物理吸附和化学吸附
吸附技术知识点总结
吸附技术知识点总结一、概述吸附技术是一种物理或化学过程,通过在固体表面或孔隙中吸附气体、液体或溶质来分离或提纯物质的方法。
吸附技术具有高效、节能、环保、易操作、低成本等优点,在化工、环保、能源、医药等领域得到了广泛应用。
吸附技术可分为气体吸附和液体吸附两种类型,其中气体吸附主要用于气体分离和净化,液体吸附主要用于溶剂回收和废水处理。
二、吸附过程的基本原理吸附过程是指物质在固体表面或孔隙中附着的过程,其基本原理可归结为几种主要机制:1. 物理吸附:也称范德华吸附,是指气体或液体分子在固体表面附着的一种物理现象。
其特点是吸附力弱,吸附物质易脱附。
物理吸附是一种可逆过程,通常在低温和高真空条件下发生。
2. 化学吸附:指气体或液体分子在固体表面形成化学键而附着的过程。
其特点是吸附力强,吸附物质难脱附。
化学吸附是一种不可逆过程,通常发生在较高温度和压力条件下。
3. 吸附热力学:吸附过程的热力学基础是吉布斯自由能的变化,吸附热力学理论可用于描述物质在固体表面或孔隙中的吸附行为,包括吸附等温线、吸附等压线等。
4. 吸附动力学:吸附过程的动力学基础是质量传递、传质速率、平衡时间等,用于描述物质在固体表面或孔隙中的吸附速率和平衡时间等动态过程。
三、气体吸附技术气体吸附技术是指利用固体吸附剂吸附气体分子的方法,常用于气体分离和净化领域。
1. 吸附剂的选择:气体吸附剂通常为多孔性固体,如活性炭、分子筛、铝土矿、氧化铝、硅胶等。
根据吸附剂的孔径、比表面积、孔隙分布等特性选择适合的吸附剂。
2. 吸附分离:气体吸附分离常用于分离气体混合物,如氧气/氮气、二氧化碳/甲烷等。
通常利用吸附剂在一定温度、压力下对气体混合物进行吸附分离,根据各气体在吸附剂上的吸附力差异实现气体分离。
3. 吸附净化:气体吸附净化常用于去除气体中的有害成分,如有机物、硫化物、氮氧化物等。
通常利用吸附剂对气体中的有害成分进行吸附,实现气体净化和净化剂再生。
物理吸附和化学吸附
哈尔滨商业大学食品工程学院
应用:
物理吸附在化学工业、石油加工工业、农业、医药工业、环境保护 等部门和领域都有广泛的应用。
最常用的是从气体和液体介质中回收有用物质或去除杂质,如气体 的分离、气体或液体的干燥、油的脱色等。
哈尔滨商业大学食品工程学院
2、化 学 吸 附
化学吸附:吸附质分子与固体表面原子(或分子)发生电子的转移、 交换或共有,形成吸附化学键(原子或离子相结合的能力)的吸附。简 单说是固体表面与被吸附物间的化学键力起作用的结果。可看做化学反 应。
哈尔滨商业大学食品工程学院
4.5离子交换的应用
(2)在硬水软化中的应用 水的软化是去除水中Ca2+,Mg2+ ,通过Na型阳离子交换柱使水中Ca2+,Mg2+ 与Na+交换,使其保留在树脂上。
C a2+
2R SO 3-N a+ + M g2+
2H C O 3SO 422C l-
C a2+
2R SO 3M g2+
代号
分类名称
0
强酸
1
弱酸
2
强碱
3
弱碱
4
螯合
5
两性
6
氧化还原
功能基
说明
-SO3H
-COOH,-PO3H3
-N+(CH3)3 ,
-N+
(CH3)2
CH2CH2OH
-N H 2,-N H R ,-N R 2
H2C
CH2COOH N
CH2COOH
(-N + (C H 3 )3 , -C O O H )
(-CH2SH)
(1)阴离子交换树脂
物理吸附仪和化学吸附仪
物理吸附仪和化学吸附仪全自动物理吸附和化学吸附仪是一种用于化学、材料科学领域的分析仪器,于2011年8月17日启用。
全自动物理、化学吸附测量,并可以通过TCD和质谱测量检测器测量吸附/脱附气体的种类和物质的量。
物理/化学吸附仪化学吸附是吸附质分子与固体表面原子(或分子)发生电子的转移、交换或共有,形成吸附化学键的吸附。
由于固体表面存在不均匀力场,表面上的原子往往还有剩余的成键能力,当气体分子碰撞到固体表面上时便与表面原子间发生电子的交换、转移或共有,形成吸附化学键的吸附作用。
特点化学吸附的主要特点是:仅发生单分子层吸附;吸附热与化学反应热相当;有选择性;大多为不可逆吸附;吸附层能在较高温度下保持稳定等。
化学吸附又可分为需要活化能的活化吸附(activated adsorption)和不需活化能的非活化吸附(non-activated adsorption),前者吸附速度较慢,后者则较快。
化学吸附是多相催化反应的重要步骤。
研究化学吸附对了解多相催化反应机理,实现催化反应工业化有重要意义。
吸附特点与物理吸附相比,化学吸附主要有以下特点:①吸附所涉及的力与化学键力相当,比范德华力强得多。
②吸附热近似等于反应热。
③吸附是单分子层的。
因此可用朗缪尔等温式描述,有时也可用弗罗因德利希公式描述。
捷姆金吸附等温式只适用于化学吸附:V/Vm=1/a·㏑CoP。
式中V是平衡压力为p时的吸附体积;Vm是单层饱和吸附体积;a和c0是常数。
④有选择性。
⑤对温度和压力具有不可逆性。
另外,化学吸附还常常需要活化能。
确定一种吸附是否是化学吸附,主要根据吸附热和不可逆性。
机理可分3种情况:①气体分子失去电子成为正离子,固体得到电子,结果是正离子被吸附在带负电的固体表面上。
②固体失去电子而气体分子得到电子,结果是负离子被吸附在带正电的固体表面上。
③气体与固体共有电子成共价键或配位键。
例如气体在金属表面上的吸附就往往是由于气体分子的电子与金属原子的d电子形成共价键,或气体分子提供一对电子与金属原子成配位键而吸附的。
吸附法的分类
吸附法的分类
吸附法主要可以分为物理吸附、化学吸附和离子交换吸附三类。
1. 物理吸附:基于吸附剂与溶质之间的分子间作用力即范德华力。
溶质在吸附剂上吸附与否或吸附量的多少主要取决于溶质与吸附剂极性的相似性和溶剂的极性。
一般物理吸附发生在吸附剂的整个自由表面,被吸附的溶质可通过改变温度、PH和盐浓度等物理条件脱附。
2. 化学吸附:会释放大量的热,吸附热高于物理吸附。
化学吸附一般为单分子层吸附,吸附稳定,不易脱附,故洗脱化学吸附质一般需采用破坏化学结合的化学试剂为洗脱剂。
化学吸附具有高选择性。
3. 离子交换吸附:所用吸附剂为离子交换剂。
离子交换剂表面含有离子基团或可离子化基团,通过静电引力吸附带有相反电荷的离子,吸附过程发生电荷转移。
离子交换的吸附质可以通过调节PH或提高离子强度的方法洗脱。
以上信息仅供参考,如有需要,建议查阅相关文献或咨询专业人士。
物理吸附和化学吸附的概念
物理吸附和化学吸附的概念1. 哎呀妈呀,说起物理吸附和化学吸附的概念,那可真是一个让人脑袋瓜子嗡嗡的话题啊!不过别担心,咱们今天就用最通俗易懂的方式来聊聊这两个看似高大上的概念。
保准说完后,你就能跟身边的小伙伴们侃侃而谈,把他们都镇住!2. 物理吸附,简单来说就是两个东西之间玩"贴贴"的游戏。
它们之间没有什么深厚的感情,就是单纯地黏在一起。
就像是你把一块磁铁靠近冰箱门,"啪"的一下就吸上去了。
这种吸附力虽然不是很强,但胜在来去自如,想分开就分开,一点都不麻烦。
3. 有个小朋友听了这个解释后,眼睛一亮,说:"哇,那不就像我和我最好的朋友吗?我们天天黏在一起玩,但放学后就各回各家,第二天又能继续玩在一起!"4. 化学吸附呢,那可就不一样了。
这是两个物质之间产生了"真爱",它们之间发生了化学反应,形成了新的化学键。
这种吸附可不是闹着玩的,一旦在一起,就很难分开了。
就像是你把一块口香糖粘在头发上,想要分开可就费劲了。
5. 听到这里,刚才那个小朋友又插嘴说:"这不就像我爸妈吗?他们在一起这么多年了,感情越来越深,怎么也分不开!"6. 物理吸附和化学吸附的区别,就像是谈恋爱和结婚的区别。
物理吸附就像是谈恋爱,今天我喜欢你,明天可能就不喜欢了,分手很容易。
而化学吸附就像是结婚,两个人已经融为一体,想要分开可就没那么简单了。
7. 有个化学老师听了这个比喻后,哈哈大笑说:"这个比喻太妙了!以后我就用这个例子来给学生们讲解,保准他们记得清清楚楚!"8. 物理吸附的特点是:力量小、速度快、可逆性强。
就像是你往墙上贴海报,想贴就贴,想撕就撕,一点都不费劲。
而且,物理吸附不挑剔,几乎所有的物质表面都能发生物理吸附。
9. 有个学生听了后说:"哇,这不就像是我们班上的小明吗?他交朋友特别快,今天和这个好,明天和那个好,关系来得快去得也快!"10. 化学吸附的特点是:力量大、速度慢、不可逆。
物理吸附化学吸附
化学吸附
物理吸附
吸附质分子和吸附中心之 间化学键的形成
>80 kJ/mol 活化吸附,吸附速率慢 化学吸附热
分子间作用力,如永久性偶 极矩,诱导性偶极矩,四极吸引 作用等
0-40 kJ/mol
非活化吸附,吸附速率快
凝聚热
高温(>气体的液化点)
接近气体的液化点
有选择性,与吸附质,吸附 无选择性 剂本质有关
NH3
301
188
155
C2H4
577
427
286
243 209
三、吸附位能曲线 物理吸附位能变化:通常用Lennard-Jones曲线来描述
A2分子在固体表面S上的物理吸附位能曲线
QP:物理吸附热
活性原子在固体表面化学吸附位能变化:通常用Morse公式 近似计算
活性原子A在固体表面S上的吸附位能曲线
固体表面(surface)原子与体相(bulk)原子的最大区别: 表面原子配位不饱和,从而表现出高的化学反应活性。
吸附(adsorption):气体在固体表面的累积。 吸收(absorption):体相的吸附。 吸附剂(adsorbent):吸附气体的固体物质。 吸附质(adsorbate):被吸附的气体。 吸附态:吸附质在表面吸附以后的状态。 吸附中心/吸附位:吸附剂表面发生吸附的局部位置。 吸附过程:固体表面上的气体浓度由于吸附而增加的过程。 脱附(desorption): 固体表面气体浓度的减小。 脱附过程:气体在表面上的浓度减小的过程。
体相原子配位数:12 表面原子配位数:9 面心立方最密堆积(FCC)
3 fold site 三重吸附位
4 fold site 四重吸附位
桥位
ห้องสมุดไป่ตู้顶位
请分别简述物理吸附和化学吸附的主要特征。
请分别简述物理吸附和化学吸附的主要特征。
根据吸附剂表面与被吸附物之间作用力的不同,吸附可分为物理吸附与化学吸附。
物理吸附是被吸附的流体分子与固体表面分子间的作用力为分子间吸引力,即所谓的范德华力(Vander Waals)。
因此,物理吸附又称范德华吸附,它是一种可逆过程。
当固体表面分子与气体或液体分子间的引力大于气体或液体内部分子间的引力时,气体或液体的分子就被吸附在固体表面上。
从分子运动观点来看,这些吸附在固体表面的分子由于分子运动,也会从固体表面脱离而进入气体(或液体)中去,其本身不发生任何化学变化。
随着温度的升高,气体(或液体)分子的动能增加,分子就不易滞留在因体表面上,而越来越多地逸入气体(或液体中去,即所谓“脱附”。
这种吸附—脱附的可逆现象在物理吸附中均存在。
工业上就利用这种现象,借改变操作条件,使吸附的物质脱附,达到使吸附剂再生,回收被吸附物质而达到分离的目的。
物理吸附的特征是吸附物质不发生任何化学反应,吸附过程进行得极快,参与吸附的各相间的平衡瞬时即可达到。
化学吸附是固体表面与被吸附物间的化学键力起作用的结果。
这类型的吸附需要一定的活化能,故又称“活化吸附”。
这种化学键亲和力的大小可以差别很大,但它大大超过物理吸附的范德华力。
化学吸附放出的吸附热比物理吸附所放出的吸附热要大得多,达到化学反应热这样的数量级。
而物理吸附放出的吸附热通常与气体的液化热相近。
化学吸附往往是不可逆的,而且脱附后,脱附的物质常发生了化学变化不再是原有的性状,故其过程是不可逆的。
化学吸附的速率大多进行得较慢,吸附平衡也需要相当长时间才能达到,升高温度可以大大地增加吸附速率。
对于这类吸附的脱附也不易进行,常需要很高的温度才能把被吸附的分子逐出去。
人们还发现,同一种物质,在低温时,它在吸附剂上进行的是物理吸附,随着温度升高到一定程度,就开始发生化学变化转为化学吸附,有时两种吸附会同时发生。
化学吸附在催化作用过程中占有很重要的地位。
化学吸附与物理吸附的区别及应用
化学吸附与物理吸附的区别及应用化学吸附和物理吸附是化学反应和物理现象的不同表现形式,它们的区别在于吸附分子与吸附表面的相互作用形式。
化学吸附是指在化学反应的条件下,吸附剂和吸附剂分子通过键合作用相互作用,形成化学键化合物的吸附现象。
而物理吸附是指吸附剂分子作为气体在吸附表面上的分子间力作用下吸附的现象。
通过对化学吸附和物理吸附的了解,我们可以更好地理解这两种现象的特点和应用。
化学吸附和物理吸附之间的区别化学吸附和物理吸附的根本区别在于它们与吸附剂和吸附表面之间的相互作用形式不同。
化学吸附主要是通过化学键形成的吸附剂和吸附表面之间的化学键,吸附分子与表面相结合形成新的化合物,吸附过程是可逆或不可逆的。
物理吸附是指气态分子在与吸附表面相互作用时,仅通过范德华力作用和静电作用而发生的吸附现象。
物理吸附的吸附过程可以是可逆的,吸附分子在表面上的位置也是不固定的,可以随机变动。
化学吸附与物理吸附之间的差异还有很多,比如,化学吸附的反应速度较快,吸附剂在吸附表面上形成的化合物具有很高的稳定性和选择性。
而物理吸附的速度较慢,吸附过程的热力学参量也较小,这使得物理吸附的逆过程也很容易发生。
化学吸附与物理吸附的应用化学吸附和物理吸附的应用很广泛,在各种领域都有着不同的应用。
下面,我们将具体介绍它们在各个领域的应用。
1. 化学反应化学吸附和物理吸附对于许多化学反应的催化和速率具有很大的影响。
化学吸附有机物对于水净化和废水处理等领域都有着广泛的应用。
而物理吸附则经常用于催化剂的制备以及气体分离。
2. 表面改性化学吸附和物理吸附还可以用于表面改性。
例如,通过物理吸附将化合物吸附在表面上,可以有效地改善材料表面的物化性质;而通过化学吸附可以实现表面的选择性功能性化改性。
3. 生物介质和生物分离化学吸附和物理吸附也在生物介质和生物分离中发挥重要作用。
例如,化学吸附可以用于酶的分离和鉴定,物理吸附则可以用于纯化蛋白质和DNA等。
物理吸附和化学吸附的联系
物理吸附和化学吸附是两种常见的吸附现象,它们在很多领域中都有应用。
尽管它们在机制和特点上存在差异,但在某些方面又有联系。
首先,物理吸附和化学吸附都是通过吸引力将吸附剂与被吸附物质结合在一起。
物理吸附是通过范德华力使吸附剂和被吸附物之间发生吸附作用,并且在这种吸附过程中,吸附剂与被吸附物之间并没有共价或离子键的形成。
化学吸附则是通过化学键的形成,使吸附剂和被吸附物之间形成化学键而发生吸附作用。
其次,物理吸附和化学吸附的吸附性能都受到温度、压力和表面特性等因素的影响。
随着温度的升高,物理吸附会减弱,因为范德华力受热能的影响而减弱。
而化学吸附则在一定温度范围内呈现最佳吸附性能,因为在这个温度区间内,化学键的形成和破裂适度平衡。
此外,物理吸附和化学吸附还有一些特点上的联系。
一方面,它们都可以通过改变吸附剂的特性来调节吸附能力。
物理吸附可以通过增加吸附剂的表面积和孔隙度来提高吸
附能力,而化学吸附可以通过改变吸附剂的功能团来改变吸附特性。
另一方面,在某些情况下,物理吸附和化学吸附可以同时存在。
例如,一个物质可以在表面上先发生化学吸附,然后由于范德华力的存在,再发生物理吸附。
综上所述,物理吸附和化学吸附虽然在机制和特点上存
在一些差异,但它们在吸附作用机制、受影响的因素以及调节吸附性能等方面也存在一定的联系。
这些知识对于理解和应用吸附过程具有重要意义。
物理吸附与化学吸附
吸附热
因 ∆ adsV = Va − Vg ≈ −Vg ≈ −nRT / p ∆ ads H ∆ ads H ⎛ ∂p ⎞ =− ⎜ ⎟ = nRT 2 / p ⎝ ∂T ⎠ na T∆ adsV
∆ ads H m ⎛ ∂lnp ⎞ ⎜ ⎟ =− RT 2 ⎝ ∂T ⎠ na p2 ∆ ads H m ⎛ 1 1⎞ ⎜ − ⎟ ln = ⎜T T ⎟ p1 R 1⎠ ⎝ 2 RT2T1 p2 ln ∆ ads H m = T1 − T2 p1 由恒吸附量下的两组平衡温度压力数据, 可求摩尔吸附焓. 吸附热一般会随吸附量的增加而下降, 表明固体表面的 能量是不均匀的. 吸附总是首先发生在能量较高、 活性较大 的位轩, 然后依次发生在能量较低、活性较小的位置上. 14
θ =
bp 1+ bp
2AM
10
多分子层吸附理论——BET公式
布鲁瑙尔(Brunauer), 埃米特(Emmett)和特勒(Teller)3人 在朗缪尔单分子层吸附理论基础上提出多分子层吸附理论, 简称 BET理论. 该理论假设如下: • 固体表面是均匀的; • 吸附靠分子间力, 吸附可以是多分子层的; • 被吸附的气体分子横向之间无相互作用力; • 吸附与脱附建立起动态平衡.
物理吸附化学吸附
吸附热
吸附速率
>80 kJ/mol
活化吸附,吸附速率慢
0-40 kJ/mol
非活化吸附,吸附速率快
脱附活化能 发生温度 选择性
吸附层 可逆性
化学吸附热 高温(>气体的液化点) 有选择性,与吸附质,吸附 剂本质有关
脱附(desorption): 固体表面气体浓度的减小。 脱附过程:气体在表面上的浓度减小的过程。
体相原子配位数:12
表面原子配位数:9 面心立方最密堆积(FCC)
3 fold site 三重吸附位 桥位
4 fold site 四重吸附位
顶位
表面的吸附位
二、物理吸附(physisorption)与 化学吸附(chemisorption)
从吸附位能曲线还可得出以下两个结论: 1、由于表面的吸附作用,分子在表面上解离需要克服 Ea能垒,在气相中直接解离则需要D,分子在表面上活 化比在气相中容易,这是由于催化剂吸附分子改变了 反应途径的结果。 2、在数值上,脱附活化能等于吸附活化能与化学吸附 热之和。原则上,因为能量的守和性是这一关系具有 普遍性。
第二章 吸附作用
一、概述 在气固多相催化反应过程中,都包含吸附步骤,至少有一种反 应物参与吸附过程。多相催化反应的机理与吸附的机理不可分 割。
Langmuir-Hinshelwood Mechanism
Eley-Rideal Mechanism
固体表面(surface)原子与体相(bulk)原子的最大区别: 表面原子配位不饱和,从而表现出高的化学反应活性。 吸附(adsorption):气体在固体表面的累积。 吸收(absorption):体相的吸附。 吸附剂(adsorbent):吸附气体的固体物质。 吸附质(adsorbate):被吸附的气体。 吸附态:吸附质在表面吸附以后的状态。 吸附中心/吸附位:吸附剂表面发生吸附的局部位置。 吸附过程:固体表面上的气体浓度由于吸附而增加的过程。
物理吸附与化学吸附
吸附剂的表面活性、孔径、孔容等性质也会影响化学吸附 的过程和结果,不同性质的吸附剂对同一种吸附质的吸附 能力可能会有很大差异。
03
物理吸附与化学吸附的比较
吸附力比较
物理吸附
物理吸附是通过分子间作用力(范德 华力)将气体或液体吸附在固体表面 。这种吸附力较弱,容易受到温度和 压力的影响。
原理
01
物理吸附的原理主要是由于分子 间的范德华力,包括色散力、诱 导力和取向力。这些力的大小取 决于分子间的距离和分子极性。
02
当气体分子遇到固体表面时,如 果它们的动能足够大,它们会克 服范德华力,碰撞到表面并被吸 附。
影响因素
温度
温度对物理吸附的影响较小,因为物 理吸附是可逆的,而且没有电子转移 。
物理吸附与化学吸附
汇报人: 202X-12-28
目 录
• 物理吸附 • 化学吸附 • 物理吸附与化学吸附的比较 • 吸附在工业中的应用 • 吸附的未来发展
01
物理吸附
定义
物理吸附是指吸附剂与吸附质之间通 过分子间作用力(范德华力)进行的 吸附。这种吸附没有电子转移,只是 分子间的引力作用。
物理吸附是一种可逆过程,即在较高 温度下,被吸附的物质可以脱附释放 出来。
常用的物理吸附剂包括活性炭、分子筛等,它们具有高比 表面积和孔容,能够吸附气体分子并实现高效分离。
催化剂载体
化学吸附在催化剂载体中具有重要作 用,催化剂载体能够提供活性中心, 促进化学反应的进行。
常用的催化剂载体包括氧化铝、硅酸 铝、分子筛等,它们能够提供酸性或 碱性的活性中心,促进化学反应的进 行。
表面粗糙度
表面粗糙度对物理吸附的影响较大。 粗糙的表面可以提供更多的吸附位点 ,增加物理吸附的可能性。
吸附(物理吸附与化学吸附)在催化中的应用
物理吸附与化学吸附在催化中的应用摘要:吸附过程与催化作用在国民经济和环境保护方面具有重要意义。
他们是化学工业,石油炼制以及国民经济其他领域最活跃的研究课题之一。
这两个领域涉及到的都是表面现象,使用的都是多孔固体。
吸附是催化反应得以发展的最关键步骤之一,通过它揭示催化本质和研究催化性质越来越受到人们的重视,因此许多在线原位动态测量技术得以快速发展。
关键词:物理化学吸附表征测定孔结构气体探针1. 吸附现象吸附:当流体与多孔固体接触时, 流体中某一组分或多个组分在固体表面处产生积蓄, 此现象称为吸附。
吸附也指物质(主要是固体物质)表面吸住周围介质(液体或气体)中的分子或离子现象[1,2]。
实际上,人们很早就发现并利用了吸附现象,如生活中用木炭脱湿和除臭等。
随着新型吸附剂的开发及吸附分离工艺条件等方面的研究,吸附分离过程显示出节能、产品纯度高、可除去痕量物质、操作温度低等突出特点,使这一过程在化工、医药、食品、轻工、环保等行业得到了广泛的应用,例如:(1)气体或液体的脱水及深度干燥,如将乙烯气体中的水分脱到痕量,再聚合。
(2)气体或溶液的脱臭、脱色及溶剂蒸气的回收,如在喷漆工业中,常有大量的有机溶剂逸出,采用活性炭处理排放的气体,既减少环境的污染,又可回收有价值的溶剂。
(3)气体中痕量物质的吸附分离,如纯氮、纯氧的制取。
(4)分离某些精馏难以分离的物系,如烷烃、烯烃、芳香烃馏分的分离。
(5)废气和废水的处理,如从高炉废气中回收一氧化碳和二氧化碳,从炼厂废水中脱除酚等有害物质。
1.1吸附吸附属于一种传质过程,物质内部的分子和周围分子有互相吸引的引力,但物质表面的分子,其中相对物质外部的作用力没有充分发挥,所以液体或固体物质的表面可以吸附其他的液体或气体,尤其是表面面积很大的情况下,这种吸附力能产生很大的作用,所以工业上经常利用大面积的物质进行吸附,如活性炭、水膜等。
当液体或气体混合物与吸附剂长时间充分接触后,系统达到平衡,吸附质的平衡吸附量(单位质量吸附剂在达到吸附平衡时所吸附的吸附质量),首先取决于吸附剂的化学组成和物理结构,同时与系统的温度和压力以及该组分和其他组分的浓度或分压有关。
物理吸附化学吸附静电吸附
物理吸附化学吸附静电吸附
物理吸附、化学吸附和静电吸附是三种不同类型的吸附现象,它们在物质表面和分子之间的相互作用中起着重要作用。
1. 物理吸附:也称为范德华吸附,是由于分子间的范德华力(如色散力、诱导力和取向力)引起的。
物理吸附通常是可逆的,吸附力较弱,不需要形成化学键。
物理吸附的吸附热较小,吸附速度较快,且吸附量随温度升高而降低。
常见的物理吸附示例包括气体在活性炭上的吸附。
2. 化学吸附:是指分子与表面之间通过化学键形成的吸附。
化学吸附通常是不可逆的,吸附力较强,需要形成化学键。
化学吸附的吸附热较大,吸附速度较慢,且吸附量受温度影响较小。
化学吸附常用于催化反应,例如催化剂表面上的反应物分子的吸附。
3. 静电吸附:是由于带电表面与带电分子之间的静电相互作用引起的。
静电吸附的吸附力取决于表面电荷和分子电荷的大小和极性。
静电吸附通常在低相对湿度下发生,并可在带电表面(如电极)上观察到。
静电吸附在一些应用中很重要,例如静电除尘器用于空气净化。
这些吸附现象在不同领域中都有广泛的应用,如气体吸附、催化剂、分离技术、传感器等。
了解和控制这些吸附过程对于许多工业和科学领域都至关重要。
吸附的分类
吸附的分类吸附是指某种气体,液体或者被溶解的固体的原子,离子或者分子附着在某表面上。
这一过程使得表面上产生由吸附物构成的膜。
吸附不同于吸收,吸收是指作为吸附物的液体浸入或者溶解于另一液体或固体中的过程。
吸附仅限于固体表面,而吸收同时作用于表面和内部¹。
吸附的类型根据吸附过程中是否发生化学反应,吸附可以分为物理吸附和化学吸附²。
物理吸附物理吸附是指在吸附过程中物质不改变原来的性质,只是由于分子间的范德华力而使得吸附物分子与固体表面分子相互吸引。
因此物理吸附的能量较小,一般在5~40 kJ/mol之间,被吸附的物质很容易再脱离,只要升高温度或者降低压力,就可以使被吸附的物质逐出固体表面。
物理吸附通常是多层吸附,即在第一层分子之上还可以形成第二层、第三层等多层分子。
物理吸附对温度和压力比较敏感,温度升高或者压力降低都会导致物理吸附减少。
物理吸附对气体或液体的性质没有特殊要求,只要有范德华力存在,就可以发生物理吸附。
化学吸附化学吸附是指在吸附过程中不仅有范德华力,还运用化学键的力,使得固体表面分子与气体或液体分子之间形成共价键或离子键等化学键。
因此化学吸附的能量较大,一般在80~800 kJ/mol之间,要逐出被吸附的物质需要较高的温度或者较低的压力,而且被吸附的物质即使被逐出,也已经产生了化学变化,不再是原来的物质了。
化学吸附通常是单层吸附,即只有第一层分子与固体表面形成化学键,第二层及以上的分子只能通过范德华力与第一层分子相互作用。
化学吸附对温度和压力不太敏感,温度升高或者压力降低对化学键影响不大。
化学吸附对气体或液体的性质有特殊要求,必须能够与固体表面形成化学键才能发生化学吸附。
吸附剂的分类根据不同的标准,可以将用于实现吸附过程的固体材料称为吸附剂,并按照以下几种方式进行分类³。
按孔径大小分类粗孔和细孔:粗孔指孔径大于50 nm的孔道,细孔指孔径小于2 nm的孔道。
粗孔吸附剂的表面积较小,但孔道容易通畅,适用于吸附大分子的物质。
物理化学5.5-1 固体表面的吸附-物理吸附和化学吸附
应用举例:
石油加工,气体纯化, 催化合成,污水处理, 空气净化(防毒面具), 空气的变压吸附分离, 洁净能源(储氢材料) 。
物理吸附和化学吸附
——按吸附作用力性质的不同区分
表5.6 物理吸附与化学吸附的区别
吸附性质
物理吸附
化学吸附
吸附力
分子间力
化学键力
吸附热
小
大
吸附分子层
单层或多层Байду номын сангаас
单层
吸附选择性
的途径(需能量ED)
容易的多。
Cu上氢的吸附势能曲线
无
有
脱附温度
低
高
吸附平衡/可逆性 易达到/可逆
不易达到/不可逆
用吸收光谱可鉴别物理吸附、化学吸附
——在紫外-可见-红外光谱区,出现新的特征吸收带,说明存在化学吸附。
温度可改变吸附力的性质 物理吸附(aa线)在一定条件下可转变为化学吸附(bb线) 。
从能量上看, 先发生物理吸附而 后转变为化学吸附 的途径(需能量 Ea), 要比氢分子先解离 成原子再化学吸附
§5.5 固体表面对气体的吸附
产生吸附的热力学原因
物理吸附和化学吸附
兰缪尔吸附理论
两种吸附质(A和B)竞争同一种吸附位
吸附质的对称解离吸附
吸附过程示意
贵金属 表面吸附示意吸附漏油— 图片产生表面现象的热力学原因
在定温、定压、定组成下,有
dGT , p,nB dAs <0
为使表面能降低,固体表面会自发地利用其未饱和 的自由价来捕获气相或液相中的分子,使之在固体表面 上浓集,这一现象称为固体对气体或液体的吸咐。
例如在罗丹明B的水溶液中加入一些活性炭,溶液的 颜色将逐渐变浅,说明RhB逐渐富集于活性炭表面。
(完整word版)物理吸附和化学吸附的异同
物理吸附和化学吸附的异同根据吸附剂表面与被吸附物之间作用力的不同,吸附可分为物理吸附与化学吸附。
同一物质,可能在低温下进行物理吸附而在高温下为化学吸附,或者两者同时进行。
吸附作用的大小跟吸附剂的性质和表面的大小、吸附质的性质和浓度的大小、温度的高低等密切相关。
如活性炭的表面积很大,吸附作用强;活性炭易吸附]沸点高的气体,难吸附沸点低的气体。
物理吸附是被吸附的流体分子与固体表面分子间的作用力为分子间吸引力,即所谓的范德华力(Vanderwaals)。
因此,物理吸附又称范德华吸附,它是一种可逆过程。
当固体表面分子与气体或液体分子间的引力大于气体或液体内部分子间的引力时,气体或液体的分子就被吸附在固体表面上。
从分子运动观点来看,这些吸附在固体表面的分子由于分子运动,也会从固体表面脱离而进入气体(或液体)中去,其本身不发生任何化学变化。
随着温度的升高,气体(或液体)分子的动能增加,分子就不易滞留在因体表面上,而越来越多地逸入气体(或液体中去,即所谓“脱附”。
这种吸附—脱附的可逆现象在物理吸附中均存在。
工业上就利用这种现象,借改变操作条件,使吸附的物质脱附,达到使吸附剂再生,回收被吸附物质而达到分离的目的。
物理吸附有以下特点:①气体的物理吸附类似于气体的液化和蒸气的凝结,故物理吸附热较小,与相应气体的液化热相近;②气体或蒸气的沸点越高或饱和蒸气压越低,它们越容易液化或凝结,物理吸附量就越大;③物理吸附一般不需要活化能,故吸附和脱附速率都较快;任何气体在任何固体上只要温度适宜都可以发生物理吸附,没有选择性;④物理吸附可以是单分子层吸附,也可以是多分子层吸附;⑤被吸附分子的结构变化不大,不形成新的化学键,故红外、紫外光谱图上无新的吸收峰出现,但可有位移;⑥物理吸附是可逆的;⑦固体自溶液中的吸附多数是物理吸附。
物理吸附理论基础:气体吸附理论主要有朗缪尔单分子层吸附理论、波拉尼吸附势能理论、 BET多层吸附理论(见多分子层吸附)、二维吸附膜理论和极化理论等,以前三种理论应用最广。
吸附的分子机理
吸附的分子机理
吸附的分子机理是指在吸附过程中发生的分子间相互作用。
吸附分子机理主要包括物理吸附和化学吸附两种机制。
1. 物理吸附:物理吸附是指吸附剂表面上的吸附位点与吸附分子之间的弱相互作用力,如范德华力、氢键、静电作用力等。
物理吸附通常在相对较低的温度和高压下发生,并且吸附分子可以通过加热、降低压力或增加其他物质来脱附。
物理吸附是可逆的吸附过程。
2. 化学吸附:化学吸附是指吸附剂表面上的吸附位点与吸附分子之间的键合作用,如共价键形成、电子转移等。
化学吸附通常在较高温度和较低压力下发生,并且吸附分子与吸附剂形成稳定的化学键。
化学吸附是不可逆的吸附过程。
在实际吸附过程中,物理吸附和化学吸附往往同时存在。
对于某些吸附系统,吸附分子的一部分会以物理吸附的形式吸附到吸附剂表面,而另一部分则以化学吸附的形式与吸附剂发生化学反应。
吸附分子的具体吸附方式和机制取决于吸附剂和吸附分子的性质,以及吸附条件等因素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈尔滨商业大学食品工程学院
LOGO
应用:
物理吸附在化学工业、石油加工工业、农业、医药工业、环境保护 等部门和领域都有广泛的应用。 最常用的是从气体和液体介质中回收有用物质或去除杂质,如气体 的分离、气体或液体的干燥、油的脱色等。
哈尔滨商业大学食品工程学院
(1)在海水淡化中的应用 该技术采用天然沸石分子筛作基本材料。天然沸石分子筛是一种白色、无毒、 无臭的晶体粉末,可吸附尺寸在3~20 的多种离子。在分子筛骨架结构中,阳离子 定位在孔道或空腔中的一定位置上,在水溶液中,是可以互相交换的。
哈尔滨商业大学食品工程学院
LOGO
4.5离子交换的应用
+ Na
Na
交换前
交换达到平衡后
哈尔滨商业大学食品工程学院
LOGO
4.4离子交换树脂的分类
(1)详细分类
代号 0 1 2 分类名称 强酸 弱酸 强碱 功能基 -SO3H 说明 磺酸基 膦酸基 季铵基
-COOH,-PO3H3
(CH3)2 -N+(CH3)3 , -N+ CH2CH2OH
物理吸附和化学吸附
哈尔滨商业大学食品工程学院
LOGO
1
2 3 4
物理吸附 化学吸附
物理吸附化学吸附的区别
离子交换
哈尔滨商业大学食品工程学院
LOGO
1、物 理 吸 附
物理吸附:物理吸附是被吸附的流体分子与固体表面分子间的作用 力为分子间吸引力,即所谓的范德华力(分子相结合的能力);吸附质 分子与吸附剂表面原子或分子间以范德华力进行的吸附作用。可看做凝 聚现象。
(2)在硬水软化中的应用 水的软化是去除水中Ca2+,Mg2+ ,通过Na型阳离子交换柱使水中Ca2+,Mg2+ 与Na+交换,使其保留在树脂上。
Ca 2RSO3-Na+ +
2+
2HCO3 SO42-
-
Ca2+ 2RSO3Mg2+
2NaHCO3 Na2SO4 2NaCl
Mg2+
2Cl-
哈尔滨商业大学食品工程学院
LOGO
4.5离子交换的应用
(3)在食品工业中的应用 1、糖类脱色 2、酒类去浑浊,调节pH值、去重金属离子,脱色,去SO2,改善水质。 3、牛奶的稳定性
4、油脂中微量的铜、铁、锰、锌离子的去除
感谢您的关注
哈尔滨商业大学食品工程学院
LOGO
4、离 子 交 换
4.1概念
离子交换:离子交换是离子交换剂(交换树脂)上离解出来的可交换离子就 可与溶液里的同类型离子发生交换为基础的分离方法。 离子交换树脂可分为阳离子交换树脂和阴离子交换树脂两类。
哈尔滨商业大学食品工程学院
LOGO
2、化 学 吸 附
化学吸附:吸附质分子与固体表面原子(或分子)发生电子的转移、 交换或共有,形成吸附化学键(原子或离子相结合的能力)的吸附。简 单说是固体表面与被吸附物间的化学键力起作用的结果。可看做化学反 应。
哈尔滨商业大学食品工程学院
LOGO
3、物理吸附与化学吸附的区别
LOGO
4.2离子交换原理
主要依赖电荷间的相互作用,利用带电分子中电荷的微小差异而进行分离。 选择适当条件可使一些溶质分子变成离子态,通过静电作用结合到离子交换 剂上,而另一些物质不能被交换,这两种物质就可被分离。 带同种电荷的不同离子虽都可以结合到同一介质上,但由于带电量不同,与 介质的结合牢度不同,改变洗脱条件可依次被洗脱而达到分离的目的。
_
Cl
_
Na
+
交换前
交换达到平衡后
哈尔滨商业大学食品工程学院
LOGO
4.4离子交换树脂的分类
(1)阴离子交换树脂
+ Na -
- OH OH -+ + OH + OH+ + - Na Cl OH + + -+ Na OH + Na Cl Cl
_ _ _
Cl
_
Na OH
-
+
+ Na - OH Cl -+ + Cl OH + OH+ - OH + + Cl - ClOH +
物理吸附 吸附力 范德华力 吸附层数 多分子层或单分子层 可逆性 可逆 =8.4—41.8 kJ• mol-1 吸附热 吸附速率 不需活化,吸附速率快 脱附活化能 = 凝聚热 吸附选择性 封锁选择性质 发生温度 化学吸附 化学键力 单分子层 不可逆 ≥84kJ• mol-1 需活化,吸附速率慢 ≥化学吸热 有选择性,与吸附质吸附剂 有关 高温下(高于气体液化 接近气体的液化点 点)
哈尔滨商业大学食品工程学院
LOGO
4.4离子交换树脂的分类
(1)阳离子交换树脂
+ Na + + Na
+ H H + H H+ + + Na Cl H + H + Na + Cl Na Cl
_ _ _
Cl
_
H H + Cl Na + Na H + Cl
+
_ _
+
H+ H+ + H Cl
哈尔滨商业大学食品工程学院
LOGO
4.3离子交换实例
阳离子交换树脂大都含有磺酸基(-SO3H)、羧基(-COOH)或苯酚基(C6H4OH)等酸性基团,其中的氢离子能与溶液中的金属离子或其他阳离子进行 交换。 硬水软化原理: 离子交换树脂,其结构式可简单表示为R-SO3H,式中R代表树脂母体 2R-SO3H+Ca2+----(R-SO3)2Ca+2H
3 4
5 6
弱碱 螯合
两性 氧化还原
-NH2,-NHR,-NR2
CH2COOH H2C N CH2COOH
伯,仲,叔氨基 胺羧酸 强碱弱酸型 硫醇基
对苯二酚基
(-N+(CH3)3 ,
(-CH2SH) HO
-COOH)
OH
哈尔滨商业大学食品工程学院
LOGO
4.5离子交换的应用