现代谱估计 原理与应用((美)凯 依(Kay, S.M.)著;黄建国等译)思维导图
现代谱估计
由于存在这些问题,实际实现Wiener滤波时,并不是 直接计算得到最优Wiener滤波器的系数,而是代之以 LMS, RLS, Kalman等自适应滤波器。
23
内容
❖ 最优滤波理论与Wiener滤波器 ❖ 梯度下降算法 ❖ 横向LMS自适应滤波器 ❖ 横向RLS自适应滤波器 ❖ Kalman滤波器 ❖ 自适应格型滤波器 ❖ 盲自适应滤波器 ❖ 自适应滤波器的应用
2
内容
❖ 最优滤波理论与Wiener滤波器 ❖ 梯度下降算法 ❖ 横向LMS自适应滤波器 ❖ 横向RLS自适应滤波器 ❖ Kalቤተ መጻሕፍቲ ባይዱan滤波器 ❖ 自适应格型滤波器 ❖ 盲自适应滤波器 ❖ 自适应滤波器的应用
3
最优滤波理论与Wiener滤波器
❖ 最优预测和滤波 ❖ 最优滤波理论 ❖ 正交性原理 ❖ Wiener滤波器
(
M
1)
Ru,u (1) Ru,u (0)
Ru*,u (M 2)
Ru,u (M 1) Ru,u (M 2)
Ru,u (0)
定义输入与期望响应的互相关向量:
r E u(n)d*(n) Ru,d (0), Ru,d (1), , Ru,d (1 M ) T
21
Wiener-Hopf方程的解
• 估计误差e(n)定义为期望响应d(n)与滤波器输出y(n)之差, 即
e(n) d(n) y(n)
对滤波器要求是使估计误差在某种统计意义下“尽可能小”。
10
最优滤波理论
❖ 线性最优滤波器(续)
➢对滤波器的约束
• 滤波器是线性的。 一是为了使信号通过滤波器后不致于发生“畸变”; 二是为了便于对滤波器进行数学分析.
现代谱估计-有理谱估计
,随 SNR 的下降而降低,增大阶次会增加分辨率,
但可能出现伪峰且方差增大。
3、滑动平均谱估计
3.1 引言
MA 模型隐含了 k q 的自相关函数 rx k 0 ;可以直接得自相关函数可靠 估计,而不需要 MA 模型参数,得到功率谱估计。与 BT 法的区别:BT 法适用 于任何平稳过程、MA 谱估计仅适用于有限阶 MA 模型;BT 法中自相关函数最 大延迟人为确定,MA 谱估计中模型阶次决定最大延迟;BT 不保证谱的非负性, 而 MA 谱估计非负。 MA 模型适合表示无尖峰有深谷的谱,因此不是高分辨率估计。
自相关函数矩阵 Rx p 同时是 Hermition 矩阵和 Toeplitz 矩阵。
2.2.2 AR 过程的线性预测
2.2.2.1 平稳随机过程的线性预测 平稳随机过程的波形估计 最小均方误差准则,线性估计,Wiener-Hopf 方程,正交原理 滤波、预测、平滑 线性最优预测,m 阶一步前向线性预测,m 阶一步后向线性预测,及它们之 间的关系(系数成共轭关系,最小预测误差功率相等) 最优前向预测误差滤波器的最小相位特性 线性最优预测的按阶次递推关系——Levinson 算法 最小均方预测误差的性质(正交性,递推性)及格型结构实现 反射系数的物理含义(前向预测误差和后向预测误差之间相关系数的负值) 2.2.2.2 AR 过程最优线性预测的特殊性质 AR 过程可由求解线性预测系数来实现 若已知自相关函数,可由 Levinson 递推算法得到 AR 参数 AR 过程可用自相关函数、AR 参数和反射系数三组参数等价表示
1.4 经典谱估计和现代谱估计
经典谱估计中,都隐含了这样一个假设:对于未得到的样本数据或未估计出 的自相关函数,认为是零。但实际上这些值并不一定为零,正是由于这种不合理 假设使得经典谱估计较低的分辨率和较大的失真。现代谱估计,对于未得到的样 本数据或未估计出的自相关函数,并不是简单地作零处理,而是认为与得到的样 本数据服从同一模型,估计质量取决于参数估计质量和模型的准确性。 。这是现 代谱估计与经典谱估计最主要的区别。
现代谱估计法及应用效果
二阶 PEF 输出误差功率为 ( 2b)
N- 1
E2 = =
n= 2 N- 1
E
2 [ ef2 ( n) ] 2 + [ eb 2 ( n) ]
E = R ( 3) 递推高一阶前、 后向预测误差, 即
p 2 wp
( 2c)
n= 2
ELeabharlann [ x( n) + a2 ( 1) x( n- 1) + a2 ( 2) x( n- 2) ] 2 +
2009 年 11 月
第 44 卷
增刊 1
# 处理技术 #
现代谱估计法及应用效果
刘志刚*
¹
李录明 º
赵冬梅 »
( ¹ 东方地球物理公司研究院 , 河北涿州 072751; º成都理工大学信息学院 , 四川成都 610059; » 东方地球物理公司物探技术研究中心 , 河北涿州 072751)
刘志刚 , 李录明 , 赵冬梅 . 现代谱估计法及应用 效果 . 石油地球物理勘探 , 2009 , 44 ( 增刊 1) : 5~ 9 摘要 本文针对 Burg 谱估计法中存在的问题 , 讨论了改进 Burg 谱估计法和改进协方差谱 估计法 , 以理论 信号为 测试对象 , 对不同谱估计法的应用效果进行了对比 , 结果表明 : ¹ Burg 谱估计法分辨率明显高于 Welch 谱估计法 , 但 Burg 谱估计法存在明显的峰值偏移 , 改进 Bur g 谱估计法几乎没有峰值偏移 ; º改进协方差谱估计法和 Burg 谱 估计法都具有较高的分辨率 , 而前者的波峰较后者更明显 、 尖锐 , 对于短数据 、 信号频率差异较小的信号 , 前者具有 更好的分辩效果, 还能抑制谱线分裂和出现假谱峰等问题 ; » Itakur a 算法求得的反射系数大于或等于 Bur g 谱估计 法求出的反射系数 , 使得接收到的信号更接近于实际输入信号 , 因此可用 Itakura 算法 替代 Burg 谱估计法 。 实际 地震剖面去噪结果表明 , 以高分辨率谱估计方法为基础的信噪分离方法具有较好的去噪效果 。 关键词 现代谱估计法 L evinson 递推算法 改进 Burg 谱估计法 改进协方差谱估计法 分辨率 反射系数
现代谱估计计算机仿真实验报告
现代谱估计计算机仿真实验报告胡敏在许多工程应用中,利用观测到的一组样本数据估计并分析一个平稳随机信号的功率谱密度是十分重要的。
例如,在雷达信号处理中,由回波信号的功率谱密度、谱峰的宽度、高度和位置,可以确定目标的位距离和运动速度;在阵列信号处理中,空间功率谱描述了信号功率随空间角度的分布情况。
在许多信号处理应用中,谐波过程经常会遇到,它对应的功率谱为线谱,谐波过程的功率谱估计就是要确定谐波的个数,频率和功率(合称谐波恢复)。
为了更好的学习现代信号处理中该部分的内容,我们做了相应的计算机仿真实验。
1 实验目的1、深入理解现代谱估计和谐波恢复的基本理论,包括ARMA 模型,ARMA 谱估计,ARMA 模型识别,Pisarenko 谐波分解,信号子空间和噪声子空间,旋转不变技术(ESPRIT);2、熟悉与上述谱估计和谐波恢复理论相关的数学方法以及各自的特点,包括最小二乘估计(LS ),奇异值分解(SVD ),总体最小二乘估计(TLS ),特征值分解和广义特征值分解;3、体会ARMA 功率谱估计中的Cadzow 谱估计子和Kaveh 谱估计子,ARMA 模型的识别方法,Pisarenko 谐波恢复方法,ARMA 建模谐波恢复方法,MUSIC 方法进行谐波恢复,两种ESPRIT 方法(LS-ESPRIT 和TLS-ESPRIT 进行谐波恢复;2 实验原理2.1 ARMA 谱估计相当多的平稳随机过程都可以通过用白噪声激励线性时不变系统来产生,而线性系统又可以用线性差分方程进行描述,这种差分模型就是自回归—滑动平均(ARMA )模型。
而且,任何一个有理式的功率谱密度都可以用一个ARMA 随机过程的功率谱密度精确逼近。
ARMA 随机过程定义为服足下列线性差分方程的离散随机过程{})(n x :∑∑==-+=-+qj jpi ij n e bn e i n x an x 11)()()()( (1)式中)(n e 是一离散白噪声;式(1)所示的差分方程称为ARMA 模型,系统p a a ,1和q b b ,,1 分别称为自回归(AR )参数和滑动平均(MA )参数,而p 和q 分别叫做AR 阶数和MA 阶数。
谱估计法的应用
确地确定。在非语音地区的噪音也初步减弱。然而,仍然
有大量的噪音残留在讲话中地区。因此,有必要使用在非 语音地区获得的准确的噪声功率谱进行进一步的去噪。特 别的,我们有; 2 2 2 S ( w) X ( w) 2 ( w)
其中 2 =0.9也是一个实验值,表示的是在谱估法中噪音功 1 和 ( w) 2 是在非语音去的 率谱在讲话中占的比例。例如;
音帧的短时能量和短时过零率是可以计算的。短的时间内能 源零产品 j,然后计算: EZ
Ej和
Z j 是分别短时能源和短时过零率的第j个语音帧,他们
E j s (n)
N
EZ j E j * Z j
N
可以表示为:
n 1
1 Z j sign s (n) sign s (n 1) 2 n 1
(.)是SIGNUM函数。
由于短时能量的语音信号的平方,信号幅度的差异是增加了。
s( 其中N为每个语音帧的长度, n) 是整个讲话的采样点,符号sign
短时过零率描述签署的语音信号的采样点的变化,所以在一 定程度上,这是反映了讲话的频率。
当决定开始和结束时,当噪音水平都很高时短时能量值得到
结果表明, 1 = 1.2时,去噪效果最好。 2.3 语音帧检测 语音帧首先应检测的是去噪步骤2.2,短时能零积分的确切性 被EZ j 所表示,然后是计算去噪语音帧,需要用到公式 TH (5)—(7),噪音的阀值, j 1 .第 j 1 次噪音语音帧是:
TH j 1 EZ j
2
2
2
n 最后,由于阶段的讲话对的人的兴趣不大,(t )项取代x(t )。
在整个去噪过程结束时,通过所采取的IFFT是很容易获得纯 粹的讲话得(快速傅立叶逆变换)。 1.2 短时能零积分
经典谱估计与现代谱估计
x4 (t) x2 (t)
3
高斯信号: 零峰度 亚高斯信号: 负峰度 超高斯信号: 正峰度
21
高阶累积量和多谱的性质
❖ 主要性质 (8个性质)
最重要的性质如下:
➢ 和的累积量等于累积量之和,累积量因此得名。 ➢ 随机信号通过线性系统后的累积量等于该随机信号
的累积量与线性系统冲激响应累积量的卷积 ➢信号的高阶累积量能够决定信号模型的冲激响应h(n),
• 对于非高斯信号的模型参数,如仅仅考虑与自相关函数 匹配,就不可能充分获取隐含在数据中的信息。
• 若信号不仅是非高斯的,而且是非最小相位的,采用基 于自相关函数的估计方法所得到的模型参数,就不能反 映原信号的非最小相位特点。
• 当测量噪声较大,尤其当测量噪声有色时,基于自相关 函数的估计方法所得到的模型参数有较大的估计误差。
内容
❖ 经典谱估计与现代谱估计 ❖ 参数模型法概述 ❖ 基于AR模型的谱估计法 ❖ 最大熵谱估计算法 ❖ 最小方差谱估计 ❖ 基于矩阵特征分解的谱估计 ❖ 高阶谱估计
1Hale Waihona Puke 内容❖ 随机信号的特征 ❖ 经典谱估计与现代谱估计 ❖ 参数模型法概述 ❖ 基于AR模型的谱估计法 ❖ 最大熵谱估计算法 ❖ 最小方差谱估计 ❖ 基于矩阵特征分解的谱估计 ❖ 高阶谱估计
• 结论: ....................
- 二、三阶累积量分别是二、三阶中心矩;均值为
零时, 就是二、三阶相关(矩)
-四阶以上的累积量不等于相应的中心矩 13
高阶统计量
❖ 累积量的物理意义
➢高斯随机变量的高阶矩与累积量
• 高斯随机变量可用二阶矩完全描述。实际上,零均值高斯
随机变量的k 阶矩(或零均值的k 阶中心矩)为
5第五章现代谱估计
2
时间序列由角频率0的正弦信号与噪声叠加而成。 则周期图(寻找数据的隐周期性即频率)在0 处会出 现峰值。通过计算周期图。由各峰值可显示出正弦频 率信号。
1930年,维纳-辛钦定理,证明自相关函数和功率谱互 为傅立叶变换,建立了使用傅氏方法处理随机过程的 理论体系。谱分析的第二步。
1958年,布莱克曼(Blackman)和图基(Tukey)经典论 文“由通信工程观点对功率谱的测量”给出用维纳相关法 从抽样序列得到功率谱的实现方法——BT法。其性能与窗 函数选择有关。周期图和BT法称为经典谱估计方法。(且 是线性估计方法)。 上述方法的最大问题是由于数据截断(或开窗)带来的 频率泄漏。弱信号的主瓣很容易被强信号的旁瓣所淹没。 对于短序列这一情况尤为突出。
n n排序倒置
于是有:
rxx (1) rxx (0) rxx (0) rxx (1) rxx ( p 1) rxx ( p 2) a* p 1, p 1 rxx ( p 1) * 0 a p 1, p 2 0 rxx ( p 2) * a p 1,1 2 rxx (0) p 1 1
1、模型参量谱估计——可得到高分辨率的谱估计。而 这取决于假定模型对观察数据的适配能力。 2、非参量谱估计 不用有限参数描述的信号模型,直接由自相关延 迟序列得到。高信噪比下不如模型法,但在低信噪比 下,模型参量谱估计的分辨率大为下降。 1973年,皮萨伦科(Pisarenko)提出特征矢量 法,开辟了基于自相关矩阵或数据矩阵进行特征分解 的非参量谱估计。 3、熵谱估计 1967年,伯格提出最大熵谱分析法。其方法是对 已知延迟点上的自相关函数不加修改,而是对未知延 迟点上的自相关函数按信息论中的最大熵外推而得。
第5章频域统计参数估计-谱估计
第5章频域统计参数估计-谱估计
功率谱估计:经典谱估计与现代谱估计
谱估计就是从无限长随机序列中截取一段数据(加窗)来分 析。而问题的真正要害:如何看待截取数据以外的那无限长 数据序列,因为统计特性是以足够大的数据窗为前提的。
经典法:侧重于如何处理已经截得的那段数据上,很多技 巧表现在如何选择合适的窗,周期图法(直接法)默认为窗 外数据是窗内数据的周期重复;相关法(间接法)默认为数 据窗外的数据一概为零,延迟窗外的数据也一概为零,这显 然都是不符合实际的,这就导致经典谱估计的分辨率低,质 量差。
1)波束形成器
第5章计参数估计-谱估计
第5章频域统计参数估计-谱估计
证明:
第5章频域统计参数估计-谱估计
2)信号子空间与噪声子空间
第5章频域统计参数估计-谱估计
第5章频域统计参数估计-谱估计
证明:
第5章频域统计参数估计-谱估计
第5章频域统计参数估计-谱估计
ai
3)ARMA模型的MA阶数q确定
第5章频域统计参数估计-谱估计
4)ARMA模型的MA参数bi估计
第5章频域统计参数估计-谱估计
第5章频域统计参数估计-谱估计
第5章频域统计参数估计-谱估计
第5章频域统计参数估计-谱估计
5.2.2 最大熵谱估计
第5章频域统计参数估计-谱估计
第5章频域统计参数估计-谱估计
3)基本MUSIC法
第5章频域统计参数估计-谱估计
4)改进方法1—求根的MUSIC法
第5章频域统计参数估计-谱估计
第5章频域统计参数估计-谱估计
5)改进方法2
第5章频域统计参数估计-谱估计
现代谱估计分析
现代谱估计实验报告1 实验目的功率谱估计在实际工程中有重要应用价值。
如在语音信号识别、雷达杂波分析、波达方向估计、地震勘探信号处理、水声信号处理、系统辨识中非线性系统识别、物理光学中透镜干涉、流体力学的内波分析、太阳黑子活动周期研究等许多领域发挥了重要作用。
本次实验的目的主要是深入理解现代谱估计的基本理论,包括ARMA 模型、ARMA 谱估计。
掌握现代谱估计的基本方法,包括SVD-TLS 算法等。
利用ARMA 功率谱估计中Cadzow 谱估计子和Kaveh 谱估计子来进行谱估计。
2 实验原理2.1 背景若离散随机过程{x(n)}服从线性差分方程)()()()(11j n e n e i n x n x q j j p i i b a -+=-+∑∑==(1)式中e (n )是一离散白噪声,则称{x(n)}为ARMA 过程,而式(1)所示的差分方程称为ARMA 模型。
系数a 1,a 2……a p ,和b 1,b 2……b q ,分别称为自回归参数和滑动平均参数,而p 和q 分别叫做AR 阶数和MA 阶数。
式(1)所示的ARMA 过程,其功率谱密度为)()()()()(22e e P jw jw z x B B e z A z B w jw δδ=== (2)ARMA 谱估计的目的是使用N 个已知的观测数据x(0),x(1)…..x(N-1)计算出ARMA 过程{x(n)}的功率谱密度估计。
在实际中,可以运用cadzow 谱估计子和kaveh 谱估计子来估计,cadzow 谱估计子秩序确定AR 阶数p 和估计AR 参数,而kaveh 谱估计子也只需要确定AR 阶数p 和估计AR 参数以及MA 阶数。
2.2 相关算法AR阶数p的确定用奇异值分解(SVD),AR参数的估计用总体最小二乘法(TLS),即应用(SVD—TLS)算法来完成ARMA谱估计。
SVD—TLS算法:步骤1 计算增广矩阵B的SVD,并储存奇异值和矩阵V;步骤2 确定增广矩阵B的有效秩p;步骤3 计算矩阵S;步骤4 求S的逆矩阵S--,并计算出未知参数的总体最小二乘估计。
第三章 现代谱估计
将(3.4.2)与(3.4.5)相比较,可令 N ( z) A( z )
i n z i i a z i i 0 p i 0 p p
(k ) z k
i 0
两边同乘以 ai z i,可得
*
_
_
新的ARMA过程{x(n)}的功率谱密度为 P~ ( )
x
2
B( z ) A( z )
~
~
2
2
| (1 e
i 1 r i k 1
s
j
) | | (1 i e
2 i s 1 p
q
j
)|
2
| (1 k e
q
j
)|
1 i 1 i r 1 r p _
B ( z ) (1 k z ) (1 k z 1 )
1 k 1 k s 1
r
p
_
其中, i 1/ i , i r 1, , p; k 1/ k* , k s 1, , q.
k r 1
k r 1
结论:如果系统是非因果的或者是非最小相位的,利用功率 谱密度,只能辨识出|H(ej)|,而不能辨识出H(ej).
可利用互功率谱密度或高阶矩统计量辨识此类系统。
3.4 ARMA谱估计
问题:利用N个已知的观测数据x(0),x(1),…,x(N-1)估计出ARMA 过程{x(n)}的功率谱密度。直接使用式(3.3.6)估计时,需 要辨识出整个ARMA模型及激励噪声的方差。MA参数的 估计需要解非线性方程。 3.4.1 ARMA功率谱估计的两种线性方法
由于将x(n)视为周期函数(幅值谱离散,功率谱 为了减小偏差,可以采用窗函数对周期图进行平滑。 第一种窗函数直接加给样本数据,修正后的周期图为 1 N 1 Px ( ) | x(n)c(n)e jnT |2 NW n 0 1 N 1 1 2 2 W | c(n) | | C ( ) | d N n 0 2 N 另一种窗函数是加给样本自相关函数(Blackman -Tukey法),功率谱为 PBT ( )
谱估计(现代)
ak xx (m k ) Ex(n) (n m)
k 1
p
而
m0 0, E x(n) (n m) 2 , m 0
•Yule-Walker方程的推导
故
p a k xx (m k ) , m 0 k 1 xx (m) p a (k ) 2 , m 0 k xx k 1 或
p
2
需要推导AR参数与 xx (m)之间的关系。
3.1
• 估计方法
自回归模型法
2 与xx (m)乊间的关系 参数a1, a2, a3, …, ap及 ——Yule-Walker方程
已知:自相关函数 已知: 自相关函数
Yule-Walker方程
要求: AR模型的阶数p,以及p个AR 要求: AR模型的阶数p,以及p个 AR 参数a(i),激励源方差 2 参数a(k),激励源方差
3.2
最大熵谱估计法
• 基本思想——熵
代表一种不定度; 最大熵为最大不定度,即它的时间序列最随机, 它的PSD应是最平伏(最白色)。 Shannon对熵的定义: 当x的取值为离散的时,熵H定义为
H pi ln pi
i
pi:出现状态i 的概率。
当x的取值为连续的时,熵H定义为
p(x):概率密度 函数
(n)
...
z-1 a1
z-1
z-1
a2
...
ap
3.1
自回归模型法
q
• MA(Moving Average)模型 ——全零点模型
x(n) bl (n l )
l 0
H ( z ) B( z ) 1 bl z k
现代谱估计课件
N 1
E[Rˆx (m)]e jm
m( N 1)
N 1 m( N 1)
Rx
(m)
N
| N
m
|
e
jm
令w(m)为三角窗
w(m)
(N
|
m 0,
|)
/
N
,
| m | N 1 else
E[Sˆx (e j )] [Rx (m)w(m)]e jm m
E[Sˆx (e j )]
1
2
Sx (e j ) W (e j )
pxx3=abs(fft(xn(515:768),Nsec).^2)/Nsec; %第三段功率谱
pxx4=abs(fft(xn(769:1024),Nsec).^2)/Nsec; %第四段功率谱
Pxx=10*log10((pxx1+pxx2+pxx3+pxx4)/4); %平均得到整个序
列功率谱
f=(0:length(Pxx)-1)*Fs/length(Pxx); %给出功率谱对应的频率
)
2
sin N
N (1
2
sin 1
2
2 2
)
2
令1=2=
2
4 x
[1
(
sin N )2 ] N sin
当N时,频谱估计方差2不趋向于零,而趋 18
向于
4 x
,因此经典频谱估计不是一致估计
经典谱估计的方差
若取1= 2k/N,2=2l/N,k、l是整数,则有:
Cov[ Sˆ x
5
0
-5 0 50 100 150 200 250 300 350 400 450 500
现代谱估计
《现代谱估计》课件
均方根误差与均方误差类似,但通过平方根运算将误差的单位转换为与真实值相同的单位,使得结果更容易解释 。在谱估计中,均方根误差用于评估频率估计的准确性。
平均绝对误差(MAE)
总结词
平均绝对误差是另一种常用的误差评价指标,其计算公式为 $frac{1}{N}sum_{n=1}^{N} | hat{x}(n) - x(n) |$。
VS
详细描述
均方误差反映了估计量的整体性能,其值 越小表示估计性能越好。在谱估计中,均 方误差用于评估频率估计的准确性。
均方根误差(RMSE)
总结词
均方根误差是另一种衡量估计量与真实值之间偏差的常用指标,其计算公式为 $sqrt{frac{1}{N}sum_{n=1}^{N} (hat{x}(n) - x(n))^2}$。
最大似然估计法具有较高的估计精度和可靠性,但需要较复杂的计算和模型参数 的调整。
01
现代谱估计的性能 评估
均方误差(MSE)
总结词
均方误差是衡量估计量与真实值之间偏 差的常用指标,其计算公式为 $frac{1}{N}sum_{n=1}^{N} (hat{x}(n) x(n))^2$,其中 $hat{x}(n)$ 是估计值, $x(n)$ 是真实值,N 是数据长度。
自适应模型选择
根据信号特性自适应地选择合适的模型进行参数估计 。
权重调整
在谱估计过程中,根据不同模型的性能表现,动态调 整各模型的权重,以提高谱估计的精度。
01
现代谱估计的算法 实现
最小二乘法
最小二乘法是一种常用的谱估计方法,通过最小化观测数据与预测数据之间的平方误差,来估计信号 的功率谱密度。
优势与挑战
深度学习能够自动学习和优化特征,但需要 大量标注数据进行训练,且对模型的可解释
现代谱估计
12/19/2014
一、AR模型的正则方程
第 二 章 现 代 谱 估 计
ak rx (m k ) rxw (m)
k 1
p
(a)
rxw (m) Ew(n m) x(n) E w(n m) h(k ) w(n k ) k 0 2 h(k ) (m k ) 2h(m)
■
2
第 二 章 现 代 谱 估 计
经典谱估计: 分辨率低(受窗函数长度的限制); 方差性能不好; 方差和分辨率之间的矛盾。 对平稳信号建模:
用于功率谱估计:提高分辨率,减小方差;
也可用于信号的特征提取,预测,编码及
数据压缩 等。 12/19/2014
▲
■
3
2.1
现代谱估计概述
在第一章中介绍了用参数模型来描述随机信号的 第 二 方法,如果能确定信号x(n)的信号模型,根据信号观 章 测数据求出模型参数,系统函数用H(z)表示,模型输
谱 估 计
随机 w(n)
N
1 ak Z k
k 1
S (n) ak S (n k ) bl u (n l )
k 1 l 0
M
( M N 1)个
ak , bl 参数
5
即:信号的当前值是由其过去的值和输入信号现在 与过去的值按照模型参数线性加权组合得到。 12/19/2014 ▲ ■
现 代 估
入白噪声方差为σw2,信号的功率谱用下式求出:
Pxx (e ) | H (e ) |
j 2 w j
2
谱 按照这种思路,功率谱估计可分成三个步骤:
(1)选择合适的信号模型; 计 ( 2 )根据 x(n) 有限的观测数据,或者它的有限个 自相关函数估计值,估计模型的参数; (3)计算模型输出功率谱。
现代信号处理_2012-07
(11)
i 1) a (ji ) a (ji 1) ai(i ) ai( (12) j ( j 1,..., i 1)
(i ) (i 1) [1 (ai(i ) ) 2 ]
(13)
6) 置i =i+1; 7) 判别:若 i N 转3);否则,结束程序.
现代信号处理 7 现代信号处理 8
现代信号处理 4
1
Levinson算法
r (1) r (0) r (1) r (0) R ( k 1) r (k 1) r(k ) r ( k 1) r(k )
k
Levinson算法
由(5)式,(6)式和(9)式可得
(3)
r (k ) r ( k 1) 1 ( k 1) k ( k 1) r ( k ) a1( k 1) 0 ( k 1) r (0) r (1) ak 0 ( k 1) ak 1 r (1) r (0) 0
ai( i ) [ r (i ) a (ji 1) r (i j )] / ( i 1)
j 1 i 1
Levinson算法
Levinson算法第4步利用了一个重要递推关系(12) 通常称为Levinson关系式 递推过程产生一个滤波参数序列 通常称为偏相关系数 ai(i ) (i 1,..., N ) 递推过程产生的 ( i ) 可用来监视i阶信号模型的均方 误差估值 (N) 递推结果的最终解为 a j ( j 1,..., N ) 和 ( N ) 最后,计算功率谱密度:
(1)
最小方差谱估计
• 自相关矩阵的特征分解为