紫外可见分光光度计基本知识PPT
合集下载
紫外可见分光光度计的使用课件PPT
定义与工作原理
定义
紫外可见分光光度计是一种基于 物质对紫外可见光的吸收特性进 行物质定量和定性分析的仪器。
工作原理
通过测量物质在特定波长下的吸光 度,利用朗伯-比尔定律(A=εbc) 计算物质的浓度。
类型与特点
类型
单光束分光光度计、双光束分光光度 计和双波长分光光度计。
特点
具有较高的测量精度和稳定性,广泛 应用于化学、生物学、医学、环境监 测等领域。
每次使用后记录仪器使用 情况,包括测试样品、测 试波长、测试结果等,以 便后续分析。
常见故障排除
波长不准确
检查仪器是否正确设置波长,并 确保仪器没有受到强烈震动或磁
场干扰。
读数不稳定
检查样品是否均匀,仪器是否处于 稳定状态,以及是否有外界干扰。
仪器无响应
检查电源是否正常,仪器是否处于 正常工作状态,以及是否有硬件故 障。
THANKS
开始测量
点击开始按钮,仪器自动扫描并记录 数据。
数据处理
将测量数据导入计算机进行进一步处 理和分析。
实验操作技巧
保持样品池清洁
定期清洗样品池,避免残留物对测量结果的 影响。
选择合适的标准物质
选择与待测样品性质相近的标准物质进行校 准,提高测量准确性。
控制环境因素
确保实验室内温度、湿度和光照等环境因素 稳定,以减小误差。
多次测量求平均值
为减小误差,可以对同一样品进行多次测量, 取平均值作为最终结果。
常见问题及解决方案
波长校准不准确
可能是由于仪器内部棱镜或光路不干 净导致。解决方法是清洁仪器内部并 重新进行波长校准。
测量数据不稳定
数据处理软件崩溃
可能是由于计算机内存不足或软件 bug导致。解决方法是关闭不必要的 程序,释放计算机内存,或更新数据 处理软件。
紫外可见分光光度法基本原理PPT讲稿
光是由光子流组成,光子的能量:
E=h=hc/
(Planck常数:h=6.626 × 10 -34 J × S ) 光的波长越短(频率越高),其能量越大。 白光(太阳光):由各种单色光组成的复合光 单色光:单波长的光(由具有相同能量的光子组成) 可见光区:400-750 nm 紫外光区:近紫外区200 - 400 nm
生的吸收光谱在紫外—可见光区,称为紫外—可见光谱或分子的 电子光谱。
讨论:
(4)吸收光谱的波长分布是由产生谱带的跃迁能级间的 能量差所决定,反映了分子内部能级分布状况,是物质定性 的依据。 (5)吸收谱带强度与分子偶极矩变化、跃迁几率有关, 也提供分子结构的信息。通常将在最大吸收波长处测得的摩 尔吸光系数εmax也作为定性的依据。不同物质的λmax有时可能 相同,但εmax不一定相同; (6)吸收谱带强度与该物质分子吸收的光子数成正比, 这是定量分析的依据。
* σ σ* (150~210nm)
H
* n σ* (259nm)
HCI
H
(2)不饱和脂肪烃
• 这类化合物有孤立双键的烯烃(如乙烯)和共轭双键的烯
烃(如丁二烯),它们含有π键电子,吸收能量后产生
π→π*跃迁。乙烯(孤立双键)的
m
a
为171nm(
x
=
15530 L mol1 cm1 );而丁二烯H(2C CH CH CH2 )
列吸收带,称为精细结构吸收带,亦称为B吸收带[从德文 Benzenoid(苯的)得名],这是由于跃迁和苯环的振动的重叠引起的。B 吸收带的精细结构常用来辨认芳香族化合物。 苯环与生色团连结时,有B和K两种吸收带,有时还有R吸收带,其中 R吸收带的波长最长 。
生色团与助色团
生色团(Chromophore): 最有用的紫外—可见光谱是由π→π*和n→π*跃迁产生
E=h=hc/
(Planck常数:h=6.626 × 10 -34 J × S ) 光的波长越短(频率越高),其能量越大。 白光(太阳光):由各种单色光组成的复合光 单色光:单波长的光(由具有相同能量的光子组成) 可见光区:400-750 nm 紫外光区:近紫外区200 - 400 nm
生的吸收光谱在紫外—可见光区,称为紫外—可见光谱或分子的 电子光谱。
讨论:
(4)吸收光谱的波长分布是由产生谱带的跃迁能级间的 能量差所决定,反映了分子内部能级分布状况,是物质定性 的依据。 (5)吸收谱带强度与分子偶极矩变化、跃迁几率有关, 也提供分子结构的信息。通常将在最大吸收波长处测得的摩 尔吸光系数εmax也作为定性的依据。不同物质的λmax有时可能 相同,但εmax不一定相同; (6)吸收谱带强度与该物质分子吸收的光子数成正比, 这是定量分析的依据。
* σ σ* (150~210nm)
H
* n σ* (259nm)
HCI
H
(2)不饱和脂肪烃
• 这类化合物有孤立双键的烯烃(如乙烯)和共轭双键的烯
烃(如丁二烯),它们含有π键电子,吸收能量后产生
π→π*跃迁。乙烯(孤立双键)的
m
a
为171nm(
x
=
15530 L mol1 cm1 );而丁二烯H(2C CH CH CH2 )
列吸收带,称为精细结构吸收带,亦称为B吸收带[从德文 Benzenoid(苯的)得名],这是由于跃迁和苯环的振动的重叠引起的。B 吸收带的精细结构常用来辨认芳香族化合物。 苯环与生色团连结时,有B和K两种吸收带,有时还有R吸收带,其中 R吸收带的波长最长 。
生色团与助色团
生色团(Chromophore): 最有用的紫外—可见光谱是由π→π*和n→π*跃迁产生
紫外可见分光光度计原理及操作.ppt
吸收光谱曲线,可根据吸收光谱上的某些特征波长处的吸光度的高低判别或
测定该物质的含量,这就是分光光度定性和定量分析的基础。 3)紫外分光光度法使用基于朗伯-比耳定律(Lambert-Beer)。
朗伯-比耳定律是光吸收的基本定律,俗称光吸收定律,是分光光度法
定量分析的依据和基础。
朗伯-比耳定律
一、透射率T%
dT d lg T 0.434 bdc T
将上两式相比,并将 dT 和 dc 分别换为T 和 c,得
c 0.434T c T lg T
当相对误差 c/c 最小时,求得T=0.368 或 A=0.434。即当A=0.434 时,吸光度读数误差最小! 通常可通过调节溶液浓度或改变光程 b来控制A的读数在0.15~1.00范类型来自3.比例双光束分光光度计
由同一单色器发出的光被分成两束,一束直接到达检测器,另一束 通过样品后到达另一个检测器。这种仪器的优点是可以监测光源变化带
来的误差,但是并不能消除参比造成的影响
UV-2550的特点
6 挡狭缝可选
PC 控制存储、调用方便 可采用复制、拷贝方法在电子表格和字处理软件中处理数据和打印报 告 可加载膜厚、动力学、多波长、色彩分析等软件 DDM(双闪耀波长双单色器)降低杂散光,提高长波长区的能量响应 (UV-2550)
它的作用是放大信号并以适当方式指示或记录下来。现在一般的紫
外可见分光光度计有计算机控制和主机单片机控制两种类型,功能基本 类似。
类型
紫外-可见分光光度计的类型很多,但可归纳为三种类 型,即单光束分光光度计、双光束分光光度计和比例双光束 分光光度计。
1.单光束分光光度计 经单色器分光后的一束平行光,轮流通过参比溶液和样品溶液,以 进行吸光度的测定。这种简易型分光光度计结构简单,操作方便,维修 容易,适用于常规分析。
紫外分光光度计的使用原理和方法 PPT
这些显色反应,必须满足以下条件:
1、反应得生成物必须在紫外-可见光区有较 强得吸光能力,即摩尔吸光系数较大;
2、反应有较高得选择性,即被测组分生成得 化合物吸收曲线应与共存物质得吸收光谱有 明显得差别;
3、 反应生成得产物有足够得稳定性,以保 证测量过程中溶液得吸光度不变;
4、反应生成物得组成恒定。
按所吸收光得波长区域不同,分为紫外分 光光度法与可见分光光度法,合称为紫外-可见 分光光度法。
紫外-可见分光光度法得特点:
1 与其它光谱分析方法相比,其仪器设备与操 作都比较简单,费用少,分析速度快;
2 灵敏度高; 3 选择性好; 4 精密度与准确度较高; 5 用途广泛。
§1、 紫外-可见吸收光谱
3、 狭缝宽度得选择
为了选择合适得狭缝宽度,应以减少狭 缝宽度时试样得吸光度不再增加为准。一 般来说,狭缝宽度大约就是试样吸收峰半 宽度得十分之一。
二、显色反应条件得选择
对多种物质进行测定,常利用显色反应 将被测组分转变为在一定波长范围有吸收 得物质。常见得显色反应有配位反应、氧 化还原反应等。
参比溶液得选择视分析体系而定,具体有:
1、溶剂参比 试样简单、共存其它成分 对测定波长吸收弱,只考虑消除溶剂与吸收 池等因素;
2、试样参比 如果试样基体溶液在测定 波长有吸收,而显色剂不与试样基体显色 时,可按与显色反应相同得条件处理试样, 只就是不加入显色剂。
3、试剂参比 如果显色剂或其它试剂在 测定波长有吸收,按显色反应相同得条件, 不加入试样,同样加入试剂与溶剂作为参 比溶液。
红移与紫移
在有机化合物中,常常因取代基得变更或 溶剂得改变,使其吸收带得最大吸收波长λmax 发生移动。向长波方向移动称为红移(表3-3), 向短波方向移动称为紫移。
紫外分光光度计分析PPT课件
5 分光光度计的维护和保养
(1)仪器工作环境
仪器应安放在稳固的工作台上,避免周围有强 磁场。室内温度:15-28℃,相对湿度: 45%-65%,室内不宜有腐蚀性气体,不宜光 线过强。
(2)仪器保养 ① 电压
一般为220V,在电压波动较大的实验 室,最好有稳压器。
② 光源
在不用时不要开光源灯,延长光源的使 用寿命。要注意及时更换光源不稳的灯泡, 更换时不要直接用手接触,以免沾上油污。
2)在吸收池中装入相同的溶剂,吸光度相同 即可成套,若不同可求出修正值后使用。
分光光度计的使用
(1)721型可见分光光度计 ① 检查各调节钮处于起始位置,接通电源,打
开样品室暗箱盖,预热20min。
② 选择调节至所需用波长,并调节相关波长的 灵敏档。
③ 用调“0”电位器调整电表于T=0%,安放 参比溶液(第一格)和待测液,盖上样品 室盖,拉动拉杆,使参比溶液在光路上时 调节“100%”电位器,使电表指针在 T=100%
管高200倍 目前紫外-可见分光光度计广泛使用光电倍 增管作为检测器
光电倍增管示意图
信号显示器
1 以检流计或微安表为指示仪表。 标尺分上下两部分:上半部分是透光度T 下半部分是吸光度A
2 数字显示和自动记录型装置。 直接数字显示可避免人为误读。
紫外-可见分光光度计类型及特点
按使用波长范围可分为 1 可见分光光度计 :400nm-780nm
单波长双光束分光光度计 特点:能连续改变波长,自动比较样品和参
比溶液的透光强度,自动消除光源强 度引起的误差 适用:在较宽波长范围内获得复杂的吸收光 谱曲线的分析
双波长分光光度计
特点:可测定高浓度、多组分混合试样,浑 浊试样;精确度高,操作简单。
紫外可见分光光度PPT(完整版)课件
因此,可能的跃迁为σ → σ*、π→ π*、n→ σ* n→ π*等。
2023/10/14
10
Wavelength
2023/10/14
11
て
~104 10~100 100~300
k
~200 200~800
<200 ~150(<200)
Amax(nm)
<U<M<M<xD<U<*0<1<*1<0<*0<0
(red shift 或bathochromic
shift) 指取代基或溶剂效应引起吸收带 向长波方向的移动;
蓝移 ( blue shift 或 hypsochron sh ift) 或紫移: 吸收带向短
波方向移动
2023/10/14
16
常见助色团及其助色效应(红移)λ
-F<-Cl<-Br<-OH<-OCH₃<-N NHCH₃<-N(CH₃)₂<-NHC₆H₅<
6
分子中电子能级、振动能级和转动能级示意图
2023/10/14
不是任一波长的 光都可以被某一物质 所吸收,由于不同物 质的分子其组成结构 不同,它们所具有的 特征能级也不同,故 能级差不同,而各物 质只能吸收与它们内 部能级差相当的光辐 射,所以,不同物质 对不同波长的光吸收 具有选择性。
7
物质颜色与光吸收的关系
2023/10/14
29
四、 无机化合物的吸收光谱
金属离子 金属离子
配位体
d-d配位场跃迁
配位体
配位体π- π*
金属离子
配位体
电荷转移
2023/10/14
2023/10/14
10
Wavelength
2023/10/14
11
て
~104 10~100 100~300
k
~200 200~800
<200 ~150(<200)
Amax(nm)
<U<M<M<xD<U<*0<1<*1<0<*0<0
(red shift 或bathochromic
shift) 指取代基或溶剂效应引起吸收带 向长波方向的移动;
蓝移 ( blue shift 或 hypsochron sh ift) 或紫移: 吸收带向短
波方向移动
2023/10/14
16
常见助色团及其助色效应(红移)λ
-F<-Cl<-Br<-OH<-OCH₃<-N NHCH₃<-N(CH₃)₂<-NHC₆H₅<
6
分子中电子能级、振动能级和转动能级示意图
2023/10/14
不是任一波长的 光都可以被某一物质 所吸收,由于不同物 质的分子其组成结构 不同,它们所具有的 特征能级也不同,故 能级差不同,而各物 质只能吸收与它们内 部能级差相当的光辐 射,所以,不同物质 对不同波长的光吸收 具有选择性。
7
物质颜色与光吸收的关系
2023/10/14
29
四、 无机化合物的吸收光谱
金属离子 金属离子
配位体
d-d配位场跃迁
配位体
配位体π- π*
金属离子
配位体
电荷转移
2023/10/14
紫外-可见分光光度法——(最终版)PPT演示课件
第十章 紫外-可见分光光度法
电子跃迁类型
1、※σ→σ*跃迁 跃迁所需能量最大 λ<150nm ε>104 饱和烃(远紫外区) C-H共价键,如CH4( λmax 125nm) C-C键,如 C2H6 (λmax 135nm)
仪器分析
第十章 紫外-可见分光光度法
电子跃迁类型
2、π→π*跃迁 跃迁所需能量较大
T,
T A
C
三
者
0.5
的
关
系
0
c
100
T = 0.0 %
A=∞
50
T = 100.0 %
A = 0.0
0
溶液的T越大,说明对光的吸收越小,浓度低; T越小,溶液对光的吸收越大,浓度高
第十章 紫外-可见分光光度法
仪器分析
吸光度的加合性
在多组分体系中如果各吸光物质之间无相互作 用这时体系总的吸光度等于各个吸光物质的吸 光度之和。
仪器分析
2.※百分吸光系数:在一定波长下,
溶液中吸光物质浓度为1%(W/V),液
层厚度为1cm的吸光度。用 E1% 表示, 1cm
单位:ml/cm·g。
将两者之间的转换关系用公式来表达
M E1%
10 1cm
第十章 紫外-可见分光光度法
仪器分析
※摩尔吸光系数ε 的讨论
(1)吸光物质在一定波长和溶剂条件下的特征常数;
大部分在远紫外区
含非键电子饱和烃衍生物(含N、O、S和卤素等杂原
子)
一氯甲烷 n→σ*跃迁:λmax 173nm 甲醇 n→σ*跃迁:λmax 183nm
第十章 紫外-可见分光光度法
电子跃迁类型
4、n→ π*跃迁
紫外可见分光光度计原理及操作.ppt
光源可能发生故障。检查是否是相对应的操作范围的光源配置 。如果需要请更换。 处理方法 交换样品重新进行基线的校正。 用“MEDIUM”或更低的扫描速度进行基线的校正。 用宽波长范围进行基线的校正。 一些可选样品室可能改变基线。附件装配好后重新执行基线 校正。
光源 2)基线不平 检查项目 高吸收样品 “FAST”扫描速度 波长范围可能太窄 可能使用了样品室可选 配件
4、安装地点具备可靠的仪器接地端子
保养
四、清洁仪器外部和样品室
1、使用软布稍微蘸取水,或水溶液或者中性清洁剂溶液轻柔搽拭 外表面。避免蘸取过量而导致流入仪器内部。 2、清除样品室内残留液体样品,防止蒸发,避免腐蚀样品室。 五、波长准确度检查(每半年一次) 利用氘灯的两个特征波长峰486.0nm和656.1nm来检查波长的 精确度。
紫外可见分光光度计原理及操作
潘睿睿
目录
紫外-可见分光光度计仪器原理
1
紫外-可见分光光度计结构及类型
2 3
UV-Vis分光光度法的应 用和分析条件的选择
4
UV-Vis分光光度计的保 养与故障处理
一、紫外-可见分光光 度计仪器原理
原理
波长 200 400 800 3200(nm)
g -X-射线
紫外
dT d lg T 0.434 bdc T
将上两式相比,并将 dT 和 dc 分别换为T 和 c,得
c 0.434T c T lg T
当相对误差 c/c 最小时,求得T=0.368 或 A=0.434。即当A=0.434 时,吸光度读数误差最小! 通常可通过调节溶液浓度或改变光程 b来控制A的读数在0.15~1.00范
围内。
析条件选择
二、反应条件选择 1.显色剂的选择原则: 使配合物吸收系数 最大、选择性好、组成恒定、配合物稳定、显 色剂吸收波长与配合物吸收波长相差大等。 2. 显色剂用量:
光源 2)基线不平 检查项目 高吸收样品 “FAST”扫描速度 波长范围可能太窄 可能使用了样品室可选 配件
4、安装地点具备可靠的仪器接地端子
保养
四、清洁仪器外部和样品室
1、使用软布稍微蘸取水,或水溶液或者中性清洁剂溶液轻柔搽拭 外表面。避免蘸取过量而导致流入仪器内部。 2、清除样品室内残留液体样品,防止蒸发,避免腐蚀样品室。 五、波长准确度检查(每半年一次) 利用氘灯的两个特征波长峰486.0nm和656.1nm来检查波长的 精确度。
紫外可见分光光度计原理及操作
潘睿睿
目录
紫外-可见分光光度计仪器原理
1
紫外-可见分光光度计结构及类型
2 3
UV-Vis分光光度法的应 用和分析条件的选择
4
UV-Vis分光光度计的保 养与故障处理
一、紫外-可见分光光 度计仪器原理
原理
波长 200 400 800 3200(nm)
g -X-射线
紫外
dT d lg T 0.434 bdc T
将上两式相比,并将 dT 和 dc 分别换为T 和 c,得
c 0.434T c T lg T
当相对误差 c/c 最小时,求得T=0.368 或 A=0.434。即当A=0.434 时,吸光度读数误差最小! 通常可通过调节溶液浓度或改变光程 b来控制A的读数在0.15~1.00范
围内。
析条件选择
二、反应条件选择 1.显色剂的选择原则: 使配合物吸收系数 最大、选择性好、组成恒定、配合物稳定、显 色剂吸收波长与配合物吸收波长相差大等。 2. 显色剂用量:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
紫外-可见吸收光谱
1. 物质对光的选择性吸收 物质对光的吸收是选择性的,利用
被测物质对某波长的光的吸收来了解物 质的特性,这就是光谱法的基础。
5
通过测定被测物质对不同波长的光的吸 收强度(吸光度),以波长为横坐标,吸光 度为纵坐标作图,得出该物质在测定波长范 围的吸收曲线。
在吸收曲线中,通常选用最大吸收波长 λmax进行物质含量的测定。
它是利用物质的分子或离子对某一波
长范围的光的吸收作用,对物质进行定性 分析、定量分析及结构分析, 所依据的光 谱是分子或离子吸收入射光中特定波长的 光而产生的吸收光谱。
按所吸收光的波长区域不同,分为紫
外分光光度法和可见分光光度法,合称为
紫外-可见分光光度法。
3
紫外-可见分光光度法的特点:
1 与其它光谱分析方法相比,其仪器设备和 操作都比较简单,费用少,分析速度快; 2 灵敏度高; 3 选择性好; 4 精密度和准确度较高; 5 用途广泛。
紫外可见分光光度计 基本知识
北京普析通用仪器有限责任公司
Beijing Purkinje General Instrument Co.,Ltd.
1
紫外-可见分光光度法
紫外-可见吸收光谱 朗伯-比耳定律 紫外-可见分光光度计 分析条件的选择 测定方法
2
紫外-可见分光光度法(ultraviolet-visible spectrophotometry, UV-VIS)
20
二、紫外-可见分光光度计的类型 按其光学系统可分为单波长分光光
度计和双波长分光光度计。
21
1.单波长单光束分光光度计
✓ 特点: • 使用时来回拉
动吸收池 →移动误差
• 对光源要求高 • 比色池配对
22
2.单波长双光束分光光度计
✓ 特点: • 不用拉动吸
收池,可以 减小移动误 差 • 对光源要求 不高 • 可以自动扫 描吸收光谱
6
影响紫外-可见吸收光谱的因素
物质的吸收光谱与测定条件有密切的 关系。测定条件(温度、溶剂极性、pH 等)不同,吸收光谱的形状、吸收峰的位 置、吸收强度等都可能发生变化。 1.温度 在室温范围内,温度对吸收光谱 的影响不大。
7
2. 溶剂 注意如下几点: (1)尽量选用低极性溶剂; (2)能很好地溶解被测物,并且形成的溶 液具有良好的化学和光化学稳定性; (3)溶剂在样品的吸收光谱区无明显吸收。
热辐射光源用于可见光区,如钨灯和 卤钨灯;气体放电光源用于紫外光区,如 氢灯和氘灯。
17
2 单色器
单色器的主要组成:入射狭缝、出射狭 缝、色散元件和准直镜等部分。
单色器质量的优劣,主要决定于 色散元件的质量。色散元件常用棱镜 和光栅。
18
3 吸收池
吸收池又称比色皿或比色杯,按材 料可分为玻璃吸收池和石英吸收池,前 者不能用于紫外区。
11
三、吸光系数
当l以cm,c以g/L为单位,κ称为吸光 系数,用 a表示。
A= a cl a的单位为L/(g.cm)
12
摩尔吸光系数
当l以cm,c以mol/L为单位,κ称为 摩尔吸光系数,用 ε表示。
ε的单位为L/mol.cm,它表示物质的 浓度为1mol/L,液层厚度为1cm时,溶 液的吸光度。
23
3.双波长分光光度计
✓ 特点: • 利用吸光度差
值定量 • 消除干扰和吸
收池不匹配引 起的误差
24
1.分析条件的选择
一、 仪器测量条件的选择 1.适宜的吸光度范围 由朗伯T=0.4343dT/T= -εldc 或 0.4343ΔT/T= -εlΔc
13
比吸光系数
比吸光系数是指百分含量为1%, l为1cm
时的吸光度值,用
E
1% 1 cm
表示。
0.1MrE11c%m
14
四、偏离朗伯-比耳定律的因素
(1)入射光为非单色光 (2)溶液的不均性。
实际样品的混浊,加入的保护胶体, 蒸馏水中的微生物,存在散射以及共振发 射等,均可吸光质点的吸光特性变化大。
吸收池的种类很多,其光径可在 0.1~10cm之间,其中以1cm光径吸收池 最为常用。
19
4 检测器 检测器的作用是检测光信号,并将
光信号转变为电信号。现今使用的分光 光度计大多采用光电管或光电倍增管作 为检测器。
5 信号显示系统 常用的信号显示装置有直读检流计,
电位调节指零装置,以及自动记录和数 字显示装置等。
透光度:透光度为透过光的强度It与入射光 强度I0之比,用T表示:
即 T= It/I0
10
二、朗伯-比尔定律
朗伯-比尔定律:当一束平行单色光通过含 有吸光物质的稀溶液时,溶液的吸光度与 吸光物质浓度、液层厚度乘积成正比,即
A= κ cl
式中比例常数κ与吸光物质的本性,入射 光
波长及温度等因素有关。c为吸光物质浓 度, l为透光液层厚度。
(3)光程的不一致性。
光源不是点光源,比色皿光径长度不一 致,光学元件的缺陷引起的多次反射等,均 造成光径不一致,从而与定律偏离。
15
紫外-可见分光光度计 一、主要部件的性能与作用 基本结构:
光源→单色器→吸收池→检测器→信号显示系统
16
1 光源
在紫外可见分光光度计中,常用的光源 有两类:热辐射光源和气体放电光源
3. pH值
8
朗伯-比尔定律 一、吸光度和透光度
设入射光强度为I0,吸收光强度为Ia,透 射光强度为 It,反射光强度为Ir,则
I0= Ia+ It+ Ir 由于反射光强度很弱,其影响很小,上式 可简化为:
I0= Ia+ It
9
吸光度: 为透光度倒数的对数,用A表示, 即
A=lg1/T=lgI0/It
27
3.狭缝宽度的选择 为了选择合适的狭缝宽度,应以减少
狭缝宽度时试样的吸光度不再增加为准。 一般来说,狭缝宽度大约是试样吸收峰 半宽度的十分之一。
28
二、显色反应条件的选择
25
代入朗伯-比尔定律有: Δc/c=0.4343ΔT/TlgT
要使测定的相对误差Δc/c最小,求导取 极小得出:
lgT=-0.4343=A 即当A=0.4343时,吸光度测量误差最小。
最适宜的测量范围为0.2~0.8之间。
26
2.入射光波长的选择
通常是根据被测组分的吸收光谱,选择最强吸 收带的最大吸收波长为入射波长。当最强吸收峰的 峰形比较尖锐时,往往选用吸收稍低,峰形稍平坦 的次强峰或肩峰进行测定。
紫外-可见吸收光谱
1. 物质对光的选择性吸收 物质对光的吸收是选择性的,利用
被测物质对某波长的光的吸收来了解物 质的特性,这就是光谱法的基础。
5
通过测定被测物质对不同波长的光的吸 收强度(吸光度),以波长为横坐标,吸光 度为纵坐标作图,得出该物质在测定波长范 围的吸收曲线。
在吸收曲线中,通常选用最大吸收波长 λmax进行物质含量的测定。
它是利用物质的分子或离子对某一波
长范围的光的吸收作用,对物质进行定性 分析、定量分析及结构分析, 所依据的光 谱是分子或离子吸收入射光中特定波长的 光而产生的吸收光谱。
按所吸收光的波长区域不同,分为紫
外分光光度法和可见分光光度法,合称为
紫外-可见分光光度法。
3
紫外-可见分光光度法的特点:
1 与其它光谱分析方法相比,其仪器设备和 操作都比较简单,费用少,分析速度快; 2 灵敏度高; 3 选择性好; 4 精密度和准确度较高; 5 用途广泛。
紫外可见分光光度计 基本知识
北京普析通用仪器有限责任公司
Beijing Purkinje General Instrument Co.,Ltd.
1
紫外-可见分光光度法
紫外-可见吸收光谱 朗伯-比耳定律 紫外-可见分光光度计 分析条件的选择 测定方法
2
紫外-可见分光光度法(ultraviolet-visible spectrophotometry, UV-VIS)
20
二、紫外-可见分光光度计的类型 按其光学系统可分为单波长分光光
度计和双波长分光光度计。
21
1.单波长单光束分光光度计
✓ 特点: • 使用时来回拉
动吸收池 →移动误差
• 对光源要求高 • 比色池配对
22
2.单波长双光束分光光度计
✓ 特点: • 不用拉动吸
收池,可以 减小移动误 差 • 对光源要求 不高 • 可以自动扫 描吸收光谱
6
影响紫外-可见吸收光谱的因素
物质的吸收光谱与测定条件有密切的 关系。测定条件(温度、溶剂极性、pH 等)不同,吸收光谱的形状、吸收峰的位 置、吸收强度等都可能发生变化。 1.温度 在室温范围内,温度对吸收光谱 的影响不大。
7
2. 溶剂 注意如下几点: (1)尽量选用低极性溶剂; (2)能很好地溶解被测物,并且形成的溶 液具有良好的化学和光化学稳定性; (3)溶剂在样品的吸收光谱区无明显吸收。
热辐射光源用于可见光区,如钨灯和 卤钨灯;气体放电光源用于紫外光区,如 氢灯和氘灯。
17
2 单色器
单色器的主要组成:入射狭缝、出射狭 缝、色散元件和准直镜等部分。
单色器质量的优劣,主要决定于 色散元件的质量。色散元件常用棱镜 和光栅。
18
3 吸收池
吸收池又称比色皿或比色杯,按材 料可分为玻璃吸收池和石英吸收池,前 者不能用于紫外区。
11
三、吸光系数
当l以cm,c以g/L为单位,κ称为吸光 系数,用 a表示。
A= a cl a的单位为L/(g.cm)
12
摩尔吸光系数
当l以cm,c以mol/L为单位,κ称为 摩尔吸光系数,用 ε表示。
ε的单位为L/mol.cm,它表示物质的 浓度为1mol/L,液层厚度为1cm时,溶 液的吸光度。
23
3.双波长分光光度计
✓ 特点: • 利用吸光度差
值定量 • 消除干扰和吸
收池不匹配引 起的误差
24
1.分析条件的选择
一、 仪器测量条件的选择 1.适宜的吸光度范围 由朗伯T=0.4343dT/T= -εldc 或 0.4343ΔT/T= -εlΔc
13
比吸光系数
比吸光系数是指百分含量为1%, l为1cm
时的吸光度值,用
E
1% 1 cm
表示。
0.1MrE11c%m
14
四、偏离朗伯-比耳定律的因素
(1)入射光为非单色光 (2)溶液的不均性。
实际样品的混浊,加入的保护胶体, 蒸馏水中的微生物,存在散射以及共振发 射等,均可吸光质点的吸光特性变化大。
吸收池的种类很多,其光径可在 0.1~10cm之间,其中以1cm光径吸收池 最为常用。
19
4 检测器 检测器的作用是检测光信号,并将
光信号转变为电信号。现今使用的分光 光度计大多采用光电管或光电倍增管作 为检测器。
5 信号显示系统 常用的信号显示装置有直读检流计,
电位调节指零装置,以及自动记录和数 字显示装置等。
透光度:透光度为透过光的强度It与入射光 强度I0之比,用T表示:
即 T= It/I0
10
二、朗伯-比尔定律
朗伯-比尔定律:当一束平行单色光通过含 有吸光物质的稀溶液时,溶液的吸光度与 吸光物质浓度、液层厚度乘积成正比,即
A= κ cl
式中比例常数κ与吸光物质的本性,入射 光
波长及温度等因素有关。c为吸光物质浓 度, l为透光液层厚度。
(3)光程的不一致性。
光源不是点光源,比色皿光径长度不一 致,光学元件的缺陷引起的多次反射等,均 造成光径不一致,从而与定律偏离。
15
紫外-可见分光光度计 一、主要部件的性能与作用 基本结构:
光源→单色器→吸收池→检测器→信号显示系统
16
1 光源
在紫外可见分光光度计中,常用的光源 有两类:热辐射光源和气体放电光源
3. pH值
8
朗伯-比尔定律 一、吸光度和透光度
设入射光强度为I0,吸收光强度为Ia,透 射光强度为 It,反射光强度为Ir,则
I0= Ia+ It+ Ir 由于反射光强度很弱,其影响很小,上式 可简化为:
I0= Ia+ It
9
吸光度: 为透光度倒数的对数,用A表示, 即
A=lg1/T=lgI0/It
27
3.狭缝宽度的选择 为了选择合适的狭缝宽度,应以减少
狭缝宽度时试样的吸光度不再增加为准。 一般来说,狭缝宽度大约是试样吸收峰 半宽度的十分之一。
28
二、显色反应条件的选择
25
代入朗伯-比尔定律有: Δc/c=0.4343ΔT/TlgT
要使测定的相对误差Δc/c最小,求导取 极小得出:
lgT=-0.4343=A 即当A=0.4343时,吸光度测量误差最小。
最适宜的测量范围为0.2~0.8之间。
26
2.入射光波长的选择
通常是根据被测组分的吸收光谱,选择最强吸 收带的最大吸收波长为入射波长。当最强吸收峰的 峰形比较尖锐时,往往选用吸收稍低,峰形稍平坦 的次强峰或肩峰进行测定。