ASTM A-388 大型钢锻件超声波检验 (中文版)
ASTM A标准(中文)
AA1000-99 弹簧专用碳钢和合金钢钢丝规范A1001-99 大型材高强度钢铸件规范A1002-99 镍铝类合金铸件规范A100-93(2000) 硅铁A101-93(2000) 铬铁A102-93(2000) 钒铁合金A105/A105M-01 管系部件用碳素钢锻件A106-999e1 高温用无缝碳素钢管A108-99 优质冷加工碳素钢棒材技术规范A109/A109M-00e1 冷轧碳素钢带技术规范A111-99a 电话和电报线路用镀锌"铁"丝规格A116-00 镀锌钢丝编织栏栅网A121-99 镀锌刺钢丝A123/A123M-00 钢铁产品的锌镀层(热浸镀锌)技术规范A125-96 热处理螺旋形钢弹簧A126-95(2001) 阀门、法兰和管配件用灰铁铸件A128/A128M-93(1998) 钢铸件,奥氏体锰A131/A131M-94 海船用结构钢A132-89(2000) 钼铁合金A134-96 电熔(电弧)焊钢管(NPS为16英寸和16英寸以上)A135-01 电阻焊钢管A139-00 电熔(电弧)焊钢管(4英寸以上的)A143-74(1999) 热浸镀锌结构钢制品防脆裂措施和探测脆裂的程序A146-64(2000) 氧化钼制品A148/A148M-01 结构用高强度钢铸件A153/A153M-00 钢铁制金属构件上镀锌层(热浸)A159-83(2001) 汽车用灰铁铸件A167-99 不锈钢和耐热铬镍钢板、薄板及带材A176-99 不锈钢和耐热铬钢板、薄板及带材A178/A178M-95(2000) 电阻焊接碳素钢钢管及碳锰钢锅炉和过热器管的技术规范A179/A179M-90a(1996)e1 热交换器和冷凝器用无缝冷拉低碳钢管A181/A181M-01 普通锻制碳素钢管的规格A182/A182M-01 高温设备用锻制或轧制的合金钢管法兰、锻制管件、阀门及零件A183-98 钢轨用碳素钢螺栓和螺母A184/A184M-01 混凝土加筋用变形钢筋编织网A185-97 钢筋混凝土用焊接钢丝结构A1-00 碳素钢丁字轨A192/A192M-91(1996)e1 高压用无缝碳素钢锅炉管A193/A193M-01 高温设备用合金钢和不锈钢螺栓材料A194/A194M-01 高温和高压设备用碳素钢与合金钢螺栓和螺母的规格A197/A197M-00 化铁炉用可锻铸铁A20/A20M-01 压力容器用钢板材通用要求A202/A202M-93(1999) 压力容器用铬锰硅合金钢板A203/A203M-97 压力容器用镍合金钢板A204/A204M-93(1999) 压力容器用钼合金钢板A209/A209M-98 锅炉和过热器用无缝碳钼合金钢管A210/A210M-96 锅炉和过热器用无缝中碳素管A213/A213M-01 无缝铁素体和奥氏体合金钢锅炉、过热器和换热器管A214/A214M-96 热交换器与冷凝器用电阻焊接碳素钢管A216/A216M-93(1998) 高温下使用的适合于熔焊的碳素钢铸件规格A217/A217M-01 适合高温受压零件用合金钢和马氏体不锈钢铸件A21-94(1999) 铁路用未经热处理和经热处理的碳素钢轴A220/A220M-99 珠光体可锻铁A225/A225M-93(1999) 压力容器用锰矾镍合金钢板A227/A227M-99 机械弹簧用冷拉钢丝A228/A228M-00 乐器用优质弹簧钢丝A229/A229M-99 机械弹簧用油回火的钢丝A230/A230M-99 阀门用油回火优质碳素钢弹簧丝A231/A231M-96 铬钒合金钢弹簧丝A232/A232M-99 阀门用优质铬钒合金钢弹簧丝A234/A234M-00a 中温与高温下使用的锻制碳素钢及合金钢管配件A239-95(1999) 用普力斯试验法(硫酸铜浸蚀)确定铁或钢制品上镀锌层最薄点的测试方法A240/A240M-01 压力容器用耐热铬及铬镍不锈钢板、薄板及带材A242/A242M-00a 高强度低合金结构钢A247-67(1998) 铁铸件中石墨显微结构评定试验方法A249/A249M-01 锅炉、过热器、换热器和冷凝器用焊接奥氏体钢管A250/A250M-95(2001) 锅炉和过热器用电阻焊铁素体合金钢管A252-98e1 焊接钢和无缝钢管桩A254-97 铜焊钢管规格A255-99 测定钢淬透性用末端淬火试验的标准试验方法A262-98 奥氏体不锈钢晶间浸蚀敏感性的检测A263-94a(1999) 耐腐蚀铬钢包覆板材,薄板材及带材技术规范A264-94a(1999) 包覆的不锈铬镍钢板,薄板及带材规格A265-94a(1999) 镍和镍基合金包覆钢板规格A266/A266M-99 压力容器部件用碳素钢锻件规格A268/A268M-01 一般设备用无缝和焊接铁素体与马氏体不锈钢管A269-01 一般设备用无缝和焊接奥氏体不锈钢管A27/A27M-95(2000) 通用碳素钢铸件A270-01 卫生设施用无缝钢和焊接奥氏体不锈钢管A275/A275M-98 钢锻件的磁粉检查试验方法A276-00a 不锈钢棒材和型材A278-93 适用于650F容压部件用灰铸铁件的技术规范A283/A283M-00 低和中等抗拉强度碳素钢板A285/A285M-90(2001) 压力容器用低和中等抗拉强度的碳素钢板A288-91(1998) 涡轮发电机磁性定位环用碳素钢和合金钢锻件A289/A289M-97 发电机非磁性定位环用合金钢锻件的技术规范A29/A29M-99e1 热锻及冷加工碳素钢和合金钢棒A2-90(1997) 普通型,带槽和防护型碳素工字钢轨A290-95(1999) 减速器环用碳素钢和合金钢锻件A291-95(1999) 减速器小齿轮、齿轮和心轴用碳素钢和合金钢锻件A295-98 高碳耐磨轴承钢技术规范A297/A297M-97(1998) 一般用耐热铬铁与镍铬铁合金钢铸件规格A299/A299M-97e1 压力容器用锰硅碳钢板A302/A302M-97e1 压力容器用锰钼和锰钼镍合金钢板A304-96 有末端淬火淬透性要求的合金钢棒材的技术规范A307-00 抗拉强度为60000psi的碳素钢螺栓和螺柱的技术规范A308-99 经热浸处理镀有铅锡合金的薄板材的技术规范A309-94a(1999) 用三点试验法测定长镀锌薄钢板镀层的重量成分的试验方法A311/A311M-95(2000) 有机械性能要求的消除应力的冷拉碳素钢棒A312/A312M-00c 无缝和焊接奥氏体不锈钢管A313/A313M-98 不锈钢弹簧丝技术规范A314-97 锻造用不锈及耐热钢坯及钢棒规格A31-00 钢铆钉及铆钉和压力容器用棒材A319-71(2001) 高温无压部件用灰铁铸件A320/A320M-01 低温用合金钢螺栓材料规格A321-90(1995)e1 经淬火和回火的碳素钢棒A322-91(1996) 合金钢棒材.级别A323-93(2000) 硼铁规格A324-73(2000) 钛铁合金A325-00 经热处理最小抗拉强度为120/105ksi的钢结构螺栓A325M-00 结构钢连接件用高强度螺栓(米制)A327-91(1997) 铸铁冲击试验方法A327M-91(1997) 铸铁冲击试验方法(米制)A328/A328M-00 薄钢板桩A331-95(2000) 冷加工合金钢棒A333/A333M-99 低温用无缝与焊接钢管规格A334/A334M-99 低温设备用无缝与焊接碳素和合金钢管A335/A335M-01 高温用无缝铁素体合金钢管A336/A336M-99e1 压力与高温部件用合金钢锻件规格A338-84(1998) 铁路,船舶和其他重型装备在温度达到650华氏度(345摄氏度)时使用的可锻铸铁法兰,管件和阀门零件A34/A34M-96 磁性材料的抽样和采购试验的标准惯例A340-99a 有关磁性试验用符号和定义的术语A341/A341M-00 用直流磁导计和冲击试验法测定材料的直流磁性能的试验方法A342/A342M-99 磁铁材料导磁率的试验方法A343-97 在电力频率下用瓦特计-安培计-伏特计法(100-1000赫兹)和25 厘米艾普斯亭(EPSTEIN) 机架测定材料的交流电磁性能的试验方法A345-98 磁设备用平轧电炉钢A348/A348M-00 用瓦特计--安培计--伏特计法(100-10000赫兹)和25厘米艾普斯亭框测定材料的交流磁性能的试验方法A350/A350M-00c 要求进行缺口韧性试验的管道部件用碳素钢与低合金钢锻件技术规范A351/A351M-00 容压零件用奥氏体及奥氏体铁素体铸铁的技术规范A352/A352M-93(1998) 低温受压零件用铁素体和马氏体钢铸件规格A353/A353M-93(1999) 压力容器用经二次正火及回火处理的含9%镍的合金钢板A354-01 淬火与回火合金钢螺栓,双头螺栓及其他外螺纹紧固件规格A355-89(2000) 渗氮用合金钢棒A356/A356M-98e1 蒸汽轮机用厚壁碳素钢、低合金钢和不锈钢铸件A358/A358M-01 高温用电熔焊奥氏体铬镍合金钢管A36/A36M-00a 碳素结构钢技术规范A363-98 地面架空线用镀锌钢丝绳A367-60(1999) 铸铁的激冷试验方法A368-95a(2000) 不锈钢和耐热钢丝绳的标准A369/A369M-01 高温用锻制和镗孔碳素钢管和铁素体合金钢管A370-97a 钢制品机械测试的标准试验方法和定义A372/A372M-99 薄壁压力容器用碳素钢及合金钢锻件A376/A376M-01 高温中心站用无缝奥氏钢管A377-99 球墨铸铁压力管规范索引A380-99e1 不锈钢零件、设备和系统的清洗和除垢A381-96 高压输送用金属弧焊钢管A384-76(1996) 防止钢组件热浸镀锌时翘曲和扭曲用安全保护A385-00 提供高质量镀锌覆层(热浸)A3-01 低、中、高碳素钢鱼尾(连接)板A387/A387M-99e1 压力容器用铬钼合金钢板A388/A388M-95(2000)e1 重型钢锻件超声波检测A389/A389M-93(1998) 适合高温受压部件用经特殊热处理的合金钢铸件规格A390-95(2001) 饲养家禽用镀锌钢丝栏栅网(六角形和直线形)A391/A391M-98 80号合金钢链条A392-96 镀锌钢丝链环栏栅网A394-00 传动塔架用镀锌和裸露钢螺栓A395/A395M-99 高温用铁素体球墨铸铁受压铸件A400-69(2000) 钢棒的成分及机械性能选择指南A401/A401M-98 铬硅合金钢丝A403/A403M-00b 锻制奥氏体不锈钢管配件A407-93(1998) 盘簧用冷拉钢丝A409/A409M-01 腐蚀场所或高温下使用的焊接大口径奥氏体钢管A411-98 镀锌低碳钢铠装线A413/A413M-00 碳素钢链A414/A414M-00 压力容器用碳素薄钢板A416/A416M-99 预应力混凝土用无涂层七股钢铰线A417-93(1998) 之字型、方型和正弦型装垫弹簧元件用冷拉钢丝A418-99 涡轮机及发电机钢转子锻件的超声波检查方法A420/A420M-00b 低温下用锻制碳素钢和合金钢管配件A421/A421M-98a 预应力混凝土用无涂层消除应力钢丝的技术规范A423/A423M-95(2000) 无缝和电焊低合金钢管A424-00 搪瓷用钢薄板A426-92(1997) 高温用离心铸造的铁素体合金钢管A427-74(1996)e1 冷轧和热轧用锻制合金钢辊A428/A428M-01 钢铁制品上铝覆层重量的测试方法A434-90a(2000) 热轧与冷精轧经回火及淬火的合金钢棒A435/A435M-90(2001) 钢板的直射束纵向超声波检验A436-84(1997)e1 奥氏体灰口铁铸件A437/A437M-01 高温用经特殊处理的涡轮型合金钢螺栓材料A438-80(1997) 灰铸铁横向弯曲试验A439-83(1999) 奥氏体可锻铸铁铸件A447/A447M-93(1998) 高温用镍铬铁合金钢铸件(25-12级)A449-00 经淬火和回火的钢螺栓和螺柱A450/A450M-96a 碳素钢管、铁素体合金钢管及奥氏体合金钢管A451-93(1997) 高温用离心铸造的奥氏体钢管A453/A453M-00 具有同奥氏体钢相类似的膨胀系数、屈服强度为50-120Ksi(345-827MPa)的耐高温螺栓材料A455/A455M-90(2001) 压力容器用高强度碳锰钢板A456/A456M-99 大型曲轴锻件的磁粉检查A459-97 镀锌平轧扁钢铠装带A460-94(1999) 包铜钢丝绳标准A463/A463M-00 热浸镀铝薄钢板A466/A466M-98 非焊接碳素钢链A467/A467M-98 机器链和盘旋链A469-94a(1999) 用于发电机转子的真空处理钢锻件A470-01 涡轮机转子和轴用经真空处理的碳素钢和合金锻件A471-94(1999) 涡轮转子转盘和转轮用真空处理合金钢锻件技术规范A472-98 蒸汽涡轮机轴及转子锻件的热稳定性的试验方法A473-01 不锈和耐热钢锻件A474-98 包铝钢丝绳标准A475-98 镀锌钢丝绳A476/A476M-00 造纸厂干燥辊用球墨可锻铸铁件A478-97 铬镍不锈钢和耐热钢制编织钢丝A479/A479M-00 锅炉及压力容器用不锈钢和耐热钢棒与型材A47/A47M-99 铁素体可锻铁铸件A480/A480M-01 扁平轧制耐热不锈钢厚板材、薄板材和带材通用要求A481-94(2000) 金属铬A482-93(2000) 铬铁硅A483-64(2000) 硅锰合金A484/A484M-00 不锈及耐热锻钢棒,钢坯及锻件的规格A485-00 高淬透性耐磨轴承钢的技术规范A487/A487M-93(1998) 受压钢铸件A488/A488M-01 钢铸件焊接规程和工作人员的合格鉴定A48-94ae1 灰铁铸件A489-00 碳素钢吊耳A490-00 最小拉伸强度为150千磅/平方英寸热处理钢结构螺栓A491-96 镀铝钢链环栏栅结构A492-95(2000) 耐热不锈钢丝绳A493-95(2000) 冷镦和冷锻不锈钢和耐热钢丝A494/A494M-00 镍和镍合金铸件A495-94(2000) 硅钙合金钢技术规范A496-97ae1 钢筋混凝土用变形钢丝A497-99e1 钢筋混凝土用焊接变形钢丝网A498-98 无缝与焊接碳素钢,铁素体钢与奥氏体钢制有整体散热片的换热器钢管A49-01 经热处理的碳素钢鱼尾(连接)板,微合金鱼尾板及锻制碳素钢异型鱼尾板A499-89(1997)e1 轧制丁字钢轨用的碳素钢棒材及型材的技术规范A500-01 圆形与异型焊接与无缝碳素钢结构管A501-01 热成型焊接与无缝碳素钢结构管A503/A503M-01 锻制大型曲轴的超声波检验A504-93(1999) 锻制碳素钢轮A505-00 热轧和冷轧合金钢薄板和带材A506-00 正规质量及优质结构的热轧和冷轧合金钢薄板与带材A507-00 优质拉拔,热轧和冷轧合金钢薄板与带材A508/A508M-95(1999) 压力容器用经回火和淬火真空处理的碳素钢与合金钢锻件A510-00 碳素钢盘条和粗圆钢丝通用要求A510M-00 碳素钢盘条和粗圆钢丝(米制)A511-96 无缝不锈钢机械管A512-96 冷拉对缝焊碳素钢机械管A513-00 电阻焊碳素钢与合金钢机械钢管A514/A514M-00a 焊接用经回火与淬火的高屈服强度合金钢板A515/A515M-92(1997) 中温及高温压力容器用碳素钢板A516/A516M-90(2001) 中温及低温压力容器用碳素钢板A517/A517M-93(1999) 压力容器用经回火与淬火的高强度合金钢板A518/A518M-99 耐蚀高硅铁铸件A519-96 无缝碳素钢与合金钢机械管A521-96 一般工业用闭式模钢锻件A522/A522M-95b(2000) 低温用锻制或轧制含镍8%和9%的合金钢法兰,配件,阀门和零件规格A523-96 高压管型电缆线路用平端无缝与电阻焊钢管A524-96 常温和低温用无缝碳素钢管A529/A529M-00 高强度碳锰结构钢质量A530/A530M-99e1 特种碳素钢和合金钢管A531/A531M-91(1996) 涡轮发电机钢定位环的超声波检验A532/A532M-93a(1999)e1 耐磨铸铁A533/A533M-93(1999) 压力容器用经回火和淬火的锰钼及锰钼镍合金钢板A534-94 用于耐摩擦轴承的渗碳钢A536-84(1999)e1 球墨铸铁件A537/A537M-95(2000) 压力容器用经热处理的碳锰硅钢板A53/A53M-01 无镀层热浸的、镀锌的、焊接的及无缝钢管的技术规范A539-99 天然气和燃料油管线用电阻焊钢盘管A540/A540M-00 特殊用途的合金钢螺栓材料A541/A541M-95(1999) 压力容器部件用经淬火和回火的碳素钢及合金钢锻件A542/A542M-99e1 压力容器用经回火和淬火的铬钼、铬钼钒及铬钼钒钛硼合金钢板A543/A543M-93(1999) 压力容器用经回火和淬火的镍铬钼合金钢板A550-78(2000) 铌铁合金A551-94(1999) 钢轮箍A553/A553M-95(2000) 压力容器用经回火和淬火的含8%及9%镍的合金钢板A554-98e1 焊接的无缝钢机械管A555/A555M-97 耐热不锈钢丝和盘条的通用要求A556/A556M-96 无缝冷拉碳素钢给水加热器管A560/A560M-93(1998) 铬镍合金铸件A561-71(1999) 工具钢棒的宏观刻蚀试验A562/A562M-90(2001) 搪玻璃或扩散金属镀层的压力容器用锰钛合金碳素钢板A563-00 碳合金钢螺母A563M-00 碳素钢及合金钢螺母技术规范(米制)A564/A564M-01 热轧及冷精轧时效硬化处理过的不锈钢棒材和型材技术规范A565-97 高温用马氏体不锈钢棒,锻件和锻制坯规格A568/A568M-00b 热轧及冷轧高强度低合金碳素钢薄板A571-84(1997) 适用于低温压力容器零件的奥氏体球墨铸铁件A571M-84(1997) 适用于低温压力容器零件的奥氏体球墨铸铁件(米制)A572/A572M-00a 高强度低合金钴钒结构钢技术规范A573/A573M-00a 增强韧性的结构碳素钢板A574-00 合金钢内六角螺钉A574M-00 合金钢内六角螺钉(米制)A575-96 商品级碳素钢棒(M级)A576-90b(2000) 特级热轧碳素钢棒A577/A577M-90(2001) 钢板的超声角波束检验A578/A578M-96(2001) 特殊设备用的普通钢板和包覆钢板的直波束超声探伤检验A579-99 超高强度合金钢锻件A580/A580M-98 耐热不锈钢丝A581/A581M-95b(2000) 高速切削用耐热不锈钢丝和盘条A582/A582M-95b(2000) 热轧或冷精轧的高速切削不锈及耐热钢棒A583-93(1999) 铁路用铸钢轮A584-97 镀铝钢丝编织栅栏网A585-97 镀铝刺钢丝A586-98 镀锌平行和螺旋形钢丝绳A587-96 化学工业用电阻焊低碳钢管A588/A588M-00a 高强度低合金结构钢4英寸(100mm)厚屈服点最小为50ksi(345MPa) A589-96 水井用无缝和焊接碳素钢管A591/A591M-98 薄镀层电解镀锌薄钢板A592/A592M-89(1999) 压力容器用经回火和淬火的高强度低合金钢锻制附件和零件A595-98 结构用圆锥形低碳钢管A596/A596M-95(1999) 用环形试验法和冲击法测定材料的直流磁性能的试验方法A597-87(1999) 铸造工具钢A598-92(1997) 磁放大器磁芯的磁性能测试法A599/A599M-99 锡制品,电解镀锡的冷滚轧薄板规范A6/A6M-01 轧制结构钢板材、型材和薄板桩通用技术要求A600-92a(1999) 高速工具钢A601-96(2000) 电解金属锰A602-94(1998) 汽车用可锻铸铁件A603-98 镀锌结构钢丝绳A604-93(1998) 自耗电极再溶化钢棒与钢坯的宏观腐蚀试验方法A606-98 改进防大气腐蚀性的热轧和冷轧高强度低合金钢薄板和带材A608-91a(1998) 高温受压离心铸造的铁铬镍高合金钢管A609/A609M-91(1997) 碳素钢,低合金钢和马氏体不锈钢铸件的超声波检测A610-79(2000) 尺寸测量用铁合金的取样和试验A611-00 冷轧优质碳素结构钢薄板A612/A612M-00 中温和低温压力容器用高强度碳素钢板A615/A615M-01a 钢筋混凝土配筋用变形和光面坯钢筋A618-01 热成型焊接与无缝高强度低合金结构钢管系A623-00 锡轧制产品A623M-00 镀锡薄钢板轧制品通用要求(米制)A624/A624M-98 锡辊轧制品.单压延电解马口铁A625/625M-98 一次轧制原钢板(未镀)和镀锡薄钢板轧制产品技术规范A626/A626M-98 二次压延电解镀锡厚钢板轧制品技术规范A626/A626M-98 锡轧制品.二次压延的电解镀锡板(米制)A627-95 安全设备用均质不易加工的钢棒A629-88(1994)e1 安全设备用不易加工的扁钢棒和型材A630-98 热浸电解镀锡板镀锡层重量测定的方法A632-01 通用无缝和焊接奥氏体不锈钢管(小直径)A633/A633M-00a 正火的高强度低合金结构钢A635/A635M-00 热轧碳素钢薄板,带材和重型粗盘条规格A636-76(2000) 氧化镍烧结块A638/A638M-00 高温用沉积硬化铁基超级合金棒,锻件及锻坯料A640-97 8字型缆吊架用镀锌钢丝绳A641/A641M-98 镀锌(电镀)碳素钢丝技术规范A644-98 铁铸件的相关术语A645/A645M-99a 压力容器用经特殊热处理的5%镍合金钢板A646-95(1999) 飞机及航空器锻件用优质合金钢大方坯及坯段A648-95(2000) 预应力混凝土管用冷拉钢丝A649/A649M-99 波纹纸机械用锻制钢辊规格A650/A650M-98 二次压延的锡轧黑板材A653/A653M-00 热浸处理的镀锌铁合金或镀锌合金薄钢板的标准规范A656/A656M-00a 具有改良可模锻性的高强度低合金热轧结构钢板A657/A657M-98a 一次和二次压延电解镀铬黑钢板轧制品技术规范A65-01 钢轨道钉A659/A659M-97 商业级热轧碳素钢薄板和带材(最大含碳量为0.16%-0.25%) A660-96 高温用离心铸造碳素钢管A662/A662M-99 中温和低温压力容器用锰碳钢板规格A663/A663M-89(2000) 商品级碳素钢棒的机械特性A664-99 在ASTM规范中对电工钢和层压钢级别的识别A666-00 退火或冷加工的奥氏体不锈钢薄板、带材、中厚板和扁棒A667/A667M-87(1998) 离心铸造的双金属(灰口及白口铸铁)圆柱体A668/A668M-96e1 一般工业用碳素钢和合金钢锻件A66-01 钢质螺旋道钉A671-96 常温和较低温用电熔焊钢管A672-96 中温高压用电熔焊钢管A673/A673M-95 结构钢冲击试验的取样程序A674-00 水或其它液体用球墨铸铁管的聚乙烯包装A675/A675M-90a(2000) 专用热轧碳素钢棒的机械特性A677/A677M-99 全处理型无取向电工钢A678/A678M-00a 结构用经回火和淬火的高强度低合金碳素钢板规格A679/A679M-00 硬(冷)拉高抗拉强度钢丝A67-00 热加工低碳钢和高碳钢垫板技术规范A681-94(1999) 合金工具钢A682/A682M-00 弹簧用冷轧高碳钢带材A683/A683M-99 半处理型无取向电工钢A684/A684M-99 冷轧高碳钢带材A686-92(1999) 碳素工具钢A688/A688M-01 焊接的奥氏体不锈钢给水加热器管A689-97 弹簧用碳素钢及合金钢棒A690/A690M-00a 在海洋环境中使用的高强度低合金工字形钢桩和薄板桩规格A691-98 高温下高压装置用电熔焊碳素钢和合金钢管A693-93(1999) 沉淀硬化耐热不锈钢板、薄板和带材A694/A694M-00 高压传输设备用碳素钢及合金钢管法兰、配件、阀门及零件用锻件A695-90b(1995)e1 流体动力设备专用热锻碳素钢棒A696-90a(2000) 压力管道部件专用热锻或冷精轧碳素钢棒A697-98 用伏特计、安培计和瓦特计法测定迭层铁芯样品的交流磁特性的试验方法A698/A698M-92(1997)e1 在弱交流磁场中磁屏蔽效率的试验方法A700-99e1 钢制品国内装运的包装、标记和装载方法A701-96(2000) 硅锰铁A702-89(2000) 热锻钢栅栏柱和组件A703/A703M-01 受压部件用钢铸件A704/A704M-96 混凝土加筋用焊接普通钢棒或杆的光面钢筋或钢筋网A705/A705M-95(2000) 时效硬化的不锈和耐热钢锻件A706/A706M-01 混凝土配筋用变形低合金光面无节钢筋A707/A707M-00a 低温设备用锻制碳素钢和合金钢法兰A709/A709M-01 桥梁用结构钢A710/A710M-00 低碳时效硬化的镍铜铬钼铌合金钢A711-92(1996)e1 钢锻件坯料A712-97 软磁性合金电阻率的测试方法A713-93(1998) 热处理部件用高碳弹簧钢丝A714-99 高强度低合金焊接钢管和无缝钢管A716-99 球墨铸铁涵洞管A717/A717M-95 单片样品表面绝缘电阻率的试验方法A719-97 磁性材料的叠装系数的试验方法A720-97 无取向电工钢延展性的试验方法A721-97 取向的电工钢的延展性试验方法A722/A722M-98 预应力混凝土用无涂覆的高强度钢筋A723/A723M-94(1999) 高强度压力元件用合金钢锻件A724/A724M-99 叠层焊接的压力容器用经淬火及回火的碳素钢压力容器板A726-00 半成品型冷轧磁性迭片级钢A727/A727M-00 具有固定切口韧性的管道部件用碳素钢锻件A729-93(1999) 货物运输及电气铁路用热处理合金钢轴A730-93(1999) 铁路用碳素钢及合金钢锻件A732/A732M-98 一般设备用熔模铸造碳素低合金钢及高强度加温钴合金钢铸件A733-99 焊接及无缝碳素钢和奥氏体不锈钢管接头A734/A734M-87a(1997) 经淬火和回火的合金钢与高强度低合金钢压力容器板A735/A735M-99 中温和低温用低碳锰钼钶合金钢压力容器板A736/A736M-88(2000) 低碳时效硬化的镍铜铬钼铌和镍铜锰钼铌合金钢压力容器板A737/A737M-99 高强度低合金钢压力容器板A738/A738M-00 中温和低温设备用经热处理的碳锰硅钢压力容器板A739-90a(2000) 升温或/和加压部件用热轧合金钢棒A740-98 钢丝网(编织或焊接电镀钢丝网)A741-98 公路护栏用镀锌钢丝绳和配件A742/A742M-98 波纹钢管用预涂聚合物和金属涂覆钢薄板A743/A743M-98ae1 一般用耐腐蚀铬铁及镍铬铁合金铸件A744/A744M-00 严酷条件下使用的耐腐蚀镍铬铁合金铸件A745/A745M-94(1999) 奥氏体钢锻件的超声波检验A746-99 排污管用球墨铸铁A747/A747M-99 沉淀硬化不锈钢铸件A748/A748M-87(1998) 压力容器用静态铸造的激冷白口铁-灰口铁双金属轧辊A749/A749M-97 热轧碳素钢和高强度低合金钢带材通用要求A74-98 铸铁污水管及配件的技术规范A750-77(1994)e1 阻挡区域用钢制通风格栅A751-96 钢制品化学分析的实验方法、操作和术语A752-93(1998) 合金钢条和粗圆钢丝A752M-93(1998) 合金钢条和粗圆钢丝(米制)A753-97 镍铁软磁合金A754/A754M-96(2000) X射线荧光涂层厚度的试验方法A755/A755M-99 外露建筑材料用热浸涂覆和用卷涂工艺预涂的钢薄板A756-94(2001) 耐磨不锈轴承钢A757/A757M-00 低温下承压设备及其它设备用铁素体和马氏体钢铸件A758/A758M-00 具有改进的切口韧性的对缝焊锻制碳素钢管配件A759-00 起重机用碳钢轨条A760/A760M-01 下水道和排水沟用金属涂覆的波纹钢管A761/A761M-98 现场栓接管、管拱和拱用波纹镀锌结构钢板A762/A762M-00 下水道和排水沟用预涂聚合物波纹钢管A763-93(1999)e1 铁素体不锈钢晶间腐蚀敏感性检测A764-95(2001) 机械弹簧用冷拉镀锌和按成品尺寸镀锌的碳素钢丝A765/A765M-98a 具有强制性韧性要求的碳素钢及低合金钢压力容器部件锻件A767/A767M-00b 钢筋混凝土用镀锌钢筋A768-95 涡轮机转子及轴用经真空处理的含铬12%的合金钢锻件A769/A769M-00 电阻焊钢结构型材A770/A770M-86(2001) 专用钢板通过厚度测量进行的抗拉试验A771/A771M-95(2001) 增殖反应堆堆芯部件用奥氏体不锈钢管A772/A772M-00 正弦电流用材料的交流磁导率的试验方法A773/A773M-96 用带直流电子的磁滞曲线记录仪的(B-H)回路法测量材料的磁性能的标准试验方法A774/A774M-00 低温和中温一般腐蚀情况下用的焊接锻制奥氏体不锈钢配件A775/A775M-01 涂环氧树脂的钢筋钢棒A778-01 焊接未退火的奥氏体不锈钢管形制品A779/A779M-00 预应力混凝土用应力消除未涂覆的密实七股钢丝绞绳A780-01 热浸镀锌层的损坏及无覆层区域的检修A781/A781M-00 一般工业用一般要求的钢和合金铸件A782/A782M-90(2001) 经淬火和回火的锰铬钼硅锆合金钢压力容器板A786/A786M-00b 轧制钢楼板A787-01 电阻焊金属涂覆碳素钢机械配管A788-98a 钢锻件A789/A789M-01 普通设备用无缝与焊接铁素体/奥氏体不锈钢管A790/A790M-01 无缝与焊接铁素体/奥氏体不锈钢管A792/A792M-99 热浸工艺法处理的55%铝-锌合金涂覆钢板A793-96 不锈钢轧制楼板A794-97 商品级冷轧碳素钢薄板(最高含碳量为0.16%-0.25%)A795-00 防火用黑色及热浸镀锌的焊接和无缝钢管A796/A796M-00 雨水管和卫生污水管及其它地下埋设管道用波纹钢管、管托架及拱形架结构设计惯例A798/A798M-01 下水道及其它类似用途用工厂制波纹钢管的安装A799/A799M-92(1997) 估算不锈钢铸件铁素体含量用仪表的校准A800/A800M-01 奥氏体合金钢铸件中铁素体含量的估算A801/A801M-99 铁钴高磁性饱和合金A802/A802M-95(2001) 钢铸件外观检验的表面验收标准A803/A803M-01 焊接铁素体不锈钢给水加热器管A804/A804M-99 在电力频率下用薄钢板型试样对材料交流磁特性的测试方法A805-93(1998) 冷轧碳素钢扁平线A807/A807M-97 下水道及其它类似用途用波纹结构钢涂覆管的安装A808/A808M-00a 具有改进的切口韧性的结构级高强度低合金碳钢、锰钢、铌钢和钒钢A809-98 镀铝碳素钢丝A810-00 镀锌钢管用绕网A811-97 粉末冶金技术制造的软磁铁零件A813/A813M-01 单或双焊接奥氏体不锈钢管A814/A814M-01 冷加工焊接奥氏体不锈钢管A815/A815M-01 锻制铁素体、铁素体/奥氏体和马氏体不锈钢管配件A817-00 链接栅栏网用金属涂覆钢丝A818-91(2001) 镀铜碳素钢丝A820-96 纤维增强混凝土用钢纤维A821/A821M-99 预应力混凝土容器用经回火的冷拉钢丝A822-90(2000) 液压系统设备用冷拉碳素无缝钢管A823-99 静铸永久铸模灰铸件A824-01 链接栅栏用Marcelled拉力金属涂覆钢丝A826/A826M-95(2001) 增殖反应堆堆芯部件用奥氏体和铁素体不锈钢管A827/A827M-93a(1998) 锻造及类似用途用的碳素钢板技术规范A829/A829M-00 结构性合金钢板A82-97ae1 钢筋混凝土用无节钢丝A830/A830M-00 按照化学成分要求提供的优质碳素钢板技术规范A831/A831M-95(2000) 核心部件用不锈耐热钢棒,坯段及锻件规格A832/A832M-99e1 压力容器板用铬钼钒及铬钼钒钛硼合金钢A833-84(1996) 用比较硬度测试仪测量金属材料的压痕硬性A834-95(2001) 一般工业用铁铸件的一般要求A835-84(2000) 铁合金与合金添加剂的筛分粒度A836/A836M-95b(2001) 搪瓷管和压力容器设备用钛稳定碳素体钢锻件A837-91(1996)e1 渗碳用合金钢锻件A838/A838M-97 继电器用易切削铁素体不锈软磁合金技术规范A839/A839M-96 软磁用途的磷铁粉末冶金制造的零件技术规范A840/A840M-00 全处理的磁性夹层钢A841/A841M-01 压力容器用温度机械控制工艺加工的钢板A842-85(1997) 高密度石墨铸铁A844/A844M-93(1999) 压力容器用直接淬火加工的含镍9%的合金钢板A845-85(2000) 用于脱氧与合金钢的钛碎片A846-85(2000) 用于脱氧与合金钢的铝碎片A847-99a 具有增强耐大气腐蚀性能的冷成型焊接与无缝高强度低合金结构管A848/A848M-96 低碳磁铁A849-00 波纹钢排水管和污水管用后涂覆铺面和衬里材料A851-96 高频感应焊接的未退火奥氏体钢冷凝器管A852/A852M-00a 最小屈服强度为70Ksi(485MPa),厚度为4英寸(100mm)的经淬火和回火的低合金结构钢板A853-93(1998) 普通碳素钢丝A854/A854M-98 镀锌高强度钢栅栏和格架用光滑金属线A855/A855M-98 锌-5%铝-铈合金涂覆的钢丝绳A856/A856M-98 锌-5%铝-铈合金涂覆的碳素钢丝A857/A857M-00a 冷成形轻型薄钢板桩A858/A858M-00 低温和腐蚀情况下用热处理碳素钢配件A859/A859M-95(1999) 压力容器部件用时效硬化镍铜铬钼钶低碳合金钢锻件A860/A860M-00 锻制高强度低合金钢的高强度对缝焊接配件A861-94e1 高硅铁管和配件A862/A862M-98 波纹钢污水管和排水管沥清(柏油)涂层的应用A865-97 钢管连接用黑色或镀锌焊接或无缝钢螺纹接头A866-94 耐磨中碳轴承钢A867/A867M-94(1998)e1 继电器用铁硅钢。
ASTM A388A388M-2003大型钢锻件超声波检测的标准实施规程英文
Designation:A388/A388M–03Used in USNRC-RDT standardsAn American National StandardStandard Practice forUltrasonic Examination of Heavy Steel Forgings1This standard is issued under thefixed designation A388/A388M;the number immediately following the designation indicates the yearof original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.1.Scope*1.1This practice2covers the examination procedures for the contact,pulse-echo ultrasonic examination of heavy steel forgings by the straight and angle-beam techniques.The straight beam techniques include utilization of the DGS(Dis-tance Gain-Size)method.See Appendix X3.1.2This practice is to be used whenever the inquiry, contract,order,or specification states that forgings are to be subject to ultrasonic examination in accordance with Practice A388/A388M.1.3The values stated in either inch-pound or SI units are to be regarded as the standard.Within the text,the SI units are shown in brackets.The values stated in each system are not exact equivalents;therefore,each system must be used inde-pendently of the bining values from the two systems may result in nonconformance with the specification.1.4This specification and the applicable material specifica-tions are expressed in both inch-pound units and SI units. However,unless the order specifies the applicable“M”speci-fication designation[SI units],the material shall be furnished to inch-pound units.1.5This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.Referenced Documents2.1ASTM Standards:A469Specification for Vacuum-Treated Steel Forgings for Generator Rotors3A745/A745M Practice for Ultrasonic Examination of Aus-tenitic Steel Forgings3E317Practice for Evaluating Performance Characteristicsof Ultrasonic Pulse-Echo Examination Instruments and Systems Without the Use of Electronic Measurement Instruments4E428Practice for Fabrication and Control of Steel Refer-ence Blocks Used in Ultrasonic Inspection42.2ANSI Standard:B46.1Surface Texture52.3Other Document:Recommended Practice for Nondestructive Personnel Quali-fication and Certification SNT-TC-1A,Supplement C—Ultrasonic Testing63.Ordering Information3.1When this practice is to be applied to an inquiry, contract,or order,the purchaser shall so state and shall also furnish the following information:3.1.1Method of establishing the sensitivity in accordance with7.2.2and7.3.3(Vee or rectangular notch),3.1.1.1The diameter and test metal distance of theflat-bottom hole and the material of the reference block in accordance with7.2.2.2,3.1.2Quality level for the entire forging or portions thereof in accordance with10.3,and3.1.3Any options in accordance with6.1,6.2,and7.1.11.4.Apparatus4.1An ultrasonic,pulsed,reflection type of instrument shall be used for this examination.The system shall have a mini-mum capability for examining at frequencies from1to5MHz. On examining austenitic stainless forgings the system shall have the capabilities for examining at frequencies down to0.4 MHz.4.1.1The ultrasonic instrument shall provide linear presen-tation(within5%)for at least75%of the screen height (sweep line to top of screen).The5%linearity referred to is descriptive of the screen presentation of amplitude.Instrument linearity shall be verified in accordance with the intent of1This practice is under the jurisdiction of ASTM Committee A01on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.06on Steel Forgings and Billets.Current edition approved April10,2003.Published June2003.Originally published as A388–st previous edition A388/A388M–01.2For ASME Boiler and Pressure Vessel Code applications see related Specifi-cation SA-388/SA-388M in Section II of that Code.3Annual Book of ASTM Standards,V ol01.05.4Annual Book of ASTM Standards,V ol03.03.5Available from the American National Standards Institute,Inc.,25W.43rd Street,4thfloor,New York,NY10036.6Available from the American Society for Nondestructive Testing,1711Arlin-gate Ln.,P.O.Box28518,Columbus,OH43228–0518.1*A Summary of Changes section appears at the end of this standard. Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.Practice E317.Any set of blocks processed in accordance with Practice E317or E428may be used to establish the specified 65%instrument linearity.4.1.2The electronic apparatus shall contain an attenuator (accurate over its useful range to610%(+1dB)of the amplitude ratio)which will allow measurement of indications beyond the linear range of the instrument.4.2Search Units,having a transducer with a maximum active area of1in.2[650mm2]with3⁄4in.[20mm]minimum to11⁄8in.[30mm]maximum dimensions shall be used for straight-beam scanning(see7.2);and search units equipped from1⁄2by1in.[13by25mm]to1by1in.[25by25mm] shall be used for angle-beam scanning(see7.3).4.2.1Transducers shall be utilized at their rated frequencies.4.2.2Other search units may be used for evaluating and pinpointing indications.4.3Couplants,having good wetting characteristics such as SAE No.20or No.30motor oil,glycerin,pine oil,or water shall be used.Couplants may not be comparable to one another and the same couplant shall be used for calibration and examination.4.4Reference Blocks,containingflat-bottom holes may be used for calibration of equipment in accordance with4.1.1and may be used to establish recording levels for straight-beam examination when so specified by the order or contract.4.5DGS Scales,matched to the ultrasonic test unit and transducer to be utilized,may be used to establish recording levels for straight beam examination,when so specified by the order or contract.The DGS scale range must be selected to include the full thickness cross-section of the forging to be examined.An example of a DGS overlay is found in Appendix X3.5.Personnel Requirements5.1Personnel performing the ultrasonic examinations to this practice shall be qualified and certified in accordance with a written procedure conforming to Recommended Practice No. SNT-TC-1A or another national standard that is acceptable to both the purchaser and the supplier.6.Preparation of Forging for Ultrasonic Examination 6.1Unless otherwise specified in the order or contract,the forging shall be machined to provide cylindrical surfaces for radial examination in the case of round forgings;the ends of the forgings shall be machined perpendicular to the axis of the forging for the axial examination.Faces of disk and rectangular forgings shall be machinedflat and parallel to one another.6.2The surface roughness of exteriorfinishes shall not exceed250µin.[6µm]unless otherwise shown on the forging drawing or stated in the order or the contract.6.3The surfaces of the forging to be examined shall be free of extraneous material such as loose scale,paint,dirt,and so forth.7.Procedure7.1General:7.1.1As far as practicable,subject the entire volume of the forging to ultrasonic examination.Because of radii at change of sections and other local configurations,it may be impossible to examine some sections of a forging.7.1.2Perform the ultrasonic examination after heat treat-ment for mechanical properties(exclusive of stress-relief treatments)but prior to drilling holes,cutting keyways,tapers, grooves,or machining sections to contour.If the configuration of the forging required for the treatment for mechanical properties prohibits a subsequent complete examination of the forging,it shall be permissible to examine prior to treatment for mechanical properties.In such cases,reexamine the forging ultrasonically as completely as possible after heat treatment.7.1.3To ensure complete coverage of the forging volume, index the search unit with at least15%overlap with each pass.7.1.4For manual scanning,do not exceed a scanning rate of 6in./s[150mm/s].7.1.5For automated scanning,adjust scanning speed or instrument repetition rate,or both,to permit detection of the smallest discontinuities referenced in the specification and to allow the recording or signaling device to function.At no time shall the scanning speed exceed the speed at which an acceptable calibration was made.7.1.6If possible,scan all sections of forgings in two perpendicular directions.7.1.7Scan disk forgings using a straight beam technique from at least oneflat face and radially from the circumference, whenever practicable.7.1.8Scan cylindrical sections and hollow forgings radially using a straight-beam technique.When practicable,also exam-ine the forging in the axial direction.7.1.9In addition,examine hollow forgings by angle-beam technique from the outside diameter surface as required in 7.3.1.7.1.10In rechecking or reevaluation by manufacturer or purchaser use comparable equipment,search units,frequency, and couplant.7.1.11Forgings may be examined either stationary or while rotating in a lathe or on rollers.If not specified by the purchaser,either method may be used at the manufacturer’s option.7.2Straight-Beam Examination:7.2.1For straight-beam examination use a nominal21⁄4 -MHz search unit whenever practicable;however,1MHz is the preferred frequency for coarse grained austenitic materials and long testing distances.In many instances on examining coarse grained austenitic materials it may be necessary to use a frequency of0.4MHz.Other frequencies may be used if desirable for better resolution,penetrability,or detectability of flaws.7.2.2Establish the instrument sensitivity by either the reflection,reference-block technique,or DGS method(see Appendix X3for an explanation of the DGS method).7.2.2.1Back-Reflection Technique(Back-Reflection Cali-bration Applicable to Forgings with Parallel Entry and Back Surfaces)—With the attenuator set at an appropriate level,for example5to1or14dB,adjust the instrument controls to obtain a back reflection approximately75%of the full-screen height from the opposite side of the forging.Scan theforgingat the maximum amplification setting of the attenuator(attenu-ator set at1to1).Carry out the evaluation of discontinuities with the gain control set at the reference level.Recalibration is required for significant changes in section thickness or diam-eter.N OTE1—High sensitivity levels are not usually employed when in-specting austenitic steel forgings due to attendant high level of“noise”or “hash”caused by coarse grain structure.7.2.2.2Reference-Block Calibration—The test surface roughness on the calibration standard shall be comparable to but no better than the item to be examined.Adjust the instrument controls to obtain the required signal amplitude from theflat-bottom hole in the specified reference block. Utilize the attenuator in order to set up on amplitudes larger than the vertical linearity of the instrument.In those cases, remove the attenuation prior to scanning the forging.N OTE2—Whenflat-surfaced reference block calibration is specified, adjust the amplitude of indication from the reference block or blocks to compensate for examination surface curvature(an example is given in Appendix X1).7.2.2.3DGS Calibration—Prior to use,verify that the DGS overlay matches the transducer size and frequency.Accuracy of the overlay can be verified by reference blocks and procedures outlined in Practice E317.Overlays are to be serialized to match the ultrasonic transducer and pulse echo testing system that they are to be utilized with.7.2.2.4Choose the appropriate DGS scale for the cross-sectional thickness of the forging to be examined.Insert the overlay over the CRT screen,ensuring the DGS scale base line coincides with the sweep line of the CRT screen.Place the probe on the forging,adjust the gain to make thefirst backwall echo appear clearly on CRT ing the Delay and Sweep control,shift the screen pattern so that the leading edge of the initial pulse is on zero of the DGS scale and the backwall echo is on the DGS scale value corresponding to the thickness of the forging.Adjust the gain so the forging backwall echo matches the height of the DGS reference slope within61Db. Once adjusted,increase the gain by the Db shown on the DGS scale for the reference slope.Instrument is now calibrated and flaw sizes that can be reliably detected can be directly read from the CRT screen.Theseflaw sizes are the equivalentflat bottom reflector that can be used as a reference point.N OTE3—The above can be utilized on all solid forgings.Cylindrical hollow forgings,and drilled or bored forgings must be corrected to compensate for attenuation due to the central hole(see Appendix X4).7.2.3Recalibration—Any change in the search unit,cou-plant,instrument setting,or scanning speed from that used for calibration shall require recalibration.Perform a calibration check at least once every8h shift.When a loss of15%or greater in the gain level is indicated,reestablish the required calibration and reexamine all of the material examined in the preceding calibration period.When an increase of15%or greater in the gain level is indicated,reevaluate all recorded indications.7.2.4During the examination of the forging,monitor the back reflection for any significant reduction in amplitude. Reduction in back-reflection amplitude may indicate not only the presence of a discontinuity but also poor coupling of the search unit with the surface of the forging,nonparallel back-reflection surface,or local variations of attenuation in the forging.Recheck any areas causing loss of back reflection.7.3Angle-Beam Examination—Rings and Hollow Forgings: 7.3.1Perform the examination from the circumference of rings and hollow forgings that have an axial length greater than 2in.[50mm]and an outside to inside diameter ratio of less than2.0to1.7.3.2Use a1MHz,45°angle-beam search unit unless thickness,OD/ID ratio,or other geometric configuration results in failure to achieve calibration.Other frequencies may be used if desirable for better resolution,penetrability,or detectability offlaws.For angle-beam inspection of hollow forgings up to 2.0to1ratio,provide the transducer with a wedge or shoe that will result in the beam mode and angle required by the size and shape of the cross section under examination.7.3.3Calibrate the instrument for the angle-beam examina-tion to obtain an indication amplitude of approximately75% full-screen height from a rectangular or a60°V-notch on inside diameter(ID)in the axial direction and parallel to the axis of the forging.A separate calibration standard may be used; however,it shall have the same nominal composition,heat treatment,and thickness as the forging it represents.The test surfacefinish on the calibration standard shall be comparable but no better than the item to be examined.Where a group of identical forgings is made,one of these forgings may be used as the separate calibration standard.Cut the ID notch depth to 3%maximum of the thickness or1⁄4in.[6mm],whichever is smaller,and its length approximately1in.[25mm].Thickness is defined as the thickness of the forging to be examined at the time of examination.At the same instrument setting,obtain a reflection from a similar OD notch.Draw a line through the peaks of thefirst reflections obtained from the ID and OD notches.This shall be the amplitude reference line.It is preferable to have the notches in excess metal or test metal when possible.When the OD notch cannot be detected when examining the OD surface,perform the examination when practicable(some ID’s may be too small to permit examina-tion),as indicated above from both the OD and ID surfaces. Utilize the ID notch when inspecting from the OD,and the OD notch when inspecting from the ID.Curve wedges or shoes may be used when necessary and practicable.7.3.4Perform the examination by scanning over the entire surface area circumferentially in both the clockwise and counter-clockwise directions from the OD surface.Examine forgings,which cannot be examined axially using a straight beam,in both axial directions with an angle-beam search unit. For axial scanning,use rectangular or60°V-notches on the ID and OD for the calibration.These notches shall be perpendicu-lar to the axis of the forging and the same dimensions as the axial notch.8.Recording8.1Straight-Beam Examination—Record the following in-dications as information for the purchaser.These recordable indications do not constitute a rejectable condition unless negotiated as such in the purchaseorder.8.1.1In the back-reflection technique,individual indications equal to or exceeding10%of the back reflection from an adjacent area free from indications;in the reference-block or DGS technique,indications equal to or exceeding100%of the reference amplitude.8.1.2An indication that is continuous on the same plane regardless of amplitude,and found over an area larger than twice the diameter of the search unit.The extent of such an indication shall be accurately measured along with variations in amplitudes of reflections.8.1.2.1Planar indications shall be considered continuous over a plane if they have a major axis greater than1in.[25 mm].In recording these indications corrections must be made for beam divergence at the estimatedflaw depth.8.1.3In the back-reflection technique,discontinuity indica-tions equal to or exceeding5%of the back reflection.In the reference-block technique,indications equal to or exceeding 50%of the reference amplitude providing that they travel,are continuous,or appear as clusters.8.1.3.1Traveling indications are herein defined as indica-tions whose leading edge moves a distance equivalent to1in. [25mm]or more of metal depth with movement of the search unit over the surface of the forging.8.1.3.2A cluster of indications is defined asfive or more indications located in a volume representing a2-in.[50-mm]or smaller cube in the forging.8.1.4Reduction in back reflection exceeding20%of the original measured in increments of10%.8.1.5Amplitudes of recordable indications in increments of 10%.8.2Angle-Beam Examination—Record discontinuity indi-cations equal to or exceeding50%of the indication from the reference line.When an amplitude reference line cannot be generated,record discontinuity indications equal to or exceed-ing50%of the reference notch.These recordable indications do not constitute a rejectable condition unless negotiated as such in the purchase order.9.Report9.1Report the following information:9.1.1All recordable indications(see Section8).9.1.2For the purpose of reporting the locations of record-able indications,a sketch shall be prepared showing the physical outline of the forging including dimensions of all areas not inspected due to geometric configuration,the pur-chaser’s drawing number,the purchaser’s order number,and the manufacturer’s serial number,and the axial,radial,and circumferential distribution of recordable ultrasonic indica-tions.9.1.3The specification to which the examination was per-formed as well as the frequency used,method of setting sensitivity,type of instrument,surfacefinish,couplant,and search unit employed.9.1.4The inspector’s signature and date examination per-formed.10.Quality Levels10.1This practice is intended for application to forgings, with a wide variety of sizes,shapes,compositions,melting processes,and applications.It is,therefore,impracticable to specify an ultrasonic quality level which would be universally applicable to such a diversity of products.Ultrasonic accep-tance or rejection criteria for individual forgings should be based on a realistic appraisal of service requirements and the quality that can normally be obtained in the production of the particular type forging.10.2Heavy austenitic stainless steel forgings are more difficult to penetrate ultrasonically than similar carbon or low-alloy steel forgings.The degree of attenuation normally increases with section size;and the noise level,generally or in isolated areas,may become too great to permit detection of discrete indications.In most instances,this attenuation results from inherent coarse grained microstructure of these austenitic alloys.For these reasons,the methods and standards employed for ultrasonically examining carbon and low-alloy steel forg-ings may not be applicable to heavy austenitic steel forgings.In general,only straight beam inspecting using a back-reflection reference standard is used.However,utilization of Practice A745/A745M for austenitic steel forgings can be considered ifflat bottom hole reference standards or angle beam exami-nation of these grades are required.10.3Acceptance quality levels shall be established between purchaser and manufacturer on the basis of one or more of the following criteria.10.3.1Straight-Beam Examination:10.3.1.1No indications larger than some percentage of the reference back reflection.10.3.1.2No indications equal to or larger than the indication received form theflat-bottom hole in a specific reference block or blocks.10.3.1.3No areas showing loss of back reflection larger than some percentage of the reference back reflection.10.3.1.4No indications per10.3.1.1or10.3.1.2coupled with some loss of resultant back reflection per10.3.1.3. 10.3.1.5No indications exceeding the reference level speci-fied in the DGS method10.3.2Angle-Beam Examination—No indications exceed-ing a stated percentage of the reflection from a reference notch or of the amplitude reference line.10.4Intelligent application of ultrasonic quality levels in-volves an understanding of the effects of many parameters on examination results.11.Keywords11.1angle beam examination;back-reflection;DGS;refer-ence–block;straight beam examination;ultrasonicSUPPLEMENTARY REQUIREMENTSThe following supplementary requirements shall apply only when specified by the purchaser in the inquiry,contract,or order.Details shall be agreed upon by the manufacturer and the purchaser.S1.Reporting CriteriaS1.1Reference block calibration shall be performed using at least three holes,spaced to approximate minimum,mean, and maximum thickness as tested,and shall be used to generate a distance amplitude correction(DAC)curve.The following hole sizes apply:1.1⁄16in.[1.5mm]flat bottom holes(FBH)for thicknesses lessthan1.5in.[40mm]2.1⁄8in.[3mm]FBH for thicknesses of1.5-6in.[40-150mm]inclusive3.1⁄4in.[6mm]FBH for thicknesses over6in.[150mm]S1.2Reporting criteria include:1.All indications exceeding the DAC curve2.Two or more indications separated by1⁄2in.[12mm]or lessAPPENDIXES(Nonmandatory Information)X1.TYPICAL TUNING LEVEL COMPENSATION FOR THE EFFECTS OF FORGING CURV ATURE X1.1The curve(Fig.X1.1)was determined for the follow-ing test conditions:Material nickel-molybdenum-vanadium alloy steel(Specification A469,Class4)Instrument Type UR ReflectoscopeSearch unit11⁄8-in.[30mm]diameter quartzFrequency21⁄4MHzReference block ASTM No.3-0600(aluminum)Reflection area of refer-ence curve 0.010in.2[6.5mm2]in nickel-molybdenum-vana-dium alloy steelSurfacefinish250µin.[6µm],max,roughnessX1.2To utilize curve,adjust reflectoscope sensitivity toobtain indicated ultrasonic response on ASTM No.3-0600reference block for each diameter as shown.A response of1in.[25mm]sweep-to-peak is used forflat e attenuatorto obtain desired amplitude,but do testing at1to1setting.X2.INDICATION AMPLITUDE COMPENSATION FOR TEST DISTANCE V ARIATIONS X2.1The curve(Fig.X2.1)has been determined for thefollowing test conditions:Material nickel-molybdenum-vanadium alloy steel(Specification A469,Class4)Instrument Type UR ReflectoscopeSearch unit11⁄8-in.[30mm]diameter quartzFrequency21⁄4MHzCouplant No.20oilReference block ASTM No.3-0600(aluminum)Reflection area of refer-ence curve 0.010in.2[65mm2]in nickel-molybdenum-vana-dium alloy steelSurfacefinish250µin.max,roughnessX2.2To utilize curve,establish amplitude from ASTM reference block to coincide with values from AppendixX1.FIG.X1.1Typical Compensation Curve for Effects of ForgingCurvatureX3.BACKGROUND INFORMATION ON THE DGS METHODSX3.1The DGS method was developed to determine flaw sizes by comparison to a back wall echo produced on the part to be ultrasonic tested.The derivation of DGS curves is extensively covered and can be found in standard texts on ultrasonic testing,and will not be covered here.The distance or thickness of the forging (A )to be tested,as noted on the overlay,must be accurately defined on the CRT screen.Theback reflection (B )of the part must be established and suitable gain added.Flaw echo indications that appear can be sized via the flaw size curves (C )on the overlay.Item (D )depicts the transducers that the overlay works in conjunction with and (E )depicts the series of curves that the overlay scales are matched to.PENSATION FOR CENTER HOLE ATTENUATION ON CYLINDRICAL BORED OR HOLLOW FORGINGSUTILIZING THE DGS METHODX4.1The hole in a cylindrical bored forging causes sound scatter.In these cases,a correction is required which depends on the wall thickness and bore diameter.X4.1.1Determine the correction value in dB from the Nomogram (Fig.X4.1).X4.1.2Proceed as described in 7.2.2.3.X4.1.3With the GAIN-dB control,reduce the flaw detector gain by the correction value determined as per the Nomogram (Fig.X4.2).Thus,the flaw detector gain is accuratelyadjusted.FIG.X2.1Typical Distance-Amplitude CorrectionCurveFIG.X4.1Example of DGSOverlaySUMMARY OF CHANGESCommittee A01has identified the location of the following changes since A 388/A 388M–01that may impact the use of this standard.(1)Revise Section7.1.7.N OTE —Metric units are presented in this figure to be consistent with DGS scales presently available.Conversion to English units would also be acceptable.FIG.X4.2The Influence of a Central Bore on the Backwall Echo Amplitude of Cylindrical or Plane ParallelForgingsASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed everyfive years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959, United States.Individual reprints(single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at610-832-9585(phone),610-832-9555(fax),or service@(e-mail);or through the ASTM website ().。
astma388 标准中文版
astma388 标准中文版一、astma388标准介绍astma388是美国材料和试验协会(ASTM)制定的一项标准,它包括了很多领域的测试方法和规范。
作为一项材料测试标准,astma388旨在确保各种材料在制造和使用过程中能够满足相应的技术要求,以保证产品的质量和安全性。
二、astma388标准的用途1. astma388标准被广泛应用于工业、建筑、航空航天、能源等领域,以进行各种材料的物理性能、化学性能、热处理性能等方面的测试和评估。
2. astma388标准也被广泛应用于科研机构、高校实验室等科学研究领域,用于对各种新材料的性能进行测试和分析,为新材料的开发和应用提供支持。
三、astma388标准的主要内容astma388标准主要包括以下方面的内容:1. 试样的制备:标准中对试样的制备方法进行了详细的规定,包括试样的尺寸、形状、加工工艺等方面的要求,以确保测试结果的准确性和可比性。
2. 物理性能测试:包括拉伸性能、弯曲性能、硬度、冲击性能等方面的测试方法,在标准中对相关测试装置、试验条件等都进行了规定,以确保测试结果的准确性和可重复性。
3. 化学性能测试:包括化学成分分析、腐蚀性能测试等方面的方法,对相关试剂、仪器设备的要求也在标准中进行了详细规定。
4. 热处理性能测试:包括金相组织观察、晶粒度测定、显微硬度测定等方法,对相关设备、试验条件等方面也进行了详细规定。
5. 样品标签和记录:对测试样品的标识、记录和报告的要求也在标准中进行了规定,以确保测试数据的可追溯性和可靠性。
四、astma388标准的意义1. astma388标准的制定和应用,能够确保各种材料的性能测试能够按照统一的标准进行,从而保证了测试结果的可比性和可重复性。
2. astma388标准的应用,能够为材料的生产、加工和使用提供科学依据,保证产品的质量和安全性,促进材料技术的发展和进步。
3. astma388标准的推广,能够促进国际间材料测试方法的统一,为国际贸易和合作提供了技术支持和保障。
最新ASTM中文版标准目录
ASTM A105/A105M-2011a中文版管道部件用碳钢锻件ASTM A123/A123M-2012中文版钢铁产品镀锌层(热浸镀)标准规范ASTM A148/A148M-2008中文版结构用高强度钢铸件标准ASTM A181/A181M-2012中文版一般管道用碳钢锻件标准规范ASTM A217/A217M-2011中文版高温承压件用马氏体不锈钢和合金钢铸件标准规范ASTM A240/A240M-2012中文版压力容器和一般用途用铬及铬-镍不锈钢钢板、薄板和钢带标准技术条件ASTM A312/A312M-2009中文版无缝和焊接的以及重度冷加工奥氏体不锈钢公称管标准技术条件ASTM A351/A351M-2012中文版承压件用奥氏体铸钢件标准规范ASTM A370-2012中文版钢制品力学性能试验的标准试验方法和定义ASTM A388/A388M-2011中文版大型钢锻件超声检验标准操作方法ASTM A473-2001(R2009)中文版不锈钢锻件标准ASTM A48/A48M-2003(R2012)中文版灰铸铁铸件标准规范ASTM A494/A494M-2009e1中文版镍和镍合金铸件ASTM A510/A510M-2011中文版碳素钢盘条、粗圆钢丝和合金钢的一般要求的标准规范ASTM A579/A579M-2004a(R2009)中文版超高强度合金钢锻件的标准规范ASTM A615/A615M-2012中文版混凝土配筋用变形及光面碳素钢棒材的标准规范ASTM A706/A706M-2009b中文版混凝土加固用低合金钢变形及光面钢筋规范ASTM A743/A743M-2006(R2010)中文版一般用途的铁-铬、铁-铬-镍耐蚀钢铸件标准ASTM A745/A745M-2012中文版奥氏体钢锻件超声波检验ASTM A781/A781M-2012b中文版一般工业用钢和合金铸件通用要求标准规范ASTM A82/A82M-2007中文版混凝土钢筋用普通钢丝的标准规范ASTM A820/A820M-2004中文版钢钎维混凝土用钢纤维ASTM B111/B111M-2011中文版铜和铜合金无缝冷凝器管子和压盖坯料ASTM B117-2011中文版盐雾试验仪的标准操作规程ASTM B456-2011e1中文版铜镍铬和镍铬电镀涂层的标准规范ASTM B564-2011中文版镍合金锻件标准规范ASTM B575-2010中文版低碳镍-铬-钼、低碳镍-铬-钼-铜、低碳镍-铬-钼-钽、低碳镍-铬-钼-钨和低碳镍-钼-铬的合金板材、薄板和带材的标准规范ASTM B841-1999(R2010)中文版锌镍合金沉积物电镀层的标准规范ASTM C825-2006(R2011)中文版预制混凝土删栏标准规范ASTM D1153-2006中文版甲基异丁基酮的标准规范ASTM D1193-2006(R2011)中文版试剂级纯水的标准规范ASTM D130-2010中文版石油产品铜片腐蚀标准试验方法ASTM D1319-2010中文版荧光指示剂吸附法测定液体石油产品中烃类标准方法ASTM D1321-2010中文版石油蜡针入度测定的标准方法ASTM D1364-2002(R2012)中文版挥发性溶剂中水分的试验方法(费歇尔试剂滴定法)ASTM D1401-2012中文版石油和合成液的水分离性测定的标准方法ASTM D1403-2010中文版全尺寸锥体的1/2或1/4比例锥体刺入润滑脂来测定稠度的标准方法ASTM D1465-2010中文版石油蜡粘点和结点标准试验方法ASTM D1533-2012中文版卡尔•费休电量滴定法测定绝缘液中水含量的标准方法ASTM D1603-2012中文版烯烃塑料中炭黑含量测定的标准方法ASTM D1796-2011中文版离心法测定燃油中水和沉淀物的标准方法ASTM D1840-2007中文版紫外分光光度法测定航空涡轮燃料中萘系烃含量的标准方法ASTM D217-2010中文版润滑脂锥入度测定的标准方法ASTM D2269-2010中文版紫外吸光度评定白油的标准方法ASTM D2270-2010e1中文版根据40℃和100℃下运动粘度计算粘度指数的标准规程ASTM D2272-2011中文版润滑油氧化安定性的测定——旋转氧弹法标准试验方法ASTM D2274-2010中文版馏分燃料油氧化安定性测定的标准方法(加速法)ASTM D240-2009中文版用弹式量热计测定液烃燃料燃烧热的试验方法ASTM D2425-2004(2009)中文版质谱法测量中间馏分烃类组成的标准方法ASTM D2638-2010中文版用氦气体密度仪测定煅烧石油焦真密度的标准方法ASTM D2887-2008中文版用气相色谱分析法测定石油馏分沸程分布的标准试验方法ASTM D2896-2011中文版用高氯酸电位滴定法测定石油产品碱值的试验方法ASTM D3237-2012中文版原子吸收光谱法测定汽油中铅含量的试验方法ASTM D3242-2011中文版航空涡轮燃料酸度标准试验方法ASTM D3329-2003(2009)中文版用气相色谱法测定甲基异丁基酮纯度的试验方法ASTM D3606-2010中文版气相色谱法测定车用汽油和航空汽油中苯和甲苯含量的标准方法ASTM D381-2012中文版喷射蒸汽法测定燃料胶质含量的标准方法ASTM D3829-2002(2007)中文版预测发动机油边界泵送温度的标准方法ASTM D4292-2010中文版煅烧石油焦振动松密度的标准测试方法ASTM D4422-2003(2008)中文版石油焦分析中灰分的测试标准方法ASTM D4530-2011中文版微量法测定残炭的标准方法ASTM D473-2007 中文版抽提法测定燃油和原油中沉淀物的标准方法ASTM D4815-2009中文版气相色谱法测定汽油中甲基叔丁基醚、乙基叔丁基醚、叔戊基甲基醚、二异丙基醚、叔戊醇及C1-C4醇类的标准方法ASTM D4931-2006(2011)中文版生石油焦中总水分的标准测试方法ASTM D4952-2012中文版定性分析燃料和溶剂中活性硫的标准试验方法(Doctor试验)ASTM D5116-2010中文版通过小型环境室测定室内材料/产品的有机排放物的标准指南ASTM D524-2010中文版石油产品兰氏法测定残炭标准方法ASTM D5293-2010e1中文版用冷起动模拟装置测量-5至-30℃发动机油表观粘度的标准方法ASTM D5709-2009中文版石油焦筛析的标准测试方法ASTM D5762-2012中文版石油和石油产品中氮含量的测定舟进样化学发光法ASTM D6376-2010中文版通过波长色散X射线荧光谱测定石油焦中痕量金属的试验方法ASTM D6584-2010ae1中文版气相色谱法测定B-100生物柴油脂肪酸甲酯中游离甘油和总甘油含量的试验方法ASTM D892-2011a中文版润滑油泡末特性标准试验方法ASTM D893-2012中文版用过的润滑油不溶物测定法ASTM E10-2012中文版金属材料布氏硬度的标准试验方法ASTM E1316-2011b中文版无损检测的标准术语ASTM E140-2007中文版金属的标准硬度转换表布氏硬度、维氏硬度、洛氏硬度、表面硬度、努氏硬度和肖氏硬度之间的关系ASTM E165/E165M-2012中文版通用工业液体渗透检验的标准操作方法ASTM E1742/E1742M-2011中文版射线照相检测标准规程ASTM E18-2011中文版金属材料洛氏硬度标准测试方法ASTM E190-1992(R2008)中文版焊缝塑性的导向弯曲试验的标准试验方法ASTM E290-2009中文版金属材料延性弯曲试验的标准试验方法ASTM E317-2011中文版不采用电子测量仪器评价脉冲回波式超声检测系统工作性能的方法ASTM E384-2011e1中文版材料的努氏和维氏硬度标准试验方法ASTM E4-2010中文版测试仪力验正标准规程ASTM E428-2008中文版超声检测用钢质参考试块的制作与质量控制方法ASTM E587-2010中文版接触式超声斜射检测方法ASTM E8/E8M-2011中文版金属材料拉伸试验方法ASTM F136-2012中文版外科植入用Ti-6Al-4V ELI(超低间隙)锻造合金标准(UNS R56401) ASTM F138-2008中文版外科植入物用锻造18铬-14镍-2.5 钼不锈钢棒材和线材标准(UNS S31673)ASTM F1472-2008e1中文版外科植入物用锻造Ti-6Al-4V钛合金标准ASTM F1537-2011中文版外科植入物用锻造Co-28Cr-6Mo合金标准(UNS R31537,UNS R31538和UNS R31539)ASTM F1580-2012中文版外科植入物涂层用钛和Ti-6AL-4V合金粉末标准ASTM F620-2011中文版外科植入物用α+β态钛合金锻件标准ASTM F648-2010a中文版外科植入物用超高分子量聚乙烯粉末和制成物的标准规范ASTM F75-2012中文版外科植入物用Co-28Cr-6Mo合金铸件和铸造合金标准(UNS R30075) ASTM F799-2011中文版外科植入物用Co-28Cr-6Mo合金锻件标准(UNS R31537,R31538,R31539)。
astm锻件超声波验收标准-概述说明以及解释
astm锻件超声波验收标准-概述说明以及解释1.引言1.1 概述在现代制造业中,质量控制是至关重要的一环。
而超声波验收技朮是一种非破坏性检测技朮,被广泛应用于工业生产中。
ASTM锻件超声波验收标准作为一项重要的标准,规范了在锻件制造过程中进行超声波验收的操作步骤和要求。
本文将重点介绍ASTM锻件超声波验收标准的相关内容,探讨超声波验收在工业生产中的重要性以及应用范围。
通过深入分析和探讨,旨在为读者提供对ASTM锻件超声波验收标准的全面了解,进一步推动该技朮的应用与发展。
1.2 文章结构本文主要分为三个部分,分别为引言、正文和结论。
在引言部分,我们将简要介绍ASTM锻件超声波验收标准的背景和意义,概述本文的结构,并阐明本文的研究目的。
正文部分将重点介绍ASTM锻件超声波验收标准的内容和要求,探讨超声波验收在锻件制造领域的重要性和应用范围,并分析其在提高锻件质量和工艺控制方面的作用。
结论部分将对本文的主要观点进行总结,展望ASTM锻件超声波验收标准在未来的发展前景,以及对读者提出对超声波验收技术的进一步思考和探讨。
通过以上分析,本文将全面探讨ASTM锻件超声波验收标准的相关内容,为读者提供深入了解和应用该标准的指导和参考。
1.3 目的:本文旨在介绍ASTM锻件超声波验收标准的相关知识,探讨超声波验收在锻件行业中的重要性以及应用范围。
通过对ASTM锻件超声波验收标准的介绍和分析,希望读者能够更深入地了解超声波验收技术在锻件生产过程中的作用,从而提高产品质量,确保生产安全,促进行业发展。
同时,也为未来锻件超声波验收技术的研究和应用提供一定参考和借鉴。
2.正文2.1 ASTM锻件超声波验收标准介绍在工业制造领域,ASTM(美国材料与试验协会)锻件超声波验收标准是一项重要的质量控制方法。
这项标准旨在通过使用超声波技术来检查锻件的内部缺陷,以确保其质量符合规定的标准。
ASTM锻件超声波验收标准主要包括两个方面:一是规定超声波检测设备的性能要求和使用方法,二是明确了不同类型的锻件应采取何种超声波检测方法来进行验收。
ASTM A388(2005中文版) 大型钢锻件超声检测标准操作方法
ASTM A 388-05大型钢锻件超声检测标准操作方法1 适用范围1.1 本操作方法包括用直射波和斜射波技术对大型钢锻件作接触式脉冲回波式超声波检测规程。
直声波法包括DGS(距离-增益-当量)法。
见附录X31.2 凡因询价,合同,订货或技术条件的规定要求按照ASTM A388/A388M 进行超声检测时,均用采用本操作方法。
1.3 以英制或SI 制单位表示的数值均为标准数值,两种单位表示的数值不准确相等,因此每种单位必须单独使用。
两种单位组合使用产生的结果可能和本方法不一致。
1.4 本方法和材料规范均用英制和SI 制表示。
但除了订货规范采用规范符号M(SI)外,应使用英制加工材料。
1.5 本标准不是关于与使用有关的安全问题,使用本标准的用户有责任在使用前建立适当的安全健康操作方法并确定这种方法的可行性。
2.引用文件2.1ASTM 标准A469/A 469M 发电机用钢锻件真空熔炼技术规范A745/A745M 奥氏体钢锻件的超声检测操作方法E317 无电子测量设备的脉冲回波式超声检测系统性能评定操作方法。
E428 超声检测用参考试块的制作和质量控制操作方法。
E 1065 超声检测探头的性能评定指南。
2.2 ANSI 标准(美国国家标准)B 46.1 表面结构2.3 其它文件推荐的无损检测人员资格鉴定和认证的操作方法SNT-TC-1A(1988 版或其后的)3.术语单个指示—指当探头沿任何方向移动时波幅从最高点下降至一定波高的一个指示,由于太小被认为非平面型指示或游动指示。
密集型指示—指在锻件边长2in(50mm)的立方体内或更小体积内有五个或更多的指示平面型指示—指指示的最大长度大于1in[25mm]或大于探头主要尺寸两倍的指示,但无论哪种都不是游动的指示。
游动指示—指探头在锻件表面移动时波的前沿在工件深度方向上移动1in[25mm]或更多距离的指示。
4.订货信息4.1 当本方法用于询价签合同,订货时,订货单位应当声明,并提供如下信息:4.1.1 标准数据(包括日期)4.1.2 按照8.2.2 和8.3.3 确定探伤灵敏度的方法。
ASTM A 标准目录(中英文)
标准号中文名称英文名称A1-00 碳素钢丁字轨Standard Specification for Carbon Steel Tee RailsA2-02 普通型,带槽和防护型碳素工字钢轨Standard Specification for Carbon Steel Girder Rails of Plain, Grooved, and Guard TypesA3-01 低、中、高碳素钢鱼尾(连接)板Standard Specification for Steel Joint Bars, Low, Medium, and High Carbon (Non-Heat-Treated)A6/A6M-04a 轧制结构钢板材、型材和薄板桩通用技术要求Standard Specification for General Requirementsfor Rolled Structural Steel Bars, Plates,Shapes, and Sheet PilingA20/A20M-04a 压力容器用钢板材通用要求Standard Specification for General Requirements for Steel Plates for Pressure VesselsA27/A27M-03 通用碳素钢铸件Standard Specification for Steel Castings, Carbon, for General ApplicationA29/A29M-04 热锻及冷加工碳素钢和合金钢棒Standard Specification for Steel Bars, Carbon and Alloy, Hot-Wrought, General Requirements forA31-04 钢铆钉及铆钉和压力容器用棒材Standard Specification for Steel Rivets and Bars for Rivets, Pressure VesselsA34/A34M-01 磁性材料的抽样和采购试验的标准惯例Standard Practice for Sampling and ProcurementTesting of Magnetic MaterialsA36/A36M-04 碳素结构钢技术规范Standard Specification for Carbon Structural SteelA47/A47M-99 铁素体可锻铁铸件Standard Specification for Ferritic Malleable Iron CastingsA48/A48M-03 灰铁铸件Standard Specification for Gray Iron CastingsA49-01 经热处理的碳素钢鱼尾(连接)板,微合金鱼尾板及锻制碳素钢异型鱼尾板Standard Specification for Heat-Treated CarbonSteel Joint Bars, Microalloyed Joint Bars, andForged Carbon Steel Compromise Joint BarsA53/A53M-04 无镀层热浸的、镀锌的、焊接的及无缝钢管的技术规范Standard Specification for Pipe, Steel, Blackand Hot-Dipped, Zinc-Coated, Welded andSeamlessA65-01 钢轨道钉Standard Specification for Steel Track Spikes A66-01 钢质螺旋道钉Standard Specification for Steel Screw SpikesA67-00 热加工低碳钢和高碳钢垫板技术规范Standard Specification for Steel Tie Plates, Low-Carbon and High-Carbon Hot-WorkedA74-04 铸铁污水管及配件的技术规范Standard Specification for Cast Iron Soil Pipe and FittingsA82-02 钢筋混凝土用无节钢丝Standard Specification for Steel Wire, Plain, for Concrete ReinforcementA90/A90M-01 镀锌和镀锌合金钢铁制品镀层重量的试验方法Standard Test Method for Weight [Mass] ofCoating on Iron and Steel Articles with Zinc orZinc-Alloy CoatingsA99-03 锰铁合金Standard Specification for FerromanganeseA100-04 硅铁Standard Specification for Ferrosilicon A101-04 铬铁Standard Specification for Ferrochromium A102-04 钒铁合金Standard Specification for FerrovanadiumA105/A105M-03 管系部件用碳素钢锻件Standard Specification for Carbon Steel Forgings for Piping ApplicationsA106/A106M-04a 高温用无缝碳素钢管Standard Specification for Seamless Carbon Steel Pipe for High-Temperature ServiceA108-03 优质冷加工碳素钢棒材技术规范Standard Specification for Steel Bar, Carbon and Alloy, Cold-FinishedA109/A109M-03 冷轧碳素钢带技术规范Standard Specification for Steel, Strip, Carbon (0.25 Maximum Percent), Cold-RolledA111-99a(2004)e1 电话和电报线路用镀锌"铁"丝规格Standard Specification for Zinc-Coated (Galvanized) Iron Telephone and Telegraph Line WireA116-00 镀锌钢丝编织栏栅网Standard Specification for Metallic-Coated, Steel Woven Wire Fence FabricA121-99(2004) 镀锌刺钢丝Standard Specification for Mettalic-Coated Carbon Steel Barbed WireA123/A123M-02 钢铁产品的锌镀层(热浸镀锌)技术规范Standard Specification for Zinc (Hot-DipGalvanized) Coatings on Iron and Steel ProductsA125-96(2001) 热处理螺旋形钢弹簧Standard Specification for Steel Springs, Helical, Heat-TreatedA126-04 阀门、法兰和管配件用灰铁铸件Standard Specification for Gray Iron Castings for Valves, Flanges, and Pipe FittingsA128/A128M-93(2003) 钢铸件,奥氏体锰Standard Specification for Steel Castings, Austenitic ManganeseA131/A131M-04 海船用结构钢Standard Specification for Structural Steel for ShipsA132-04 钼铁合金Standard Specification for FerromolybdenumA134-96(200 1) 电熔(电弧)焊钢管(NPS为16英寸和16英寸以上)Standard Specification for Pipe, Steel,Electric-Fusion (Arc)-Welded (Sizes NPS 16 andOver)A135-01 电阻焊钢管Standard Specification for Electric-Resistance-Welded Steel PipeA139/A139M-04 电熔(电弧)焊钢管(4英寸以上的) Standard Specification for Electric-Fusion (Arc)-Welded Steel Pipe (NPS 4 and Over)A143/A143M-03 热浸镀锌结构钢制品防脆裂措施和探测脆裂的程序Standard Practice for Safeguarding AgainstEmbrittlement of Hot-Dip Galvanized StructuralSteel Products and Procedure for DetectingEmbrittlementA144-02 铁钨合金规范Specification for FerrotungstenA146-04 氧化钼制品Standard Specification for Molybdenum Oxide ProductsA148/A148M-03 结构用高强度钢铸件Standard Specification for Steel Castings, High Strength, for Structural PurposesA153/A153M-04 钢铁制金属构件上镀锌层(热浸) Standard Specification for Zinc Coating (Hot-Dip) on Iron and Steel HardwareA159-83(2001) 汽车用灰铁铸件Standard Specification for Automotive Gray Iron CastingsA167-99 不锈钢和耐热铬镍钢板、薄板及带材Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and StripA176-99 不锈钢和耐热铬钢板、薄板及带材Standard Specification for Stainless and Heat-Resisting Chromium Steel Plate, Sheet, and StripA178/A178M-02 电阻焊接碳素钢钢管及碳锰钢锅炉和过热器管的技术规范Standard Specification forElectric-Resistance-Welded Carbon Steel andCarbon-Manganese Steel Boiler and SuperheaterTubesA179/A179M-90a(2001) 热交换器和冷凝器用无缝冷拉低碳钢管Standard Specification for Seamless Cold-DrawnLow-Carbon Steel Heat-Exchanger and CondenserTubesA181/A181M-01 普通锻制碳素钢管的规格Standard Specification for Carbon Steel Forgings, for General-Purpose PipingA182/A182M-02 高温设备用锻制或轧制的合金钢管法兰、锻制管件、阀门及零件Standard Specification for Forged or RolledAlloy-Steel Pipe Flanges, Forged Fittings, andValves and Parts for High-Temperature ServiceA183-03 钢轨用碳素钢螺栓和螺母Standard Specification for Carbon Steel Track Bolts and NutsA184/A184M-01 混凝土加筋用变形钢筋编织网Standard Specification for Fabricated Deformed Steel Bar Mats for Concrete ReinforcementA185-02 钢筋混凝土用焊接钢丝结构Standard Specification for Steel Welded Wire Reinforcement, Plain, for ConcreteA192/A192M-02 高压用无缝碳素钢锅炉管Standard Specification for Seamless Carbon Steel Boiler Tubes for High-Pressure ServiceA193/A193M-04b 高温设备用合金钢和不锈钢螺栓材料Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature ServiceA194/A194M-04a 高温和高压设备用碳素钢与合金钢螺栓和螺母的规格Standard Specification for Carbon and AlloySteel Nuts for Bolts for High Pressure or HighTemperature Service, or BothA197/A197M-00 化铁炉用可锻铸铁Standard Specification for Cupola Malleable IronA202/A202M-03 压力容器用铬锰硅合金钢板Standard Specification for Pressure Vessel Plates, Alloy Steel, Chromium-Manganese-SiliconA203/A203M-压力容器用镍合金钢板Standard Specification for Pressure Vessel97(2003) Plates, Alloy Steel, NickelA204/A204M-03 压力容器用钼合金钢板Standard Specification for Pressure Vessel Plates, Alloy Steel, MolybdenumA209/A209M-03 锅炉和过热器用无缝碳钼合金钢管Standard Specification for Seamless Carbon-Molybdenum Alloy-Steel Boiler and Superheater TubesA210/A210M-02 锅炉和过热器用无缝中碳素管Standard Specification for Seamless Medium-Carbon Steel Boiler and Superheater TubesA213/A213M-04 无缝铁素体和奥氏体合金钢锅炉、过热器和换热器管Standard Specification for Seamless Ferriticand Austenitic Alloy-Steel Boiler, Superheater,and Heat-Exchanger TubesA214/A214M-96(2001) 热交换器与冷凝器用电阻焊接碳素钢管Standard Specification forElectric-Resistance-Welded Carbon SteelHeat-Exchanger and Condenser TubesA216/A216M-93(2003) 高温下使用的适合于熔焊的碳素钢铸件规格Standard Specification for Steel Castings,Carbon, Suitable for Fusion Welding, for High-Temperature ServiceA217/A217M-02 适合高温受压零件用合金钢和马氏体不锈钢铸件Standard Specification for Steel Castings,Martensitic Stainless and Alloy, forPressure-Containing Parts, Suitable forHigh-Temperature ServiceA220/A220M-99 珠光体可锻铁Standard Specification for Pearlitic Malleable IronA225/A225M-03 压力容器用锰矾镍合金钢板Standard Specification for Pressure Vessel Plates, Alloy Steel, Manganese-Vanadium-NickelA227/A227M-99 机械弹簧用冷拉钢丝Standard Specification for Steel Wire, Cold-Drawn for Mechanical SpringsA228/A228M-02 乐器用优质弹簧钢丝Standard Specification for Steel Wire, Music Spring QualityA229/A229M-99 机械弹簧用油回火的钢丝Standard Specification for Steel Wire, Oil-Tempered for Mechanical SpringsA230/A230M-99 阀门用油回火优质碳素钢弹簧丝Standard Specification for Steel Wire, Oil-Tempered Carbon Valve Spring QualityA231/A231M-96(2002) 铬钒合金钢弹簧丝Standard Specification for Chromium-Vanadium Alloy Steel Spring WireA232/A232M-99 阀门用优质铬钒合金钢弹簧丝Standard Specification for Chromium-Vanadium Alloy Steel Valve Spring Quality WireA234/A234M-04 中温与高温下使用的锻制碳素钢及合金钢管配件Standard Specification for Piping Fittings ofWrought Carbon Steel and Alloy Steel forModerate and High Temperature ServiceA239-95(200 4) 用普力斯试验法(硫酸铜浸蚀)确定铁或钢制品上镀锌层最薄点的测试方法Standard Practice for Locating the Thinnest Spotin a Zinc (Galvanized) Coating on Iron or SteelArticlesA240/A240M-04ae1 压力容器用耐热铬及铬镍不锈钢板、薄板及带材Chromium-Nickel Stainless Steel Plate, Sheet,and Strip for Pressure Vessels and for GeneralApplicationsA242/A242M-04 高强度低合金结构钢Standard Specification for High-Strength Low-Alloy Structural SteelA247-67(1998) 铁铸件中石墨显微结构评定试验方法Standard Test Method for Evaluating the Microstructure of Graphite in Iron CastingsA249/A249M-04 锅炉、过热器、换热器和冷凝器用焊接奥氏体钢管Standard Specification for Welded AusteniticSteel Boiler, Superheater, Heat-Exchanger, andCondenser TubesA250/A250M-04 锅炉和过热器用电阻焊铁素体合金钢管Standard Specification forElectric-Resistance-Welded FerriticAlloy-Steel Boiler and Superheater TubesA252-98(2002) 焊接钢和无缝钢管桩Standard Specification for Welded and Seamless Steel Pipe PilesA254-97(2002) 铜焊钢管规格Standard Specification for Copper-Brazed Steel TubingA255-02 测定钢淬透性用末端淬火试验的标准试验方法Standard Test Method for DeterminingHardenability of SteelA262-03 奥氏体不锈钢晶间浸蚀敏感性的检测Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless SteelsA263-03 耐腐蚀铬钢包覆板材,薄板材及带材技术规范Standard Specification for Stainless ChromiumSteel-Clad PlateA264-03 包覆的不锈铬镍钢板,薄板及带材规格Specification for Stainless Chromium-NickelSteel-Clad PlateA265-03 镍和镍基合金包覆钢板规格Standard Specification for Nickel and Nickel-Base Alloy-Clad Steel PlateA266/A266M-03a 压力容器部件用碳素钢锻件规格Standard Specification for Carbon Steel Forgings for Pressure Vessel ComponentsA268/A268M-04 一般设备用无缝和焊接铁素体与马氏体不锈钢管Standard Specification for Seamless and WeldedFerritic and Martensitic Stainless Steel Tubingfor General ServiceA269-04 一般设备用无缝和焊接奥氏体不锈钢管Standard Specification for Seamless and WeldedAustenitic Stainless Steel Tubing for GeneralServiceA270-03a 卫生设施用无缝钢和焊接奥氏体不锈钢管Standard Specification for Seamless and WeldedAustenitic Stainless Steel Sanitary TubingA275/A275M-98(2003) 钢锻件的磁粉检查试验方法Standard Test Method for Magnetic Particle Examination of Steel ForgingsA276-04 不锈钢棒材和型材Standard Specification for Stainless Steel Bars and ShapesA278/A278M-01 适用于650F容压部件用灰铸铁件的技术规范for Pressure-Containing Parts for TemperaturesUp to 650°F (350°C)A283/A283M-03 低和中等抗拉强度碳素钢板Standard Specification for Low and Intermediate Tensile Strength Carbon Steel PlatesA285/A285M-03 压力容器用低和中等抗拉强度的碳素钢板Standard Specification for Pressure VesselPlates, Carbon Steel, Low- andIntermediate-Tensile StrengthA288-91(200 3) 涡轮发电机磁性定位环用碳素钢和合金钢锻件Standard Specification for Carbon and AlloySteel Forgings for Magnetic Retaining Rings forTurbine GeneratorsA289/A289M-97(2003) 发电机非磁性定位环用合金钢锻件的技术规范Standard Specification for Alloy Steel Forgingsfor Nonmagnetic Retaining Rings for GeneratorsA290-02 减速器环用碳素钢和合金钢锻件Standard Specification for Carbon and Alloy Steel Forgings for Rings for Reduction GearsA291-03 减速器小齿轮、齿轮和心轴用碳素钢和合金钢锻件Standard Specification for Steel Forgings,Carbon and Alloy, for Pinions, Gears and Shaftsfor Reduction GearsA295-98 高碳耐磨轴承钢技术规范Standard Specification for High-Carbon Anti-Friction Bearing SteelA297/A297M-97(2003) 一般用耐热铬铁与镍铬铁合金钢铸件规格Standard Specification for Steel Castings,Iron-Chromium and Iron-Chromium-Nickel, HeatResistant, for General ApplicationA299/A299M-04 压力容器用锰硅碳钢板Standard Specification for Pressure Vessel Plates, Carbon Steel, Manganese-SiliconA302/A302M-03 压力容器用锰钼和锰钼镍合金钢板Standard Specification for Pressure Vessel Plates, Alloy Steel, Manganese-Molybdenum and Manganese-Molybdenum-NickelA304-04 有末端淬火淬透性要求的合金钢棒材的技术规范Standard Specification for Carbon and AlloySteel Bars Subject to End-Quench HardenabilityRequirementsA307-04 抗拉强度为60000psi的碳素钢螺栓和螺柱的技术规范Standard Specification for Carbon Steel Boltsand Studs, 60 000 PSI Tensile StrengthA308/A308M-03 经热浸处理镀有铅锡合金的薄板材的技术规范Standard Specification for Steel Sheet, Terne(Lead-Tin Alloy) Coated by the Hot-Dip ProcessA309-01 用三点试验法测定长镀锌薄钢板镀层的重量成分的试验方法Standard Test Method for Weight and Compositionof Coating on Terne Sheet by the Triple-Spot TestA311/A311M-04 有机械性能要求的消除应力的冷拉碳素钢棒Standard Specification for Cold-Drawn,Stress-Relieved Carbon Steel Bars Subject toMechanical Property RequirementsA312/A312M-04a 无缝和焊接奥氏体不锈钢管Standard Specification for Seamless, Welded, and Heavily Cold Worked Austenitic Stainless Steel PipesA313/A313M-不锈钢弹簧丝技术规范Standard Specification for Stainless Steel03 Spring WireA314-97(2002) 锻造用不锈及耐热钢坯及钢棒规格Standard Specification for Stainless Steel Billets and Bars for ForgingA319-71(2001) 高温无压部件用灰铁铸件Standard Specification for Gray Iron Castings for Elevated Temperatures for Non-Pressure Containing PartsA320/A320M-04 低温用合金钢螺栓材料规格Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for Low-Temperature ServiceA321-90(2001) 经淬火和回火的碳素钢棒Standard Specification for Steel Bars, Carbon, Quenched and TemperedA322-91(2001)e1 合金钢棒材.级别Standard Specification for Steel Bars, Alloy, Standard GradesA323-93(2000) 硼铁规格Standard Specification for FerroboronA324-73(2000) 钛铁合金Standard Specification for FerrotitaniumA325-04a 经热处理最小抗拉强度为120/105ksi的热处理钢结构螺栓Standard Specification for Structural Bolts,Steel, Heat Treated, 120/105 ksi Minimum TensileStrengthA325M-04a 经热处理最小抗拉强度为830Mpa的热处理钢结构螺栓Standard Specification for Structural Bolts,Steel, Heat Treated 830 Mpa Minimum TensileStrength [Metric]A327-91(1997) 铸铁冲击试验方法Standard Test Methods for Impact Testing of Cast IronsA327M-91(1997) 铸铁冲击试验方法(米制) Standard Test Methods for Impact Testing of Cast Irons (Metric)A328/A328M-03 薄钢板桩Standard Specification for Steel Sheet PilingA333/A333M-04a 低温用无缝与焊接钢管规格Standard Specification for Seamless and Welded Steel Pipe for Low-Temperature ServiceA334/A334M-04a 低温设备用无缝与焊接碳素和合金钢管Standard Specification for Seamless and WeldedCarbon and Alloy-Steel Tubes forLow-Temperature ServiceA335/A335M-03 高温用无缝铁素体合金钢管Standard Specification for Seamless Ferritic Alloy-Steel Pipe for High-Temperature ServiceA336/A336M-03a 压力与高温部件用合金钢锻件规格Standard Specification for Alloy Steel Forgings for Pressure and High-Temperature PartsA338-84(200 4) 铁路,船舶和其他重型装备在温度达到650华氏度(345摄氏度)时使用的可锻铸铁法兰,管件和阀门零件Standard Specification for Malleable IronFlanges, Pipe Fittings, and Valve Parts forRailroad, Marine, and Other Heavy Duty Serviceat Temperatures Up to 650°F (345°C)A340-03a 有关磁性试验用符号和定义的术语Standard Terminology of Symbols and Definitions Relating to Magnetic TestingA341/A341M-00 用直流磁导计和冲击试验法测定材料的直流磁性能的试验方法Standard Test Method for Direct Current MagneticProperties of Materials Using D-C Permeametersand the Ballistic Test MethodsA342/A342M-99 磁铁材料导磁率的试验方法Standard Test Methods for Permeability of Feebly Magnetic MaterialsA343/A343M-03 在电力频率下用瓦特计-安培计-伏特计法(100-1000赫兹)和25 厘米艾普斯亭(EPSTEIN) 机架测定材料的交流电磁性能的试验方法Standard Test Method for Alternating-CurrentMagnetic Properties of Materials at PowerFrequencies Using Wattmeter-Ammeter-VoltmeterMethod and 25-cm Epstein Test FrameA345-98 磁设备用平轧电炉钢Standard Specification for Flat-Rolled Electrical Steels for Magnetic ApplicationsA348/A348M-00 用瓦特计--安培计--伏特计法(100-10000赫兹)和25厘米艾普斯亭框测定材料的交流磁性能的试验方法Standard Test Method for Alternating CurrentMagnetic Properties of Materials Using theWattmeter-Ammeter-Voltmeter Method, 100 to 10000 Hz and 25-cm Epstein FrameA350/A350M-04 要求进行缺口韧性试验的管道部件用碳素钢与低合金钢锻件技术规范Standard Specification for Carbon and Low-AlloySteel Forgings, Requiring Notch ToughnessTesting for Piping ComponentsA351/A351M-03 容压零件用奥氏体及奥氏体铁素体铸铁的技术规范Standard Specification for Castings,Austenitic, Austenitic-Ferritic (Duplex), forPressure-Containing PartsA352/A352M-03 低温受压零件用铁素体和马氏体钢铸件规格Standard Specification for Steel Castings,Ferritic and Martensitic, forPressure-Containing Parts, Suitable forLow-Temperature ServiceA353/A353M-93(1999) 压力容器用经二次正火及回火处理的含9%镍的合金钢板Standard Specification for Pressure VesselPlates, Alloy Steel, 9 Percent Nickel,Double-Normalized and TemperedA354-04 淬火与回火合金钢螺栓,双头螺栓及其他外螺纹紧固件规格Standard Specification for Quenched andTempered Alloy Steel Bolts, Studs, and OtherExternally Threaded FastenersA355-89(2000) 渗氮用合金钢棒Standard Specification for Steel Bars, Alloys, for NitridingA356/A356M-98(2003) 蒸汽轮机用厚壁碳素钢、低合金钢和不锈钢铸件Standard Specification for Steel Castings,Carbon, Low Alloy, and Stainless Steel,Heavy-Walled for Steam TurbinesA358/A358M-04 高温用电熔焊奥氏体铬镍合金钢管Standard Specification for Electric-Fusion-Welded Austenitic Chromium-Nickel Stainless Steel Pipe for High-Temperature Service and General ApplicationsA363-03 地面架空线用镀锌钢丝绳Standard Specification for Zinc-Coated (Galvanized) Steel Overhead Ground Wire StrandA367-60(199铸铁的激冷试验方法Standard Test Methods of Chill Testing of Cast9) IronA368-95a(2000) 不锈钢和耐热钢丝绳的标准Standard Specification for Stainless Steel Wire StrandA369/A369M-02 高温用锻制和镗孔碳素钢管和铁素体合金钢管Standard Specification for Carbon and FerriticAlloy Steel Forged and Bored Pipe forHigh-Temperature ServiceA370-03a 钢制品机械测试的标准试验方法和定义Standard Test Methods and Definitions forMechanical Testing of Steel ProductsA372/A372M-03 薄壁压力容器用碳素钢及合金钢锻件Standard Specification for Carbon and Alloy Steel Forgings for Thin-Walled Pressure VesselsA376/A376M-02a 高温中心站用无缝奥氏钢管Standard Specification for Seamless Austenitic Steel Pipe for High-Temperature Central-Station ServiceA377-03 球墨铸铁压力管规范索引Standard Index of Specifications for Ductile-Iron Pressure PipeA380-99e1 不锈钢零件、设备和系统的清洗和除垢Standard Practice for Cleaning, Descaling, andPassivation of Stainless Steel Parts,Equipment, and SystemsA381-96(2001) 高压输送用金属弧焊钢管Standard Specification for Metal-Arc-Welded Steel Pipe for Use With High-Pressure Transmission SystemsA384/A384M-02 防止钢组件热浸镀锌时翘曲和扭曲用安全保护Standard Practice for Safeguarding AgainstWarpage and Distortion During Hot-DipGalvanizing of Steel AssembliesA385-03 提供高质量镀锌覆层(热浸) Standard Practice for Providing High-Quality Zinc Coatings (Hot-Dip)A387/A387M-03 压力容器用铬钼合金钢板Standard Specification for Pressure Vessel Plates, Alloy Steel, Chromium-MolybdenumA388/A388M-03 重型钢锻件超声波检测Standard Practice for Ultrasonic Examination of Heavy Steel ForgingsA389/A389M-03 适合高温受压部件用经特殊热处理的合金钢铸件规格Standard Specification for Steel Castings,Alloy, Specially Heat-Treated, forPressure-Containing Parts, Suitable forHigh-Temperature ServiceA390-95(200 1) 饲养家禽用镀锌钢丝栏栅网(六角形和直线形)Standard Specification for Zinc-Coated(Galvanized) Steel Poultry Fence Fabric(Hexagonal and Straight Line)A391/A391M-01 80号合金钢链条Standard Specification for Grade 80 Alloy Steel ChainA392-03 镀锌钢丝链环栏栅网Standard Specification for Zinc-Coated Steel Chain-Link Fence FabricA394-04 传动塔架用镀锌和裸露钢螺栓Standard Specification for Steel Transmission Tower Bolts, Zinc-Coated and BareA395/A395M-99e1 高温用铁素体球墨铸铁受压铸件Standard Specification for Ferritic Ductile Iron Pressure-Retaining Castings for Use at Elevated TemperaturesA400-69(2000) 钢棒的成分及机械性能选择指南Standard Practice for Steel Bars, Selection Guide, Composition, and Mechanical PropertiesA401/A401M-03 铬硅合金钢丝Standard Specification for Steel Wire, Chromium-Silicon AlloyA403/A403M-04 锻制奥氏体不锈钢管配件Standard Specification for Wrought Austenitic Stainless Steel Piping FittingsA407-93(2004) 盘簧用冷拉钢丝Standard Specification for Steel Wire, Cold-Drawn, for Coiled-Type SpringsA409/A409M-01 腐蚀场所或高温下使用的焊接大口径奥氏体钢管Standard Specification for Welded LargeDiameter Austenitic Steel Pipe for Corrosive orHigh-Temperature ServiceA411-03 镀锌低碳钢铠装线Standard Specification for Zinc-Coated (Galvanized) Low-Carbon Steel Armor WireA413/A413M-01 碳素钢链Standard Specification for Carbon Steel ChainA414/A414M-04 压力容器用碳素薄钢板Standard Specification for Steel, Sheet, Carbon, for Pressure VesselsA416/A416M-02 预应力混凝土用无涂层七股钢铰线Standard Specification for Steel Strand, Uncoated Seven-Wire for Prestressed ConcreteA417-93(200 4) 之字形、方形、正弦形家具用弹簧元件用冷拔钢丝Standard Specification for Steel Wire,Cold-Drawn, for Zig-Zag, Square-Formed, andSinuous-Type Upholstery Spring UnitsA418-99(200 3) 涡轮机及发电机钢转子锻件的超声波检查方法Standard Test Method for Ultrasonic Examinationof Turbine and Generator Steel Rotor ForgingsA420/A420M-04 低温下用锻制碳素钢和合金钢管配件Standard Specification for Piping Fittings of Wrought Carbon Steel and Alloy Steel for Low-Temperature ServiceA421/A421M-02 预应力混凝土用无涂层消除应力钢丝的技术规范Standard Specification for UncoatedStress-Relieved Steel Wire for PrestressedConcreteA423/A423M-95(2000) 无缝和电焊低合金钢管Standard Specification for Seamless and Electric-Welded Low-Alloy Steel TubesA424-00 搪瓷用钢薄板Standard Specification for Steel, Sheet, for Porcelain EnamelingA426/A426M-02 高温用离心铸造的铁素体合金钢管Standard Specification for Centrifugally Cast Ferritic Alloy Steel Pipe for High-Temperature ServiceA427-02 冷轧和热轧用锻制合金钢辊Standard Specification for Wrought Alloy Steel Rolls for Cold and Hot ReductionA428/A428M-01 钢铁制品上铝覆层重量的测试方法Standard Test Method for Weight [Mass] of Coating on Aluminum-Coated Iron or SteelArticlesA434-04 热轧与冷精轧经回火及淬火的合金钢棒Standard Specification for Steel Bars, Alloy,Hot-Wrought or Cold-Finished, Quenched andTemperedA435/A435M-90(2001) 钢板的直射束纵向超声波检验Standard Specification for Straight-Beam Ultrasonic Examination of Steel PlatesA436-84(2001) 奥氏体灰口铁铸件Standard Specification for Austenitic Gray Iron CastingsA437/A437M-01a 高温用经特殊处理的涡轮型合金钢螺栓材料Standard Specification for Alloy-SteelTurbine-Type Bolting Material Specially HeatTreated for High-Temperature ServiceA439-83(1999) 奥氏体可锻铸铁铸件Standard Specification for Austenitic Ductile Iron CastingsA447/A447M-93(2003) 高温用镍铬铁合金钢铸件(25-12级) Standard Specification for Steel Castings, Chromium-Nickel-Iron Alloy (25-12 Class), for High-Temperature ServiceA449-04a 经淬火和回火的钢螺栓和螺柱Standard Specification for Quenched and Tempered Steel Bolts and StudsA450/A450M-04 碳素钢管、铁素体合金钢管及奥氏体合金钢管Standard Specification for General Requirementsfor Carbon, Ferritic Alloy, and Austenitic AlloySteel TubesA451/A451M-02 高温用离心铸造的奥氏体钢管Standard Specification for Centrifugally Cast Austenitic Steel Pipe for High-Temperature ServiceA453/A453M-03 具有同奥氏体钢相类似的膨胀系数、屈服强度为50-120Ksi(345-827MPa)的耐高温螺栓材料Standard Specification for High-TemperatureBolting Materials, with Expansion CoefficientsComparable to Austenitic Stainless SteelsA455/A455M-03 压力容器用高强度碳锰钢板Standard Specification for Pressure Vessel Plates, Carbon Steel, High-Strength ManganeseA456/A456M-99(2003) 大型曲轴锻件的磁粉检查Standard Specification for Magnetic Particle Examination of Large Crankshaft ForgingsA459-97(2003) 镀锌平轧扁钢铠装带Standard Specification for Zinc-Coated Flat Steel Armoring TapeA460-94(2004)e1 包铜钢丝绳标准Standard Specification for Copper-Clad Steel Wire StrandA463/A463M-02a 热浸镀铝薄钢板Standard Specification for Steel Sheet, Aluminum-Coated, by the Hot-Dip ProcessA466/A466M-01 非焊接碳素钢链Standard Specification for Weldless ChainA467/A467M-01 机器链和盘旋链Standard Specification for Machine and Coil ChainA469-04 用于发电机转子的真空处理钢锻件Standard Specification for Vacuum-Treated Steel Forgings for Generator RotorsA470-03 涡轮机转子和轴用经真空处理的碳素钢和合金锻件Carbon and Alloy Steel Forgings for TurbineRotors and ShaftsA471-02 涡轮转子转盘和转轮用真空处理合金钢锻件技术规范Standard Specification for Vacuum-Treated AlloySteel Forgings for Turbine Rotor Disks andWheelsA472-98(200 3) 蒸汽涡轮机轴及转子锻件的热稳定性的试验方法Standard Test Method for Heat Stability of SteamTurbine Shafts and Rotor ForgingsA473-01 不锈和耐热钢锻件Standard Specification for Stainless Steel ForgingsA474-03 包铝钢丝绳标准Standard Specification for Aluminum-Coated Steel Wire StrandA475-03 镀锌钢丝绳Standard Specification for Zinc-Coated Steel Wire StrandA476/A476M-00 造纸厂干燥辊用球墨可锻铸铁件Standard Specification for Ductile Iron Castings for Paper Mill Dryer RollsA478-97(2002) 铬镍不锈钢和耐热钢制编织钢丝Standard Specification for Chromium-Nickel Stainless Steel Weaving and Knitting WireA479/A479M-04 锅炉及压力容器用不锈钢和耐热钢棒与型材Standard Specification for Stainless Steel Barsand Shapes for Use in Boilers and Other PressureVesselsA480/A480M-04 扁平轧制耐热不锈钢厚板材、薄板材和带材通用要求Standard Specification for General Requirementsfor Flat-Rolled Stainless and Heat-ResistingSteel Plate, Sheet, and StripA481-94(2000) 金属铬Standard Specification for Chromium MetalA482-93(2000) 铬铁硅Standard Specification for Ferrochrome-Silicon A483-64(2000) 硅锰合金Standard Specification for SilicomanganeseA484/A484M-03a 不锈及耐热锻钢棒,钢坯及锻件的规格Standard Specification for General Requirementsfor Stainless Steel Bars, Billets, and ForgingsA485-03 高淬透性耐磨轴承钢的技术规范Standard Specification for High Hardenability Antifriction Bearing SteelA487/A487M-93(1998) 受压钢铸件Standard Specification for Steel Castings Suitable for Pressure ServiceA488/A488M-01e1 钢铸件焊接规程和工作人员的合格鉴定Standard Practice for Steel Castings, Welding,Qualifications of Procedures and PersonnelA489-04 碳素钢吊耳Standard Specification for Carbon Steel Lifting EyesA490M-04a 最小拉伸强度为150千磅/平方英寸热处理钢结构螺栓Standard Specification for Structural Bolts,Alloy Steel, Heat Treated, 150 ksi MinimumTensile StrengthA490-04a 最小拉伸强度为150千磅/平方英寸热处理钢结构螺栓Bolts, Classes 10.9 and 10.9.3, for StructuralSteel Joints [Metric]A491-03 镀铝钢链环栏栅结构Standard Specification for Aluminum-Coated Steel Chain-Link Fence FabricA492-95(2000) 耐热不锈钢丝绳Standard Specification for Stainless Steel Rope WireA493-95(2000) 冷镦和冷锻不锈钢和耐热钢丝Standard Specification for Stainless Steel Wire and Wire Rods for Cold Heading and Cold ForgingA494/A494M-03ae1 镍和镍合金铸件Standard Specification for Castings, Nickel and Nickel AlloyA495-94(2000) 硅钙合金钢技术规范Standard Specification for Calcium-Silicon AlloysA496-02 钢筋混凝土用变形钢丝Standard Specification for Steel Wire, Deformed, for Concrete ReinforcementA497/A497M-02 钢筋混凝土用焊接变形钢丝网Standard Specification for Steel Welded Wire Reinforcement, Deformed, for ConcreteA498-04 无缝与焊接碳素钢,铁素体钢与奥氏体钢制有整体散热片的换热器钢管Standard Specification for Seamless and WeldedCarbon Steel Heat-Exchanger Tubes with IntegralFinsA499-89(200 2) 轧制丁字钢轨用的碳素钢棒材及型材的技术规范Standard Specification for Steel Bars andShapes, Carbon Rolled from T RailsA500-03a 圆形与异型焊接与无缝碳素钢结构管Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and ShapesA501-01 热成型焊接与无缝碳素钢结构管Standard Specification for Hot-Formed Welded and Seamless Carbon Steel Structural TubingA502-03 结构钢铆钉规范Standard Specification for Rivets, Steel, StructuralA503/A503M-01(2001)e1 锻制大型曲轴的超声波检验Standard Specification for Ultrasonic Examination of Forged CrankshaftsA504-04e1 锻制碳素钢轮Standard Specification for Wrought Carbon Steel WheelsA505-00 热轧和冷轧合金钢薄板和带材Standard Specification for Steel, Sheet and Strip, Alloy, Hot-Rolled and Cold-Rolled, General Requirements forA506-04 正规质量及优质结构的热轧和冷轧合金钢薄板与带材Standard Specification for Alloy and StructuralAlloy Steel, Sheet and Strip, Hot-Rolled andCold-RolledA507-04 优质拉拔,热轧和冷轧合金钢薄板与带材Standard Specification for Drawing Alloy Steel,Sheet and Strip, Hot-Rolled and Cold-RolledA508/A508M-04b 压力容器用经回火和淬火真空处理的碳素钢与合金钢锻件Standard Specification for Quenched andTempered Vacuum-Treated Carbon and Alloy SteelForgings for Pressure Vessels。
轴系锻件超声波检测方法标准对比分析
6~14 0.514~20 0.320~26 0.126 — —为不连续处底波幅度与最近正常的底波幅度的比值如发现缺陷波,底波完全消失为不合格,此外对于Ⅱ区,Ⅲ区对应在曲线以下区域表4 密集缺陷的评价3:图1 轴系探伤分区3)加强融入标准要求的产品研发系统建设。
将标准化要求通过网络化手段融入产品研发流程中的难度最大,需要对质量管理体系、科研生产管理制度融会贯通,将其汇入技术基础标准中,进而纳入产品开发工具。
例如某单位开发了PLM系统,统一了电讯、结构、工艺的开发工具,开发了元器件封装库,并且将研发文件命名/各阶段文件清单/格式/常用计量单位/标注等技术基础融入PLM系统中,开发了文档编辑器;同时与ERP管理系统贯通,实现了标准化从格式到内容的符合性自动审查。
3.4 加强标准化绩效评估信息系统建设标准化网络系统建设应以结果为导向,加强标准化绩效评估的自动化、实时化、多维化。
单位应明确标准化工作的关键绩效指标、数学模型、数据源、统计对象、统计维度。
常见的标准化绩效指标主要为:采标率、设计差错率、设计文件齐套率等。
以采标率为例,需要明确分子、分母的统计单元,若以零件、部件或整件为不同单元,其结果会大相径庭;若以整件为统计单元,以标准整件为分母,会更具现实指导意义。
统计对象可以是系统、设备、关键件,统计维度可以是月、季度、年度等。
明确关键绩效指标后,应明确其数据源、责任部门,将其纳入相关管理系统加以建设、维护,适时开展绩效评估,透过大数据来挖掘增值信息。
4 结束语在网络化、智能化高速发展的大背景下,建立基于互联网+的标准化体系已刻不容缓。
唯此,才能为国防装备的高质量发展提供高标准支撑,才能为自身发展筑牢厚实根基。
参考文献:[1] 朱宏斌. 型号工程标准化[S]. 北京: 航空工业出版社,2004.[2] 周辉. 产品研发文件管理[S]. 北京: 电子工业出版社,2012.[3] PETER F. 机器学习[M]. 段菲, 译. 北京: 人民邮电出版社, 2016.(上接第20页)[9] 锻件的无损检测: ASTM 2375—04[S]. 2004.[10] 钢锻件的无损检测第3部分:铁素体和马氏体钢锻件的超声波检测: EN 10228—3:1998[S]. 1998. [11] 金属材料的脉冲发射法超声波检测: JIS Z2344[S].1993.[12] 船用锻件的超声波检测: JFSS I3—1982[S]. 1982. [13] CCS. 材料与焊接规范[S]. 2015.[14] DNV & LR. 材料与焊接规范[S]. 2017.[15] ABS. 材料与焊接规范[S]. 2015.[16] KR. 材料与焊接规范[S]. 2017.[17] PC. 船舶建造规范: 材料检验[S]. 2017.[18] NK. 材料规范[S]. 2015.。
ASTM A388-05大型钢锻件超声测试操作标准
大型钢锻件超声测试操作标准1.范围1.1本操作方法包括用直射波和斜射波技术对大型钢锻件做接触式,脉冲回波式超声波检测流程。
直射波技术包括DGS(距离-增益-当量)方法。
见附录X3。
1.2凡因询价,合同,订货或技术条件的规定要求按照ASTM A388/A388M进行超声检测时,均采用本操作方法。
1.3以SI制单位或英制单位表示的数值均为标准数值。
两种单位表示的数值不完全相等;因此每种单位必须单独使用。
两种单位组合使用产生的结果可能和该标准不符。
1.4本方法和材料规范均用SI制和英制表示。
但除了订货要求采用规范符号M(SI)外,应使用英制单位加工。
1.5本标准不是讨论安全问题,如果有,是与使用有关的。
使用本标准的用户有责任在使用前建立适当的安全健康操作方法并确定这种方法的可行性。
2.引用文件2.1ASTM 标准:A 469/A 469M 发电机用钢锻件真空熔炼技术规范A 745/A 745M 奥氏体钢锻件的超声检测操作方法E 317 无电子测量设备的脉冲回波式超声检测系统性能评定操作方法E 428 超声检测用参考试块的制作和质量控制操作方法E 1065 超声检测探头的性能评定指南2.2ANSI 标准:B 46.1 表面结构2.3其他文件推荐的无损检测人员资格鉴定和认证的操作方法SNT-TC-1A,(1988版或以后的)3.术语3.1定义:3.1.1单个指示—指当探头沿任何方向移动时波幅从最高点下降至一定波高的一个指示,由于太小不看作游动指示或平面指示。
3.1.2指示级别(密集型指示)—-指在锻件边长2in(50mm)的立方体内或更小体积内有五个或更多的指示。
3.1.3平面型指示—指指示的最大长度大于1in(25mm)或大于探头主要尺寸两倍的指示,但无论哪种都不是游动的指示。
3.1.4游动指示—指探头在锻件表面移动时波的前沿在工件探度方向上移动1in(25mm)或更多距离的指示。
4.订货信息4.1当本方法用于询价签合同,订货时,订货单位应当声明,并提供如下信息:4.1.1标准数据(包括日期)4.1.2按照8.2.2和8.3.3确定探伤灵敏度。
ASTM A标准(中文)
AA1000-99 弹簧专用碳钢和合金钢钢丝规范A1001-99 大型材高强度钢铸件规范A1002-99 镍铝类合金铸件规范A100-93(2000) 硅铁A101-93(2000) 铬铁A102-93(2000) 钒铁合金A105/A105M-01 管系部件用碳素钢锻件A106-999e1 高温用无缝碳素钢管A108-99 优质冷加工碳素钢棒材技术规范A109/A109M-00e1 冷轧碳素钢带技术规范A111-99a 电话和电报线路用镀锌"铁"丝规格A116-00 镀锌钢丝编织栏栅网A121-99 镀锌刺钢丝A123/A123M-00 钢铁产品的锌镀层(热浸镀锌)技术规范A125-96 热处理螺旋形钢弹簧A126-95(2001) 阀门、法兰和管配件用灰铁铸件A128/A128M-93(1998) 钢铸件,奥氏体锰A131/A131M-94 海船用结构钢A132-89(2000) 钼铁合金A134-96 电熔(电弧)焊钢管(NPS为16英寸和16英寸以上)A135-01 电阻焊钢管A139-00 电熔(电弧)焊钢管(4英寸以上的)A143-74(1999) 热浸镀锌结构钢制品防脆裂措施和探测脆裂的程序A146-64(2000) 氧化钼制品A148/A148M-01 结构用高强度钢铸件A153/A153M-00 钢铁制金属构件上镀锌层(热浸)A159-83(2001) 汽车用灰铁铸件A167-99 不锈钢和耐热铬镍钢板、薄板及带材A176-99 不锈钢和耐热铬钢板、薄板及带材A178/A178M-95(2000) 电阻焊接碳素钢钢管及碳锰钢锅炉和过热器管的技术规范A179/A179M-90a(1996)e1 热交换器和冷凝器用无缝冷拉低碳钢管A181/A181M-01 普通锻制碳素钢管的规格A182/A182M-01 高温设备用锻制或轧制的合金钢管法兰、锻制管件、阀门及零件A183-98 钢轨用碳素钢螺栓和螺母A184/A184M-01 混凝土加筋用变形钢筋编织网A185-97 钢筋混凝土用焊接钢丝结构A1-00 碳素钢丁字轨A192/A192M-91(1996)e1 高压用无缝碳素钢锅炉管A193/A193M-01 高温设备用合金钢和不锈钢螺栓材料A194/A194M-01 高温和高压设备用碳素钢与合金钢螺栓和螺母的规格A197/A197M-00 化铁炉用可锻铸铁A20/A20M-01 压力容器用钢板材通用要求A202/A202M-93(1999) 压力容器用铬锰硅合金钢板A203/A203M-97 压力容器用镍合金钢板A204/A204M-93(1999) 压力容器用钼合金钢板A209/A209M-98 锅炉和过热器用无缝碳钼合金钢管A210/A210M-96 锅炉和过热器用无缝中碳素管A213/A213M-01 无缝铁素体和奥氏体合金钢锅炉、过热器和换热器管A214/A214M-96 热交换器与冷凝器用电阻焊接碳素钢管A216/A216M-93(1998) 高温下使用的适合于熔焊的碳素钢铸件规格A217/A217M-01 适合高温受压零件用合金钢和马氏体不锈钢铸件A21-94(1999) 铁路用未经热处理和经热处理的碳素钢轴A220/A220M-99 珠光体可锻铁A225/A225M-93(1999) 压力容器用锰矾镍合金钢板A227/A227M-99 机械弹簧用冷拉钢丝A228/A228M-00 乐器用优质弹簧钢丝A229/A229M-99 机械弹簧用油回火的钢丝A230/A230M-99 阀门用油回火优质碳素钢弹簧丝A231/A231M-96 铬钒合金钢弹簧丝A232/A232M-99 阀门用优质铬钒合金钢弹簧丝A234/A234M-00a 中温与高温下使用的锻制碳素钢及合金钢管配件A239-95(1999) 用普力斯试验法(硫酸铜浸蚀)确定铁或钢制品上镀锌层最薄点的测试方法A240/A240M-01 压力容器用耐热铬及铬镍不锈钢板、薄板及带材A242/A242M-00a 高强度低合金结构钢A247-67(1998) 铁铸件中石墨显微结构评定试验方法A249/A249M-01 锅炉、过热器、换热器和冷凝器用焊接奥氏体钢管A250/A250M-95(2001) 锅炉和过热器用电阻焊铁素体合金钢管A252-98e1 焊接钢和无缝钢管桩A254-97 铜焊钢管规格A255-99 测定钢淬透性用末端淬火试验的标准试验方法A262-98 奥氏体不锈钢晶间浸蚀敏感性的检测A263-94a(1999) 耐腐蚀铬钢包覆板材,薄板材及带材技术规范A264-94a(1999) 包覆的不锈铬镍钢板,薄板及带材规格A265-94a(1999) 镍和镍基合金包覆钢板规格A266/A266M-99 压力容器部件用碳素钢锻件规格A268/A268M-01 一般设备用无缝和焊接铁素体与马氏体不锈钢管A269-01 一般设备用无缝和焊接奥氏体不锈钢管A27/A27M-95(2000) 通用碳素钢铸件A270-01 卫生设施用无缝钢和焊接奥氏体不锈钢管A275/A275M-98 钢锻件的磁粉检查试验方法A276-00a 不锈钢棒材和型材A278-93 适用于650F容压部件用灰铸铁件的技术规范A283/A283M-00 低和中等抗拉强度碳素钢板A285/A285M-90(2001) 压力容器用低和中等抗拉强度的碳素钢板A288-91(1998) 涡轮发电机磁性定位环用碳素钢和合金钢锻件A289/A289M-97 发电机非磁性定位环用合金钢锻件的技术规范A29/A29M-99e1 热锻及冷加工碳素钢和合金钢棒A2-90(1997) 普通型,带槽和防护型碳素工字钢轨A290-95(1999) 减速器环用碳素钢和合金钢锻件A291-95(1999) 减速器小齿轮、齿轮和心轴用碳素钢和合金钢锻件A295-98 高碳耐磨轴承钢技术规范A297/A297M-97(1998) 一般用耐热铬铁与镍铬铁合金钢铸件规格A299/A299M-97e1 压力容器用锰硅碳钢板A302/A302M-97e1 压力容器用锰钼和锰钼镍合金钢板A304-96 有末端淬火淬透性要求的合金钢棒材的技术规范A307-00 抗拉强度为60000psi的碳素钢螺栓和螺柱的技术规范A308-99 经热浸处理镀有铅锡合金的薄板材的技术规范A309-94a(1999) 用三点试验法测定长镀锌薄钢板镀层的重量成分的试验方法A311/A311M-95(2000) 有机械性能要求的消除应力的冷拉碳素钢棒A312/A312M-00c 无缝和焊接奥氏体不锈钢管A313/A313M-98 不锈钢弹簧丝技术规范A314-97 锻造用不锈及耐热钢坯及钢棒规格A31-00 钢铆钉及铆钉和压力容器用棒材A319-71(2001) 高温无压部件用灰铁铸件A320/A320M-01 低温用合金钢螺栓材料规格A321-90(1995)e1 经淬火和回火的碳素钢棒A322-91(1996) 合金钢棒材.级别A323-93(2000) 硼铁规格A324-73(2000) 钛铁合金A325-00 经热处理最小抗拉强度为120/105ksi的钢结构螺栓A325M-00 结构钢连接件用高强度螺栓(米制)A327-91(1997) 铸铁冲击试验方法A327M-91(1997) 铸铁冲击试验方法(米制)A328/A328M-00 薄钢板桩A331-95(2000) 冷加工合金钢棒A333/A333M-99 低温用无缝与焊接钢管规格A334/A334M-99 低温设备用无缝与焊接碳素和合金钢管A335/A335M-01 高温用无缝铁素体合金钢管A336/A336M-99e1 压力与高温部件用合金钢锻件规格A338-84(1998) 铁路,船舶和其他重型装备在温度达到650华氏度(345摄氏度)时使用的可锻铸铁法兰,管件和阀门零件A34/A34M-96 磁性材料的抽样和采购试验的标准惯例A340-99a 有关磁性试验用符号和定义的术语A341/A341M-00 用直流磁导计和冲击试验法测定材料的直流磁性能的试验方法A342/A342M-99 磁铁材料导磁率的试验方法A343-97 在电力频率下用瓦特计-安培计-伏特计法(100-1000赫兹)和25 厘米艾普斯亭(EPSTEIN) 机架测定材料的交流电磁性能的试验方法A345-98 磁设备用平轧电炉钢A348/A348M-00 用瓦特计--安培计--伏特计法(100-10000赫兹)和25厘米艾普斯亭框测定材料的交流磁性能的试验方法A350/A350M-00c 要求进行缺口韧性试验的管道部件用碳素钢与低合金钢锻件技术规范A351/A351M-00 容压零件用奥氏体及奥氏体铁素体铸铁的技术规范A352/A352M-93(1998) 低温受压零件用铁素体和马氏体钢铸件规格A353/A353M-93(1999) 压力容器用经二次正火及回火处理的含9%镍的合金钢板A354-01 淬火与回火合金钢螺栓,双头螺栓及其他外螺纹紧固件规格A355-89(2000) 渗氮用合金钢棒A356/A356M-98e1 蒸汽轮机用厚壁碳素钢、低合金钢和不锈钢铸件A358/A358M-01 高温用电熔焊奥氏体铬镍合金钢管A36/A36M-00a 碳素结构钢技术规范A363-98 地面架空线用镀锌钢丝绳A367-60(1999) 铸铁的激冷试验方法A368-95a(2000) 不锈钢和耐热钢丝绳的标准A369/A369M-01 高温用锻制和镗孔碳素钢管和铁素体合金钢管A370-97a 钢制品机械测试的标准试验方法和定义A372/A372M-99 薄壁压力容器用碳素钢及合金钢锻件A376/A376M-01 高温中心站用无缝奥氏钢管A377-99 球墨铸铁压力管规范索引A380-99e1 不锈钢零件、设备和系统的清洗和除垢A381-96 高压输送用金属弧焊钢管A384-76(1996) 防止钢组件热浸镀锌时翘曲和扭曲用安全保护A385-00 提供高质量镀锌覆层(热浸)A3-01 低、中、高碳素钢鱼尾(连接)板A387/A387M-99e1 压力容器用铬钼合金钢板A388/A388M-95(2000)e1 重型钢锻件超声波检测A389/A389M-93(1998) 适合高温受压部件用经特殊热处理的合金钢铸件规格A390-95(2001) 饲养家禽用镀锌钢丝栏栅网(六角形和直线形)A391/A391M-98 80号合金钢链条A392-96 镀锌钢丝链环栏栅网A394-00 传动塔架用镀锌和裸露钢螺栓A395/A395M-99 高温用铁素体球墨铸铁受压铸件A400-69(2000) 钢棒的成分及机械性能选择指南A401/A401M-98 铬硅合金钢丝A403/A403M-00b 锻制奥氏体不锈钢管配件A407-93(1998) 盘簧用冷拉钢丝A409/A409M-01 腐蚀场所或高温下使用的焊接大口径奥氏体钢管A411-98 镀锌低碳钢铠装线A413/A413M-00 碳素钢链A414/A414M-00 压力容器用碳素薄钢板A416/A416M-99 预应力混凝土用无涂层七股钢铰线A417-93(1998) 之字型、方型和正弦型装垫弹簧元件用冷拉钢丝A418-99 涡轮机及发电机钢转子锻件的超声波检查方法A420/A420M-00b 低温下用锻制碳素钢和合金钢管配件A421/A421M-98a 预应力混凝土用无涂层消除应力钢丝的技术规范A423/A423M-95(2000) 无缝和电焊低合金钢管A424-00 搪瓷用钢薄板A426-92(1997) 高温用离心铸造的铁素体合金钢管A427-74(1996)e1 冷轧和热轧用锻制合金钢辊A428/A428M-01 钢铁制品上铝覆层重量的测试方法A434-90a(2000) 热轧与冷精轧经回火及淬火的合金钢棒A435/A435M-90(2001) 钢板的直射束纵向超声波检验A436-84(1997)e1 奥氏体灰口铁铸件A437/A437M-01 高温用经特殊处理的涡轮型合金钢螺栓材料A438-80(1997) 灰铸铁横向弯曲试验A439-83(1999) 奥氏体可锻铸铁铸件A447/A447M-93(1998) 高温用镍铬铁合金钢铸件(25-12级)A449-00 经淬火和回火的钢螺栓和螺柱A450/A450M-96a 碳素钢管、铁素体合金钢管及奥氏体合金钢管A451-93(1997) 高温用离心铸造的奥氏体钢管A453/A453M-00 具有同奥氏体钢相类似的膨胀系数、屈服强度为50-120Ksi(345-827MPa)的耐高温螺栓材料A455/A455M-90(2001) 压力容器用高强度碳锰钢板A456/A456M-99 大型曲轴锻件的磁粉检查A459-97 镀锌平轧扁钢铠装带A460-94(1999) 包铜钢丝绳标准A463/A463M-00 热浸镀铝薄钢板A466/A466M-98 非焊接碳素钢链A467/A467M-98 机器链和盘旋链A469-94a(1999) 用于发电机转子的真空处理钢锻件A470-01 涡轮机转子和轴用经真空处理的碳素钢和合金锻件A471-94(1999) 涡轮转子转盘和转轮用真空处理合金钢锻件技术规范A472-98 蒸汽涡轮机轴及转子锻件的热稳定性的试验方法A473-01 不锈和耐热钢锻件A474-98 包铝钢丝绳标准A475-98 镀锌钢丝绳A476/A476M-00 造纸厂干燥辊用球墨可锻铸铁件A478-97 铬镍不锈钢和耐热钢制编织钢丝A479/A479M-00 锅炉及压力容器用不锈钢和耐热钢棒与型材A47/A47M-99 铁素体可锻铁铸件A480/A480M-01 扁平轧制耐热不锈钢厚板材、薄板材和带材通用要求A481-94(2000) 金属铬A482-93(2000) 铬铁硅A483-64(2000) 硅锰合金A484/A484M-00 不锈及耐热锻钢棒,钢坯及锻件的规格A485-00 高淬透性耐磨轴承钢的技术规范A487/A487M-93(1998) 受压钢铸件A488/A488M-01 钢铸件焊接规程和工作人员的合格鉴定A48-94ae1 灰铁铸件A489-00 碳素钢吊耳A490-00 最小拉伸强度为150千磅/平方英寸热处理钢结构螺栓A491-96 镀铝钢链环栏栅结构A492-95(2000) 耐热不锈钢丝绳A493-95(2000) 冷镦和冷锻不锈钢和耐热钢丝A494/A494M-00 镍和镍合金铸件A495-94(2000) 硅钙合金钢技术规范A496-97ae1 钢筋混凝土用变形钢丝A497-99e1 钢筋混凝土用焊接变形钢丝网A498-98 无缝与焊接碳素钢,铁素体钢与奥氏体钢制有整体散热片的换热器钢管A49-01 经热处理的碳素钢鱼尾(连接)板,微合金鱼尾板及锻制碳素钢异型鱼尾板A499-89(1997)e1 轧制丁字钢轨用的碳素钢棒材及型材的技术规范A500-01 圆形与异型焊接与无缝碳素钢结构管A501-01 热成型焊接与无缝碳素钢结构管A503/A503M-01 锻制大型曲轴的超声波检验A504-93(1999) 锻制碳素钢轮A505-00 热轧和冷轧合金钢薄板和带材A506-00 正规质量及优质结构的热轧和冷轧合金钢薄板与带材A507-00 优质拉拔,热轧和冷轧合金钢薄板与带材A508/A508M-95(1999) 压力容器用经回火和淬火真空处理的碳素钢与合金钢锻件A510-00 碳素钢盘条和粗圆钢丝通用要求A510M-00 碳素钢盘条和粗圆钢丝(米制)A511-96 无缝不锈钢机械管A512-96 冷拉对缝焊碳素钢机械管A513-00 电阻焊碳素钢与合金钢机械钢管A514/A514M-00a 焊接用经回火与淬火的高屈服强度合金钢板A515/A515M-92(1997) 中温及高温压力容器用碳素钢板A516/A516M-90(2001) 中温及低温压力容器用碳素钢板A517/A517M-93(1999) 压力容器用经回火与淬火的高强度合金钢板A518/A518M-99 耐蚀高硅铁铸件A519-96 无缝碳素钢与合金钢机械管A521-96 一般工业用闭式模钢锻件A522/A522M-95b(2000) 低温用锻制或轧制含镍8%和9%的合金钢法兰,配件,阀门和零件规格A523-96 高压管型电缆线路用平端无缝与电阻焊钢管A524-96 常温和低温用无缝碳素钢管A529/A529M-00 高强度碳锰结构钢质量A530/A530M-99e1 特种碳素钢和合金钢管A531/A531M-91(1996) 涡轮发电机钢定位环的超声波检验A532/A532M-93a(1999)e1 耐磨铸铁A533/A533M-93(1999) 压力容器用经回火和淬火的锰钼及锰钼镍合金钢板A534-94 用于耐摩擦轴承的渗碳钢A536-84(1999)e1 球墨铸铁件A537/A537M-95(2000) 压力容器用经热处理的碳锰硅钢板A53/A53M-01 无镀层热浸的、镀锌的、焊接的及无缝钢管的技术规范A539-99 天然气和燃料油管线用电阻焊钢盘管A540/A540M-00 特殊用途的合金钢螺栓材料A541/A541M-95(1999) 压力容器部件用经淬火和回火的碳素钢及合金钢锻件A542/A542M-99e1 压力容器用经回火和淬火的铬钼、铬钼钒及铬钼钒钛硼合金钢板A543/A543M-93(1999) 压力容器用经回火和淬火的镍铬钼合金钢板A550-78(2000) 铌铁合金A551-94(1999) 钢轮箍A553/A553M-95(2000) 压力容器用经回火和淬火的含8%及9%镍的合金钢板A554-98e1 焊接的无缝钢机械管A555/A555M-97 耐热不锈钢丝和盘条的通用要求A556/A556M-96 无缝冷拉碳素钢给水加热器管A560/A560M-93(1998) 铬镍合金铸件A561-71(1999) 工具钢棒的宏观刻蚀试验A562/A562M-90(2001) 搪玻璃或扩散金属镀层的压力容器用锰钛合金碳素钢板A563-00 碳合金钢螺母A563M-00 碳素钢及合金钢螺母技术规范(米制)A564/A564M-01 热轧及冷精轧时效硬化处理过的不锈钢棒材和型材技术规范A565-97 高温用马氏体不锈钢棒,锻件和锻制坯规格A568/A568M-00b 热轧及冷轧高强度低合金碳素钢薄板A571-84(1997) 适用于低温压力容器零件的奥氏体球墨铸铁件A571M-84(1997) 适用于低温压力容器零件的奥氏体球墨铸铁件(米制)A572/A572M-00a 高强度低合金钴钒结构钢技术规范A573/A573M-00a 增强韧性的结构碳素钢板A574-00 合金钢内六角螺钉A574M-00 合金钢内六角螺钉(米制)A575-96 商品级碳素钢棒(M级)A576-90b(2000) 特级热轧碳素钢棒A577/A577M-90(2001) 钢板的超声角波束检验A578/A578M-96(2001) 特殊设备用的普通钢板和包覆钢板的直波束超声探伤检验A579-99 超高强度合金钢锻件A580/A580M-98 耐热不锈钢丝A581/A581M-95b(2000) 高速切削用耐热不锈钢丝和盘条A582/A582M-95b(2000) 热轧或冷精轧的高速切削不锈及耐热钢棒A583-93(1999) 铁路用铸钢轮A584-97 镀铝钢丝编织栅栏网A585-97 镀铝刺钢丝A586-98 镀锌平行和螺旋形钢丝绳A587-96 化学工业用电阻焊低碳钢管A588/A588M-00a 高强度低合金结构钢4英寸(100mm)厚屈服点最小为50ksi(345MPa) A589-96 水井用无缝和焊接碳素钢管A591/A591M-98 薄镀层电解镀锌薄钢板A592/A592M-89(1999) 压力容器用经回火和淬火的高强度低合金钢锻制附件和零件A595-98 结构用圆锥形低碳钢管A596/A596M-95(1999) 用环形试验法和冲击法测定材料的直流磁性能的试验方法A597-87(1999) 铸造工具钢A598-92(1997) 磁放大器磁芯的磁性能测试法A599/A599M-99 锡制品,电解镀锡的冷滚轧薄板规范A6/A6M-01 轧制结构钢板材、型材和薄板桩通用技术要求A600-92a(1999) 高速工具钢A601-96(2000) 电解金属锰A602-94(1998) 汽车用可锻铸铁件A603-98 镀锌结构钢丝绳A604-93(1998) 自耗电极再溶化钢棒与钢坯的宏观腐蚀试验方法A606-98 改进防大气腐蚀性的热轧和冷轧高强度低合金钢薄板和带材A608-91a(1998) 高温受压离心铸造的铁铬镍高合金钢管A609/A609M-91(1997) 碳素钢,低合金钢和马氏体不锈钢铸件的超声波检测A610-79(2000) 尺寸测量用铁合金的取样和试验A611-00 冷轧优质碳素结构钢薄板A612/A612M-00 中温和低温压力容器用高强度碳素钢板A615/A615M-01a 钢筋混凝土配筋用变形和光面坯钢筋A618-01 热成型焊接与无缝高强度低合金结构钢管系A623-00 锡轧制产品A623M-00 镀锡薄钢板轧制品通用要求(米制)A624/A624M-98 锡辊轧制品.单压延电解马口铁A625/625M-98 一次轧制原钢板(未镀)和镀锡薄钢板轧制产品技术规范A626/A626M-98 二次压延电解镀锡厚钢板轧制品技术规范A626/A626M-98 锡轧制品.二次压延的电解镀锡板(米制)A627-95 安全设备用均质不易加工的钢棒A629-88(1994)e1 安全设备用不易加工的扁钢棒和型材A630-98 热浸电解镀锡板镀锡层重量测定的方法A632-01 通用无缝和焊接奥氏体不锈钢管(小直径)A633/A633M-00a 正火的高强度低合金结构钢A635/A635M-00 热轧碳素钢薄板,带材和重型粗盘条规格A636-76(2000) 氧化镍烧结块A638/A638M-00 高温用沉积硬化铁基超级合金棒,锻件及锻坯料A640-97 8字型缆吊架用镀锌钢丝绳A641/A641M-98 镀锌(电镀)碳素钢丝技术规范A644-98 铁铸件的相关术语A645/A645M-99a 压力容器用经特殊热处理的5%镍合金钢板A646-95(1999) 飞机及航空器锻件用优质合金钢大方坯及坯段A648-95(2000) 预应力混凝土管用冷拉钢丝A649/A649M-99 波纹纸机械用锻制钢辊规格A650/A650M-98 二次压延的锡轧黑板材A653/A653M-00 热浸处理的镀锌铁合金或镀锌合金薄钢板的标准规范A656/A656M-00a 具有改良可模锻性的高强度低合金热轧结构钢板A657/A657M-98a 一次和二次压延电解镀铬黑钢板轧制品技术规范A65-01 钢轨道钉A659/A659M-97 商业级热轧碳素钢薄板和带材(最大含碳量为0.16%-0.25%) A660-96 高温用离心铸造碳素钢管A662/A662M-99 中温和低温压力容器用锰碳钢板规格A663/A663M-89(2000) 商品级碳素钢棒的机械特性A664-99 在ASTM规范中对电工钢和层压钢级别的识别A666-00 退火或冷加工的奥氏体不锈钢薄板、带材、中厚板和扁棒A667/A667M-87(1998) 离心铸造的双金属(灰口及白口铸铁)圆柱体A668/A668M-96e1 一般工业用碳素钢和合金钢锻件A66-01 钢质螺旋道钉A671-96 常温和较低温用电熔焊钢管A672-96 中温高压用电熔焊钢管A673/A673M-95 结构钢冲击试验的取样程序A674-00 水或其它液体用球墨铸铁管的聚乙烯包装A675/A675M-90a(2000) 专用热轧碳素钢棒的机械特性A677/A677M-99 全处理型无取向电工钢A678/A678M-00a 结构用经回火和淬火的高强度低合金碳素钢板规格A679/A679M-00 硬(冷)拉高抗拉强度钢丝A67-00 热加工低碳钢和高碳钢垫板技术规范A681-94(1999) 合金工具钢A682/A682M-00 弹簧用冷轧高碳钢带材A683/A683M-99 半处理型无取向电工钢A684/A684M-99 冷轧高碳钢带材A686-92(1999) 碳素工具钢A688/A688M-01 焊接的奥氏体不锈钢给水加热器管A689-97 弹簧用碳素钢及合金钢棒A690/A690M-00a 在海洋环境中使用的高强度低合金工字形钢桩和薄板桩规格A691-98 高温下高压装置用电熔焊碳素钢和合金钢管A693-93(1999) 沉淀硬化耐热不锈钢板、薄板和带材A694/A694M-00 高压传输设备用碳素钢及合金钢管法兰、配件、阀门及零件用锻件A695-90b(1995)e1 流体动力设备专用热锻碳素钢棒A696-90a(2000) 压力管道部件专用热锻或冷精轧碳素钢棒A697-98 用伏特计、安培计和瓦特计法测定迭层铁芯样品的交流磁特性的试验方法A698/A698M-92(1997)e1 在弱交流磁场中磁屏蔽效率的试验方法A700-99e1 钢制品国内装运的包装、标记和装载方法A701-96(2000) 硅锰铁A702-89(2000) 热锻钢栅栏柱和组件A703/A703M-01 受压部件用钢铸件A704/A704M-96 混凝土加筋用焊接普通钢棒或杆的光面钢筋或钢筋网A705/A705M-95(2000) 时效硬化的不锈和耐热钢锻件A706/A706M-01 混凝土配筋用变形低合金光面无节钢筋A707/A707M-00a 低温设备用锻制碳素钢和合金钢法兰A709/A709M-01 桥梁用结构钢A710/A710M-00 低碳时效硬化的镍铜铬钼铌合金钢A711-92(1996)e1 钢锻件坯料A712-97 软磁性合金电阻率的测试方法A713-93(1998) 热处理部件用高碳弹簧钢丝A714-99 高强度低合金焊接钢管和无缝钢管A716-99 球墨铸铁涵洞管A717/A717M-95 单片样品表面绝缘电阻率的试验方法A719-97 磁性材料的叠装系数的试验方法A720-97 无取向电工钢延展性的试验方法A721-97 取向的电工钢的延展性试验方法A722/A722M-98 预应力混凝土用无涂覆的高强度钢筋A723/A723M-94(1999) 高强度压力元件用合金钢锻件A724/A724M-99 叠层焊接的压力容器用经淬火及回火的碳素钢压力容器板A726-00 半成品型冷轧磁性迭片级钢A727/A727M-00 具有固定切口韧性的管道部件用碳素钢锻件A729-93(1999) 货物运输及电气铁路用热处理合金钢轴A730-93(1999) 铁路用碳素钢及合金钢锻件A732/A732M-98 一般设备用熔模铸造碳素低合金钢及高强度加温钴合金钢铸件A733-99 焊接及无缝碳素钢和奥氏体不锈钢管接头A734/A734M-87a(1997) 经淬火和回火的合金钢与高强度低合金钢压力容器板A735/A735M-99 中温和低温用低碳锰钼钶合金钢压力容器板A736/A736M-88(2000) 低碳时效硬化的镍铜铬钼铌和镍铜锰钼铌合金钢压力容器板A737/A737M-99 高强度低合金钢压力容器板A738/A738M-00 中温和低温设备用经热处理的碳锰硅钢压力容器板A739-90a(2000) 升温或/和加压部件用热轧合金钢棒A740-98 钢丝网(编织或焊接电镀钢丝网)A741-98 公路护栏用镀锌钢丝绳和配件A742/A742M-98 波纹钢管用预涂聚合物和金属涂覆钢薄板A743/A743M-98ae1 一般用耐腐蚀铬铁及镍铬铁合金铸件A744/A744M-00 严酷条件下使用的耐腐蚀镍铬铁合金铸件A745/A745M-94(1999) 奥氏体钢锻件的超声波检验A746-99 排污管用球墨铸铁A747/A747M-99 沉淀硬化不锈钢铸件A748/A748M-87(1998) 压力容器用静态铸造的激冷白口铁-灰口铁双金属轧辊A749/A749M-97 热轧碳素钢和高强度低合金钢带材通用要求A74-98 铸铁污水管及配件的技术规范A750-77(1994)e1 阻挡区域用钢制通风格栅A751-96 钢制品化学分析的实验方法、操作和术语A752-93(1998) 合金钢条和粗圆钢丝A752M-93(1998) 合金钢条和粗圆钢丝(米制)A753-97 镍铁软磁合金A754/A754M-96(2000) X射线荧光涂层厚度的试验方法A755/A755M-99 外露建筑材料用热浸涂覆和用卷涂工艺预涂的钢薄板A756-94(2001) 耐磨不锈轴承钢A757/A757M-00 低温下承压设备及其它设备用铁素体和马氏体钢铸件A758/A758M-00 具有改进的切口韧性的对缝焊锻制碳素钢管配件A759-00 起重机用碳钢轨条A760/A760M-01 下水道和排水沟用金属涂覆的波纹钢管A761/A761M-98 现场栓接管、管拱和拱用波纹镀锌结构钢板A762/A762M-00 下水道和排水沟用预涂聚合物波纹钢管A763-93(1999)e1 铁素体不锈钢晶间腐蚀敏感性检测A764-95(2001) 机械弹簧用冷拉镀锌和按成品尺寸镀锌的碳素钢丝A765/A765M-98a 具有强制性韧性要求的碳素钢及低合金钢压力容器部件锻件A767/A767M-00b 钢筋混凝土用镀锌钢筋A768-95 涡轮机转子及轴用经真空处理的含铬12%的合金钢锻件A769/A769M-00 电阻焊钢结构型材A770/A770M-86(2001) 专用钢板通过厚度测量进行的抗拉试验A771/A771M-95(2001) 增殖反应堆堆芯部件用奥氏体不锈钢管A772/A772M-00 正弦电流用材料的交流磁导率的试验方法A773/A773M-96 用带直流电子的磁滞曲线记录仪的(B-H)回路法测量材料的磁性能的标准试验方法A774/A774M-00 低温和中温一般腐蚀情况下用的焊接锻制奥氏体不锈钢配件A775/A775M-01 涂环氧树脂的钢筋钢棒A778-01 焊接未退火的奥氏体不锈钢管形制品A779/A779M-00 预应力混凝土用应力消除未涂覆的密实七股钢丝绞绳A780-01 热浸镀锌层的损坏及无覆层区域的检修A781/A781M-00 一般工业用一般要求的钢和合金铸件A782/A782M-90(2001) 经淬火和回火的锰铬钼硅锆合金钢压力容器板A786/A786M-00b 轧制钢楼板A787-01 电阻焊金属涂覆碳素钢机械配管A788-98a 钢锻件A789/A789M-01 普通设备用无缝与焊接铁素体/奥氏体不锈钢管A790/A790M-01 无缝与焊接铁素体/奥氏体不锈钢管A792/A792M-99 热浸工艺法处理的55%铝-锌合金涂覆钢板A793-96 不锈钢轧制楼板A794-97 商品级冷轧碳素钢薄板(最高含碳量为0.16%-0.25%)A795-00 防火用黑色及热浸镀锌的焊接和无缝钢管A796/A796M-00 雨水管和卫生污水管及其它地下埋设管道用波纹钢管、管托架及拱形架结构设计惯例A798/A798M-01 下水道及其它类似用途用工厂制波纹钢管的安装A799/A799M-92(1997) 估算不锈钢铸件铁素体含量用仪表的校准A800/A800M-01 奥氏体合金钢铸件中铁素体含量的估算A801/A801M-99 铁钴高磁性饱和合金A802/A802M-95(2001) 钢铸件外观检验的表面验收标准A803/A803M-01 焊接铁素体不锈钢给水加热器管A804/A804M-99 在电力频率下用薄钢板型试样对材料交流磁特性的测试方法A805-93(1998) 冷轧碳素钢扁平线A807/A807M-97 下水道及其它类似用途用波纹结构钢涂覆管的安装A808/A808M-00a 具有改进的切口韧性的结构级高强度低合金碳钢、锰钢、铌钢和钒钢A809-98 镀铝碳素钢丝A810-00 镀锌钢管用绕网A811-97 粉末冶金技术制造的软磁铁零件A813/A813M-01 单或双焊接奥氏体不锈钢管A814/A814M-01 冷加工焊接奥氏体不锈钢管A815/A815M-01 锻制铁素体、铁素体/奥氏体和马氏体不锈钢管配件A817-00 链接栅栏网用金属涂覆钢丝A818-91(2001) 镀铜碳素钢丝A820-96 纤维增强混凝土用钢纤维A821/A821M-99 预应力混凝土容器用经回火的冷拉钢丝A822-90(2000) 液压系统设备用冷拉碳素无缝钢管A823-99 静铸永久铸模灰铸件A824-01 链接栅栏用Marcelled拉力金属涂覆钢丝A826/A826M-95(2001) 增殖反应堆堆芯部件用奥氏体和铁素体不锈钢管A827/A827M-93a(1998) 锻造及类似用途用的碳素钢板技术规范A829/A829M-00 结构性合金钢板A82-97ae1 钢筋混凝土用无节钢丝A830/A830M-00 按照化学成分要求提供的优质碳素钢板技术规范A831/A831M-95(2000) 核心部件用不锈耐热钢棒,坯段及锻件规格A832/A832M-99e1 压力容器板用铬钼钒及铬钼钒钛硼合金钢A833-84(1996) 用比较硬度测试仪测量金属材料的压痕硬性A834-95(2001) 一般工业用铁铸件的一般要求A835-84(2000) 铁合金与合金添加剂的筛分粒度A836/A836M-95b(2001) 搪瓷管和压力容器设备用钛稳定碳素体钢锻件A837-91(1996)e1 渗碳用合金钢锻件A838/A838M-97 继电器用易切削铁素体不锈软磁合金技术规范A839/A839M-96 软磁用途的磷铁粉末冶金制造的零件技术规范A840/A840M-00 全处理的磁性夹层钢A841/A841M-01 压力容器用温度机械控制工艺加工的钢板A842-85(1997) 高密度石墨铸铁A844/A844M-93(1999) 压力容器用直接淬火加工的含镍9%的合金钢板A845-85(2000) 用于脱氧与合金钢的钛碎片A846-85(2000) 用于脱氧与合金钢的铝碎片A847-99a 具有增强耐大气腐蚀性能的冷成型焊接与无缝高强度低合金结构管A848/A848M-96 低碳磁铁A849-00 波纹钢排水管和污水管用后涂覆铺面和衬里材料A851-96 高频感应焊接的未退火奥氏体钢冷凝器管A852/A852M-00a 最小屈服强度为70Ksi(485MPa),厚度为4英寸(100mm)的经淬火和回火的低合金结构钢板A853-93(1998) 普通碳素钢丝A854/A854M-98 镀锌高强度钢栅栏和格架用光滑金属线A855/A855M-98 锌-5%铝-铈合金涂覆的钢丝绳A856/A856M-98 锌-5%铝-铈合金涂覆的碳素钢丝A857/A857M-00a 冷成形轻型薄钢板桩A858/A858M-00 低温和腐蚀情况下用热处理碳素钢配件A859/A859M-95(1999) 压力容器部件用时效硬化镍铜铬钼钶低碳合金钢锻件A860/A860M-00 锻制高强度低合金钢的高强度对缝焊接配件A861-94e1 高硅铁管和配件A862/A862M-98 波纹钢污水管和排水管沥清(柏油)涂层的应用A865-97 钢管连接用黑色或镀锌焊接或无缝钢螺纹接头A866-94 耐磨中碳轴承钢A867/A867M-94(1998)e1 继电器用铁硅钢A871/A871M-00a 抗空气腐蚀的高强度低合金结构钢板。
ASTM A 388-A388M-2009_钢锻件超声波检查规程
Designation:A388/A388M–09Used in USNRC-RDT standards Standard Practice forUltrasonic Examination of Steel Forgings1This standard is issued under thefixed designation A388/A388M;the number immediately following the designation indicates the yearof original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(´)indicates an editorial change since the last revision or reapproval.1.Scope*1.1This practice2covers the examination procedures for the contact,pulse-echo ultrasonic examination of steel forgings by the straight and angle-beam techniques.The straight beam techniques include utilization of the DGS(Distance Gain-Size) method.See Appendix X3.1.2This practice is to be used whenever the inquiry, contract,order,or specification states that forgings are to be subject to ultrasonic examination in accordance with Practice A388/A388M.1.3The values stated in either SI units or inch-pound units are to be regarded separately as standard.The values stated in each system may not be exact equivalents;therefore,each system shall be used independently of the bining values from the two systems may result in non-conformance with the standard.1.4This specification and the applicable material specifica-tions are expressed in both inch-pound units and SI units. However,unless the order specifies the applicable“M”speci-fication designation[SI units],the material shall be furnished to inch-pound units.1.5This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.Referenced Documents2.1ASTM Standards:3A469/A469M Specification for Vacuum-Treated Steel Forgings for Generator RotorsA745/A745M Practice for Ultrasonic Examination of Aus-tenitic Steel ForgingsE317Practice for Evaluating Performance Characteristics of Ultrasonic Pulse-Echo Testing Instruments and Systems without the Use of Electronic Measurement Instruments E428Practice for Fabrication and Control of Metal,Other than Aluminum,Reference Blocks Used in Ultrasonic TestingE1065Guide for Evaluating Characteristics of Ultrasonic Search Units2.2ANSI Standard:B46.1Surface Texture42.3Other Document:Recommended Practice for Nondestructive Personnel Quali-fication and Certification SNT-TC-1A,(1988or later)5 3.Terminology3.1Definitions:3.1.1indication levels(clusters),n—five or more indica-tions in a volume representing a2-in.[50-mm]or smaller cube in the forging.3.1.2individual indications,n—single indications showinga decrease in amplitude as the search unit is moved in any direction from the position of maximum amplitude and which are too small to be considered traveling or planar.3.1.3planar indications,n—indications shall be considered continuous over a plane if they have a major axis greater than 1in.[25mm]or twice the major dimension of the transducer, whichever is greater,and do not travel.3.1.4traveling indications,n—inductions whose leading edge moves a distance equivalent to1in.[25mm]or more of metal depth with movement of the transducer over the surface of the forging.4.Significance and Use4.1This practice shall be used when ultrasonic inspection is required by the order or specification for inspection purposes where the acceptance of the forging is based on limitations of the number,amplitude,or location of discontinuities,or a combination thereof,which give rise to ultrasonic indications.1This practice is under the jurisdiction of ASTM Committee A01on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.06on Steel Forgings and Billets.Current edition approved May1,2009.Published May2009.Originally approved st previous edition approved in2008as A388/A388M–08.2For ASME Boiler and Pressure Vessel Code applications see related Specifi-cation SA-388/SA-388M in Section II of that Code.3For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.4Available from American National Standards Institute(ANSI),25W.43rd St., 4th Floor,New York,NY10036.5Available from the American Society for Nondestructive Testing,1711Arlin-gate Ln.,P.O.Box28518,Columbus,OH43228–0518.*A Summary of Changes section appears at the end of this standard. Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.4.2The ultrasonic quality level shall be clearly stated as order requirements.5.Ordering Information5.1When this practice is to be applied to an inquiry, contract,or order,the purchaser shall so state and shall also furnish the following information:5.1.1Designation number(including year date),5.1.2Method of establishing the sensitivity in accordance with9.2.2and9.3.3(Vee-or rectangular-notch),5.1.2.1The diameter and test metal distance of theflat-bottom hole and the material of the reference block in accordance with9.2.2.2,5.1.3Quality level for the entire forging or portions thereof in accordance with12.3,and5.1.4Any options in accordance with1.4,6.4,6.5,7.1,8.1, 8.2,9.1.11,10.1,and10.2.6.Apparatus6.1An ultrasonic,pulsed,reflection type of instrument shall be used for this examination.The system shall have a mini-mum capability for examining at frequencies from1to5MHz. On examining austenitic stainless forgings the system shall have the capabilities for examining at frequencies down to0.4 MHz.6.1.1The ultrasonic instrument shall provide linear presen-tation(within5%)for at least75%of the screen height (sweep line to top of screen).The5%linearity referred to is descriptive of the screen presentation of amplitude.Instrument linearity shall be verified in accordance with the intent of Practice E317.Any set of blocks processed in accordance with Practice E317or E428may be used to establish the specified 65%instrument linearity.6.1.2The electronic apparatus shall contain an attenuator (accurate over its useful range to610%(+1dB)of the amplitude ratio)which will allow measurement of indications beyond the linear range of the instrument.6.2Search Units,having a transducer with a maximum active area of1in.2[650mm2]with3⁄4in.[20mm]minimum to11⁄8in.[30mm]maximum dimensions shall be used for straight-beam scanning(see9.2);and search units with1⁄2in. [13mm]minimum to1in.[25mm]maximum dimensions shall be used for angle-beam scanning(see9.3).6.2.1Transducers shall be utilized at their rated frequencies.6.2.2Other search units may be used for evaluating and pinpointing indications.6.3Couplants,having good wetting characteristics such as SAE No.20or No.30motor oil,glycerin,pine oil,or water shall be used.Couplants may not be comparable to one another and the same couplant shall be used for calibration and examination.6.4Reference Blocks,containingflat-bottom holes may be used for calibration of equipment in accordance with6.1.1and may be used to establish recording levels for straight-beam examination when so specified by the order or contract.6.5DGS Scales,matched to the ultrasonic test unit and transducer to be utilized,may be used to establish recording levels for straight beam examination,when so specified by the order or contract.The DGS scale range must be selected to include the full thickness cross-section of the forging to be examined.An example of a DGS overlay is found in Appendix X3.6.5.1As an alternative to using DGS overlays,an ultrasonic instrument having integral decibel gain or attenuator controls in combination with a specifically paired transducer and DGS diagram may be used to evaluate ultrasonic indications.7.Personnel Requirements7.1Personnel performing the ultrasonic examinations to this practice shall be qualified and certified in accordance with a written procedure conforming to Recommended Practice No. SNT-TC-1A(1988or later)or another national standard that is acceptable to both the purchaser and the supplier.8.Preparation of Forging for Ultrasonic Examination 8.1Unless otherwise specified in the order or contract,the forging shall be machined to provide cylindrical surfaces for radial examination in the case of round forgings;the ends of the forgings shall be machined perpendicular to the axis of the forging for the axial examination.Faces of disk and rectangular forgings shall be machinedflat and parallel to one another.8.2The surface roughness of exteriorfinishes shall not exceed250µin.[6µm]unless otherwise shown on the forging drawing or stated in the order or the contract.8.3The surfaces of the forging to be examined shall be free of extraneous material such as loose scale,paint,dirt,and so forth.9.Procedure9.1General:9.1.1As far as practicable,subject the entire volume of the forging to ultrasonic examination.Because of radii at change of sections and other local configurations,it may be impossible to examine some sections of a forging.9.1.2Perform the ultrasonic examination after heat treat-ment for mechanical properties(exclusive of stress-relief treatments)but prior to drilling holes,cutting keyways,tapers, grooves,or machining sections to contour.If the configuration of the forging required for the treatment for mechanical properties prohibits a subsequent complete examination of the forging,it shall be permissible to examine prior to treatment for mechanical properties.In such cases,reexamine the forging ultrasonically as completely as possible after heat treatment.9.1.3To ensure complete coverage of the forging volume, index the search unit with at least15%overlap with each pass.9.1.4For manual scanning,do not exceed a scanning rate of 6in./s[150mm/s].9.1.5For automated scanning,adjust scanning speed or instrument repetition rate,or both,to permit detection of the smallest discontinuities referenced in the specification and to allow the recording or signaling device to function.At no time shall the scanning speed exceed the speed at which an acceptable calibration was made.9.1.6If possible,scan all sections of forgings in two perpendicular directions.9.1.7Scan disk forgings using a straight beam technique from at least oneflat face and radially from the circumference, wheneverpracticable.9.1.8Scan cylindrical sections and hollow forgings radially using a straight-beam technique.When practicable,also exam-ine the forging in the axial direction.9.1.9In addition,examine hollow forgings by angle-beam technique from the outside diameter surface as required in 9.3.1.9.1.10In rechecking or reevaluation by manufacturer or purchaser,use comparable equipment,search units,frequency, and couplant.9.1.11Forgings may be examined either stationary or while rotating in a lathe or on rollers.If not specified by the purchaser,either method may be used at the manufacturer’s option.9.2Straight-Beam Examination:9.2.1For straight-beam examination use a nominal21⁄4-MHz search unit whenever practicable;however,1MHz is the preferred frequency for coarse grained austenitic materials and long testing distances.In many instances on examining coarse grained austenitic materials it may be necessary to use a frequency of0.4MHz.Other frequencies may be used if desirable for better resolution,penetrability,or detectability of flaws.9.2.2Establish the instrument sensitivity by either the reflection,reference-block technique,or DGS method(see Appendix X3for an explanation of the DGS method).9.2.2.1Back-Reflection Technique(Back-Reflection Cali-bration Applicable to Forgings with Parallel Entry and Back Surfaces)—With the attenuator set at an appropriate level,for example5to1or14dB,adjust the instrument controls to obtain a back reflection approximately75%of the full-screen height from the opposite side of the forging.Scan the forging at the maximum amplification setting of the attenuator(attenu-ator set at1to1).Carry out the evaluation of discontinuities with the gain control set at the reference level.Recalibration is required for significant changes in section thickness or diam-eter.N OTE1—High sensitivity levels are not usually employed when in-specting austenitic steel forgings due to attendant high level of“noise”or “hash”caused by coarse grain structure.9.2.2.2Reference-Block Calibration—The test surface roughness on the calibration standard shall be comparable to, but no better than,the item to be examined.Adjust the instrument controls to obtain the required signal amplitude from theflat-bottom hole in the specified reference block. Utilize the attenuator in order to set up on amplitudes larger than the vertical linearity of the instrument.In those cases, remove the attenuation prior to scanning the forging.N OTE2—Whenflat-surfaced reference block calibration is specified, adjust the amplitude of indication from the reference block or blocks to compensate for examination surface curvature(an example is given in Appendix X1).9.2.2.3DGS Calibration—Prior to use,verify that the DGS overlay matches the transducer size and frequency.Accuracy of the overlay can be verified by reference blocks and procedures outlined in Practice E317.Overlays are to be serialized to match the ultrasonic transducer and pulse echo testing system that they are to be utilized with.9.2.2.4Choose the appropriate DGS scale for the cross-sectional thickness of the forging to be examined.Insert the overlay over the CRT screen,ensuring the DGS scale base line coincides with the sweep line of the CRT screen.Place the probe on the forging,adjust the gain to make thefirst back-wall echo appear clearly on CRT ing the Delay and Sweep control,shift the screen pattern so that the leading edge of the initial pulse is on zero of the DGS scale and the back-wall echo is on the DGS scale value corresponding to the thickness of the forging.Adjust the gain so the forging back-wall echo matches the height of the DGS reference slope within61Db.Once adjusted,increase the gain by the Db shown on the DGS scale for the reference slope.Instrument is now calibrated andflaw sizes that can be reliably detected can be directly read from the CRT screen.Theseflaw sizes are the equivalentflat bottom reflector that can be used as a reference point.N OTE3—The above can be utilized on all solid forgings.Cylindrical hollow forgings,and drilled or bored forgings must be corrected to compensate for attenuation due to the central hole(see Appendix X4).9.2.3Recalibration—Any change in the search unit,cou-plant,instrument setting,or scanning speed from that used for calibration shall require recalibration.Perform a calibration check at least once every8h shift.When a loss of15%or greater in the gain level is indicated,reestablish the required calibration and reexamine all of the material examined in the preceding calibration period.When an increase of15%or greater in the gain level is indicated,reevaluate all recorded indications.9.2.4During the examination of the forging,monitor the back reflection for any significant reduction in amplitude. Reduction in back-reflection amplitude may indicate not only the presence of a discontinuity but also poor coupling of the search unit with the surface of the forging,nonparallel back-reflection surface,or local variations of attenuation in the forging.Recheck any areas causing loss of back reflection.9.3Angle-Beam Examination—Rings and Hollow Forgings: 9.3.1Perform the examination from the circumference of rings and hollow forgings that have an axial length greater than 2in.[50mm]and an outside to inside diameter ratio of less than2.0to1.9.3.2Use a1MHz,45°angle-beam search unit unless thickness,OD/ID ratio,or other geometric configuration results in failure to achieve calibration.Other frequencies may be used if desirable for better resolution,penetrability,or detectability offlaws.For angle-beam inspection of hollow forgings up to 2.0to1ratio,provide the transducer with a wedge or shoe that will result in the beam mode and angle required by the size and shape of the cross section under examination.9.3.3Calibrate the instrument for the angle-beam examina-tion to obtain an indication amplitude of approximately75% full-screen height from a rectangular or a60°V-notch on inside diameter(ID)in the axial direction and parallel to the axis of the forging.A separate calibration standard may be used; however,it shall have the same nominal composition,heat treatment,and thickness as the forging it represents.The test surfacefinish on the calibration standard shall be comparable but no better than the item to be examined.Where a groupof --` , , ` ` ` , , , ` , ` ` ` , ` , ` , ` ` , , ` ` ` ` ` -` -` , , ` , , ` , ` , , ` ---identical forgings is made,one of these forgings may be used as the separate calibration standard.Cut the ID notch depth to 3%maximum of the thickness or1⁄4in.[6mm],whichever is smaller,and its length approximately1in.[25mm].Thickness is defined as the thickness of the forging to be examined at the time of examination.At the same instrument setting,obtain a reflection from a similar OD notch.Draw a line through the peaks of thefirst reflections obtained from the ID and OD notches.This shall be the amplitude reference line.It is preferable to have the notches in excess metal or test metal when possible.When the OD notch cannot be detected when examining the OD surface,perform the examination when practicable(some ID’s may be too small to permit examina-tion),as indicated above from both the OD and ID surfaces. Utilize the ID notch when inspecting from the OD,and the OD notch when inspecting from the ID.Curve wedges or shoes may be used when necessary and practicable.9.3.4Perform the examination by scanning over the entire surface area circumferentially in both the clockwise and counter-clockwise directions from the OD surface.Examine forgings,which cannot be examined axially using a straight beam,in both axial directions with an angle-beam search unit. For axial scanning,use rectangular or60°V-notches on the ID and OD for the calibration.These notches shall be perpendicu-lar to the axis of the forging and the same dimensions as the axial notch.10.Recording10.1Straight-Beam Examination—Record the following in-dications as information for the purchaser.These recordable indications do not constitute a rejectable condition unless negotiated as such in the purchase order or contract.10.1.1For individual indications,report:10.1.1.1In the back-reflection technique,individual indica-tions equal to or exceeding10%of a nominal back reflection from an adjacent area free from indications,and10.1.1.2In the reference-block or DGS technique,indica-tions equal to or exceeding100%of the reference amplitude.10.1.2For indications that are planar,traveling,or clustered, determine the location of the edges and the major and minor axes using the half-amplitude(6dB drop)technique and report: 10.1.2.1The variation in depth or planar area,or both,of traveling indications,10.1.2.2The length of major and minor axes of planar indications,and10.1.2.3The volume occupied by indication levels and the amplitude range.10.2Angle-Beam Examination—Record discontinuity indi-cations equal to or exceeding50%of the indication from the reference line.When an amplitude reference line cannot be generated,record discontinuity indications equal to or exceed-ing50%of the reference notch.These recordable indications do not constitute a rejectable condition unless negotiated as such in the purchase order.10.3Report reduction in back reflection exceeding50%of the original measured in increments of10%.10.4When recording,corrections must be made for beam divergence at the estimatedflaw depth(See Guide E1065).10.5Report indication amplitudes in increments of10%.11.Report11.1Report the following information:11.1.1All recordable indications(see Section10);11.1.2For the purpose of reporting the locations of record-able indications,a sketch shall be prepared showing the physical outline of the forging including dimensions of all areas not inspected due to geometric configuration,the pur-chaser’s drawing number,the purchaser’s order number,and the manufacturer’s serial number,and the axial,radial,and circumferential distribution of recordable ultrasonic indica-tions;11.1.3The designation(including year date)to which the examination was performed as well as the frequency used, method of setting sensitivity,type of instrument,surfacefinish, couplant,and search unit employed;and11.1.4The inspector’s name or identity and date the exami-nation was performed.12.Quality Levels12.1This practice is intended for application to forgings, with a wide variety of sizes,shapes,compositions,melting processes,and applications.It is,therefore,impracticable to specify an ultrasonic quality level which would be universally applicable to such a diversity of products.Ultrasonic accep-tance or rejection criteria for individual forgings should be based on a realistic appraisal of service requirements and the quality that can normally be obtained in the production of the particular type forging.12.2Austenitic stainless steel forgings are more difficult to penetrate ultrasonically than similar carbon or low-alloy steel forgings.The degree of attenuation normally increases with section size;and the noise level,generally or in isolated areas, may become too great to permit detection of discrete indica-tions.In most instances,this attenuation results from inherent coarse grained microstructure of these austenitic alloys.For these reasons,the methods and standards employed for ultra-sonically examining carbon and low-alloy steel forgings may not be applicable to austenitic steel forgings.In general,only straight beam inspecting using a back-reflection reference standard is used.However,utilization of Practice A745/ A745M for austenitic steel forgings can be considered ifflat bottom hole reference standards or angle beam examination of these grades are required.12.3Acceptance quality levels shall be established between purchaser and manufacturer on the basis of one or more of the following criteria.12.3.1Straight-Beam Examination:12.3.1.1No indications larger than some percentage of the reference back reflection.12.3.1.2No indications equal to or larger than the indication received form theflat-bottom hole in a specific reference block or blocks.12.3.1.3No areas showing loss of back reflection larger than some percentage of the reference back reflection.12.3.1.4No indications per12.3.1.1or12.3.1.2coupled with some loss of resultant back reflection per12.3.1.3. 12.3.1.5No indications exceeding the reference level speci-fied in the DGSmethod12.3.2Angle-Beam Examination—No indications exceed-ing a stated percentage of the reflection from a reference notch or of the amplitude reference line.12.4Intelligent application of ultrasonic quality levels in-volves an understanding of the effects of many parameters on examination results.13.Keywords13.1angle beam examination;back-reflection;DGS; reference-block;straight beam examination;ultrasonicSUPPLEMENTARY REQUIREMENTSThe following supplementary requirements shall apply only when specified by the purchaser in the inquiry,contract,or order.Details shall be agreed upon by the manufacturer and the purchaser.S1.Reporting CriteriaS1.1Reference block calibration shall be performed using at least three holes,spaced to approximate minimum,mean, and maximum thickness as tested,and shall be used to generate a distance amplitude correction(DAC)curve.The following hole sizes apply:1.1⁄16in.[1.5mm]flat bottom holes(FBH)for thicknesses lessthan1.5in.[40mm]2.1⁄8in.[3mm]FBH for thicknesses of1.5-6in.[40-150mm]inclusive3.1⁄4in.[6mm]FBH for thicknesses over6in.[150mm]S1.2Reporting criteria include:1.All indications exceeding the DAC curve2.Two or more indications separated by1⁄2in.[12mm]or lessAPPENDIXES(Nonmandatory Information)X1.TYPICAL TUNING LEVEL COMPENSATION FOR THE EFFECTS OF FORGING CURV ATURE X1.1The curve(Fig.X1.1)was determined for the follow-ing test conditions:Material nickel-molybdenum-vanadium alloy steel(Specification A469/A469M,Class4)Instrument Type UR ReflectoscopeSearch unit11⁄8-in.[30-mm]diameter quartzFrequency21⁄4MHzReference block ASTM No.3-0600(aluminum)Reflection area of refer-ence curve 0.010in.2[6.5mm2]in nickel-molybdenum-vana-dium alloy steelSurfacefinish250µin.[6µm],max,roughnessX1.2To utilize curve,adjust reflectoscope sensitivity to obtain indicated ultrasonic response on ASTM No.3-0600 reference block for each diameter as shown.A response of1in. [25mm]sweep-to-peak is used forflat e attenuator to obtain desired amplitude,but do testing at1to1setting.FIG.X1.1Typical Compensation Curve for Effects of ForgingCurvature--`,,```,,,`,```,`,`,``,,`````-`-`,,`,,`,`,,`---X2.INDICATION AMPLITUDE COMPENSATION FOR TEST DISTANCE V ARIATIONSX2.1The curve (Fig.X2.1)has been determined for the following test conditions:Materialnickel-molybdenum-vanadium alloy steel (Specification A 469/A 469M ,Class 4)Instrument Type UR ReflectoscopeSearch unit 11⁄8-in.[30-mm]diameter quartz Frequency 21⁄4MHz CouplantNo.20oilReference blockASTM No.3-0600(aluminum)Reflection area of refer-ence curve 0.010in.2[65mm 2]in nickel-molybdenum-vana-dium alloy steelSurface finish250µin.max,roughnessX2.2To utilize curve,establish amplitude from ASTM reference block to coincide with values from Appendix X1.X3.BACKGROUND INFORMATION ON THE DGSMETHODSFIG.X2.1Typical Distance-Amplitude CorrectionCurveFIG.X3.1Example of DGSOverlay--`,,```,,,`,```,`,`,``,,`````-`-`,,`,,`,`,,`---X3.1The overlay in Fig.X3.1was designed for a 2.0MHz,1in.[25mm]diameter probe and a maximum test distance of 39.4in.[1000mm].In order to use this overlay,the sweep time base must be accurately calibrated and aligned with the overlay being used.The back reflection is then adjusted to either the RE +10dB line or the RE +20dB line,based on the thickness being tested;additional gain (10or 20dB)is added asdesignated by the line being used.The RE +20line covers a range to approximately 15.7in.[400mm]and the RE +10line from 15.7to 39.4in.[400to 1000mm].At this calibration level,the flaw size is read directly from the screen.Flaw sizes from 0.078to 1in.[2to 25mm]can be read directly from the overlay.PENSATION FOR CENTER HOLE ATTENUATION ON CYLINDRICAL BORED OR HOLLOW FORGINGSUTILIZING THE DGS METHODX4.1The hole in a cylindrical bored forging causes sound scatter.In these cases,a correction is required which depends on the wall thickness and bore diameter.X4.1.1Determine the correction value in dB from the Nomogram (Fig.X4.1).With the gain-dB control,proceed as described in 9.2.2.4reducing the flaw detector gain by the correction valuedetermined.N OTE —Metric units are presented in this figure to be consistent with DGS scales presently available.Conversion to English units would also be acceptable.FIG.X4.1The Influence of a Central Bore on the Backwall Echo Amplitude of Cylindrical or Plane ParallelForgings--`,,```,,,`,```,`,`,``,,`````-`-`,,`,,`,`,,`---SUMMARY OF CHANGESCommittee A01has identified the location of selected changes to this standard since the last issue (A 388/A 388M –08)that may impact the use of this standard.(Approved May 1,2009.)(1)Added 6.5.1.Committee A01has identified the location of selected changes to this standard since the last issue (A 388/A 388M –07)that may impact the use of this standard.(Approved Nov.1,2008.)(1)Dropped the term heavy from the title and body of the standard.(2)Added Significance and Use (Section 4).ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA 19428-2959,United States.Individual reprints (single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585(phone),610-832-9555(fax),or service@ (e-mail);or through the ASTM website ().--`,,```,,,`,```,`,`,``,,`````-`-`,,`,,`,`,,`---。
ASTM A388 大型钢锻件超声检测标准操作方法-中文
ASTM A 388-05大型钢锻件超声检测标准操作方法1 适用范围1.1 本操作方法包括用直射波和斜射波技术对大型钢锻件作接触式脉冲回波式超声波检测规程。
直声波法包括DGS(距离-增益-当量)法。
见附录X31.2 凡因询价,合同,订货或技术条件的规定要求按照ASTM A388/A388M 进行超声检测时,均用采用本操作方法。
1.3 以英制或SI 制单位表示的数值均为标准数值,两种单位表示的数值不准确相等,因此每种单位必须单独使用。
两种单位组合使用产生的结果可能和本方法不一致。
1.4 本方法和材料规范均用英制和SI 制表示。
但除了订货规范采用规范符号M(SI)外,应使用英制加工材料。
1.5 本标准不是关于与使用有关的安全问题,使用本标准的用户有责任在使用前建立适当的安全健康操作方法并确定这种方法的可行性。
2.引用文件2.1ASTM 标准A469/A 469M 发电机用钢锻件真空熔炼技术规范A745/A745M 奥氏体钢锻件的超声检测操作方法E317 无电子测量设备的脉冲回波式超声检测系统性能评定操作方法。
E428 超声检测用参考试块的制作和质量控制操作方法。
E 1065 超声检测探头的性能评定指南。
2.2 ANSI 标准(美国国家标准)B 46.1 表面结构2.3 其它文件推荐的无损检测人员资格鉴定和认证的操作方法SNT-TC-1A(1988 版或其后的)3.术语单个指示—指当探头沿任何方向移动时波幅从最高点下降至一定波高的一个指示,由于太小被认为非平面型指示或游动指示。
密集型指示—指在锻件边长2in(50mm)的立方体内或更小体积内有五个或更多的指示平面型指示—指指示的最大长度大于1in[25mm]或大于探头主要尺寸两倍的指示,但无论哪种都不是游动的指示。
游动指示—指探头在锻件表面移动时波的前沿在工件深度方向上移动1in[25mm]或更多距离的指示。
4.订货信息4.1 当本方法用于询价签合同,订货时,订货单位应当声明,并提供如下信息:4.1.1 标准数据(包括日期)4.1.2 按照8.2.2 和8.3.3 确定探伤灵敏度的方法。
ASTM A标准(中文)
AA1000-99 弹簧专用碳钢和合金钢钢丝规范A1001-99 大型材高强度钢铸件规范A1002-99 镍铝类合金铸件规范A100-93(2000) 硅铁A101-93(2000) 铬铁A102-93(2000) 钒铁合金A105/A105M-01 管系部件用碳素钢锻件A106-999e1 高温用无缝碳素钢管A108-99 优质冷加工碳素钢棒材技术规范A109/A109M-00e1 冷轧碳素钢带技术规范A111-99a 电话和电报线路用镀锌"铁"丝规格A116-00 镀锌钢丝编织栏栅网A121-99 镀锌刺钢丝A123/A123M-00 钢铁产品的锌镀层(热浸镀锌)技术规范A125-96 热处理螺旋形钢弹簧A126-95(2001) 阀门、法兰和管配件用灰铁铸件A128/A128M-93(1998) 钢铸件,奥氏体锰A131/A131M-94 海船用结构钢A132-89(2000) 钼铁合金A134-96 电熔(电弧)焊钢管(NPS为16英寸和16英寸以上)A135-01 电阻焊钢管A139-00 电熔(电弧)焊钢管(4英寸以上的)A143-74(1999) 热浸镀锌结构钢制品防脆裂措施和探测脆裂的程序A146-64(2000) 氧化钼制品A148/A148M-01 结构用高强度钢铸件A153/A153M-00 钢铁制金属构件上镀锌层(热浸)A159-83(2001) 汽车用灰铁铸件A167-99 不锈钢和耐热铬镍钢板、薄板及带材A176-99 不锈钢和耐热铬钢板、薄板及带材A178/A178M-95(2000) 电阻焊接碳素钢钢管及碳锰钢锅炉和过热器管的技术规范A179/A179M-90a(1996)e1 热交换器和冷凝器用无缝冷拉低碳钢管A181/A181M-01 普通锻制碳素钢管的规格A182/A182M-01 高温设备用锻制或轧制的合金钢管法兰、锻制管件、阀门及零件A183-98 钢轨用碳素钢螺栓和螺母A184/A184M-01 混凝土加筋用变形钢筋编织网A185-97 钢筋混凝土用焊接钢丝结构A1-00 碳素钢丁字轨A192/A192M-91(1996)e1 高压用无缝碳素钢锅炉管A193/A193M-01 高温设备用合金钢和不锈钢螺栓材料A194/A194M-01 高温和高压设备用碳素钢与合金钢螺栓和螺母的规格A197/A197M-00 化铁炉用可锻铸铁A20/A20M-01 压力容器用钢板材通用要求A202/A202M-93(1999) 压力容器用铬锰硅合金钢板A203/A203M-97 压力容器用镍合金钢板A204/A204M-93(1999) 压力容器用钼合金钢板A209/A209M-98 锅炉和过热器用无缝碳钼合金钢管A210/A210M-96 锅炉和过热器用无缝中碳素管A213/A213M-01 无缝铁素体和奥氏体合金钢锅炉、过热器和换热器管A214/A214M-96 热交换器与冷凝器用电阻焊接碳素钢管A216/A216M-93(1998) 高温下使用的适合于熔焊的碳素钢铸件规格A217/A217M-01 适合高温受压零件用合金钢和马氏体不锈钢铸件A21-94(1999) 铁路用未经热处理和经热处理的碳素钢轴A220/A220M-99 珠光体可锻铁A225/A225M-93(1999) 压力容器用锰矾镍合金钢板A227/A227M-99 机械弹簧用冷拉钢丝A228/A228M-00 乐器用优质弹簧钢丝A229/A229M-99 机械弹簧用油回火的钢丝A230/A230M-99 阀门用油回火优质碳素钢弹簧丝A231/A231M-96 铬钒合金钢弹簧丝A232/A232M-99 阀门用优质铬钒合金钢弹簧丝A234/A234M-00a 中温与高温下使用的锻制碳素钢及合金钢管配件A239-95(1999) 用普力斯试验法(硫酸铜浸蚀)确定铁或钢制品上镀锌层最薄点的测试方法A240/A240M-01 压力容器用耐热铬及铬镍不锈钢板、薄板及带材A242/A242M-00a 高强度低合金结构钢A247-67(1998) 铁铸件中石墨显微结构评定试验方法A249/A249M-01 锅炉、过热器、换热器和冷凝器用焊接奥氏体钢管A250/A250M-95(2001) 锅炉和过热器用电阻焊铁素体合金钢管A252-98e1 焊接钢和无缝钢管桩A254-97 铜焊钢管规格A255-99 测定钢淬透性用末端淬火试验的标准试验方法A262-98 奥氏体不锈钢晶间浸蚀敏感性的检测A263-94a(1999) 耐腐蚀铬钢包覆板材,薄板材及带材技术规范A264-94a(1999) 包覆的不锈铬镍钢板,薄板及带材规格A265-94a(1999) 镍和镍基合金包覆钢板规格A266/A266M-99 压力容器部件用碳素钢锻件规格A268/A268M-01 一般设备用无缝和焊接铁素体与马氏体不锈钢管A269-01 一般设备用无缝和焊接奥氏体不锈钢管A27/A27M-95(2000) 通用碳素钢铸件A270-01 卫生设施用无缝钢和焊接奥氏体不锈钢管A275/A275M-98 钢锻件的磁粉检查试验方法A276-00a 不锈钢棒材和型材A278-93 适用于650F容压部件用灰铸铁件的技术规范A283/A283M-00 低和中等抗拉强度碳素钢板A285/A285M-90(2001) 压力容器用低和中等抗拉强度的碳素钢板A288-91(1998) 涡轮发电机磁性定位环用碳素钢和合金钢锻件A289/A289M-97 发电机非磁性定位环用合金钢锻件的技术规范A29/A29M-99e1 热锻及冷加工碳素钢和合金钢棒A2-90(1997) 普通型,带槽和防护型碳素工字钢轨A290-95(1999) 减速器环用碳素钢和合金钢锻件A291-95(1999) 减速器小齿轮、齿轮和心轴用碳素钢和合金钢锻件A295-98 高碳耐磨轴承钢技术规范A297/A297M-97(1998) 一般用耐热铬铁与镍铬铁合金钢铸件规格A299/A299M-97e1 压力容器用锰硅碳钢板A302/A302M-97e1 压力容器用锰钼和锰钼镍合金钢板A304-96 有末端淬火淬透性要求的合金钢棒材的技术规范A307-00 抗拉强度为60000psi的碳素钢螺栓和螺柱的技术规范A308-99 经热浸处理镀有铅锡合金的薄板材的技术规范A309-94a(1999) 用三点试验法测定长镀锌薄钢板镀层的重量成分的试验方法A311/A311M-95(2000) 有机械性能要求的消除应力的冷拉碳素钢棒A312/A312M-00c 无缝和焊接奥氏体不锈钢管A313/A313M-98 不锈钢弹簧丝技术规范A314-97 锻造用不锈及耐热钢坯及钢棒规格A31-00 钢铆钉及铆钉和压力容器用棒材A319-71(2001) 高温无压部件用灰铁铸件A320/A320M-01 低温用合金钢螺栓材料规格A321-90(1995)e1 经淬火和回火的碳素钢棒A322-91(1996) 合金钢棒材.级别A323-93(2000) 硼铁规格A324-73(2000) 钛铁合金A325-00 经热处理最小抗拉强度为120/105ksi的钢结构螺栓A325M-00 结构钢连接件用高强度螺栓(米制)A327-91(1997) 铸铁冲击试验方法A327M-91(1997) 铸铁冲击试验方法(米制)A328/A328M-00 薄钢板桩A331-95(2000) 冷加工合金钢棒A333/A333M-99 低温用无缝与焊接钢管规格A334/A334M-99 低温设备用无缝与焊接碳素和合金钢管A335/A335M-01 高温用无缝铁素体合金钢管A336/A336M-99e1 压力与高温部件用合金钢锻件规格A338-84(1998) 铁路,船舶和其他重型装备在温度达到650华氏度(345摄氏度)时使用的可锻铸铁法兰,管件和阀门零件A34/A34M-96 磁性材料的抽样和采购试验的标准惯例A340-99a 有关磁性试验用符号和定义的术语A341/A341M-00 用直流磁导计和冲击试验法测定材料的直流磁性能的试验方法A342/A342M-99 磁铁材料导磁率的试验方法A343-97 在电力频率下用瓦特计-安培计-伏特计法(100-1000赫兹)和25 厘米艾普斯亭(EPSTEIN) 机架测定材料的交流电磁性能的试验方法A345-98 磁设备用平轧电炉钢A348/A348M-00 用瓦特计--安培计--伏特计法(100-10000赫兹)和25厘米艾普斯亭框测定材料的交流磁性能的试验方法A350/A350M-00c 要求进行缺口韧性试验的管道部件用碳素钢与低合金钢锻件技术规范A351/A351M-00 容压零件用奥氏体及奥氏体铁素体铸铁的技术规范A352/A352M-93(1998) 低温受压零件用铁素体和马氏体钢铸件规格A353/A353M-93(1999) 压力容器用经二次正火及回火处理的含9%镍的合金钢板A354-01 淬火与回火合金钢螺栓,双头螺栓及其他外螺纹紧固件规格A355-89(2000) 渗氮用合金钢棒A356/A356M-98e1 蒸汽轮机用厚壁碳素钢、低合金钢和不锈钢铸件A358/A358M-01 高温用电熔焊奥氏体铬镍合金钢管A36/A36M-00a 碳素结构钢技术规范A363-98 地面架空线用镀锌钢丝绳A367-60(1999) 铸铁的激冷试验方法A368-95a(2000) 不锈钢和耐热钢丝绳的标准A369/A369M-01 高温用锻制和镗孔碳素钢管和铁素体合金钢管A370-97a 钢制品机械测试的标准试验方法和定义A372/A372M-99 薄壁压力容器用碳素钢及合金钢锻件A376/A376M-01 高温中心站用无缝奥氏钢管A377-99 球墨铸铁压力管规范索引A380-99e1 不锈钢零件、设备和系统的清洗和除垢A381-96 高压输送用金属弧焊钢管A384-76(1996) 防止钢组件热浸镀锌时翘曲和扭曲用安全保护A385-00 提供高质量镀锌覆层(热浸)A3-01 低、中、高碳素钢鱼尾(连接)板A387/A387M-99e1 压力容器用铬钼合金钢板A388/A388M-95(2000)e1 重型钢锻件超声波检测A389/A389M-93(1998) 适合高温受压部件用经特殊热处理的合金钢铸件规格A390-95(2001) 饲养家禽用镀锌钢丝栏栅网(六角形和直线形)A391/A391M-98 80号合金钢链条A392-96 镀锌钢丝链环栏栅网A394-00 传动塔架用镀锌和裸露钢螺栓A395/A395M-99 高温用铁素体球墨铸铁受压铸件A400-69(2000) 钢棒的成分及机械性能选择指南A401/A401M-98 铬硅合金钢丝A403/A403M-00b 锻制奥氏体不锈钢管配件A407-93(1998) 盘簧用冷拉钢丝A409/A409M-01 腐蚀场所或高温下使用的焊接大口径奥氏体钢管A411-98 镀锌低碳钢铠装线A413/A413M-00 碳素钢链A414/A414M-00 压力容器用碳素薄钢板A416/A416M-99 预应力混凝土用无涂层七股钢铰线A417-93(1998) 之字型、方型和正弦型装垫弹簧元件用冷拉钢丝A418-99 涡轮机及发电机钢转子锻件的超声波检查方法A420/A420M-00b 低温下用锻制碳素钢和合金钢管配件A421/A421M-98a 预应力混凝土用无涂层消除应力钢丝的技术规范A423/A423M-95(2000) 无缝和电焊低合金钢管A424-00 搪瓷用钢薄板A426-92(1997) 高温用离心铸造的铁素体合金钢管A427-74(1996)e1 冷轧和热轧用锻制合金钢辊A428/A428M-01 钢铁制品上铝覆层重量的测试方法A434-90a(2000) 热轧与冷精轧经回火及淬火的合金钢棒A435/A435M-90(2001) 钢板的直射束纵向超声波检验A436-84(1997)e1 奥氏体灰口铁铸件A437/A437M-01 高温用经特殊处理的涡轮型合金钢螺栓材料A438-80(1997) 灰铸铁横向弯曲试验A439-83(1999) 奥氏体可锻铸铁铸件A447/A447M-93(1998) 高温用镍铬铁合金钢铸件(25-12级)A449-00 经淬火和回火的钢螺栓和螺柱A450/A450M-96a 碳素钢管、铁素体合金钢管及奥氏体合金钢管A451-93(1997) 高温用离心铸造的奥氏体钢管A453/A453M-00 具有同奥氏体钢相类似的膨胀系数、屈服强度为50-120Ksi(345-827MPa)的耐高温螺栓材料A455/A455M-90(2001) 压力容器用高强度碳锰钢板A456/A456M-99 大型曲轴锻件的磁粉检查A459-97 镀锌平轧扁钢铠装带A460-94(1999) 包铜钢丝绳标准A463/A463M-00 热浸镀铝薄钢板A466/A466M-98 非焊接碳素钢链A467/A467M-98 机器链和盘旋链A469-94a(1999) 用于发电机转子的真空处理钢锻件A470-01 涡轮机转子和轴用经真空处理的碳素钢和合金锻件A471-94(1999) 涡轮转子转盘和转轮用真空处理合金钢锻件技术规范A472-98 蒸汽涡轮机轴及转子锻件的热稳定性的试验方法A473-01 不锈和耐热钢锻件A474-98 包铝钢丝绳标准A475-98 镀锌钢丝绳A476/A476M-00 造纸厂干燥辊用球墨可锻铸铁件A478-97 铬镍不锈钢和耐热钢制编织钢丝A479/A479M-00 锅炉及压力容器用不锈钢和耐热钢棒与型材A47/A47M-99 铁素体可锻铁铸件A480/A480M-01 扁平轧制耐热不锈钢厚板材、薄板材和带材通用要求A481-94(2000) 金属铬A482-93(2000) 铬铁硅A483-64(2000) 硅锰合金A484/A484M-00 不锈及耐热锻钢棒,钢坯及锻件的规格A485-00 高淬透性耐磨轴承钢的技术规范A487/A487M-93(1998) 受压钢铸件A488/A488M-01 钢铸件焊接规程和工作人员的合格鉴定A48-94ae1 灰铁铸件A489-00 碳素钢吊耳A490-00 最小拉伸强度为150千磅/平方英寸热处理钢结构螺栓A491-96 镀铝钢链环栏栅结构A492-95(2000) 耐热不锈钢丝绳A493-95(2000) 冷镦和冷锻不锈钢和耐热钢丝A494/A494M-00 镍和镍合金铸件A495-94(2000) 硅钙合金钢技术规范A496-97ae1 钢筋混凝土用变形钢丝A497-99e1 钢筋混凝土用焊接变形钢丝网A498-98 无缝与焊接碳素钢,铁素体钢与奥氏体钢制有整体散热片的换热器钢管A49-01 经热处理的碳素钢鱼尾(连接)板,微合金鱼尾板及锻制碳素钢异型鱼尾板A499-89(1997)e1 轧制丁字钢轨用的碳素钢棒材及型材的技术规范A500-01 圆形与异型焊接与无缝碳素钢结构管A501-01 热成型焊接与无缝碳素钢结构管A503/A503M-01 锻制大型曲轴的超声波检验A504-93(1999) 锻制碳素钢轮A505-00 热轧和冷轧合金钢薄板和带材A506-00 正规质量及优质结构的热轧和冷轧合金钢薄板与带材A507-00 优质拉拔,热轧和冷轧合金钢薄板与带材A508/A508M-95(1999) 压力容器用经回火和淬火真空处理的碳素钢与合金钢锻件A510-00 碳素钢盘条和粗圆钢丝通用要求A510M-00 碳素钢盘条和粗圆钢丝(米制)A511-96 无缝不锈钢机械管A512-96 冷拉对缝焊碳素钢机械管A513-00 电阻焊碳素钢与合金钢机械钢管A514/A514M-00a 焊接用经回火与淬火的高屈服强度合金钢板A515/A515M-92(1997) 中温及高温压力容器用碳素钢板A516/A516M-90(2001) 中温及低温压力容器用碳素钢板A517/A517M-93(1999) 压力容器用经回火与淬火的高强度合金钢板A518/A518M-99 耐蚀高硅铁铸件A519-96 无缝碳素钢与合金钢机械管A521-96 一般工业用闭式模钢锻件A522/A522M-95b(2000) 低温用锻制或轧制含镍8%和9%的合金钢法兰,配件,阀门和零件规格A523-96 高压管型电缆线路用平端无缝与电阻焊钢管A524-96 常温和低温用无缝碳素钢管A529/A529M-00 高强度碳锰结构钢质量A530/A530M-99e1 特种碳素钢和合金钢管A531/A531M-91(1996) 涡轮发电机钢定位环的超声波检验A532/A532M-93a(1999)e1 耐磨铸铁A533/A533M-93(1999) 压力容器用经回火和淬火的锰钼及锰钼镍合金钢板A534-94 用于耐摩擦轴承的渗碳钢A536-84(1999)e1 球墨铸铁件A537/A537M-95(2000) 压力容器用经热处理的碳锰硅钢板A53/A53M-01 无镀层热浸的、镀锌的、焊接的及无缝钢管的技术规范A539-99 天然气和燃料油管线用电阻焊钢盘管A540/A540M-00 特殊用途的合金钢螺栓材料A541/A541M-95(1999) 压力容器部件用经淬火和回火的碳素钢及合金钢锻件A542/A542M-99e1 压力容器用经回火和淬火的铬钼、铬钼钒及铬钼钒钛硼合金钢板A543/A543M-93(1999) 压力容器用经回火和淬火的镍铬钼合金钢板A550-78(2000) 铌铁合金A551-94(1999) 钢轮箍A553/A553M-95(2000) 压力容器用经回火和淬火的含8%及9%镍的合金钢板A554-98e1 焊接的无缝钢机械管A555/A555M-97 耐热不锈钢丝和盘条的通用要求A556/A556M-96 无缝冷拉碳素钢给水加热器管A560/A560M-93(1998) 铬镍合金铸件A561-71(1999) 工具钢棒的宏观刻蚀试验A562/A562M-90(2001) 搪玻璃或扩散金属镀层的压力容器用锰钛合金碳素钢板A563-00 碳合金钢螺母A563M-00 碳素钢及合金钢螺母技术规范(米制)A564/A564M-01 热轧及冷精轧时效硬化处理过的不锈钢棒材和型材技术规范A565-97 高温用马氏体不锈钢棒,锻件和锻制坯规格A568/A568M-00b 热轧及冷轧高强度低合金碳素钢薄板A571-84(1997) 适用于低温压力容器零件的奥氏体球墨铸铁件A571M-84(1997) 适用于低温压力容器零件的奥氏体球墨铸铁件(米制)A572/A572M-00a 高强度低合金钴钒结构钢技术规范A573/A573M-00a 增强韧性的结构碳素钢板A574-00 合金钢内六角螺钉A574M-00 合金钢内六角螺钉(米制)A575-96 商品级碳素钢棒(M级)A576-90b(2000) 特级热轧碳素钢棒A577/A577M-90(2001) 钢板的超声角波束检验A578/A578M-96(2001) 特殊设备用的普通钢板和包覆钢板的直波束超声探伤检验A579-99 超高强度合金钢锻件A580/A580M-98 耐热不锈钢丝A581/A581M-95b(2000) 高速切削用耐热不锈钢丝和盘条A582/A582M-95b(2000) 热轧或冷精轧的高速切削不锈及耐热钢棒A583-93(1999) 铁路用铸钢轮A584-97 镀铝钢丝编织栅栏网A585-97 镀铝刺钢丝A586-98 镀锌平行和螺旋形钢丝绳A587-96 化学工业用电阻焊低碳钢管A588/A588M-00a 高强度低合金结构钢4英寸(100mm)厚屈服点最小为50ksi(345MPa) A589-96 水井用无缝和焊接碳素钢管A591/A591M-98 薄镀层电解镀锌薄钢板A592/A592M-89(1999) 压力容器用经回火和淬火的高强度低合金钢锻制附件和零件A595-98 结构用圆锥形低碳钢管A596/A596M-95(1999) 用环形试验法和冲击法测定材料的直流磁性能的试验方法A597-87(1999) 铸造工具钢A598-92(1997) 磁放大器磁芯的磁性能测试法A599/A599M-99 锡制品,电解镀锡的冷滚轧薄板规范A6/A6M-01 轧制结构钢板材、型材和薄板桩通用技术要求A600-92a(1999) 高速工具钢A601-96(2000) 电解金属锰A602-94(1998) 汽车用可锻铸铁件A603-98 镀锌结构钢丝绳A604-93(1998) 自耗电极再溶化钢棒与钢坯的宏观腐蚀试验方法A606-98 改进防大气腐蚀性的热轧和冷轧高强度低合金钢薄板和带材A608-91a(1998) 高温受压离心铸造的铁铬镍高合金钢管A609/A609M-91(1997) 碳素钢,低合金钢和马氏体不锈钢铸件的超声波检测A610-79(2000) 尺寸测量用铁合金的取样和试验A611-00 冷轧优质碳素结构钢薄板A612/A612M-00 中温和低温压力容器用高强度碳素钢板A615/A615M-01a 钢筋混凝土配筋用变形和光面坯钢筋A618-01 热成型焊接与无缝高强度低合金结构钢管系A623-00 锡轧制产品A623M-00 镀锡薄钢板轧制品通用要求(米制)A624/A624M-98 锡辊轧制品.单压延电解马口铁A625/625M-98 一次轧制原钢板(未镀)和镀锡薄钢板轧制产品技术规范A626/A626M-98 二次压延电解镀锡厚钢板轧制品技术规范A626/A626M-98 锡轧制品.二次压延的电解镀锡板(米制)A627-95 安全设备用均质不易加工的钢棒A629-88(1994)e1 安全设备用不易加工的扁钢棒和型材A630-98 热浸电解镀锡板镀锡层重量测定的方法A632-01 通用无缝和焊接奥氏体不锈钢管(小直径)A633/A633M-00a 正火的高强度低合金结构钢A635/A635M-00 热轧碳素钢薄板,带材和重型粗盘条规格A636-76(2000) 氧化镍烧结块A638/A638M-00 高温用沉积硬化铁基超级合金棒,锻件及锻坯料A640-97 8字型缆吊架用镀锌钢丝绳A641/A641M-98 镀锌(电镀)碳素钢丝技术规范A644-98 铁铸件的相关术语A645/A645M-99a 压力容器用经特殊热处理的5%镍合金钢板A646-95(1999) 飞机及航空器锻件用优质合金钢大方坯及坯段A648-95(2000) 预应力混凝土管用冷拉钢丝A649/A649M-99 波纹纸机械用锻制钢辊规格A650/A650M-98 二次压延的锡轧黑板材A653/A653M-00 热浸处理的镀锌铁合金或镀锌合金薄钢板的标准规范A656/A656M-00a 具有改良可模锻性的高强度低合金热轧结构钢板A657/A657M-98a 一次和二次压延电解镀铬黑钢板轧制品技术规范A65-01 钢轨道钉A659/A659M-97 商业级热轧碳素钢薄板和带材(最大含碳量为0.16%-0.25%) A660-96 高温用离心铸造碳素钢管A662/A662M-99 中温和低温压力容器用锰碳钢板规格A663/A663M-89(2000) 商品级碳素钢棒的机械特性A664-99 在ASTM规范中对电工钢和层压钢级别的识别A666-00 退火或冷加工的奥氏体不锈钢薄板、带材、中厚板和扁棒A667/A667M-87(1998) 离心铸造的双金属(灰口及白口铸铁)圆柱体A668/A668M-96e1 一般工业用碳素钢和合金钢锻件A66-01 钢质螺旋道钉A671-96 常温和较低温用电熔焊钢管A672-96 中温高压用电熔焊钢管A673/A673M-95 结构钢冲击试验的取样程序A674-00 水或其它液体用球墨铸铁管的聚乙烯包装A675/A675M-90a(2000) 专用热轧碳素钢棒的机械特性A677/A677M-99 全处理型无取向电工钢A678/A678M-00a 结构用经回火和淬火的高强度低合金碳素钢板规格A679/A679M-00 硬(冷)拉高抗拉强度钢丝A67-00 热加工低碳钢和高碳钢垫板技术规范A681-94(1999) 合金工具钢A682/A682M-00 弹簧用冷轧高碳钢带材A683/A683M-99 半处理型无取向电工钢A684/A684M-99 冷轧高碳钢带材A686-92(1999) 碳素工具钢A688/A688M-01 焊接的奥氏体不锈钢给水加热器管A689-97 弹簧用碳素钢及合金钢棒A690/A690M-00a 在海洋环境中使用的高强度低合金工字形钢桩和薄板桩规格A691-98 高温下高压装置用电熔焊碳素钢和合金钢管A693-93(1999) 沉淀硬化耐热不锈钢板、薄板和带材A694/A694M-00 高压传输设备用碳素钢及合金钢管法兰、配件、阀门及零件用锻件A695-90b(1995)e1 流体动力设备专用热锻碳素钢棒A696-90a(2000) 压力管道部件专用热锻或冷精轧碳素钢棒A697-98 用伏特计、安培计和瓦特计法测定迭层铁芯样品的交流磁特性的试验方法A698/A698M-92(1997)e1 在弱交流磁场中磁屏蔽效率的试验方法A700-99e1 钢制品国内装运的包装、标记和装载方法A701-96(2000) 硅锰铁A702-89(2000) 热锻钢栅栏柱和组件A703/A703M-01 受压部件用钢铸件A704/A704M-96 混凝土加筋用焊接普通钢棒或杆的光面钢筋或钢筋网A705/A705M-95(2000) 时效硬化的不锈和耐热钢锻件A706/A706M-01 混凝土配筋用变形低合金光面无节钢筋A707/A707M-00a 低温设备用锻制碳素钢和合金钢法兰A709/A709M-01 桥梁用结构钢A710/A710M-00 低碳时效硬化的镍铜铬钼铌合金钢A711-92(1996)e1 钢锻件坯料A712-97 软磁性合金电阻率的测试方法A713-93(1998) 热处理部件用高碳弹簧钢丝A714-99 高强度低合金焊接钢管和无缝钢管A716-99 球墨铸铁涵洞管A717/A717M-95 单片样品表面绝缘电阻率的试验方法A719-97 磁性材料的叠装系数的试验方法A720-97 无取向电工钢延展性的试验方法A721-97 取向的电工钢的延展性试验方法A722/A722M-98 预应力混凝土用无涂覆的高强度钢筋A723/A723M-94(1999) 高强度压力元件用合金钢锻件A724/A724M-99 叠层焊接的压力容器用经淬火及回火的碳素钢压力容器板A726-00 半成品型冷轧磁性迭片级钢A727/A727M-00 具有固定切口韧性的管道部件用碳素钢锻件A729-93(1999) 货物运输及电气铁路用热处理合金钢轴A730-93(1999) 铁路用碳素钢及合金钢锻件A732/A732M-98 一般设备用熔模铸造碳素低合金钢及高强度加温钴合金钢铸件A733-99 焊接及无缝碳素钢和奥氏体不锈钢管接头A734/A734M-87a(1997) 经淬火和回火的合金钢与高强度低合金钢压力容器板A735/A735M-99 中温和低温用低碳锰钼钶合金钢压力容器板A736/A736M-88(2000) 低碳时效硬化的镍铜铬钼铌和镍铜锰钼铌合金钢压力容器板A737/A737M-99 高强度低合金钢压力容器板A738/A738M-00 中温和低温设备用经热处理的碳锰硅钢压力容器板A739-90a(2000) 升温或/和加压部件用热轧合金钢棒A740-98 钢丝网(编织或焊接电镀钢丝网)A741-98 公路护栏用镀锌钢丝绳和配件A742/A742M-98 波纹钢管用预涂聚合物和金属涂覆钢薄板A743/A743M-98ae1 一般用耐腐蚀铬铁及镍铬铁合金铸件A744/A744M-00 严酷条件下使用的耐腐蚀镍铬铁合金铸件A745/A745M-94(1999) 奥氏体钢锻件的超声波检验A746-99 排污管用球墨铸铁A747/A747M-99 沉淀硬化不锈钢铸件A748/A748M-87(1998) 压力容器用静态铸造的激冷白口铁-灰口铁双金属轧辊A749/A749M-97 热轧碳素钢和高强度低合金钢带材通用要求A74-98 铸铁污水管及配件的技术规范A750-77(1994)e1 阻挡区域用钢制通风格栅A751-96 钢制品化学分析的实验方法、操作和术语A752-93(1998) 合金钢条和粗圆钢丝A752M-93(1998) 合金钢条和粗圆钢丝(米制)A753-97 镍铁软磁合金A754/A754M-96(2000) X射线荧光涂层厚度的试验方法A755/A755M-99 外露建筑材料用热浸涂覆和用卷涂工艺预涂的钢薄板A756-94(2001) 耐磨不锈轴承钢A757/A757M-00 低温下承压设备及其它设备用铁素体和马氏体钢铸件A758/A758M-00 具有改进的切口韧性的对缝焊锻制碳素钢管配件A759-00 起重机用碳钢轨条A760/A760M-01 下水道和排水沟用金属涂覆的波纹钢管A761/A761M-98 现场栓接管、管拱和拱用波纹镀锌结构钢板A762/A762M-00 下水道和排水沟用预涂聚合物波纹钢管A763-93(1999)e1 铁素体不锈钢晶间腐蚀敏感性检测A764-95(2001) 机械弹簧用冷拉镀锌和按成品尺寸镀锌的碳素钢丝A765/A765M-98a 具有强制性韧性要求的碳素钢及低合金钢压力容器部件锻件A767/A767M-00b 钢筋混凝土用镀锌钢筋A768-95 涡轮机转子及轴用经真空处理的含铬12%的合金钢锻件A769/A769M-00 电阻焊钢结构型材A770/A770M-86(2001) 专用钢板通过厚度测量进行的抗拉试验A771/A771M-95(2001) 增殖反应堆堆芯部件用奥氏体不锈钢管A772/A772M-00 正弦电流用材料的交流磁导率的试验方法A773/A773M-96 用带直流电子的磁滞曲线记录仪的(B-H)回路法测量材料的磁性能的标准试验方法A774/A774M-00 低温和中温一般腐蚀情况下用的焊接锻制奥氏体不锈钢配件A775/A775M-01 涂环氧树脂的钢筋钢棒A778-01 焊接未退火的奥氏体不锈钢管形制品A779/A779M-00 预应力混凝土用应力消除未涂覆的密实七股钢丝绞绳A780-01 热浸镀锌层的损坏及无覆层区域的检修A781/A781M-00 一般工业用一般要求的钢和合金铸件A782/A782M-90(2001) 经淬火和回火的锰铬钼硅锆合金钢压力容器板A786/A786M-00b 轧制钢楼板A787-01 电阻焊金属涂覆碳素钢机械配管A788-98a 钢锻件A789/A789M-01 普通设备用无缝与焊接铁素体/奥氏体不锈钢管A790/A790M-01 无缝与焊接铁素体/奥氏体不锈钢管A792/A792M-99 热浸工艺法处理的55%铝-锌合金涂覆钢板A793-96 不锈钢轧制楼板A794-97 商品级冷轧碳素钢薄板(最高含碳量为0.16%-0.25%)A795-00 防火用黑色及热浸镀锌的焊接和无缝钢管A796/A796M-00 雨水管和卫生污水管及其它地下埋设管道用波纹钢管、管托架及拱形架结构设计惯例A798/A798M-01 下水道及其它类似用途用工厂制波纹钢管的安装A799/A799M-92(1997) 估算不锈钢铸件铁素体含量用仪表的校准A800/A800M-01 奥氏体合金钢铸件中铁素体含量的估算A801/A801M-99 铁钴高磁性饱和合金A802/A802M-95(2001) 钢铸件外观检验的表面验收标准A803/A803M-01 焊接铁素体不锈钢给水加热器管A804/A804M-99 在电力频率下用薄钢板型试样对材料交流磁特性的测试方法A805-93(1998) 冷轧碳素钢扁平线A807/A807M-97 下水道及其它类似用途用波纹结构钢涂覆管的安装A808/A808M-00a 具有改进的切口韧性的结构级高强度低合金碳钢、锰钢、铌钢和钒钢A809-98 镀铝碳素钢丝A810-00 镀锌钢管用绕网A811-97 粉末冶金技术制造的软磁铁零件A813/A813M-01 单或双焊接奥氏体不锈钢管A814/A814M-01 冷加工焊接奥氏体不锈钢管A815/A815M-01 锻制铁素体、铁素体/奥氏体和马氏体不锈钢管配件A817-00 链接栅栏网用金属涂覆钢丝A818-91(2001) 镀铜碳素钢丝A820-96 纤维增强混凝土用钢纤维A821/A821M-99 预应力混凝土容器用经回火的冷拉钢丝A822-90(2000) 液压系统设备用冷拉碳素无缝钢管A823-99 静铸永久铸模灰铸件A824-01 链接栅栏用Marcelled拉力金属涂覆钢丝A826/A826M-95(2001) 增殖反应堆堆芯部件用奥氏体和铁素体不锈钢管A827/A827M-93a(1998) 锻造及类似用途用的碳素钢板技术规范A829/A829M-00 结构性合金钢板A82-97ae1 钢筋混凝土用无节钢丝A830/A830M-00 按照化学成分要求提供的优质碳素钢板技术规范A831/A831M-95(2000) 核心部件用不锈耐热钢棒,坯段及锻件规格A832/A832M-99e1 压力容器板用铬钼钒及铬钼钒钛硼合金钢A833-84(1996) 用比较硬度测试仪测量金属材料的压痕硬性A834-95(2001) 一般工业用铁铸件的一般要求A835-84(2000) 铁合金与合金添加剂的筛分粒度A836/A836M-95b(2001) 搪瓷管和压力容器设备用钛稳定碳素体钢锻件A837-91(1996)e1 渗碳用合金钢锻件A838/A838M-97 继电器用易切削铁素体不锈软磁合金技术规范A839/A839M-96 软磁用途的磷铁粉末冶金制造的零件技术规范A840/A840M-00 全处理的磁性夹层钢A841/A841M-01 压力容器用温度机械控制工艺加工的钢板A842-85(1997) 高密度石墨铸铁A844/A844M-93(1999) 压力容器用直接淬火加工的含镍9%的合金钢板A845-85(2000) 用于脱氧与合金钢的钛碎片A846-85(2000) 用于脱氧与合金钢的铝碎片A847-99a 具有增强耐大气腐蚀性能的冷成型焊接与无缝高强度低合金结构管A848/A848M-96 低碳磁铁A849-00 波纹钢排水管和污水管用后涂覆铺面和衬里材料A851-96 高频感应焊接的未退火奥氏体钢冷凝器管A852/A852M-00a 最小屈服强度为70Ksi(485MPa),厚度为4英寸(100mm)的经淬火和回火的低合金结构钢板A853-93(1998) 普通碳素钢丝A854/A854M-98 镀锌高强度钢栅栏和格架用光滑金属线A855/A855M-98 锌-5%铝-铈合金涂覆的钢丝绳A856/A856M-98 锌-5%铝-铈合金涂覆的碳素钢丝A857/A857M-00a 冷成形轻型薄钢板桩A858/A858M-00 低温和腐蚀情况下用热处理碳素钢配件A859/A859M-95(1999) 压力容器部件用时效硬化镍铜铬钼钶低碳合金钢锻件A860/A860M-00 锻制高强度低合金钢的高强度对缝焊接配件A861-94e1 高硅铁管和配件A862/A862M-98 波纹钢污水管和排水管沥清(柏油)涂层的应用A865-97 钢管连接用黑色或镀锌焊接或无缝钢螺纹接头A866-94 耐磨中碳轴承钢A867/A867M-94(1998)e1 继电器用铁硅钢A871/A871M-00a 抗空气腐蚀的高强度低合金结构钢板。
ASTM A388-01
Designation:A388/A388M–01Used in USNRC-RDT standardsAn American National StandardStandard Practice forUltrasonic Examination of Heavy Steel Forgings1This standard is issued under thefixed designation A388/A388M;the number immediately following the designation indicates the yearof original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.1.Scope1.1This practice2covers the examination procedures for the contact,pulse-echo ultrasonic examination of heavy steel forgings by the straight and angle-beam techniques.The straight beam techniques include utilization of the DGS(Dis-tance Gain-Size)method.See Appendix X3.1.2This practice is to be used whenever the inquiry, contract,order,or specification states that forgings are to be subject to ultrasonic examination in accordance with Practice A388/A388M.1.3The values stated in either inch-pound or SI units are to be regarded as the standard.Within the text,the SI units are shown in brackets.The values stated in each system are not exact equivalents;therefore,each system must be used inde-pendently of the bining values from the two systems may result in nonconformance with the specification.1.4This specification and the applicable material specifica-tions are expressed in both inch-pound units and SI units. However,unless the order specifies the applicable“M”speci-fication designation[SI units],the material shall be furnished to inch-pound units.1.5This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.Referenced Documents2.1ASTM Standards:A469Specification for Vacuum-Treated Steel Forgings for Generator Rotors3A745/A745M Practice for Ultrasonic Examination of Aus-tenitic Steel Forgings3E317Practice for Evaluating Performance Characteristics of Ultrasonic Pulse-Echo Examination Instruments andSystems Without the Use of Electronic Measurement Instruments4E428Practice for Fabrication and Control of Steel Refer-ence Blocks Used in Ultrasonic Inspection42.2ANSI Standard:B46.1Surface Texture52.3Other Document:Recommended Practice for Nondestructive Personnel Quali-fication and Certification SNT-TC-1A,Supplement C—Ultrasonic Testing63.Ordering Information3.1When this practice is to be applied to an inquiry, contract,or order,the purchaser shall so state and shall also furnish the following information:3.1.1Method of establishing the sensitivity in accordance with7.2.2and7.3.3(Vee or rectangular notch),3.1.1.1The diameter and test metal distance of theflat-bottom hole and the material of the reference block in accordance with7.2.2.2,3.1.2Quality level for the entire forging or portions thereof in accordance with10.3,and3.1.3Any options in accordance with6.1,6.2,and7.1.11.4.Apparatus4.1An ultrasonic,pulsed,reflection type of instrument shall be used for this examination.The system shall have a mini-mum capability for examining at frequencies from1to5MHz. On examining austenitic stainless forgings the system shall have the capabilities for examining at frequencies down to0.4 MHz.4.1.1The ultrasonic instrument shall provide linear presen-tation(within5%)for at least75%of the screen height (sweep line to top of screen).The5%linearity referred to is descriptive of the screen presentation of amplitude.Instrument linearity shall be verified in accordance with the intent of Practice E317.Any set of blocks processed in accordance with Practice E317or E428may be used to establish the specified 65%instrument linearity.1This practice is under the jurisdiction of ASTM Committee A01on Steel, Stainless Steel and Related Alloys and is the direct responsibility of Subcommittee A01.06on Steel Forgings and Billets.Current edition approved Sept.10,2001.Published November2001.Originally published as A388–st previous edition A388/A388M–95(2001)e1.2For ASME Boiler and Pressure Vessel Code applications see related Specifi-cation SA-388/SA-388M in Section II of that Code.3Annual Book of ASTM Standards,V ol01.05.4Annual Book of ASTM Standards,V ol03.03.5Available from the American National Standards Institute,Inc.,25W.43rd Street,4thfloor,New York,NY10036.6Available from the American Society for Nondestructive Testing,1711Arlin-gate Ln.,P.O.Box28518,Columbus,OH43228–0518.1Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.4.1.2The electronic apparatus shall contain an attenuator (accurate over its useful range to610%(+1dB)of the amplitude ratio)which will allow measurement of indications beyond the linear range of the instrument.4.2Search Units,having a transducer with a maximum active area of1in.2[650mm2]with3⁄4in.[20mm]minimum to11⁄8in.[30mm]maximum dimensions shall be used for straight-beam scanning(see7.2);and search units equipped from1⁄2by1in.[13by25mm]to1by1in.[25by25mm] shall be used for angle-beam scanning(see7.3).4.2.1Transducers shall be utilized at their rated frequencies.4.2.2Other search units may be used for evaluating and pinpointing indications.4.3Couplants,having good wetting characteristics such as SAE No.20or No.30motor oil,glycerin,pine oil,or water shall be used.Couplants may not be comparable to one another and the same couplant shall be used for calibration and examination.4.4Reference Blocks,containingflat-bottom holes may be used for calibration of equipment in accordance with4.1.1and may be used to establish recording levels for straight-beam examination when so specified by the order or contract.4.5DGS Scales,matched to the ultrasonic test unit and transducer to be utilized,may be used to establish recording levels for straight beam examination,when so specified by the order or contract.The DGS scale range must be selected to include the full thickness cross-section of the forging to be examined.An example of a DGS overlay is found in Appendix X3.5.Personnel Requirements5.1Personnel performing the ultrasonic examinations to this practice shall be qualified and certified in accordance with a written procedure conforming to Recommended Practice No. SNT-TC-1A or another national standard that is acceptable to both the purchaser and the supplier.6.Preparation of Forging for Ultrasonic Examination 6.1Unless otherwise specified in the order or contract,the forging shall be machined to provide cylindrical surfaces for radial examination in the case of round forgings;the ends of the forgings shall be machined perpendicular to the axis of the forging for the axial examination.Faces of disk and rectangular forgings shall be machinedflat and parallel to one another.6.2The surface roughness of exteriorfinishes shall not exceed250µin.[6µm]unless otherwise shown on the forging drawing or stated in the order or the contract.6.3The surfaces of the forging to be examined shall be free of extraneous material such as loose scale,paint,dirt,and so forth.7.Procedure7.1General:7.1.1As far as practicable,subject the entire volume of the forging to ultrasonic examination.Because of radii at change of sections and other local configurations,it may be impossible to examine some sections of a forging.7.1.2Perform the ultrasonic examination after heat treat-ment for mechanical properties(exclusive of stress-relief treatments)but prior to drilling holes,cutting keyways,tapers, grooves,or machining sections to contour.If the configuration of the forging required for the treatment for mechanical properties prohibits a subsequent complete examination of the forging,it shall be permissible to examine prior to treatment for mechanical properties.In such cases,reexamine the forging ultrasonically as completely as possible after heat treatment.7.1.3To ensure complete coverage of the forging volume, index the search unit with at least15%overlap with each pass.7.1.4For manual scanning,do not exceed a scanning rate of 6in./s[150mm/s].7.1.5For automated scanning,adjust scanning speed or instrument repetition rate,or both,to permit detection of the smallest discontinuities referenced in the specification and to allow the recording or signaling device to function.At no time shall the scanning speed exceed the speed at which an acceptable calibration was made.7.1.6If possible,scan all sections of forgings in two perpendicular directions.7.1.7Scan disk forgings using a straight beam technique from at least oneflat face and radially from the circumference, whenever practicable.7.1.8Scan cylindrical sections and hollow forgings by angle-beam technique.When practicable,also examine the forging in the axial direction.7.1.9In addition,examine hollow forgings by angle-beam technique from the outside diameter surface as required in 7.3.1.7.1.10In rechecking or reevaluation by manufacturer or purchaser use comparable equipment,search units,frequency, and couplant.7.1.11Forgings may be examined either stationary or while rotating in a lathe or on rollers.If not specified by the purchaser,either method may be used at the manufacturer’s option.7.2Straight-Beam Examination:7.2.1For straight-beam examination use a nominal21⁄4-MHz search unit whenever practicable;however,1MHz is the preferred frequency for coarse grained austenitic materials and long testing distances.In many instances on examining coarse grained austenitic materials it may be necessary to use a frequency of0.4MHz.Other frequencies may be used if desirable for better resolution,penetrability,or detectability of flaws.7.2.2Establish the instrument sensitivity by either the reflection,reference-block technique,or DGS method(see Appendix X3for an explanation of the DGS method).7.2.2.1Back-Reflection Technique(Back-Reflection Cali-bration Applicable to Forgings with Parallel Entry and Back Surfaces)—With the attenuator set at an appropriate level,for example5to1or14dB,adjust the instrument controls to obtain a back reflection approximately75%of the full-screen height from the opposite side of the forging.Scan the forging at the maximum amplification setting of the attenuator(attenu-ator set at1to1).Carry out the evaluation of discontinuities with the gain control set at the reference level.Recalibration is required for significant changes in section thickness or diam-eter.N OTE1—High sensitivity levels are not usually employed when in-specting austenitic steel forgings due to attendant high level of“noise”or “hash”caused by coarse grain structure.7.2.2.2Reference-Block Calibration—The test surface roughness on the calibration standard shall be comparable to but no better than the item to be examined.Adjust the instrument controls to obtain the required signal amplitude from theflat-bottom hole in the specified reference block. Utilize the attenuator in order to set up on amplitudes larger than the vertical linearity of the instrument.In those cases, remove the attenuation prior to scanning the forging.N OTE2—Whenflat-surfaced reference block calibration is specified, adjust the amplitude of indication from the reference block or blocks to compensate for examination surface curvature(an example is given in Appendix X1).7.2.2.3DGS Calibration—Prior to use,verify that the DGS overlay matches the transducer size and frequency.Accuracy of the overlay can be verified by reference blocks and procedures outlined in Practice E317.Overlays are to be serialized to match the ultrasonic transducer and pulse echo testing system that they are to be utilized with.7.2.2.4Choose the appropriate DGS scale for the cross-sectional thickness of the forging to be examined.Insert the overlay over the CRT screen,ensuring the DGS scale base line coincides with the sweep line of the CRT screen.Place the probe on the forging,adjust the gain to make thefirst backwall echo appear clearly on CRT ing the Delay and Sweep control,shift the screen pattern so that the leading edge of the initial pulse is on zero of the DGS scale and the backwall echo is on the DGS scale value corresponding to the thickness of the forging.Adjust the gain so the forging backwall echo matches the height of the DGS reference slope within61Db. Once adjusted,increase the gain by the Db shown on the DGS scale for the reference slope.Instrument is now calibrated and flaw sizes that can be reliably detected can be directly read from the CRT screen.Theseflaw sizes are the equivalentflat bottom reflector that can be used as a reference point.N OTE3—The above can be utilized on all solid forgings.Cylindrical hollow forgings,and drilled or bored forgings must be corrected to compensate for attenuation due to the central hole(see Appendix X4).7.2.3Recalibration—Any change in the search unit,cou-plant,instrument setting,or scanning speed from that used for calibration shall require recalibration.Perform a calibration check at least once every8h shift.When a loss of15%or greater in the gain level is indicated,reestablish the required calibration and reexamine all of the material examined in the preceding calibration period.When an increase of15%or greater in the gain level is indicated,reevaluate all recorded indications.7.2.4During the examination of the forging,monitor the back reflection for any significant reduction in amplitude. Reduction in back-reflection amplitude may indicate not only the presence of a discontinuity but also poor coupling of the search unit with the surface of the forging,nonparallel back-reflection surface,or local variations of attenuation in the forging.Recheck any areas causing loss of back reflection.7.3Angle-Beam Examination—Rings and Hollow Forgings: 7.3.1Perform the examination from the circumference of rings and hollow forgings that have an axial length greater than 2in.[50mm]and an outside to inside diameter ratio of less than2.0to1.7.3.2Use a1MHz,45°angle-beam search unit unless thickness,OD/ID ratio,or other geometric configuration results in failure to achieve calibration.Other frequencies may be used if desirable for better resolution,penetrability,or detectability offlaws.For angle-beam inspection of hollow forgings up to 2.0to1ratio,provide the transducer with a wedge or shoe that will result in the beam mode and angle required by the size and shape of the cross section under examination.7.3.3Calibrate the instrument for the angle-beam examina-tion to obtain an indication amplitude of approximately75% full-screen height from a rectangular or a60°V-notch on inside diameter(ID)in the axial direction and parallel to the axis of the forging.A separate calibration standard may be used; however,it shall have the same nominal composition,heat treatment,and thickness as the forging it represents.The test surfacefinish on the calibration standard shall be comparable but no better than the item to be examined.Where a group of identical forgings is made,one of these forgings may be used as the separate calibration standard.Cut the ID notch depth to 3%maximum of the thickness or1⁄4in.[6mm],whichever is smaller,and its length approximately1in.[25mm].Thickness is defined as the thickness of the forging to be examined at the time of examination.At the same instrument setting,obtain a reflection from a similar OD notch.Draw a line through the peaks of thefirst reflections obtained from the ID and OD notches.This shall be the amplitude reference line.It is preferable to have the notches in excess metal or test metal when possible.When the OD notch cannot be detected when examining the OD surface,perform the examination when practicable(some ID’s may be too small to permit examina-tion),as indicated above from both the OD and ID surfaces. Utilize the ID notch when inspecting from the OD,and the OD notch when inspecting from the ID.Curve wedges or shoes may be used when necessary and practicable.7.3.4Perform the examination by scanning over the entire surface area circumferentially in both the clockwise and counter-clockwise directions from the OD surface.Examine forgings,which cannot be examined axially using a straight beam,in both axial directions with an angle-beam search unit. For axial scanning,use rectangular or60°V-notches on the ID and OD for the calibration.These notches shall be perpendicu-lar to the axis of the forging and the same dimensions as the axial notch.8.Recording8.1Straight-Beam Examination—Record the following in-dications as information for the purchaser.These recordable indications do not constitute a rejectable condition unless negotiated as such in the purchase order.8.1.1In the back-reflection technique,individual indications equal to or exceeding10%of the back reflection from an adjacent area free from indications;in the reference-block or DGS technique,indications equal to or exceeding100%of the reference amplitude.8.1.2An indication that is continuous on the same plane regardless of amplitude,and found over an area largerthantwice the diameter of the search unit.The extent of such an indication shall be accurately measured along with variations in amplitudes of reflections.8.1.2.1Planar indications shall be considered continuous over a plane if they have a major axis greater than1in.[25 mm].In recording these indications corrections must be made for beam divergence at the estimatedflaw depth.8.1.3In the back-reflection technique,discontinuity indica-tions equal to or exceeding5%of the back reflection.In the reference-block technique,indications equal to or exceeding 50%of the reference amplitude providing that they travel,are continuous,or appear as clusters.8.1.3.1Traveling indications are herein defined as indica-tions whose leading edge moves a distance equivalent to1in. [25mm]or more of metal depth with movement of the search unit over the surface of the forging.8.1.3.2A cluster of indications is defined asfive or more indications located in a volume representing a2-in.[50-mm]or smaller cube in the forging.8.1.4Reduction in back reflection exceeding20%of the original measured in increments of10%.8.1.5Amplitudes of recordable indications in increments of 10%.8.2Angle-Beam Examination—Record discontinuity indi-cations equal to or exceeding50%of the indication from the reference line.When an amplitude reference line cannot be generated,record discontinuity indications equal to or exceed-ing50%of the reference notch.These recordable indications do not constitute a rejectable condition unless negotiated as such in the purchase order.9.Report9.1Report the following information:9.1.1All recordable indications(see Section8).9.1.2For the purpose of reporting the locations of record-able indications,a sketch shall be prepared showing the physical outline of the forging including dimensions of all areas not inspected due to geometric configuration,the pur-chaser’s drawing number,the purchaser’s order number,and the manufacturer’s serial number,and the axial,radial,and circumferential distribution of recordable ultrasonic indica-tions.9.1.3The specification to which the examination was per-formed as well as the frequency used,method of setting sensitivity,type of instrument,surfacefinish,couplant,and search unit employed.9.1.4The inspector’s signature and date examination per-formed.10.Quality Levels10.1This practice is intended for application to forgings,with a wide variety of sizes,shapes,compositions,melting processes,and applications.It is,therefore,impracticable to specify an ultrasonic quality level which would be universally applicable to such a diversity of products.Ultrasonic accep-tance or rejection criteria for individual forgings should be based on a realistic appraisal of service requirements and the quality that can normally be obtained in the production of the particular type forging.10.2Heavy austenitic stainless steel forgings are more difficult to penetrate ultrasonically than similar carbon or low-alloy steel forgings.The degree of attenuation normally increases with section size;and the noise level,generally or in isolated areas,may become too great to permit detection of discrete indications.In most instances,this attenuation results from inherent coarse grained microstructure of these austenitic alloys.For these reasons,the methods and standards employed for ultrasonically examining carbon and low-alloy steel forg-ings may not be applicable to heavy austenitic steel forgings.In general,only straight beam inspecting using a back-reflection reference standard is used.However,utilization of Practice A745/A745M for austenitic steel forgings can be considered ifflat bottom hole reference standards or angle beam exami-nation of these grades are required.10.3Acceptance quality levels shall be established between purchaser and manufacturer on the basis of one or more of the following criteria.10.3.1Straight-Beam Examination:10.3.1.1No indications larger than some percentage of the reference back reflection.10.3.1.2No indications equal to or larger than the indication received form theflat-bottom hole in a specific reference block or blocks.10.3.1.3No areas showing loss of back reflection larger than some percentage of the reference back reflection.10.3.1.4No indications per10.3.1.1or10.3.1.2coupled with some loss of resultant back reflection per10.3.1.3. 10.3.1.5No indications exceeding the reference level speci-fied in the DGS method10.3.2Angle-Beam Examination—No indications exceed-ing a stated percentage of the reflection from a reference notch or of the amplitude reference line.10.4Intelligent application of ultrasonic quality levels in-volves an understanding of the effects of many parameters on examination results.11.Keywords11.1angle beam examination;back-reflection;DGS;refer-ence–block;straight beam examination;ultrasonicSUPPLEMENTARY REQUIREMENTSThe following supplementary requirements shall apply only when specified by the purchaser in the inquiry,contract,or order.Details shall be agreed upon by the manufacturer and the purchaser.S1.Reporting CriteriaS1.1Reference block calibration shall be performed using at least three holes,spaced to approximate minimum,mean, and maximum thickness as tested,and shall be used to generate a distance amplitude correction(DAC)curve.The following hole sizes apply:1.1⁄16in.[1.5mm]flat bottom holes(FBH)for thicknesses lessthan1.5in.[40mm]2.1⁄8in.[3mm]FBH for thicknesses of1.5-6in.[40-150mm]inclusive3.1⁄4in.[6mm]FBH for thicknesses over6in.[150mm]S1.2Reporting criteria include:1.All indications exceeding the DAC curve2.Two or more indications separated by1⁄2in.[12mm]or lessAPPENDIXES(Nonmandatory Information)X1.TYPICAL TUNING LEVEL COMPENSATION FOR THE EFFECTS OF FORGING CURV ATURE X1.1The curve(Fig.X1.1)was determined for the follow-ing test conditions:Material nickel-molybdenum-vanadium alloy steel(Specification A469,Class4)Instrument Type UR ReflectoscopeSearch unit11⁄8-in.[30mm]diameter quartzFrequency21⁄4MHzReference block ASTM No.3-0600(aluminum)Reflection area of refer-ence curve 0.010in.2[6.5mm2]in nickel-molybdenum-vana-dium alloy steelSurfacefinish250µin.[6µm],max,roughnessX1.2To utilize curve,adjust reflectoscope sensitivity toobtain indicated ultrasonic response on ASTM No.3-0600reference block for each diameter as shown.A response of1in.[25mm]sweep-to-peak is used forflat e attenuatorto obtain desired amplitude,but do testing at1to1setting.X2.INDICATION AMPLITUDE COMPENSATION FOR TEST DISTANCE V ARIATIONSX2.1The curve(Fig.X2.1)has been determined for the following test conditions:Material nickel-molybdenum-vanadium alloy steel(Specification A469,Class4)Instrument Type UR ReflectoscopeSearch unit11⁄8-in.[30mm]diameter quartzFrequency21⁄4MHzCouplant No.20oilReference block ASTM No.3-0600(aluminum)Reflection area of refer-ence curve0.010in.2[65mm2]in nickel-molybdenum-vana-dium alloy steelSurfacefinish250µin.max,roughnessX2.2To utilize curve,establish amplitude from ASTM reference block to coincide with values from AppendixX1.FIG.X1.1Typical Compensation Curve for Effects of ForgingCurvatureX3.BACKGROUND INFORMATION ON THE DGS METHODSX3.1The DGS method was developed to determine flaw sizes by comparison to a back wall echo produced on the part to be ultrasonic tested.The derivation of DGS curves is extensively covered and can be found in standard texts on ultrasonic testing,and will not be covered here.The distance or thickness of the forging (A )to be tested,as noted on the overlay,must be accurately defined on the CRT screen.Theback reflection (B )of the part must be established and suitable gain added.Flaw echo indications that appear can be sized via the flaw size curves (C )on the overlay.Item (D )depicts the transducers that the overlay works in conjunction with and (E )depicts the series of curves that the overlay scales are matched to.PENSATION FOR CENTER HOLE ATTENUATION ON CYLINDRICAL BORED OR HOLLOW FORGINGSUTILIZING THE DGS METHODX4.1The hole in a cylindrical bored forging causes sound scatter.In these cases,a correction is required which depends on the wall thickness and bore diameter.X4.1.1Determine the correction value in dB from the Nomogram (Fig.X4.1).X4.1.2Proceed as described in 7.2.2.3.X4.1.3With the GAIN-dB control,reduce the flaw detector gain by the correction value determined as per the Nomogram (Fig.X4.2).Thus,the flaw detector gain is accuratelyadjusted.FIG.X2.1Typical Distance-Amplitude CorrectionCurveFIG.X4.1Example of DGSOverlayASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA 19428-2959,United States.Individual reprints (single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585(phone),610-832-9555(fax),or service@ (e-mail);or through the ASTM website().N OTE —Metric units are presented in this figure to be consistent with DGS scales presently available.Conversion to English units would also be acceptable.FIG.X4.2The Influence of a Central Bore on the Backwall Echo Amplitude of Cylindrical or Plane ParallelForgings。
A388标准
大型铸钢件超声波检测标准1.范围1.1这个标准主要是通过直的或斜的光波对大型铸钢件进行脉冲反射波检查。
这种直波技术包含了DGS方法的应用,具体方法参见附件X3.1.2这个标准运用在询价、合同、订购以及技术说明中的锻件的超声波检查要遵循A388/A388M标准。
1.3标准的单位可以是英寸或是SI单位,在这个标准中SI单位应在括号中。
因为每个系统的标准不是完全的相同,所以每个系统是相互独立的。
综合了俩个系统的标准值将会导致与传统向背的说明。
1.4说明和适用材料的说明应以英寸和SI俩个单位标准表叙,除非订购合同说明运用M的指定说明(SI单位),所提供的材料应该是以英寸为单位。
1.5这个标准的主旨并不是叙述所有在使用当中所关心的安全,因此在执行这个标准的时候要制订一个合适的安全体系并决定其应用的限制。
2参考文件2.1ASTM标准A469标准主要说明的是真空处理铸钢件A745/A745M标准是针对于奥氏体铸钢件的超声波检查的要求。
E317标准主要是评估在没有使用电子测量设备下脉冲反射波的执行性能。
E428标准主要是钢件的制造和控制的参考试件在超声波检查的情况下。
2.2ANSI标准B46.1表面结构2.3其他文件推荐执行无损探伤人员的资格并提供C—超声波检查的SNT-TC-1A 的证明。
3.订购信息3.1当这个标准在询价、合同、订购单以及在购买合同中应说明同时还要提供如下的信息:3.1.1建立敏感性的方法参照7.2.2和7.3.33.1.1.1直径和测量金属低部洞的距离以及参考试件材料参照7.2.2.2 3.1.2锻件的整体或部分的质量水平参照10.33.1.3任何选择参照6.1,6.2和7.1.104.仪器4.1超声波,脉冲波以及设备反射类型将被应用这个检查中。
这个系统有最小的检测频率为1到5MHz。
在检查奥氏不锈钢锻件的时候其检测的频率应降到0.4MHz.4.1.1超声波仪器所提供的线性在屏幕的75%的高度内呈现的是线性,有5%的参考震动幅度。
A388中文版
ASTM A388/A388M-03大型锻钢件的超声波检测方法1适用范围1.1本标准适用于采用直射波和斜射波技术对大型锻钢件作接触式、脉冲回波超声波检测。
1.2凡是因咨询、合同、订货或技术条件的规定,而要求对锻件按A388/A388M进行超声波检测时,均可采用本标准。
1.3以英寸—磅为单位,或以SI国际单位制表示的数值均视为标准值。
在正文中,SI国际单位制数值表示在括号内。
用上述二种单位制表示的数值并不完全相等,因此只能单独使用其中一种。
混同使用两种单位制可能会使之与技术要求不一致。
1.4本标准及引用的材料技术条件均同时采用英寸—磅和SI国际单位制表述,然而除非订单技术要求中规定采用SI国际单位制,所用材料应以英寸—磅为供货单位。
1.5本标准的宗旨不在于论述与使用有关的安全问题。
使用本标准者在使用前有责任制订相应的有关安全防护与保健的措施,并确定有关应用范围的管理条例。
2参考文献2.1ASTM标准A469 发电机转子用真空精炼钢锻件的技术要求A745/A745M 奥氏体钢锻件的超声波检验方法E317 不采用电子测量装置评价脉冲反射式超声波检测装置及系统性能的检测方法E428 超声波检测用钢制参考试块的制作和控制方法2.2ANSI标准B46.1 表面状况2.3其它文献无损检测人员资格与鉴定的推荐方法SNT-TC-1A,附录C——超声波检测3订货依据3.1当采用本标准应用于咨询、合同或订货时,订货方应申明并提供下列各项资料。
3.1.1按照7.2.2和7.3.3条(V形或矩形槽)所述来确定灵敏度的方法。
3.1.1.1按照7.2.2.2条所述确定参考试块的材料、平底孔孔径及其金属测试声程。
3.1.2按照10.3条所述确定整个锻件或其中某些部位的质量等级。
3.1.3根据6.1、6.2和7.1.11条规定的任何选择方案。
4仪器4.1本检测应采用脉冲反射式超声波仪器。
仪器应至少具有1~5MHz频率下进行检测的能力。
JB4730.3超声波检测部分与ASME SA388标准对比分析
新版JB4730标准条款及技术内容4.2 承压设备用钢锻件超声检测4.2.1 范围本条适用于承压设备用碳钢和低合金钢锻件的超声检测和质量等级评定。
本条不适用于奥氏体钢等粗晶材料锻件的超声检测,也不适用于内、外半径之比小于80%的环形和筒形锻件的周向横波检测。
国外标准的对应条款及技术内容,技术差异的简要评述【1】对应条款:ASME2004-SA388-1.1【2】相关技术内容: ASME规定:操作方法包括用直射波和斜射波技术对大型锻件作接触脉冲回波式超声波检验程序。
直射波法包括DGS(距离—增益—当量)法。
【3】简要评述:JB4730对适用范围作了限定,ASME没有那么明确。
新版JB4730标准条款及技术内容4.2.2 探头双晶直探头的公称频率应选用5MHz。
探头晶片面积不小于150mm2;单晶直探头的公称频率应选用2~5MHz,探头晶片一般为φ14~φ25mm。
国外标准的对应条款及技术内容,技术差异的简要评述【1】对应条款:ASME2004-SA388-4.2,7.2【2】相关技术内容: ASME规定:a) 对于直射波扫查可采用换能器的最大有效面积为650mm2,其最小尺寸为20mm,最大为30mm。
对于斜射波扫查,可采用换能器的尺寸从13×25mm至25×25mm。
b) 换能器应使用其标称频率。
c) 可以采用其它探头来评定和精确测定显示信号。
d) 如有可能,直射波的检验宜采用标称频率为2.25MHz的探头。
但是,对于粗晶粒奥氏体材料和长距离探测最好采用1MHz频率,在很多情况下,检验粗晶粒的奥氏体材料,甚至可能要采用0.4MHz频率。
为了得到更好的分辨力、穿透力或缺陷的检出力,也可采用其它频率。
【3】简要评述:(1)ASME没有规定双晶探头。
(2)JB4730规定直探头晶片尺寸为φ14mm~φ25mm,而ASME则为φ20~φ30mm。
新版JB4730标准条款及技术内容4.2.3 试块应符合3.5的规定。