解析一、选择题1-12BDBCA CBADB CC 二、填空题13.-1;14.3-22;15.21;16.60.三、解答题(一)必考题17.解:(1)f ()x =4tan x sin æèöøπ2-x cos æèπ3=sin 2x -3cos 2x =2sin æèöø2x -π3,由f ()B =3得sin æèöø2B -π3,∵B 为锐角,∴2B -π3∈æèöø-π3,2π3,∴2B -π3=π3∴B =π3;(2)由余弦定理得b 2=a 2+c 2-2ac cos B ∵b =3,a =2c ,B =π3,∴9=()2c 2+c 2-4c 2cos π3,∴c 2,∴S ΔABC =12ac sin B =c 2sin B 18.解:(1)如图5,取PB 的中点M ,连过C 点作CN ⊥AB ,垂足为N ,∵CN ⊥AB ,DA ⊥AB ,∴CN //DA ,又∴四边形CDAN 为平行四边形,∴CN =AD =8,DC =AN =6,,在Rt△BC 2-CN 2=102-82=6∴AB =12,而E ,M 分别为PA ,PB 的中点,∴EM //AB 且EM =6,又DC //AB∴EM //CD 且EM =CD ,四边形CDEM 为平行四边形,∴DE //CM ,CM ⊂平面PBC ,DE ⊄∴DE //平面PBC .(2)由题意可得,DA ,DC ,DP 两两互相垂直,如图6,以DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系D -xyz ,则A (8,0,0),B (8,12,0),C (0,6,0),P (0,0,8),假设AB 上存在一点F 使CF ⊥BD ,设F 坐标为(8,t ,0),则 CF =(8,t -6,0),DB =(8,12,0),由 DA =(1,0,0),得t =23,又平面DPC 的一个法向量为DA =(1,0,0),设平面FPC 的法向量为n=(8,12,9),又 PC =(0,6,-8), FC =(-8,163,0),由ìíî n · PC =0, n · FC =0,得ìíîïï6y -8z =0,-8x +163y =0,即ìíîïïz =34y ,x =23y ,不妨设y =12,有n =(8,12,9),则cos < n ,DA >=| n |·| DA | n || DA |=817,又由法向量方向知该二面角为锐二面角,故二面角F -PC -D 的余弦值为817.19.解:(1)由题意可知,绝对贫困户有(0.25+0.50+0.75)×0.2×100=30(户),可得出如列联表:绝对贫困户相对贫困户总计受教育水平良好21820受教育水平不好285280总计3070100K 2=100×()18×28-2×52230×70×20×80≈4.762>3.841.故有95%的把握认为绝对贫困户数与受教育水平不好有关.(2)贫困指标在[)0,0.4的贫困户共有()0.25+0.5×0.2×100=15(户),“亟待帮助户”共有0.25×0.2×100=5(户),依题意X 的可能值为0,1,2,P ()X =0=C 210C 215=37,P ()X =1=C 110C 15C 215=1021,P ()X =2=C 25C 215=221,则X 的分布列为X P037110212221故EX =0×37+1×1021+2×221=23.20.解:(1)由已知,A ,B 的坐标分别是A ()a ,0,B ()0,-b 由于ΔABC 的面积为3,图5图54∴12∴(2)别为P (y 1+1x 1x -1直线N ∴x M +16kx +-16k 1+4k2∴x M21.f ′(x )由f ′当a 由f ′当a ∴当是(0,2)当a (2)当减,在(e 2,从而≤f ()x1+2f ()x +2e 2由e 2令h (∵h ′(当x 当x ∈[2,+∞)时,xe x +2()e 2-e x >xe x -2e x ≥0,h ′(x )<0.故h (x )在[1,+∞)上单调递减,从而h (x )max =h (1)=e 2-e ,从而m ≤e 2-e .22.解:(1)曲线C 的普通方程为:x 23+y 2=1,将曲线C 上的点按坐标变换ìíîïïx '=y '=y ,,得到ìíîx =3x ',y =y ',代入()x '2+()y '2=1得C '的方程为:x 2+y 2=1.则其极坐标方程为:ρ=1.(2)点A 在直角坐标的坐标为æèöø-32,0,因为直线l 过点A 且倾斜角为π6,设直线l 的参数方程为ìíîïïx =-32+,y =12t ,(t 为参数),代入C :x 2+y 2=1得:t 2-+54=0.设M ,N 两点对应的参数分别为t 1,t 2,则t 1+t 2=t 1t 2=54.所以||AM ∙||AN =||t 1t 2=54.23.解:(1)∵x +y =1,且x >0,y >0∴||x +2y +||x -y ≤52⇔ìíîïï0<x <1,||2-x +||2x -1≤52,⇔ìíîïï0<x <1,||2x -1≤12+x ,⇔ìíîïï0<x <1,-æèöø12+x ≤2x -1≤12+x ,解得16≤x <1,所以不等式的解集为éëöø16,1.(2)解法1:∵x +y =1,且x >0,y >0,∴æèçöø÷1x 2-1æèçöø÷1y 2-1=2x y +2y x +5≥+5=9,当且仅当x =y =12时,等号成立.解法2:∵x +y =1,且x >0,y >0,∴æèçöø÷1x 2-1æèçöø÷1y 2-1=1-x 2x 2∙1-y 2y 2=2xy +1≥2æèçöø÷x +y 22+1=9,当且仅当x =y =12时,等号成立.55。
2023高考数学模拟卷(一)(含答案解析)
9.已知抛物线 的焦点为 ,准线为 , 是 上一点,直线 与抛物线交于 两点,若 ,则
A B.8C.16D.
10.已知函数 的图象过点 ,且在 上单调,同时 的图象向左平移 个单位之后与原来的图象重合,当 ,且 时, ,则
A. B.-1C.1D.
11.下图是某四棱锥的三视图,网格纸上小正方形的边长为1,则该四棱锥的外接球的表面积为
20.已知椭圆 的一个焦点为 ,离心率为 .不过原点的直线 与椭圆 相交于 两点,设直线 ,直线 ,直线 的斜率分别为 ,且 成等比数列.
(1)求 的值;
(2)若点 在椭圆 上,满足 直线 是否存在?若存在,求出直线 的方程;若不存在,请说明理由.
21.已程 的两个实数根为 ,求证: ;
设M(x1,y1),N(x2,y2),M,N到准线的距离分别为dM,dN,
由抛物线的定义可知|MF|=dM=x1+1,|NF|=dN=x2+1,于是|MN|=|MF|+|NF|=x1+x2+2.
∵ ,
∴ ,即 ,∴ .
∴ ,∴直线AB的斜率为 ,
∵F(1,0),∴直线PF的方程为y= (x﹣1),
将y= (x﹣1),代入方程y2=4x,得3(x﹣1)2=4x,化简得3x2﹣10x+3=0,
A. B. C. D.
6.已知 展开式中 的系数为0,则正实数
A.1B. C. D.2
7.已知数列 的前 项和 ,若 ,则
A. B.
C. D.
8.如图是正四面体的平面展开图, 分别是 的中点,在这个正四面体中:① 与 平行;② 与 为异面直线;③ 与 成60°角;④ 与 垂直.以上四个命题中,正确命题的个数是()
2024年上海市高考高三数学模拟试卷试题及答案详解
2024上海高考高三数学模拟试卷(本试卷共10页,满分150分,90分钟完成.答案一律写在答题纸上)命题:侯磊审核:杨逸峰一、填空题.(本题共12小题,前6题每小题4分;后6题每小题5分,共54分.请在横线上方填写最终的、最简的、完整的结果)1.已知集合{}()1,2,3,4,5,2,5A B ==,则A B =.2.已知圆柱底面圆的周长为2π,母线长为4,则该圆柱的体积为.3.101x x ⎛⎫+ ⎪⎝⎭的二项展开式中,2x 项的系数为.4.等比数列{}n a 的各项和为2,则首项1a 的取值范围为.5.已知平面向量()()1,2,,4a b m == ,若a 与b的夹角为锐角,则实数m 的取值范围为.6.已知复数z 满足22z z -==,则3z =.7.已知空间向量()()1,1,0,0,1,1a b == ,则b 在a方向上的投影为.8.已知()ln(4f x ax c x =++(a 、b 、c 为实数),且3(lg log 10)5f =,则(lglg3)f 的值是9.已知A B 、是抛物线24y x =上的两个不同的点,且10AB =,若点M 为线段10AB =的中点,则M 到y 轴的距离的最小值为.10.一个飞碟射击运动员练习射击,每次练习可以开2枪.当他发现飞碟后,开第一枪命中的概率为0.8;若第一枪没有命中,则开第二枪,且第二枪命中的概率为0.6;若2发子弹都没打中,该次练习就失败了.若已知在某次练习中,飞碟被击中的条件下,则飞碟是运动员开第二枪命中的概率为.11.已知ABC 中,,,A B C 为其三个内角,且tan ,tan ,tan A B C 都是整数,则tan tan tan A B C ++=.12.已实数m n 、满足221m n +≤,则2263m n m n +-+--的取值范围是.二、选择题(本题共4小题,前2题每小题4分;后2题每小题5分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,请填写符合要求的选项前的代号)13.以下能够成为某个随机变量分布的是()A .0111⎛⎫ ⎪⎝⎭B .101111236-⎛⎫ ⎪⎝⎭C .123111248⎛⎫ ⎪ ⎝⎭D .11.222.40.50.50.30.7⎛⎫⎪-⎝⎭14.某高级中学高一年级、高二年级、高三年级分别有学生1400名、1200名、1000名,为了解学生的健康状况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,若从高三年级抽取25名学生,则n 为A .75B .85C .90D .10015.设等比数列{}n a 的前n 项和为n S ,设甲:123a a a <<,乙:{}n S 是严格增数列,则甲是乙的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.椭圆具有如下的声学性质:从一个焦点出发的声波经过椭圆反射后会经过另外一个焦点.有一个具有椭圆形光滑墙壁的建筑,某人站在一个焦点处大喊一声,声音向各个方向传播后经墙壁反射(不考虑能量损失),该人先后三次听到了回音,其中第一、二次的回音较弱,第三次的回音较强;记第一、二次听到回音的时间间隔为x ,第二、三次听到回音的时间间隔为y ,则椭圆的离心率为()A .2xx y+B .2x x y+C .2y x y +D .2y x y+三、解答题.(本大题共5小题,满分78分.请写出必要的证明过程或演算步骤)17.三棱柱111ABC A B C -中,1AA ⊥平面ABC ,且1AB BC ==,12,90,AA ABC D =∠=︒为1CC中点.(1)求四面体1A ABD -的体积:(2)求平面ABD 与1ACB 所成锐二面角的余弦值.18.(1)在用“五点法”作出函数[]1sin ,0,2πy x x =-∈的大致图象的过程中,第一步需要将五个关键点列表,请完成下表:x0sin x -01sin x-1(2)设实数0a >且1a ≠,求证:()ln x x a a a '=;(可以使用公式:()e e x x '=)(3)证明:等式()()()32123x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x a x x x x x x bx x x c ++=-⎧⎪++=⎨⎪=-⎩19.为帮助乡村脱贫,某勘探队计划了解当地矿脉某金属的分布情况,测得了平均金属含量y (单位:克每立方米)与样本对原点的距离x (单位:米)的数据,并作了初步处理,得到了下面的一些统计量的值.(表中9111,9i i i i u u u x ===∑).xyu921()ii x x =-∑921()i i u u =-∑921()i i y y =-∑91(())i ii x y x y =--∑91()()i ii u u y y =--∑697.900.212400.1414.1226.13 1.40-(1)利用相关系数的知识,判断y a bx =+与dy c x=+哪一个更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型;(2)根据(1)的结果建立y 关于x 的回归方程,并估计样本对原点的距离20x =米时,平均金属含量是多少?20.已知抛物线2:2(0)C y px p =>,过点()(),00M a a ≠与x 轴不垂直的直线l 与C 交于()()1122,,A x y B x y 、两点.(1)求证:OA OB ⋅是定值(O 是坐标原点);(2)AB 的垂直平分线与x 轴交于(),0N n ,求n 的取值范围;(3)设A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出定点的坐标.21.已知2()ln(1)2x f x a x x =++-,函数()y f x =的导函数为()y f x '=.(1)当1a =时,求()y f x =在2x =处的切线方程;(2)求函数()y f x =的极值点;(3)函数()y f x =的图象上是否存在一个定点(,)(.(0,))m n m n ∈+∞,使得对于定义域内的任意实数00()x x m ≠,都有000()()()2x mf x f x m n +'=-+成立?证明你的结论.1.{3,4}【分析】根据给定条件,利用交集的定义直接求解即可.【详解】集合{}()1,2,3,4,5,2,5A B ==,则{3,4}A B = .故答案为:{3,4}2.4π【分析】根据条件,直接求出1r =,再利用圆柱的体积公式,即可求出结果.【详解】设圆柱的底面半径为r ,所以2π2πr =,得到1r =,又圆柱的母线长为4l =,所以圆柱的体积为2π4πV r l ==,故答案为:4π.3.210【分析】先求出二项式展开式的通项公式,然后令x 的次数为2,求出r ,代入通项公式中可求得结果.【详解】101x x ⎛⎫+ ⎪⎝⎭的二项展开式的通项公式为10102110101C C rr r rr r T x x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭,令1022r -=,得4r =,所以2x 项的系数为410C 210=,故答案为:2104.(0,2)(2,4)【分析】根据给定条件,利用等比数列各项和公式,结合公比的取值范围求解即得.【详解】依题意,121a q=-,10q -<<或01q <<,则12(1)a q =-,102a <<或124a <<,所以首项1a 的取值范围为(0,2)(2,4) .故答案为:(0,2)(2,4) 5.(8,2)(2,)-+∞ 【分析】根据给定条件,利用向量夹角公式结合共线向量列出不等式组求解即得.【详解】向量()()1,2,,4a b m == 的夹角为锐角,则0a b ⋅> 且a 与b不共线,因此8024m m +>⎧⎨≠⎩,解得8m >-且2m ≠,所以实数m 的取值范围为(8,2)(2,)-+∞ .故答案为:(8,2)(2,)-+∞ 6.8-【分析】设i z a b =+,根据22z z -==得到方程组,求出1,a b ==答案,从而求出3z .【详解】设i z a b =+,则22i z a b -=-+,所以()2222424a b a b ⎧+=⎪⎨-+=⎪⎩,解得1,a b ==当1,a b =1=z ,故()222113i 22z =+=++=-+,()()322126i 8z =-++=-+=-;当1,a b ==1z =-,故()222113i 22z =-=-=--,()()322126i 8z =--=-+=-故答案为:-87.11(,,0)22【分析】根据给定条件,利用投影向量的定义求解即得.【详解】向量()()1,1,0,0,1,1a b == ,则1,||a b a ⋅==,所以b 在a 方向上的投影为2111(,,0)222||a b a a a ⋅==,故答案为:11(,,0)228.3【分析】令()ln(g x ax c x =+,则()()4f x g x =+,然后判断()g x 的奇偶性,再利用函数的奇偶性求值即可【详解】令()ln(g x ax c x =+,则()()4f x g x =+,函数的定义域为R ,因为()ln(g x ax c x -=---ln ax c ⎛⎫=--(1ln ax c x -=--+(ln ax c x =--+(ln ()ax c x g x ⎡⎤=-++=-⎢⎥⎣⎦,所以()g x 为奇函数,因为3(lg log 10)5f =,所以3(lg log 10)45g +=,所以(lg lg 3)1g -=,所以(lg lg 3)1g =-,所以(lg lg3)(lg lg3)4143f g =+=-+=,故答案为:39.4【分析】求出过抛物线焦点的弦长范围,再利用抛物线定义列式求解即得.【详解】抛物线24y x =的焦点(1,0)F ,准线方程=1x -,令过点F 与抛物线交于两点的直线方程为1x ty =+,由214x ty y x=+⎧⎨=⎩消去x 得,2440y ty --=,设两个交点为1122(,),(,)P x y Q x y ,则124y y t +=,21212()242x x t y y t +=++=+,于是212||11444PQ x x t =+++=+≥,当且仅当0=t 时取等号,令点,,A B M 的横坐标分别为0,,A B x x x ,而||104AB =≥,则0111[(1)(1)]1(||||)1||142222A B A B x x x x x FA FB AB +==+++-=+-≥-=,当且仅当,,A F B 三点共线时取等号,所以M 到y 轴的距离的最小值为4.故答案为:410.323【分析】根据给定条件,利用条件概率公式计算即得.【详解】记事件A 为“运动员开第一枪命中飞碟”,B 为“运动员开第二枪命中飞碟”,C 为“飞碟被击中”,则()0.20.60.12P B =⨯=,()()()()0.80.120.92P C P A B P A P B ==+=+= ,所以飞碟是运动员开第二枪命中的概率为()()0.123(|)()()0.9223P BC P B P B C P C P C ====.故答案为:32311.6【分析】不妨令A B C ≤≤,利用正切函数的单调性,结合已知求出tan A ,再利用和角的正切公式分析求解即得.【详解】在ABC 中,不妨令A B C ≤≤,显然A 为锐角,而tan A 是整数,若πtan 2tan3A =>=,又函数tan y x =在π(0,)2上单调递增,则π3A >,此时3πA B C A ++≥>与πA B C ++=矛盾,因此tan 1A =,π3π,44A B C =+=,tan tan tan()11tan tan B CB C B C++==--,整理得(tan 1)(tan 1)2B C --=,又tan ,tan B C 都是整数,且tan tan B C ≤,因此tan 2,tan 3B C ==,所以tan tan tan 6A B C ++=.故答案为:612.[3,13]【分析】确定动点(,)P m n 的几何意义,利用直线现圆的位置关系分段讨论,结合几何意义求解即得.【详解】显然点(,)P m n 在圆22:1O x y +=及内部,直线1:630l x y --=,直线2:220l x y +-=,1=>,得直线1l与圆O相离,且|63|63m n m n--=--,由222201x yx y+-=⎧⎨+=⎩,解得3545xy⎧=⎪⎪⎨⎪=⎪⎩或1xy=⎧⎨=⎩,即直线2l与圆O交于点34(,),(1,0)55A B,①当220m n+-≥时,即点P在直线2l与圆O所围成的小弓形及内部,|22||63|226324m n m n m n m n m n+-+--=+-+--=-+,目标函数124z x y=-+,即142z x y-=-表示斜率为12,纵截距为142z-的平行直线系,画出直线0:20p x y-=,平移直线p分别到直线12,p p,当1p过点A时,142z-取得最大值,1z最小,当2p过点B时,142z-取得最小值,1z最大,因此1min34()24355z=-⨯+=,1max()12045z=-⨯+=,从而3245m n≤-+≤;②当220m n+-<时,即点P在直线2l与圆O所围成的大弓形及内部(不含直线2l上的点),|22||63|(22)63348m n m n m n m n m n+-+--=-+-+--=--+,目标函数2348z x y=--+,即2834z x y-=+表示斜率为34-,纵截距为282z-的平行直线系,画出直线0:340q x y+=,显直线q OA⊥,平移直线q分别到直线12,q q,直线12,q q与圆O分别相切于点34,(,)55A--,当1q过点A时,282z-取得最大值,2z最小,因此2min34()834355z=-⨯-⨯=,当2q过点34(,)55--时,282z-取得最小值,2z最大,因此2max34()8341355z=+⨯+⨯=,从而383413m n<--≤,所以2263m n m n+-+--的取值范围是[3,13].故答案为:[3,13]【点睛】方法点睛:求解线性规划问题的一般方法:①准确作出不等式组表示的平面区域,作图时一定要分清虚实线、准确确定区域;②根据目标函数的类型及几何意义结合图形判断目标函数在何处取得最值.13.B【分析】分布列中各项概率大于0,且概率之和为1,从而得到正确答案.【详解】由题意得,分布列中各项概率非负,且概率之和为1,显然AC 选项不满足概率之和为1,D 选项不满足各项概率大于0,B 选项满足要求.故选:B 14.C【详解】分析:由题意结合分层抽样的性质得到关于n 的方程,解方程即可求得最终结果.详解:由题意结合分层抽样的定义可得:251000140012001000n =++,解得:90n =.本题选择C 选项.点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1)n N =样本容量该层抽取的个体数总体的个数该层的个体数;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.15.D【分析】举出反例得到充分性和必要性均不成立.【详解】不妨设111,2a q =-=,则2311,24a a =-=-,满足123a a a <<,但{}n S 是严格减数列,充分性不成立,当111,2a q ==时,{}n S 是严格增数列,但123a a a >>,必要性不成立,故甲是乙的既非充分又非必要条件.故选:D 16.B【分析】根据给定条件,分析听到的三次回声情况确定几个时刻声音的路程,再列出等式求解即得.【详解】依题意,令声音传播速度为v ,1t 时刻,刚刚呐喊声音传播为0,2t 时刻听到第一次回声,声音的路程为2()-a c ,即从左焦点到左顶点再次回到左焦点,3t 时刻,声音的路程为2()a c +,即从左焦点到右顶点,又从右顶点回到左焦点,4t 时刻,声音的路程为4a ,即从左焦点反射到右焦点,再反射到左焦点,因此32,2()2()x t t a c a c vx =-+--=,43,42()y t t a a c vy =--+=,即4,22c vx a c vy =-=,则2a c y c x -=,即2a c y c x -=,整理得2a y xc x+=,所以椭圆的离心率为2c xa x y=+.故选:B【点睛】关键点点睛:利用椭圆几何性质,确定听到回声的时刻,回声的路程是解题的关键.17.(1)136【分析】(1)利用等体积法11A ABD D A AB V V --=,再根据条件,即可求出结果;(2)建立空间直角坐标系,求出平面ABD 与1ACB 的法向量,再利用面面角的向量法,即可求出结果.【详解】(1)因为1AA ⊥平面ABC ,又BC ⊂面ABC ,所以1AA BC ⊥,又AB BC ⊥,1AA AB A = ,1,AA AB ⊂面11ABB A ,所以CB ⊥面11ABB A ,因为1//CC 面11ABB A ,所以D 到面11ABB A 的距离即BC ,又111112122AA B S AB AA =⋅=⨯⨯= ,1BC =,所以1111133A ABD D A AB A AB V V S CB --=== .(2)如图,建立空间直角坐标系,因为1AB BC ==,12AA =,则1(0,0,0),(0,1,0),(1,0,0),(0,0,2),(1,0,1)B AC BD ,所以1(0,1,0),(1,0,1),(0,1,2),(1,1,0)BA BD AB AC ===-=-设平面ABD 的一个法向量为(,,)n x y z =,由1100BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩ ,得到00y x z =⎧⎨+=⎩,取1x =,得到0,1y z ==-,所以(1,0,1)n =- ,设平面1ACB 的一个法向量为(,,)m a b c =,则由10AC m AB m ⎧⋅=⎪⎨⋅=⎪⎩,得到020a b b c -=⎧⎨-+=⎩,取2a =,则2,1b c ==,所以(2,2,1)m = ,设平面ABD 与1ACB 所成锐二面角为θ,则cos cos ,n mn m n m θ⋅====18.(1)表格见解析;(2)证明见解析;(3)证明见解析.【分析】(1)根据给定条件,结合“五点法”作图完善表格.(2)根据给定条件,利用复合函数求导法则计算即得.(3)根据给定条件,利用恒等式成立的充要条件推理即得.【详解】(1)“五点法”作函数[]sin ,0,2πy x x =∈的图象的5个关键点的横坐标为π3π0,,π,,2π22,所以表格如下:xπ2π3π22πsin x -01-0101sin x-1121(2)实数0a >且1a ≠,则ln ln e e xx a x a a ==,因此ln ln ()(e )e (ln )ln x x a x a x a x a a a '''==⋅=,所以()ln x x a a a '=.(3)212212133)())[()])(((x x x x x x x x x x x x x x =-----++32332121212312()()x x x x x x x x x x x x x x x x =+--+-++32123122331123()()x x x x x x x x x x x x x x x =-+++++-,依题意,3212312233112332()()x x x x x x x x x x x x ax bx x x x x c -+++-+++=++对任意实数x 恒成立,因此123123122331122331123123()a x x x x x x ab x x x x x x x x x x x x bc x x x x x x c=-++++=-⎧⎧⎪⎪=++⇔++=⎨⎨⎪⎪=-=-⎩⎩,所以等式32123()()()x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x ax x x x x x b x x x c ++=-⎧⎪++=⎨⎪=-⎩.19.(1)dy c x=+更适宜作为回归方程类型;(2)10ˆ100yx=-,399.5g /m .【分析】(1)根据题意,分别求得相关系数的值,结合10.449r ≈和20.996r ≈-,结合12r r <,即可得到结论.(2)(i )根据最小二乘法,求得回归系数,进而求得回归方程;(ii )当20x =时,结合回归方程,即可求得预报值.【详解】(1)因为y a bx =+的线性相关系数91)9()(0.44iix y r x y --==≈∑,dy c x=+的线性相关系数92(0.996iiu u y r y --≈-∑,因为12r r <,所以dy c x=+更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型.(2)依题意,992110ˆ()()1(.4010.14)i ii i iu u y u u yβ==----===-∑∑,则ˆˆ97.9(10)0.21100y u αβ=-=--⨯=,于是10ˆ10010100y u x=-=-,所以y 关于x 的回归方程为10ˆ100yx=-.当20x =时,金属含量的预报值为31010099.5g /m 20ˆy=-=.20.(1)证明见解析;(2))||(,p a ++∞;(3)证明见解析,(),0a -.【分析】(1)联立直线和抛物线方程,再利用韦达定理及数量积的坐标表示计算即得..(2)求出弦AB 的中点坐标及弦AB 的中垂线方程,进而求出n ,再结合判别式求解即得.(3)设出D 点的坐标,求出直线BD 的方程211121()y y y x x y x x +=---,借助(1)的信息,推理判断即得.【详解】(1)显然直线l 不垂直于坐标轴,设过点(),0M a 的直线l 的方程为x my a =+,由22y px x my a ⎧=⎨=+⎩消去x 得:2220y pmy pa --=,22Δ480p m pa =+>,则121222y y pm y y pa +=⎧⎨⋅=-⎩,所以22212121212222y y OA OB x x y y y y a pa p p⋅=+=⋅+=- 为定值.(2)设,A B 两点的中点坐标为()33,Q x y ,则21212322x x my my x a pm a ++==+=+,1232y y y pm +==,则()2,Q pm a pm +,即AB 的垂直平分线为()2y m x pm a pm =---+,令0y =,解得2n pm a p =++,显然22480p m pa ∆=+>,当0a >时,恒有220pm a +>成立,则n p a >+,当a<0时,2pm a a +>-,则n p a >-,所以n 的取值范围为)||(,p a ++∞.(3)由A 关于x 轴的对称点为D ,得()11,D x y -,则直线BD :211121()y y y x x y x x +=---,整理得:2112212121y y x y x yy x x x x x ++=---.又()()()1221211212122x y x y y my a y my a my y a y y +=+++=++422pam pam pam =-+=-.因此直线BD 为:212122pm pam y x x x x x =+--,即()212pmy x a x x =+-过定点(),0a -,所以直线BD 过定点(),0a -.【点睛】方法点睛:求解直线过定点问题常用方法如下:①“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;②“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;③求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.21.(1)48ln 333y x =-+;(2)答案见解析;(3)不存在,理由见解析.【分析】(1)利用导数求切线斜率,再求出切点坐标,点斜式写出切线方程即可.(2)利用导数探讨单调性,进而确定函数的极值点.(3)假设存在,利用导数,将等式化简,减少变量,从而可构造适当新函数,研究新函数的性质,即可判断.【详解】(1)当1a =时,2()ln(1),(2)ln 32x f x x x f =++-=,求导得14()1,(2)13f x x f x ''=+-=+,切线方程为4ln 3(2)3y x -=-,所以所求切线方程为48ln 333y x =-+.(2)函数2()ln(1)2x f x a x x =++-的定义域为(1,)-+∞,求导得21()111a x af x x x x -+'=+-=++,令()0f x '=,即210x a -+=,即21x a =-,①当1a ≥时,函数()y f x =在定义域内严格增,无极值点;②当01a <<时,当1x -<<或x >时,()0f x '>,当x <()0f x '<,函数()y f x =在(1,-和)+∞严格增,在(严格减,此时极大值点为③当0a ≤时,当1x -<<时,()0f x '<,当x >时,()0f x '>,函数()y f x =在(-严格减,在)+∞严格增的,所以当1a ≥时,函数()y f x =无极值点;当01a <<时,函数()y f x =极大值点为当0a ≤时,函数()y f x =.(3)假设存在定点(,)m n 满足条件,由000()()()2x mf x f x m n +'=-+得:000)(2()f x n x m f x m -+'=-,又点(,)m n 在曲线()f x 上,则2()ln(1)2mn f m a m m ==++,于是220000001[ln(1)ln(1)])()()(2a x m x m x m f x n x mx m+-++----=--000[ln(1)ln(1)]12a x m x mx m +-++=+--,而()11a f x x x '=+-+,于是000002()1=1222212x m x m x m a af x m x m +++'=+-+-++++,因此000ln(1)ln(1)22x m x m x m +-+=-++,变形得00012(1)11ln 1111x x m x m m +-++=++++,令01(0)1x t t m +=>+,则2(1)ln 1t t t -=+,令函数22()ln ,01t g t t t t -=->+,求导得22214(1)()0(1)(1)t g t t t t t '-=-=≥++,则()g t 在(0,)+∞单调递增,又(1)0g =,于是()0g t =只有唯一解1t =,即0111x m +=+,又0m x ≠,则1t ≠,故不存在定点(,)m n 满足条件.【点睛】结论点睛:函数y =f (x )是区间D 上的可导函数,则曲线y =f (x )在点00(,())x f x 0()x D ∈处的切线方程为:000()()()y f x f x x x '-=-.。
2025年新高考数学模拟试题一带解析
2025年新高考数学模拟试题(卷一)第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
1.某车间有两条生产线分别生产5号和7号两种型号的电池,总产量为8000个.质检人员采用分层抽样的方法随机抽取了一个样本容量为60的样本进行质量检测,已知样本中5号电池有45个,则估计7号电池的产量为()A .6000个B .5000个C .3000个D .2000个2.如图所示,四边形ABCD 是正方形,,M N 分别BC ,DC 的中点,若,,AB AM AN λμλμ=+∈R,则2λμ-的值为()A .43B .52C .23-D .1033.已知n S 为等差数列{}n a 的前n 项和,4920224a a a ++=,则20S =()A .60B .120C .180D .2404.设,αβ是两个不同的平面,,m n 是两条不同的直线,下列命题为假命题的是()A .若,m m n α⊥⊥,则n α或n ⊂αB .若,,⊥⊥⊥m n αβαβ,则m n ⊥C .若,,m l n αββγαγ⋂=⋂=⋂=,且n β,则//l mD .若,,m n m n αβ⊥⊂⊂,则αβ⊥5.第19届亚运会于2023年9月28日至10月8日在杭州举行,本届亚运会的吉祥物是一组名为“江南忆”的机器人:“琮琮”“莲莲”和“宸宸”,分别代表世界遗产良渚古城遗址、西湖和京杭大运河.某同学买了6个不同的吉祥物,其中“琮琮”“莲莲”和“宸宸”各2个,现将这6个吉祥物排成一排,且名称相同的两个吉祥物相邻,则排法种数共为()A .48B .24C .12D .66.已知函数1()e 2x f x x a x ⎛⎫=-+ ⎪⎝⎭恰有2个不同的零点,则实数a 的取值范围为()A .1,ee ⎛⎫⎪⎝⎭B .(4e,)⎛∞ ⎝U C .2e ⎫⎪⎭D .(2e,)⎛∞ ⎝U7.我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,过点()3,4A -的直线l 的一个法向量为()1,2-,则直线l 的点法式方程为:()()()13240x y ⨯++-⨯-=,化简得2110x y -+=.类比以上做法,在空间直角坐标系中,经过点()1,2,3M 的平面的一个法向量为()1,4,2m =-,则该平面的方程为()A .4210x y z -++=B .4210x y z --+=C .4210x y z +-+=D .4210x y z +--=8.已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点分别为12,F F ,过1F 的直线与双曲线C 分别在第一、二象限交于,A B 两点,2ABF △内切圆的半径为r ,若1||2BF a =,r =,则双曲线C 的离心率为()AB.2CD二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()()sin 0,0,22f x A x A ππωϕωϕ⎛⎫=+>>-<< ⎪⎝⎭的部分图象如图所示,则()A .()f x 的最小正周期为πB .当π0,2⎡⎤∈⎢⎥⎣⎦x 时,()f x 的值域为11,22⎡⎤-⎢⎥⎣⎦C .将函数()f x 的图象向右平移π6个单位长度可得函数()sin 2g x x =的图象D .将函数()f x 的图象上所有点的横坐标伸长为原来的2倍,纵坐标不变,得到的函数图象关于点5π,06⎛⎫⎪⎝⎭对称10.已知12,z z 是两个虚数,则下列结论中正确的是()A .若12z z =,则12z z +与12z z 均为实数B .若12z z +与12z z 均为实数,则12z z =C .若12,z z 均为纯虚数,则12z z 为实数D .若12z z 为实数,则12,z z 均为纯虚数11.已知函数()y f x =在R 上可导且(0)2f =-,其导函数()f x '满足:22()21()exf x f x x -=-',则下列结论正确的是()A .函数()f x 有且仅有两个零点B .函数2()()2e g x f x =+有且仅有三个零点C .当02x ≤≤时,不等式4()3e (2)f x x ≥-恒成立D .()f x 在[1,2]上的值域为22e ,0⎡⎤-⎣⎦第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.已知集合{}{}2,0,2,4,3A B x x m =-=-≤,若A B A = ,则m 的最小值为.13.已知M ,N 是抛物线()2:20C x py p =>上两点,焦点为F ,抛物线上一点(),1P t 到焦点F 的距离为32,下列说法正确的是.(把所有正确结论的编号都填上)①1p =;②若OM ON ⊥,则直线MN 恒过定点()0,1;③若MOF △的外接圆与抛物线C 的准线相切,则该圆的半径为12;④若2MF FN = ,则直线MN 的斜率为4.14.如图,在正方体1111ABCD A B C D -,中,M ,N 分别为线段11A D ,1BC 上的动点.给出下列四个结论:①存在点M ,存在点N ,满足MN ∥平面11ABB A ;②任意点M ,存在点N ,满足MN ∥平面11ABB A ;③任意点M ,存在点N ,满足1MN BC ⊥;④任意点N ,存在点M ,满足1MN BC ⊥.其中所有正确结论的序号是.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数31()ln 222f x ax x x x=--+.(1)当1a =时,求()f x 的单调区间;(2)对[1,)x ∀∈+∞,()0f x ≥恒成立,求a 的取值范围.16.(15分)我国老龄化时代已经到来,老龄人口比例越来越大,出现很多社会问题.2015年10月,中国共产党第十八届中央委员会第五次全体会议公报指出:坚持计划生育基本国策,积极开展应对人口老龄化行动,实施全面二孩政策.随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.非一线一线总计愿生40y60不愿生x2240总计5842100(1)求x和y的值.(2)分析调查数据,是否有95%以上的把握认为“生育意愿与城市级别有关”?(3)在以上二孩生育意愿中按分层抽样的方法,抽取6名育龄妇女,再选取两名参加育儿知识讲座,求至少有一名来自一线城市的概率.参考公式:22()()()()()n ad bca b c d a c b dχ-=++++,()2P kχ≥0.0500.0100.001k 3.841 6.63510.82817.(15分)在直角梯形ABCD 中,//AD BC ,22BC AD AB ===90ABC ∠=︒,如图(1).把ABD △沿BD 翻折,使得平面ABD ⊥平面BCD .(1)求证:CD AB ⊥;(2)在线段BC 上是否存在点N ,使得AN 与平面ACD 所成角为60°?若存在,求出BNBC的值;若不存在,说明理由.18.(17分)已知椭圆22:143x y C +=的左右焦点分别为12,F F ,点()00,P x y 为椭圆C 上异于顶点的一动点,12F PF ∠的角平分线分别交x 轴、y 轴于点M N 、.(1)若012x =,求1PF ;(2)求证:PM PN为定值;(3)当1F N P 面积取到最大值时,求点P 的横坐标0x .19.(17分)已知数列12:,,,n A a a a L 为有穷正整数数列.若数列A 满足如下两个性质,则称数列A 为m 的k 减数列:①12n a a a m +++= ;②对于1i j n ≤<≤,使得i j a a >的正整数对(,)i j 有k 个.(1)写出所有4的1减数列;(2)若存在m 的6减数列,证明:6m >;(3)若存在2024的k 减数列,求k 的最大值.2025年新高考数学模拟试题(卷一)(解析版)第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
高考自创模拟数学试卷
一、选择题(本大题共12小题,每小题5分,共60分)1. 若函数f(x) = ax^2 + bx + c的图像开口向上,且顶点坐标为(-2,3),则下列说法正确的是:A. a > 0,b < 0,c < 0B. a < 0,b > 0,c > 0C. a > 0,b > 0,c > 0D. a < 0,b < 0,c < 02. 在直角坐标系中,点A(2,3),B(-3,-4),C(5,-2)的斜率分别为k1、k2、k3,则下列说法正确的是:A. k1 > k2 > k3B. k1 < k2 < k3C. k1 = k2 = k3D. k1、k2、k3无法比较3. 若等差数列{an}的公差为d,且a1 = 3,a4 = 9,则d的值为:A. 3B. 6C. 9D. 124. 若复数z满足|z - 1| = 2,则复数z的实部a的取值范围是:A. -1 ≤ a ≤ 3B. -3 ≤ a ≤ 1C. a ≥ 1 或 a ≤ -3D. a ≤ 1 或 a ≥ -35. 若不等式|2x - 1| < 3的解集为A,不等式|x + 2| ≥ 4的解集为B,则A∩B 的结果是:A. {x | -3 ≤ x < 2}B. {x | -1 ≤ x < 2}C. {x | -2 ≤ x < 1}D. {x | -1 ≤ x ≤ 2}6. 若函数f(x) = x^3 - 3x + 2在区间[-2,2]上的最大值为M,最小值为m,则M - m的值为:A. 6B. 8C. 10D. 127. 若等比数列{bn}的公比为q,且b1 = 2,b3 = 8,则q的值为:A. 2B. 4C. 8D. 168. 若平面直角坐标系中,点P(1,2)到直线y = -2x + 5的距离为d,则d的值为:A. 1B. 2C. 3D. 49. 若函数f(x) = x^2 + 2x + 1在区间[-1,3]上的图像关于点(1,2)对称,则下列说法正确的是:A. f(0) = f(2)B. f(-1) = f(3)C. f(0) = f(-2)D. f(1) = f(-3)10. 若等差数列{an}的前n项和为Sn,且S5 = 25,S10 = 75,则a1的值为:A. 1B. 2C. 3D. 411. 若复数z = 3 + 4i的共轭复数为z',则|z - z'|的值为:A. 5B. 10C. 15D. 2012. 若函数f(x) = (x - 1)^2在区间[0,2]上的图像关于点(1,0)对称,则下列说法正确的是:A. f(0) = f(2)B. f(1) = f(3)C. f(0) = f(-2)D. f(1) = f(-3)二、填空题(本大题共4小题,每小题10分,共40分)13. 若函数f(x) = x^3 - 3x^2 + 2x - 1在x = 1处的切线斜率为k,则k的值为______。
2023-2024学年河北高考考前冲刺数学模拟试题(一模)含解析
2023-2024学年河北高考考前冲刺数学模拟试题(一模)一、单选题1.设集合U =R ,集合{|24}A x x =-<<,集合{}2|7100B x x x =-+<,则U A B =I ð()A .{|22}x x -<<B .{|22}x x -<≤C .{|25}x x <<D .{|25}x x <≤【正确答案】B【分析】化简集合B ,根据集合的补集和交集的运算性质求U A B ð即可.【详解】不等式27100x x -+<的解集为{|25}x x <<,所以{|25}B x x =<<,故{|2U B x x =≤ð或5}x ³,又{|24}A x x =-<<,所以{|22}U A B x x =-<≤ ð,故选:B .2.已知复数z 满足12i 1z=-,则z 的共轭复数z 对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限【正确答案】D【分析】根据复数运算即可求得复数z ,再得共轭复数z ,根据复数的几何意义即可得答案.【详解】111i 2i 2z -==- ,11i 2z ∴=+,11i 2z ∴=-,故z 在复平面内对应的点11,2⎛⎫- ⎪⎝⎭位于第四象限.故选:D .3.若函数()af x x x=+()R a ∈在点(2,(2))f 处的切线为直线1:2l y x b =+,若直线l 与圆222:(0)C x y r r +=>相切,则r 的值为()A B C D .3【正确答案】A【分析】结合导数的几何意义列方程求a ,由切点坐标与切线的关系求b ,根据直线与圆的位置关系列方程求r .【详解】函数()af x x x =+的导函数2()1a f x x'=-,因为函数()f x 在点(2,(2))f 处的切线为直线1:2l y x b =+,所以1(2)142a f '=-=,解得2a =,2()f x x x∴=+,故(2)3f =,切点(2,3)在直线l 上,1322b ∴=⨯+,解得2b =,直线1:22l y x =+与圆222:(0)C x y r r +=>相切,∴圆心(0,0)到直线lr =,故选:A .4.已知向量(2,6)a = ,(1,)b λ=- .若//a b r r,则λ=()A .3B .3-C .13D .13-【正确答案】B【分析】根据向量平行的坐标表示,列式即可求得答案.【详解】因为向量(2,6)a = ,(1,)b λ=- ,//a b r r,所以26λ=-,解得3λ=-,故选:B .5.已知数列{}n a 的首项11a =,0n a >,前n 项和n S 满足2211120n n n n n n S S S S S S ----+--=,则数列{}n a 的前n 项和n S 为()A .(1)2n n +B .12n -C .221n -D .21n -【正确答案】A【分析】由题可得22n n n S a a =+,进而可得2211n n n n a a a a ++-=+,然后可得11n n a a +-=,利用等差数列的定义及求和公式即得.【详解】由2211120n n n n n n S S S S S S ----+--=得2211122n n n n n n n S S S S S S S ---=-++-,即()()2112n n n n n S S S S S --=-+-,所以22n n n S a a =+,所以21112n n n S a a +++=+,两式作差,得()221112n n n n n a a a a a +++=+-+,即2211n n n n a a a a ++-=+,所以()()1110n n n n a a a a ++--+=,所以11n n a a +-=或10n n a a ++=,又0n a >,故11n n a a +-=,所以数列{}n a 是以1为首项,1为公差的等差数列,所以数列{}n a 的前n 项和(1)(1)22n n n n n S n -+=+=.故选:A.6.如图,在正四棱台1111ABCD A B C D -中,棱1AA ,1BB ,的夹角为3π,2AB =,则棱1AA ,1CC 的夹角为()A .3πB .4πC .23πD .2π【正确答案】D【分析】由棱台的定义可知,分别延长1AA ,1BB ,1CC ,1DD 交于点P ,连接AC ,从而可得2PA PC ==,从而可求出答案.【详解】由棱台的定义可知,分别延长1AA ,1BB ,1CC ,1DD 交于点P ,连接AC ,如图,在正四棱台1111ABCD A B C D -中,棱1AA ,1BB 的夹角为3π,2AB =,所以△PAB 是边长为2的等边三角形,所以2PA PC ==.又在正方形ABCD 中,2AB =,则AC =所以222AC PA PC =+,所以PA PC ⊥,所以棱1AA ,1CC 的夹角为2π,7.已知定点(3,0)B ,点A 在圆22(1)4x y ++=上运动,则线段AB 的中点M 的轨迹方程是()A .22(1)1x y ++=B .22(2)4x y -+=C .22(1)1x y -+=D .22(2)4x y ++=【正确答案】C【分析】设(,)M x y 再表达出A 的坐标代入圆方程22(1)4x y ++=化简即可.【详解】设(,)M x y ,则(),A A A x y 满足3,(,)22A A x y x y +⎛⎫= ⎪⎝⎭.故232A Ax x y y =-⎧⎨=⎩.故23(2),A x y -.又点A 在圆22(1)4x y ++=上.故2222(231)(2)4(1)1x y x y -++=⇒-+=.故选:C本题主要考查了轨迹方程的求法,属于基础题型.8.设甲乘汽车、动车前往某目的地的概率分别为0.40.6、,汽车和动车正点到达目的地的概率分别为0.70.9、,则甲正点到达目的地的概率为()A .0.78B .0.8C .0.82D .0.84【正确答案】C【分析】设事件A 表示甲正点到达目的地,事件B 表示甲乘火车到达目的地,事件C 表示甲乘汽车到达目的地,由全概率公式求解即可.【详解】设事件A 表示甲正点到达目的地,事件B 表示甲乘动车到达目的地,事件C 表示甲乘汽车到达目的地,由题意知()0.6,()0.4,(|)0.9,(|)0.7P B P C P A B P A C ====.由全概率公式得()()(|)()(|)0.60.90.40.7P A P B P A B P C P A C =+=⨯+⨯0.280.540.82=+=。
2023年普通高等学校招生全国统一考试模拟测试(新高考)数学试题及答案
2023年普通高等学校招生全国统一考试模拟测试(新高考)数学试题及答案一、单选题(20分)请从每题的选项中选择一个最符合题意的答案,并在答题卡上将相应的字母涂黑。
1.若函数f(x)在区间[-1,3]上连续,则其必定是 A. 递减函数 B. 倒U型函数 C. 奇函数 D. 偶函数2.已知三角形ABC,AB=AC,角A=40°,则角B的度数等于 A. 40° B. 70° C. 80° D. 100°3.设a,b都是正数,且logₐ1/3=log₃b/2,则a/b的值等于 A. 1/4 B. 1/3 C. 1/2 D. 24.若a,b>0,且a+b=1,则a²+b²的最小值是 A. 1/2 B.1/√2 C. 1/4 D. 15.若直线y=mx+2与曲线y=4x²-3x-1有两个公共点,则m的取值范围是 A. (-∞,1/8) B. (-∞,0)∪(0,1/8) C. (-∞,1/8]∪[0,+∞) D. (-∞,0)二、多选题(20分)请从每题的选项中选择一个或多个最符合题意的答案,并在答题卡上将相应的字母涂黑。
6.设实数x满足条件|x-3| < 2,下列等式成立的是 A.x > 5 B. x < 1 C. x ≠ 3 D. x > 17.在直角坐标系中,下列函数中具有对称中心为(2,-1)的是 A. y=x-1 B. y=-(x-2)²-1 C. y=√(x²-4x+4) D. y=1/x-38.设集合A={a, a², a³},则以下命题成立的是 A. 若a>1,则a>1/a² B. 若a<0,则a³<0 C. 若a=1, 则A={1} D. 若a=0,则A={0}9.已知函数f(x)=x³+ax²+bx+c,若它与y=x+3有恰有一个交点,并且这个交点横纵坐标都是正数,则以下命题成立的是 A. a+b = -1 B. a+c = -3 C. a+c > 0 D. a+b+c > 010.设集合A={x | x=x²-2x-3, x∈R},B={x | x²+x-6=0,x∈R},则以下命题成立的是A. A⊂B B. A∩B=∅ C. B⊆A D.B∪A=∅三、填空题(20分)请根据题目要求填写空缺,并在答题卡上写出完整的答案。
2024年新高考数学模拟卷A卷(解析版)
2024年新高考数学模拟卷A 卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}2468M =,,,,{}2|280N x x x =--≤,则M N ⋂=()A .{}2,4B .{}2,4,6C .{}2,4,6,8D .[]24,【答案】A【详解】由题意{}2|280{|24}N x x x x x =--≤=-≤≤,∴{2,4}M N ⋂=.故选:A .2.复数2(2)i z i-=i 为虚数单位,则A .25B .C .5D .【答案】C【详解】()()()223443,1i i i z i i--⨯-===--()()2243 5.z -+-=3.已知()1,3a =-,()2,1b =- ,且()()2//a b ka b +-,则实数k =()A .2-B .2C .12D .12-【答案】D【详解】 (1,3)=- a ,()2,1b =- ,(1ka b k ∴-= ,3)(2---,1)(2k =+,13)k --,2(3,1)a b +=--,()//(2)ka b a b +-,(2)3(13)k k ∴-+=---,∴解得:12k =-.故选:D .4.已知函数2,(1)()4,(1)x a x ax x f x a x ⎧-++<⎪=⎨⎪≥⎩,若()y f x =在(),-∞+∞上单调递增,则实数a 的取值范围是()A .[]2,4B .()2,4C .()2,+∞D .[)2,+∞【答案】A【详解】()f x 在(),-∞+∞上单调递增;∴2112211414aa a a a a a a⎧≥⎪≥⎧⎪⎪>⇒>⎨⎨⎪⎪≤⎩⎪-++≤⎩,解得24a ≤≤;所以实数a 的取值范围为[]2,4.故选:A .5.若椭圆X :()22211x y a a +=>与双曲线H :2213x y -=的离心率之和为736,则=a ()A .2B 3C 2D .1【答案】A【详解】椭圆X :()22210x y aa +=>H :2213x y -==,=2a=.故选:A.6.设过点(0,P 与圆22:410C x y x +--=相切的两条直线的夹角为α,则cos α=()A .19BC .19-D .【答案】A【详解】解法1:如图,圆22410x yx +--=,即22(2)5x y -+=,则圆心(2,0)C ,半径r ,过点(0,P 作圆C 的切线,切点为,A B ,连接AB .因为3PC =,则2PA PB ==,得2sin 3APC APC ∠∠=,则221cos cos sin 09APB APC APC∠=∠-∠=-<,即APB ∠为钝角,且α为锐角,所以1cos cos(π)9APB α=-∠=.故选A.解法2:如图,圆22410x y x +--=,即22(2)5x y -+=,则圆心(2,0)C ,半径r =,过点(0,P 作圆C 的切线,切点为,A B ,连接AB .因为3PC =,则2PA PB ==,因为22222cos 2cos PA PB PA PB APB CA CB CA CB ACB+-⋅∠=+-⋅∠,且πACB APB ∠=-∠,则448cos 5510cos APB ACB +-∠=+-∠,即44cos 55cos APB ACB -∠=-∠,解得1cos 09APB ∠=-<,即APB ∠为钝角,且α为锐角,则1cos cos(π)9APB α=-∠=.故选:A.解法3:圆22410x y x +--=,即22(2)5x y -+=,则圆心(2,0)C ,半径r =线方程为0x=,则圆心到切点的距离2d r =<,不合题意;若切线斜率存在,则设切线方程为y kx =,即0kx y -=,则圆心到切线的距离d =120,k k ==-1212sin tan 1cos k k k k ααα-==+,又α为锐角,由22sin cos 1αα+=解得1cos 9α=.故选:A.7.若数列{}n a 满足212n na p a +=(p 为常数,n ∈N ,1n ≥),则称{}n a 为“等方比数列”.甲:数列{}n a 是等方比数列;乙:数列{}n a 是等比数列,则().A .甲是乙的充分非必要条件B .甲是乙的必要非充分条件C .甲是乙的充要条件D .甲是乙的既非充分也非必要条件【答案】B【详解】若{}n a 为等比数列,设其公比为q ,则()222112n n n n a a q p a a ++⎛⎫=== ⎪⎝⎭,p 为常数,所以{}2n a 成等比数列,即{}n a 是等方比数列,故必要性满足.若{}n a 是等方比数列,即{}2n a 成等比数列,则{}n a 不一定为等比数列,例如23452,2,2,2,2,...--,有()221224n na a +=±=,满足{}n a 是等方比数列,但{}n a 不是等比数列,充分性不满足.故选:B8.若ππ2sin sin sin 44βααβ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭,则()tan αβ+=()A .-1B .1C .-2D .2【答案】A【详解】解法一:由题得()()2sin sin cos 2222βαααβαβ⎫-=-+-⎪⎪⎝⎭,所以2sin sin 2cos sin sin cos cos sin cos cos sin sin αβαβαβαβαβαβ-=-++,即sin cos cos sin cos cos sin sin 0αβαβαβαβ++-=,即()()sin cos 0αβαβ+++=,显然()cos 0αβ+≠,故()tan 1αβ+=-.解法二:令π4αθ-=,则π4αθ=+,所以ππ2sin sin sin 44βααβ⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭可化为π2sin sin sin 2βθθβ⎛⎫=-+ ⎪⎝⎭,即()2sin sin cos βθθβ=-,所以2sin sin cos cos sin sin βθθβθβ=+,即cos cos sin sin 0θβθβ-=,所以()cos 0θβ+=,则ππ2k θβ+=+,k ∈Z ,所以()πππ3πtan tan tan πtan 14424k αβθβ⎛⎫⎛⎫+=++=++==- ⎪ ⎪⎝⎭⎝⎭,k ∈Z .故选:A.二、多选题:本题共3小题,每小题6分,共18分。
2024年高考数学模拟试题及答案
2024年高考数学模拟试题及答案2024年高考数学模拟试题及答案一、选择题1、下列函数中,既是偶函数又在区间(0, ∞)上单调递增的是()。
A. y = |x|B. y = x^3C. y = log2xD. y = sinx2、已知平面向量a,b满足|a|=1,|b|=2,且a与b的夹角为120°,则(2a-b)·(a+3b)=()。
A. -7 B. -5 C. 1 D. 93、已知函数f(x)=ax^7+bx^5+cx^3+dx+5,且f(-5)=3,则f(5)=()。
A. -7 B. -3 C. 3 D. 7二、填空题1、若等差数列{an}的前n项和为Sn,且a1=4,S4=28,则{an}的通项公式为。
2、已知球O的半径为4,则球O的内接正方体的棱长为。
3、若函数f(x)=log2x,则f(4)的值是。
三、解答题1、已知向量a=(1,2),b=(cosθ,sinθ),设向量ma+b与向量a-mb平行,求tanθ的值。
2、已知函数f(x)=|x-1|+|x-2|+|x-3|+…+|x-9|,当且仅当x=5时取得最小值,求最小的m和最大的n,使得当x∈[m, n]时,函数f(x)取得最小值。
3、已知正四棱柱ABCD-A1B1C1D1的侧棱长为3,底面边长为2,E为BC中点。
求点B1到平面BDE的距离。
四、选做题1、选修4-1:几何证明选讲在△ABC中,D是BC的中点,E是AD上一点。
求证:EB=EC。
2、选修4-4:坐标系与参数方程在平面直角坐标系xOy中,以原点O为圆心、半径为r的圆与直线x=π/2相切。
求圆上点到直线x=π的距离的最大值和最小值。
3、选修4-5:不等式选讲已知a、b、c均为正数,且a+b+c=1。
求证:(1/a)+(1/b)+(1/c)≥9。
五、附加题1、某中学共有学生2000人,其中高一年级共有学生900人,男生500人,女生400人。
高二年级共有学生1100人,男生600人,女生500人。
高考数学模拟试题含答案
高考数学模拟试题 (一)一、选择题(本题共12个小题,每题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的,请把符合要求一项的字母代号填在题后括号内.)1.已知集合M={x∣-3x -28 ≤0},N = {x|-x-6>0},则M∩N 为()A.{x| 4≤x<-2或3<x≤7}B. {x|-4<x≤-2或3≤x<7 }C.{x|x≤-2或x>3 }D. {x|x<-2或x≥3}2.在映射f的作用下对应为,求-1+2i的原象()A.2-iB.-2+iC.iD.23.若,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a4.要得到函数y=sin2x的图像,可以把函数的图像()A.向左平移个单位B. 向右平移个单位C.向左平移个单位D. 向右平移个单位5. 如图,是一程序框图,则输出结果中()A. B.C. D.6.平面的一个充分不必要条件是()A.存在一条直线B.存在一个平面C.存在一个平面D.存在一条直线7.已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线有且仅有一个交点,则椭圆的长轴长为()A. B. C. D.8.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,则p的轨迹一定通过△ABC的()A.外心B. 重心C.内心D. 垂心9.设{a n}是等差数列,从{a1,a2,a3,…,a20}中任取3个不同的数,使这3个数仍成等差数列,则这样不同的等差数列最多有()A.90个 B.120个C.180个 D.200个10.下列说法正确的是 ( )A.“x2=1”是“x=1”的充分不必要条件B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“使得”的否定是:“均有”D.命题“若α=β,则sinα=sinβ”的逆否命题为真命题11.设等比数列的公比q=2,前n项和为,则()A. 2B. 4C.D.12.设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.-2 C. D.二、填空题(本大题共4小题,每小题5分,满分20分.把答案直接填在题中的横线上.)13. 已知,,则的最小值.14. 如图是一个几何体的三视图,根据图中数据可得几何体的表面积为.15. 已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x+…+a n x n,若a1+a2+…+a n-1=29-n,则自然数n等于.16.有以下几个命题:①曲线x2-(y+1)2=1按a=(-1,2)平移可得曲线(x+1)2-(y+3)2=1②与直线相交,所得弦长为2③设A、B为两个定点,m为常数,,则动点P的轨迹为椭圆④若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,则点F2关于∠F1PF2的外角平分线的对称点M的轨迹是圆其中真命题的序号为(写出所有真命题的序号).三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)求函数y=7-4sinxcosx+4cos2x-4cos4x的最大值与最小值.18.(本小题满分12分)同时抛掷3个正方体骰子,各个面上分别标以数(1,2,3,4,5,6),出现向上的三个数的积被4整除的事件记为A.(1)求事件A发生的概率P(A);(2)这个试验重复做3次,求事件A至少发生2次的概率;(3)这个试验反复做6次,求事件A发生次数ξ的数学期望.19.(本小题满分12分)如图所示,已知四棱锥P-ABCD的底面是直角梯形, ∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,O是BC的中点,AO交BD于E.(1)求证:PA⊥BD;(2)求证:平面PAD⊥平面PAB;(3)求二面角P-DC-B.20. (本小题满分12分)如图,M是抛物线y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.(1)若M为定点,证明直线EF的斜率为定值;(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.21.(本小题满分12分)已知函数的图象与直线相切,切点的横坐标为1.(1)求函数f(x)的表达式和直线的方程;(2)求函数f(x)的单调区间;(3)若不等式f(x)≥2x+m对f(x)定义域内的任意x恒成立,求实数m的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)[几何证明选讲]如图,E是圆内两弦AB和CD的交点,直线EF//CB,交AD的延长线于F,FG切圆于G,求证:(1)∽;(2)EF=FG.23.[选修4-4:坐标系与参数方程]已知曲线C:(t为参数), C:(为参数).(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C上的点P对应的参数为,Q为C上的动点,求PQ中点M到直线(t为参数)距离的最小值.24.【不等式选讲】解不等式:参考答案1.A2.D3.A4.A5.D6.D7.C8.B9.C 10.D 11.C 12.B13. 3 14. 12π15.4 16.④17.解:y=7-4sinxcosx+4cos2x-4cos4x=7-2sin2x+4cos2x(1-cos2x)=7-2sin2x+4cos2xsin2x=7-2sin2x+sin22x=(1-sin2x)2+6.由于函数z=(u-1)2+6在[-1,1]中的最大值为z max=(-1-1)2+6=10,最小值为z min=(1-1)2+6=6,故当sin2x=-1时y取得最大值10,当sin2x=1时y取得最小值6.18.解:(1)解法1先考虑事件A的对立事件,共两种情况:①3个都是奇数;②只有一个是2或6,另两个都是奇数,.解法2 事件的发生有以下五种情况:三个整数都是4:;有两个整数是4,另一个不是4:;只有一个数是4,另两个不是4:;三个数都是2或6:;有两个数是2或6,另一个数是奇数:故得.(2).(3).19.解法一:(1)证明:∵PB=PC,∴PO⊥BC.又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,∴PO⊥平面ABCD.在梯形ABCD中,可得Rt△ABO≌Rt△BCD,∴∠BEO=∠OAB+∠DBA=∠DBC+∠DBA=90°,即AO⊥BD.∵PA在平面ABCD内的射影为AO,∴PA⊥BD.(2)证明:取PB的中点N,连接CN.∵PC=BC, ∴CN⊥PB.①∴AB⊥BC,且平面PBC⊥平面ABCD.∴AB⊥平面PBC.∵AB平面PAB,∴平面PBC⊥平面PAB.②由①、②知CN⊥平面PAB,连接DM、MN,则由MN∥AB∥CD,得四边形MNCD为平行四边形,∴DM⊥平面PAB.∵DC⊥BC,且平面PBC⊥平面ABCD,∴DC⊥平面PBC,∵PC平面PBC.∴DC⊥PC.∴∠PCB为二面角P-DC-B的平面角.∵三角形PBC是等边三角形,∴∠PCB=60°,即二面角P-DC-B的大小为60°.∵DM平面PAD,∴平面PAD⊥平面PAB.解法二:取BC的中点O,因为三角形PBC是等边三角形,由侧面PBC⊥底面ABCD,得PO⊥底面ABCD.以BC中点O为原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,建立空间直角坐标系O-xyz.(1)证明:∵CD=1,则在直角梯形中,AB=BC=2,在等边三角形PBC中,.(2)证明:,(3)显然所夹角等于所示二面角的平面角.20. 解:(1)设M(y02,y0),直线ME的斜率为k(k>0),则直线MF的斜率为-k,所以直线ME的方程为y-y0=k(x-y02).....所以直线EF的斜率为定值.(2)当∠EMF=90°时,∠MAB=45°,所以k=1.∴直线ME的方程为:y-y0=x-y02..同理可得.设重心消去得21.解:(1). ∴f(1)=1.∴节点为(1,1).∴1=-2×1+c.∴c=3.∴直线l的方程为y=-2x+3.(2).(3)令,由得,在上是减函数,在上是增函数...22.解: EF//CB,∽.FG是圆的切线.故FG=EF.23.解:(Ⅰ).为圆心是,半径是1的圆,为中心是坐标原点,焦点在轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当时,,故,为直线.精品文档. M到的距离 .从而当时,d取得最小值.24.解:(1)时,得,解得,所以,;(2)时,得,解得,所以,;(3)时,得,解得,所以,无解.综上,不等式的解集为.。
高考数学模拟考试试题
高考数学模拟考试试题本次模拟考试是针对高中生准备参加高考的重要考核,经过严格的测试,可以全面检测学生高考数学知识水平,及时发现和改正不足;并以此有效提升学生参加高考的能力。
高考数学模拟考试试题【一】一元二次方程的解1、已知一元二次方程2x2−2x−3=0,求解此方程。
2、设a≠0,b≠0,利用一元二次方程ax2 + bx + c = 0 的判别式D=b2−4ac,求实数解的个数。
【二】二次函数的性质1、设a、b、c 均为实数且满足a≠0,求实数解的二次函数y =ax2 +bx +c的图象的对称性和极值的位置。
2、设a≠0,求函数y=ax2 + bx+ c的最大值。
【三】解不等式1、解不等式x2-2x+1≥0。
2、解不等式|x+2|-x+1≤0。
【四】平面几何的图形1、计算点P(3,4)关于直线x+y=6的对称点坐标。
2、求四边形ABCD,其中∠C=90°,AB=10,CD=2 对应的AC=?【五】正弦定理1、已知正三角形ABC,其中a=3,b=4。
求∠A(A边对角)的角度。
2、已知正三角形ABC,c=6,b=4。
求边a的长度。
【六】勾股定理1、已知直角三角形的两条直角边长度为3和4,求斜边的长度。
2、已知直角三角形的斜边为5,求两边边长之和。
【七】多项式乘法1、求(x+2)(2x2+3x+4)的值。
2、已知2a2b3+4ab2-6a2b-7ab+8,求a和b的值。
【八】三角函数1、函数 y = 3sin2x -2cos2x 在[0,π]上的最大值和最小值都是多少?2、设P(2,3)在正弦函数y=sin x+2上,求x的值。
【九】立体几何1、三棱柱的锥角是几度?2、已知棱台的正三棱锥ABC的各边长分别是3、4、5,求体积的大小。
【十】从句1、如果f(x) =x2-2x+1,求f(f(-2))的值多少?2、当x≠0,求x2-2x+1的值分别为多少?。
2024年高考数学全真模拟试题
2024年高考数学全真模拟试题一、选择题(本大题共 12 小题,每小题 5 分,共 60 分)1、已知集合 A ={x | x² 3x + 2 = 0},B ={1, 2},则A ∩ B =()A {1}B {2}C {1, 2}D ∅2、复数 z =(1 + i)(2 i),则|z| =()A 2B 5C 10D 2 23、已知向量 a =(1,2),b =(2,-1),则 a·b =()A 0B 3C 4D 54、函数 f(x) = sin(2x +π/3)的最小正周期为()A πB 2πC π/2D 4π5、若直线 l₁:x + 2y 3 = 0 与直线 l₂:2x my + 1 = 0 平行,则 m =()A -4B -1C 1D 46、已知等差数列{aₙ}的前 n 项和为 Sₙ,若 a₁= 1,d = 2,则S₅=()A 25B 20C 15D 107、从 5 名男生和 3 名女生中选出 3 人参加某项活动,至少有 1 名女生的选法有()A 80 种B 70 种C 65 种D 60 种8、抛物线 y²= 8x 的焦点到准线的距离为()A 2B 4C 8D 169、已知函数 f(x) = x³ 3x + 1,则函数 f(x) 的单调递增区间是()A (∞,-1)和(1,+∞)B (-1,1)C (∞,-1)D (1,+∞)10、若函数 f(x) =logₐx(a > 0 且a ≠ 1)在区间2,4上的最大值与最小值之差为 1,则 a =()A 2B 4C 1/2D 1/411、若圆 C:x²+ y² 2x 4y + 1 = 0 关于直线 l:ax + by 1 = 0(a > 0,b > 0)对称,则 1/a + 2/b 的最小值为()A 4B 6C 8D 1012、已知函数 f(x) =2sin(ωx +φ)(ω > 0,|φ| <π/2)的图象过点(0,1),且在区间(π/12,5π/12)上单调递减,则ω 的最大值为()A 11B 9C 7D 5二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)13、曲线 y = x³ 3x²+ 1 在点(1,-1)处的切线方程为________。
浙江省宁波市2024届高三上学期高考模拟考试数学试题
一、单选题二、多选题1. 关于的不等式的解集为,则的最大值是( )A.B.C.D.2. 在中,点D 是线段AB 上靠近B 的四等分点,点E 是线段CD 上靠近D的三等分点,则( )A.B.C.D.3. 在△中,,E是上一点.若,则( )A.B.C.D.4. 若f (x )=x 3,f′(x 0)=3,则x 0的值是( ).A .1B .﹣1C .±1D .35. 函数是定义在上的偶函数,且当时,.若对任意的,均有,则实数的最大值是( )A.B.C .0D.6.在空间直角坐标系中,正四面体的顶点、分别在轴,轴上移动.若该正四面体的棱长是,则的取值范围是( ).A.B.C.D.7. 若干年前,某老师刚退休的月退休金为4000元,月退休金各种用途占比统计图如下面的条形图.该老师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该老师的月退休金为()A .5000元B .5500元C .6000元D .6500元8. 已知函数的定义域为R ,对任意实数x ,y 都有,当时,,且,则关于x 的不等式的解集为( )A.B.C.D.9. 已知抛物线的焦点为,,是抛物线上两点,则下列结论正确的是( )A.点的坐标为B .若直线过点,则C .若,则的最小值为D .若,则线段的中点到轴的距离为10. 数学中有各式各样富含诗意的曲线,螺旋线就是其中比较特别的一类.螺旋线这个名词源于希腊文,它的原意是“旋卷”或“缠卷”.小明浙江省宁波市2024届高三上学期高考模拟考试数学试题浙江省宁波市2024届高三上学期高考模拟考试数学试题三、填空题四、解答题对螺旋线有着浓厚的兴趣,连接嵌套的各个正方形的顶点就得到了近似于螺旋线的美丽图案,其具体作法是:在边长为1的正方形中,作它的内接正方形,且使得;再作正方形的内接正方形,且使得;与之类似,依次进行,就形成了阴影部分的图案,如图所示.设第个正方形的边长为(其中第1个正方形的边长为,第2个正方形的边长为,…),第个直角三角形(阴影部分)的面积为(其中第1个直角三角形的面积为,第2个直角三角形的面积为,…),则()A .数列是公比为的等比数列B.C .数列是公比为的等比数列D .数列的前项和11. 中国传统文化中很多内容体现了数学的“对称美”.如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分体现了相互转化、对称统一的形式美、和谐美.定义:图象能够将圆的周长和面积同时等分成两部分的函数称为圆的一个“太极函数”.给出下列命题,其中正确的命题为()A .对于任意一个圆,其“太极函数”有无数个B.函数可以是某个圆的“太极函数”C.正弦函数可以同时是无数个圆的“太极函数”D .函数是“太极函数”的充要条件为函数的图象是中心对称图形12. 已知直线与函数的图象相交,A ,B ,C是从左到右的三个相邻交点,设,,则下列结论正确的是( ).A.将的图象向右平移个单位长度后关于原点对称B.若,则C .若在上无最值,则的最大值为D.13.函数的最小正周期为________14. __________.15.记为数列的前项和,若,则______.16.如图,直三棱柱中,,,,D 为上的点,二面角的余弦值为.(1)求证:;(2)求点A到平面的距离.17. 已知函数.(1)求的最小值;(2)记为的导函数,设函数有且只有一个零点,求的取值范围.18. 已知函数.(1)若,求实数a的值;(2)已知且,求证:.19. 如图,在四棱锥中,平面,点E为的中点,连.(1)求证:平面;(2)求点D到平面的距离.20. 设函数.(1)求函数的单调区间;(2)若函数有唯一的零点,求实数的值;(3)讨论函数的零点个数.21. 如图,四边形为正方形,,,为锐角三角形,,分别是边,的中点,直线与平面所成的角为.(1)求证:平面;(2)求二面角的余弦值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省高考数学模拟试题
第一部分 选择题(共50分)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有已知cos θ=cos30°,则θ等于 ( )
30°k ·360°+30°(k ∈Z ) k ·360°±30°(k ∈Z ) k ·180°+30°(k ∈Z )
2.已知a b a ,0,0>>b 的等差中项是
111
,,,2m a n b m n a b
=+=++且则的最小值是( C )
A .3
B .4
C .5
D .6
设曲线y =1x 2和曲线y =1
x
在它们交点处的两切线的夹角为θ,则tan θ= ( )
A .1
B .12
C .1
3
D .2
3
袋中有不同的白球5只,不同的黑球6只,连续取出3只球,则顺序为“黑白黑”的概率为 ( )
29 322 334 33
5 下列命题不正确...
的是 ( ) (A) 如果 f (x ) =
1
x
,则 lim x →+ ∞ f (x ) = 0 (B) 如果 f (x ) = 2 x -1,则 lim x →0 f (x ) = 0
(C) 如果 f (n ) = n 2-2n
n + 2 ,则 lim n →∞
f (n ) 不存在
(D) 如果 f (x ) = ⎩⎨⎧ x , x ≥0
x + 1,x < 0
,则 lim x →0 f (x ) = 0
已知点)0,2(-A ,)0,3(B ,动点2
),(x PB PA y x P =⋅满足,则点P 的轨迹是( )
A 圆
B 椭圆
C 双曲线
D 抛物线
若D 点在三角形的BC 边上,且4CD DB r AB sAC ==+,
则3r s +的值为 ( ) 165 125 85 45
8. 若一条曲线既是轴对称图形又是中心对称图形,则我们称此曲线为双重对称曲线.下列四条曲线中,双重对称曲线的条数是 ( )
(1)
4212516x y -=(2)221y x x =-+-(3)5sin 23y x π⎛⎫=+ ⎪⎝
⎭(4)31y x =+ A .1 B . 2 C .3 D .4
9.有一条信息, 若1人得知后用1小时将其传给2人, 这2人又用1小时分别传给未知此信
息的另外2人, 如此继续下去, 要传遍100万人口的城市, 所需的时间大约是()A.10天B.2天C.1天D.半天
10函数
2
3
1
2
x
y e
π
-
=的部分图象大致是()
第二部分(非选择题共100分)
二、填空题:本大题共4小题,每题5分,共20分.
将抛物线)0
(
)3
(
42≠
-
=
+a
y
a
x按向量v=(4,-3)平移后所得抛物线的焦点坐标
为
若两个向量a与b的夹角为x,则称向量“a×b”为“向量积”,其长度| a×b|=|a|•|b|•sinx今已知||=1,||=5,•=-4,则|×|=
13有一组数据:
1231
,,,(
n
x x x x x<
2
x<…<
n
x)的算术平均值为10,若去掉其中最大的一个,余下数据的算术平均值为9;若去掉其中最小的一个,余下数据的算术平均值为
11,第一个数
1
x关于的表达式是___ ,第个数
n
x关于的表达式是____
14.已知()
f x是定义在R上的函数,且[]
(1)1()1(),(1)3
f x f x f x f
+-=+=则(2)
f= ________;(2005)
f=___3
三、解答题:本大题共6小题,共80分,解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分12分)设函数的最大值为M,最
小正周期为
(1)求T;
(2)若有10个互不相等的正数满足,且,
求
)
(
cos
sin
3
2
2
cos
)
(R
x
x
x
x
x
f∈
+
=
i
x M
x
f
i
=
)
()
10
,
,2,1
(
10
=
<i
x
i
π
10
2
1
x
x
x+
+
+
16.(本小题满分12分)某市出租车的起步价为6元,行驶路程不超过3km 时,租车费为6 元,若行驶路程过3km ,则按每超出1km (不足1km 也按1km 计程)收费3 设
出租车一天行驶的路程数ξ(按整km 数计算,不足1km 的自动计为1km )是一个随机 变量,则其收费数η 已知一个司机在某个月中每次出车都超过了
3km ,且一天的总路程数可能的取值是300(km ),它们出 现的概率依次是 100a 2+34
(1)求作这一个月中一天行驶路程ξ的分布列,并求ξ的数学期望和方差; (2)求这一个月中一天所收租车费η
(本小题满分14分)正四面体A-BCD 的棱长为1,
(Ⅰ)如图(1)M 为CD 中点,求异面直线AM 与BC 所成的角;
(Ⅱ)将正四面体沿BC 剪开,作为正四棱锥的侧面如图(2),求二面角M-AB-E 的大小;
(Ⅲ)若将图(1)与图(2)面ACD 重合,问该几何体是几面体 (不需要证明)
D
C
B
A M
图(1)
N
E
D
C
B
A
M
图(2)
P Q
H
18.(本小题满分14分)对于任意实数x ,符号[]x 表示x 的整数部分,即[]x 是不超过x 的最大整数 在实数轴(箭头向右)上[]x 是在点x 左侧的第一个整数点,当x 是整数时[]x 就
是x 这个函数[]x 叫做“取整函数”也叫高斯(Gauss )函数
从[]x 的定义可得下列性质:1x -<[]x ≤x <[]1x +
与[]x 有关的另一个函数是{}x ,它的定义是{}x =x -[]x ,{}x 称为x 的“小数部分”
(1)根据上文,求{}x 的取值范围和[]5.2-的值; (2)求
的和
19 (本小题满分14分)
过椭圆)0(1
22
22>>=+b a b
y a x 的左焦点F 任作一条与两坐标轴都不垂直的弦AB ,若点
M 在x 轴上,且使得MF 为AMB ∆的一条内角平分线,则称点M 为该椭圆的“左特征点”.
①求椭圆15
22
=+y x 的“左特征点”M 的坐标; ②试根据①中的结论猜测:椭圆
)0(12
2
22>>=+b a b y a x 的“左特征点”M 是一个怎
样的点?并证明你的结论
(本小题满分14分)
有一块边长为4的正方形钢板,焊接成一个长方体无盖容器焊损耗忽略不计),有人应用数学知识作了如下设计:如图(a),在钢板的四个角处各切去一个小正方形,剩余部分围成一个长方体,该长方体的高为小正方形边长,如图(b),
;
(I焊接而成的长方体的最大容积V
1
(II)由于上述设计存在缺陷(材料有所浪费),请你重新设计切焊方法,使材料浪费减少,
.
而且所得长方体容器的容积V2>V
1
图(a)图(b)。