1、任意角的三角函数

合集下载

1.2.1任意角的三角函数课件

1.2.1任意角的三角函数课件

小结: 小结:
(1)任意角的三角函数的定义; )任意角的三角函数的定义; (2)三角函数的定义域与三角函数值在各象限的符号; )三角函数的定义域与三角函数值在各象限的符号; (3)诱导公式一及其应用; 公式一及其应用; )诱导公式一及其应用 (4)体会定义过程中体现的数形结合的思想 )体会定义过程中体现的数形结合的思想.
-
(+)
(+ )
( )
-
ycos r
y a = tan x
求证:当且仅当下列不等式组成立时, 例3 求证:当且仅当下列不等式组成立时, 为第三象限角. 角 θ 为第三象限角
证明: 证明: 因为① 成立,所以 因为①式sin θ < 0 成立 所以 θ 角的终边可能位于第三 或第四象限,也可能位于y 轴的非正半轴上; 或第四象限,也可能位于 轴的非正半轴上; 又因为② 成立, 又因为②式 tan θ > 0 成立,所以角θ 的终边可能位于 第一或第三象限. 第一或第三象限 因为①②式都成立, 的终边只能位于第三象限. 因为①②式都成立,所以角θ 的终边只能位于第三象限 ①②式都成立 为第三象限角. 于是角 θ 为第三象限角 反过来请同学们自己证明. 反过来请同学们自己证明
探究: 探究:
1.三角函数的定义域 三角函数的定义域 三角函数
sin α cos α tan α
定义域
π α α ≠ kπ + ,k ∈ Z 2
R R
2.三角函数值在各象限的符号 三角函数值在各象限的符号
(+ ) ( )
(+ ) ( )
( )
-
(+ )
( )
-
(+)
-

任意角的三角函数

任意角的三角函数

任意角的三角函数(内部使用)姓名: 日期:一、任意角的三角函数1、三角函数:任意角的三角函数的定义:角α是一个终边上任取点(,)P x y ,设(0)OP r r =≠则sin α= ;cos α= ;tan α= 。

2、三角函数值的符号:(1)记忆口诀:sin α上正下负横轴零,cos α左负右正纵轴零,tan α交叉正负横轴零。

(2)解释: 。

(3二、公式一(1)()sin +2k απ= ; (2)()cos +2k απ= ; (3)()tan +2k απ= 。

说明角的终边绕原点每转动一周,函数值会重复出现。

三、单位圆中的三角函数线(1)单位圆: ; (2)有向线段: ;四、三角函数的定义域和值域一、几个常见结论:1、同一个角α的正弦、余弦大小比较:(1)当α= 时,sin cos αα=; (2)当α∈ 时,sin cos αα>; (3)当α∈ 时,sin cos αα<。

2、确定sin cos αα+的符号:(1)当α∈ 时,sin cos 1αα+>; (2)当α∈ 时,sin cos 1αα+<-; (3)当α∈ 时,sin cos 0αα+=; (4)当α∈ 时,sin cos 0αα+>; (5)当α∈ 时,sin cos 0αα+<。

二、利用单位圆比较大小:当0,2πα⎛⎫∈⎪⎝⎭,比较tan ,sin ,ααα三者大小:> > 。

【例1】下列命题:①终边相同的角的同名三角函数值相等;②终边不同的角的同名函数值不等; ③若sin 0α>,则α是第一、第二象限的角;④若α是第二象限角,且(),P x y是其终边上一点,则cos α=其中正确的命题个数为 ( ) .A 1 .B 2 C.3 D.4【例2】设︒<<︒18090α,角α的终边上一点为)22,(x P ,且x 63cos =α.求:sin α,αtan 的值。

任意角的三角函数及其诱导公式

任意角的三角函数及其诱导公式


余弦函数的诱导公式 cos(2kπ+α)=cosα cos(-α)=cos α cos(2π-α)=cos α cos(π-α)= - cosα cos(π+α)= - cosα 函数名不变,符号看象限
2、研究角π/2+α与角α的正、余弦函数值的关系 在单位圆中,画出角α和角 π/2+α的终边, 由终边的位置关系可得
3)tan(-16500)的符号是——?
3)sin(-21π/5)的符号是——?
练习:求值 19 23 1、 sin ; 2、con(); 4 3 0 3、 tan ( 1110 )
二、三角函数的诱导公式
1、若α是一个正锐角,怎样用α表示第一、二、 三、四象限角,并研究其终边位置关系.

任意角的三角函数及其诱导公式
一、 任意角的 的三角函数.
角的 终 边 与 单 位 圆 相 交 点 于P(a , b ); b 则 si n b 1
P(a,b)
b 称为角 的正弦函数; 记作 b=sin ;

一般用x表示自变量,y表示函数; 所以正弦函数表示:y=sin x (x R) 相类似余弦函数是y=cos x;正弦函数是y=tan x
Sin(π/2+α)=cosα cos(π/2+α)= -Sinα Sin(π/2-α)=cosα #43;α)= -cotα => tan(π/2-α)=cotα
常用的正弦、余弦、正切诱导公式 1、同终边诱导公式 Sin(2kπ+α)=sin α cos(2kπ+α)=cosα tan(2kπ+α)=tan α 2、负角诱导公式 Sin(-α)=- sin α cos(-α)=cos α tan(-α)= - tan α 3、四象限诱导公式 Sin(2π-α)=-sin α cos(2π-α)=cos α tan(2π-α)= - tan α

任意角的三角函数1

任意角的三角函数1

第一章三角函数1.2.1任意角的三角函数(1)学习目的:1.掌握任意角的三角函数的定义;2.已知角α终边上一点,会求角α的各三角函数值;3.记住三角函数的定义域、值域,诱导公式(一).学习重点:任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式。

公式一是本小节的另一个重点.学习难点:利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用他们的集合形式表示出来.课堂探究:一、复习引入:初中锐角的三角函数是如何定义的?在Rt △ABC 中,设A 对边为a ,B 对边为b ,C 对边为c ,锐角A 的正弦、余弦、正切依次为,,a b a sinA cosA tanA c c b===.角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。

二、讲解新课:1.三角函数定义 在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y ,它与原点的距离为(0)r r ==>,那么(1)比值y r叫做α的正弦,记作sin α,即sin y r α=; (2)比值x r 叫做α的余弦,记作cos α,即cos x r α=; (3)比值y x叫做α的正切,记作tan α,即tan y xα=;说明:①α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;②根据相似三角形的知识,对于确定的角α,三个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小;③当()2k k Z παπ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等于0,所以tan y xα=无意义;④除以上两种情况外,对于确定的值α,比值y r、x r、y x分别是一个确定的实数,所以正弦、余弦、正切是以角为自变量,一比值为函数值的函数,以上三种函数统称为三角函数。

任意角的三角函数

任意角的三角函数

任意角的三角函数三角函数是数学中一个非常重要的概念,它是用于描述三角形中角和边之间的关系的一种函数。

在传统的三角函数中,我们只考虑角的大小在0度到90度之间的情况,这被称为锐角三角函数。

但是,在现代数学中,我们也可以考虑角的大小在90度以上的情况,这就是任意角三角函数。

任意角三角函数是三角函数的推广,它可以应用于任意角度的三角形中,并且具有广泛的应用。

任意角三角函数通常使用弧度制来度量角度。

下面我们将介绍任意角三角函数中最常用的几种函数。

1. 正弦函数正弦函数是任意角三角函数中最简单和最基本的函数之一。

正弦函数的定义如下:sinθ = y/r其中,θ是角度,y是三角形中一个锐角顶点的垂直边长,r是这个锐角顶点到三角形外接圆心的距离。

正弦函数的值从-1到1,它刻画了一个角的正弦值与其对应的三角形中某一边长的比例关系。

如果一个角的正弦值为1,则这个角是90度;如果正弦值为0,则这个角是0度或180度。

2. 余弦函数余弦函数是另一个重要的任意角三角函数。

它的定义如下:cosθ = x/r其中,θ是角度,x是三角形中一个锐角顶点的水平边长,r是这个锐角顶点到三角形外接圆心的距离。

余弦函数的值也在-1到1之间。

它刻画了一个角的余弦值与其对应的三角形中某一边长的比例关系。

如果一个角的余弦值为1,则这个角是0度;如果余弦值为0,则这个角是90度或270度。

3. 正切函数正切函数是另一个常见的任意角三角函数。

它的定义如下:tanθ = y/x其中,θ是角度,y是三角形中一个锐角顶点的垂直边长,x是这个锐角顶点的水平边长。

正切函数的值可以是任意实数。

它刻画了一个角的正切值与其对应的三角形中垂直边长和水平边长的比例关系。

如果一个角的正切值为正无穷,则这个角是90度;如果正切值为负无穷,则这个角是270度。

4. 正割函数正割函数是余弦函数的倒数。

它的定义如下:secθ = 1/cosθ正割函数的值也可以是任意实数。

它刻画了一个角的正割值与其对应的三角形中水平边长与半径的比例关系。

1.2.1任意角的三角函数3课件人教新课标

1.2.1任意角的三角函数3课件人教新课标
思考一
二 三

例1
例2 例3 例4 检测
作业
初中时,我们怎样利用直角三角形定义了 锐角三角函数的呢?
sin
a c
cos b c
tan
a b
B
c
a
A
bC
答案
知识
探究一
思考1 在直角坐标系中如何用坐标表示锐角三角函数?
y
﹒Pa, b
r b
o

aM x
思考2
以原点O为圆心,以单位 长度为半径的圆,称为单位圆.
第四象限:x 0, y 0,故 y 为负值; x
y
y
y
o
x
o
x
o
x
sin、csc cos、sec tan、cot
规律: “一全正、二正弦正、三正切正、四余弦正”
“一全二正弦,三切四余弦”
例1 确定下列三角函数值的符号:
(1)
(2)
(3)
解:(1)因为 250 是第三象限角,所以cos 250 0 ;
3
的终边与单位圆的交点坐标为
(
1 2
,
2
3
)
所以
y

思考:若把角 改为 呢?
o ﹒x
C﹒
几个特殊角的三角函数值
角α 0o
角α
的弧 度数
0
sinα 0
cosα 1
tanα 0
30o 45o 60o 90o 180o 270o 360o
6 4 32
3 2
2
1 1 1
2
3
2
2
2
0
0
0 1 3
2
1

任意角的三角函数及基本公式

任意角的三角函数及基本公式

任意角的三角函数及基本公式三角函数是数学中的一个重要概念,它们描述了角度与三角比之间的关系。

任意角的三角函数包括正弦函数、余弦函数、正切函数、余切函数、正割函数和余割函数。

下面将详细介绍这些函数的定义、基本公式以及它们之间的关系。

1. 正弦函数(sine function):在单位圆上,从x轴正向到射线与单位圆的交点之间的弧度即为角的弧度。

正弦函数将给定角度的正弦值映射到数轴上。

其定义如下:sin(θ) = y/r其中θ为角度,y为对边,r为斜边。

2. 余弦函数(cosine function):余弦函数表示角的余弦值在数轴上的投影长度。

其定义如下:cos(θ) = x/r其中θ为角度,x为邻边,r为斜边。

3. 正切函数(tangent function):正切函数表示角的正切值在数轴上的投影比。

其定义如下:tan(θ) = y/x其中θ为角度,y为对边,x为邻边。

4. 余切函数(cotangent function):余切函数表示角的余切值在数轴上的投影比。

其定义如下:cot(θ) = x/y其中θ为角度,y为对边,x为邻边。

5. 正割函数(secant function):正割函数表示角的正割值在数轴上的投影长度。

其定义如下:sec(θ) = r/x其中θ为角度,x为邻边,r为斜边。

6. 余割函数(cosecant function):余割函数表示角的余割值在数轴上的投影长度。

其定义如下:csc(θ) = r/y其中θ为角度,y为对边,r为斜边。

这些函数在不同的角度上有不同的值,可以通过查表或计算器得到具体数值。

同时,它们之间存在一些基本公式和关系,如下:1. 互余关系(co-function identities):sin(θ) = cos(90° - θ)cos(θ) = sin(90° - θ)tan(θ) = cot(90° - θ)cot(θ) = tan(90° - θ)sec(θ) = csc(90° - θ)csc(θ) = sec(90° - θ)2.三角函数的平方和差:sin²(θ) + cos²(θ) = 1tan²(θ) + 1 = sec²(θ)cot²(θ) + 1 = csc²(θ)3.三角函数的倒数:sec(θ) = 1/cos(θ)csc(θ) = 1/sin(θ)cot(θ) = 1/tan(θ)4.符号关系:根据角度的位置和象限,三角函数的值可能为正或负。

任意角的三角函数

任意角的三角函数

R
tan
{ k

, (k Z})
2
归纳总结
2、三角函数值的符号:
“第一象限全为正,二正三切四余弦”
sinx
tanx
cosx
3、诱导公式一
公式的作用:可以把
任意角的三角函数值
分别转化为0到2的
角的同一三角函数值.

x

所以,正弦,余弦,正切都是以
角为自变量,以单位圆上点的坐标或
坐标的比值为函数值的函数,我们将
他们称为三角函数.
使比值有意义的角的集合
即为三角函数的定义域.

说 明
(1)正弦就是交点的纵坐标,余弦就是交点
的终边
y
的横坐标,正切就是 交点的纵坐标与
横坐标的比值.
(2) 正弦、余弦总有意义.当
x

3
3 10
3
= 10 ,tan θ=1=3.
当x=1时,P(1,3), 此时 sin θ= 2
1 +32
当x=-1时,P(-1,3),
3
3 10
3
此时 sin θ=
2
2= 10 ,tan θ=-1=-3.
-1 +3
巩固提高
题型一
三角函数定义的应用
3
跟踪训练 1 已知角 α 的终边在直线 y=-3x 上,求 10sin α+
三角函数定义的应用
例 1 已知 θ 终边上一点 P(x,3)(x≠0),且 cos θ=
10
x,求 sin θ,tan θ.
10
解 由题意知 r=|OP|= x2+9,
x
x
由三角函数定义得 cos θ=r = 2

任意角的三角函数1

任意角的三角函数1

π
0
−1
3π 2

sinα cosα tanα
0
1
3 2 1 2
1
−1
0
1
0
不存在
0
不存在01来自300
已知角 α 终边上一点 P( − 3 ,y),且 sin α = 2 y, 例4 4 求 cos α、tan α 的值。
2 解: 由已知得 r = ( − 3 )+ y 2 = 3 + y 2
y y ∴ sin α = = ,又 sin α = 2 y r 4 3 + y2
x
x cot α = x . cot 叫做α的余切,记作: ④比值 叫做 的余切,记作: α 即 y y
r sec α 即 sec α = r . 记作: 记作 正割, ⑤比值 x 叫做α的正割, : x
r csc α 即 csc α = r . 叫做α的余割, 记作: ⑥比值 叫做 的余割, 记作: y y
任意角的三角函数定义
是任意角, 的终 设α是任意角,α的终 是任意角 边上任意一点 P(x , y) (除端点外 , 除端点外) 除端点外 它与原点的 距离为r,则 距离为 ,
r=
x + y
2
2
=
x 2 + y 2 > 0.
定 义:
y y 叫做α的正弦, 记作: ①比值 叫做 的正弦, 记作: α 即 sin α = . sin r r
x. x cos 记作: 记作: α 即 cos α = 余弦, ②比值 叫做α的余弦, r r
y y 叫做α的正切, 记作: ③比值 叫做 的正切, 记作: α 即 tan α = . tan x x

1.2.1 任意角的三角函数(2)

1.2.1 任意角的三角函数(2)
课件演示
例1.作出下列各角的正弦线、余弦线、正切线 .
(1)
3

(2)
2
3
.
解:
y
的终边
T3
y
T
P
O M A(1, 0) x
M
O A(1, 0) x
2 的终边 P
3
(1)
3
正弦线是
MP,
(2)
2
3
正弦线是 MP,
余弦线是 OM,
余弦线是 OM,
正切线是 AT .
正切线是 AT .
例2. 求证:当 为锐角时,sin tan .
3 ,y),且sin
2 4
y,
求cos、tan 的值。
解:由已知得 r ( 3)2 y2 3 y2
sin y y ,又 sin 2 y
r 3 y2
4
y 3 y2
2y 4

y 0或
3 y2 2 2
解得 y 0 或 y 5.
(1) 当 y 0时,P( 3 ,0),r 3 ,
作 业:
1. 教材 P22 习题4.3 1 ~ 2 2. 步步高:P9~12
高活页:§4.3 任意角的三角函数第一课时
练习1:若角α的终边落在射线 y 3x (x 0) 上,
求 sin ,cos ,tan .
解:在 射线 y 3x (x 0) 上取一点 P(1,3),
则 r 12 32 10 ,
α的终边
y
P
y
T α的终边 P
MO
A(1, 0) x
T
O M A(1, 0) x
y
y
T
α的终边
M O
P
A(1, 0) x

任意角的三角函数的定义-高中数学知识点讲解

任意角的三角函数的定义-高中数学知识点讲解

任意角的三角函数的定义1.任意角的三角函数的定义
【知识点的认识】
任意角的三角函数
1 定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),那么 sin α=y,cos α=x,tan α=푦푥.
2.几何表示:三角函数线可以看作是三角函数的几何表示,正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).
【命题方向】
已知角α的终边经过点(﹣4,3),则 cosα=()
43
A.5C.―5B.3
5D.―
4
5
【分析】由条件直接利用任意角的三角函数的定义求得 cosα的值.
解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r =푥2+푦2= 5.
∴cosα=푥
푟=
―4
5=―
4
5

故选:D.
【点评】本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.
【解题方法点拨】
利用三角函数的定义求三角函数值的方法
利用三角函数的定义,求一个角的三角函数值,需确定三个量:
(1)角的终边上任意一个异于原点的点的横坐标x;(2)纵坐标y;(3)该点到原点的距离r.若题目中已知角的终边在一条直线上,此时注意在终边上任取一点有两种情况(点所在象限不同).
1/ 1。

任意角的三角函数-1

任意角的三角函数-1
O
M
x
MP tan OM
M P OP OM OP M P OM
1、角度一定时,角的终边上任意一点的纵 我们发现: 坐标与该点到原点的距离的比值就一定。 非空数集上的 2、当角度变化时,角的终边上任意一点的 映射!即是一 纵坐标与该点到原点的距离的比值就变化。 个函数! 3、当角的终边相同时,角的终边上任意一点 的纵坐标与该点到原点的距离的比值就相同。 y 对应法则 1 r y 角 2 6 r 的 取 取 1 值 值 4
A.4 3 C. 4 3
B. 4 3 D. 3
1.2.1任意角的三角函数
初中:在直角三角形中锐角A的三角函数定义:
BC a sin A AB c
AC b cos A AB c BC a tan A AC b
c
A
B
a b C
上述定义只限于直角三角形中的锐角,而
现在角的定义已经拓广到任意角.
如:
2 sin ? 3 cos ? t an(
α 的终边 P(x,y)
O
x
三角函数的定义域:
三角函数 定义域
y sin
y cos
R R
y tan
{ |

2
k , k Z }
说明
正切函数.以上三种函数都称为三角函数;
(2)由于角的集合与实数集之间可以建立一一对应关系, 三角函数可以看成是自变量为实数的函数.

3
ቤተ መጻሕፍቲ ባይዱ
)?
任意角是 在直角坐 标平面内 给出定义
正弦、余弦、正切 是在直角三角形中 给出定义
思考:如何定义任意角的三角函数?
新课引入

三角函数大全

三角函数大全

三角公式汇总一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22yx r +=,正弦:r y =αsin 余弦:rx =αcos 正切:x y =αtan 余切:y x =αcot 正割:xr =αsec余割:yr =αcsc注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。

二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。

商数关系:αααcos sin tan =,αααsin cos cot =。

平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。

三、诱导公式⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名不变,符号看象限)⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。

(口诀:函数名改变,符号看象限)四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+ βαβαβαsin cos cos sin )sin(⋅-⋅=- βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαsin sin cos cos )cos(⋅+⋅=-βαβαβαtan tan 1tan tan )tan(⋅-+=+ βαβαβαtan tan 1tan tan )tan(⋅+-=-五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*ααα2tan 1tan 22tan -=二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ αα2sin 22cos 1=-2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,ααα2tan 1tan 22tan -=。

1.2.1任意角三角函数1

1.2.1任意角三角函数1
x
正切为正
余弦为正
Ⅰ全正,Ⅱ正弦,Ⅲ正切,Ⅳ余弦
意为:第一象限各三角函数均为正,第二象限只有正弦及与正弦相关的余 割为正,其余均为负 第三象限正切、余切为正,其余为负,第四象限余弦及与之相关 的正割为正,其余皆为负。
例1:
已知角α 的终边经过点p(2,-3),
求角α 的正弦、余弦和正切值。
例2
确定下列各三角函数值的符号:
自学检测:
P16 练习:1、 2、
锐角三角函数的定义:

sin _____; _____; _____ cos tan
y r
P(x,y)
x
α
o M
y x y sin ; cos ; tan r r x
定义: y y ①比值 叫做 的正弦,记作 sin ,即 sin . r r x x ②比值 叫做 的余弦,记作 cos ,即 cos . r r y 叫做 的正切,记作 ③比值 , tan P(x,y) y x y 即 tan . r
正弦、余弦、正切函数值在各个象限的符号
正弦值y对于第一、二象限的角是正的,对于第三、四 象限的角是负的。
余弦值x 对于第一、四象 限的角是正的,对于第二、 三象限的角是负的。
y 正切值 对于第一、三象限的角是正的, x 对于第二、四象限的角是负的。
三角函数值的符号问题
y
正弦为正
o
三角函数全为 正
11 (3) tan . 3
7 (1) cos . 12
(2) sin(465);
分层训练
• 必做题 P16 练习:3、4、5 • 选做题 P23 习题:6 • 作业 P23 :习题:1、5

三角函数任意角的三角函数

三角函数任意角的三角函数

两角差余弦公式
$\cos(x-y)=\cos x\cos y+\sin x\sin y$
两角和与差的正弦公式
两角和正弦公式
$\sin(x+y)=\sin x\cos y+\cos x\sin y$
两角差正弦公式
$\sin(x-y)=\sin x\cos y-\cos x\sin y$
两角和与差的正切公式
对于任意角α,有以下基本 公式
sin²α+cos²α=1, 1+tan²α=sec²α, 1+cot²α=csc²α
04
05
两角和与差的 倍角和半角公 三角函数公式 式
sin(α+β)=sinαcosβ+cos αsinβ。 cos(α+β)=cosαcosβsinαsinβ
sin(2α)=2sinαcosα, cos(2α)=cos²α-sin²α, tan(2α)=(2tanα)/(1tan²α)
三角函数的图象与性质
01
三角函数的图象是在单位圆上点的轨迹,具有周期nx的图象是一条波形曲线,具有周期性,最小正周期为2π;余弦 函数y=cosx的图象也是一条波形曲线,也具有周期性,最小正周期为2π;正切 函数y=tanx的图象是一条直线,没有周期性。
交流电
交流电的电压和电流是时间的周期函数,可以用三角函数来 表示。
控制工程
在控制工程中,系统的传递函数和稳定性分析需要用到三角 函数的知识。
THANK YOU.
在解三角形中,三角函数可以用于求角度、长度 等,例如利用余弦定理求三角形面积: S=1/2bcsinA。
在微积分中,三角函数可以用于求函数的积分和 导数等,例如求圆的面积:A=πr²。

任意角的三角函数

任意角的三角函数

利用单位圆有关的有向线段,作出正弦线,余弦线, 正切线.
三角函数的几何表示课件
三角函数的一种几何表示
当角 的终边不在坐标轴上时,我们把 OM , MP 都看 成带有方向的线段,这种带方向的线段叫有向线段.由正 弦、余弦、正切函数的定义有:
y y sin y MP r 1
x x cos x OM r 1
而 48 °第一象限角, 所以tan(-672 °)>0
解:
因为tan(11π/3)=4)tan(5π/3+2π )=tan(5π/3)
而 5π/3第四象限角, 所以tan(11π/3)<0
变式
判断 cos(sinα)的符号
分析:
求 sinα 的大小; 弧度制把角度与实数相联系
解:
因为 sinα 的取值为 [-1,1]; 而 -1>-π /2 , 1< π/2 ;
弦 csc
tan 切 cot
全为+ 函 o x cos

函:所有的三角函数 弦:正弦 (倒数余割) 切:正切 (倒数余切) 余:余弦 (倒数正割)
sec
例3
确定下列三角函数值的符号
(1) cos250° (2) sin(-π /4)
解: 因为250°是第三象限角, 所以cos250°<0 解: 因为-π/4是第四象限角, 所以sin(-π/4) <0 练习4 口答
务正业了,每天坐在飞船当中,正在朝南皇国赶路."罢了,你们主内,咱主外吧..."根汉无奈の自嘲,她们在体验不同の人生,或许对她们の道法有所帮助,因为她们可能之前从来没想到会经历这样の生活.不过因为在这里已经呆了有段时间了,根汉必须要着眼开始找到这星海大陆の出口了,若是 再

1.2.1.1任意角三角函数

1.2.1.1任意角三角函数

第1课时 任意角的三角函数(一)任意角的三角函数的定义sin α,即sin α=y cos α,即cos α=x ,即tan α=yx(x ≠0) 正弦、余弦、正切都是以角为自变量,以单位圆上的点的坐标或坐标的比值为函数值的函数,将它们统称为三角函数到一个比值的集合的函数.三角函数值实质是一个比值,因此分母不能为零,所以正切函数的定义域就是使分母不为零的角的集合.Z }三角函数值在各象限的符号口诀:一全正,二正弦,三正切,四余弦状元随笔 对三角函数值符号的理解三角函数值的符号是根据三角函数定义和各象限内坐标符号导出的.从原点到角的终边上任意一点的距离总是正值.根据三角函数定义知:正弦值符号取决于纵坐标y 的符号;.sin 750°=________.类型一三角函数的定义及应用1(1)若角α的终边经过点P(5,-12),则sin α=________,cos α=________,tan α=________ 2x”其他条件不变,结果又如何?的值为;(1)将本例中条件“x>0”改为“x<0”,结果如何?(2)将本例中条件“x>0”改为“x≠0”,结果又怎样?(3)将本例中“P(x,3)”改为“P(x,3x)”,且把“cos θ=10x10”去掉,结果又怎样?A.第一象限B.第二象限C.第三象限D.第四象限(2)判断下列各式的符号:①sin 145°cos(-210°);②sin 3·cos 4·tan 5.方法归纳判断三角函数值正负的两个步骤(1)定象限:确定角α所在的象限.(2)定符号:利用三角函数值的符号规律,即“一全正,二正弦,三正切,四余弦”来判断.注意:若sin α>0,则α的终边不一定落在第一象限或第二象限内,有可能终边落在y 轴的非负半轴上. 跟踪训练1 判断下列各式的符号:(1)sin 145°cos(-210°);(2)sin 3·cos 4·tan 5.2.已知角α的终边过点(3a -9,a +2)且cos α≤0,sin α>0,则实数a 的取值范围是 . 3.设角α是第三象限角,且⎪⎪⎪⎪sin α2=-sin α2,则角α2是第 象限角.(2)sin ⎝⎛⎭⎫-11π6+cos 125π·tan 4π.7.当α为第二象限角时,|sin α|sin α-cos α|cos α|的值是________.8.已知角α的终边经过点P (3,4t ),且sin(2k π+α)=-35(k ∈Z ),则t =________.三、解答题(每小题10分,共20分)9.已知角α的终边为射线y =-34x (x ≥0),求角α的正弦、余弦和正切值.10.判断下列各式的符号:(1)sin 105°·cos 230°;(2)cos 3·tan ⎝⎛⎭⎫-2π3.11.若α是第一象限角,则-α2是( )A .第一象限角B .第四象限角C .第二或第三象限角D .第二或第四象限角 12.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n =________. 13.计算:(1)sin 390°+cos(-660°)+3tan 405°-cos 540°;(2)sin ⎝⎛⎭⎫-7π2+tan π-2cos 0+tan 9π4-sin 7π3.14.已知角α的终边过点(a,2a )(a ≠0),求角α的正弦、余弦和正切值.第2课时 任意角的三角函数(二)1.相关概念(1)单位圆:以原点O 为圆心,以单位长度为半径的圆. (2)有向线段:带有方向(规定了起点和终点)的线段.规定:方向与x 轴或y 轴的正方向一致的为正值,反之为负值. 2.三角函数线状元随笔 (1)三角函数线的方向.正弦线由垂足指向角α的终边与单位圆的交点,余弦线由原点指向垂足,正切线由切点指向切线与角α的终边或其反向延长线的交点.(2)三角函数线的正负:三条有向线段凡与x 轴或y 轴同向的,为正值,与x 轴或y 轴反向的,为负值. (1)角的三角函数线是直线.( )(2)角的三角函数值等于三角函数线的长度.( )(3)第二象限的角没有正切线.( )2.有下列四个说法:①α一定时,单位圆中的正弦线一定;②单位圆中,有相同正弦线的角相等; ③α和α+π有相同的正切线;④具有相同正切线的两个角终边相同. 不正确说法的个数是( ) A .0个 B .1个 C .2个 D .3个 3.如图所示,在单位圆中角α的正弦线、正切线完全正确的是( )A .正弦线PM ,正切线A ′T ′B .正弦线MP ,正切线A ′T ′C .正弦线MP ,正切线ATD .正弦线PM ,正切线AT 4.已知sin α>0,tan α<0,则α的( )A .余弦线方向向右,正切线方向向下B .余弦线方向向右,正切线方向向上C .余弦线方向向左,正切线方向向下D .余弦线方向向上,正切线方向向左类型一 三角函数线的作法【例1】 作出下列各角的正弦线、余弦线、正切线.(1)-π4;(2)17π6;(3)10π3.类型二 利用三角函数线比较大小【例2】 (1)已知A .若α、β是第一象限角,则sin α>sin β B .若α、β是第二象限角,则tan α>tan β C .若α、β是第三象限角,则sin α>sin β D .若α、β是第四象限角,则tan α>tan β (2)利用三角函数线比较sin2π3和sin 4π5,cos 2π3和cos 4π5,tan 2π3和tan 4π5的大小.方法归纳利用三角函数线比较大小的步骤利用三角函数线比较三角函数值的大小时,一般分三步:①角的位置要“对号入座”;②比较三角函数线的长度;③确定有向线段的正负.跟踪训练1.已知a =sin 2π7,b =cos 2π7,c =tan 2π7,则( )A .a <b <cB .a <c <bC .b <c <aD .b <a <c2 设π4<α<π2,试比较角α的正弦线、余弦线和正切线的长度.如果π2<α<3π4,上述长度关系又如何?类型三 利用三角函数线解不等式(1)cos α>-22;(2)tan α≤33;(3)|sin α|≤12.1.将本例(1)的不等式改为“cos α<22”,求α的取值范围 2.将本例(3)的不等式改为“-12≤sin θ<32”,求α的取值范围3.利用本例的方法,求函数y =2sin x -1的定义域.方法归纳利用三角函数线解三角不等式的方法利用三角函数线求解不等式,通常采用数形结合的方法,求解关键是恰当地寻求点.一般来说,对于sin x ≥b ,cos x ≥a (或sin x ≤b ,cos x ≤a ),只需作直线y =b ,x =a 与单位圆相交,连接原点和交点即得角的终边所在的位置,此时再根据方向即可确定相应的x 的范围;对于tan x ≥c (或tan x ≤c ),则取点(1,c ),连接该点和原点即得角的终边所在的位置,并反向延长,结合图象可得.跟踪训练3 在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合.(1) sin α≥32;(2)cos α≤-12.一、选择题(每小题5分,共25分)1.对三角函数线,下列说法正确的是( ) A .对任意角都能作出正弦线、余弦线和正切线 B .有的角的正弦线、余弦线和正切线都不存在C .任意角的正弦线、正切线总是存在的,但余弦线不一定存在D .任意角的正弦线、余弦线总是存在的,但正切线不一定存在2.如果MP 和OM 分别是角α=7π8的正弦线和余弦线,那么下列结论正确的是( )A .MP <OM <0B .OM >0>MPC .OM <MP <0D .MP >0>OM3.有三个命题:①π6和5π6的正弦线长度相等;②π3和4π3的正切线相同;③π4和5π4的余弦线长度相等.其中正确说法的个数为( ) A .1 B .2 C .3 D .04.使sin x ≤cos x 成立的x 的一个区间是( ) A.⎣⎡⎦⎤-3π4,π4 B.⎣⎡⎦⎤-π2,π2 C.⎣⎡⎦⎤-π4,3π4 D.[]0,π5.如果π4<θ<π2,那么下列各式中正确的是( )A .cos θ<tan θ<sin θB .sin θ<cos θ<tan θC .tan θ<sin θ<cos θD .cos θ<sin θ<tan θ二、填空题(每小题5分,共15分)6.比较大小:sin 1________sin π3(填“>”或“<”).7.不等式tan α+33>0的解集是________________________.8.用三角函数线比较sin 1与cos 1的大小,结果是________.三、解答题(每小题10分,共20分)9.做出下列各角的正弦线、余弦线、正切线.(1)5π6;(2)-2π3.10.利用三角函数线,求满足下列条件的角α的集合:(1)tan α=-1;(2)sin α≤-22.11.已知角α的正弦线和余弦线的方向相反、长度相等,则α的终边在( )A .第一象限的角平分线上B .第四象限的角平分线上C .第二、第四象限的角平分线上D .第一、第三象限的角平分线上12.若cos θ>sin 7π3,利用三角函数线得角θ的取值范围是________.13.若α∈⎝⎛⎭⎫0,π2,试利用三角函数线证明sin α+cos α>1.。

任意角的三角函数

任意角的三角函数

任意角的三角函数介绍在初中数学中,我们学习了关于直角三角形的三角函数(正弦、余弦和正切),它们是由角度的比值定义的。

但是,在实际问题中,我们常常遇到的角度并不限于直角,因此需要引入任意角的三角函数。

任意角是指小于360度(或2π弧度)的角度。

在本文档中,我们将探讨任意角的三角函数的定义、性质和常见的应用。

任意角的定义对于给定的角度θ,其正弦、余弦和正切分别定义如下:1.正弦(Sine):正弦表示角度对应位置的 y 坐标与圆的半径 R 的比值,用sin(θ) 表示,可以通过以下公式计算:sin(θ) = y / R2.余弦(Cosine):余弦表示角度对应位置的 x 坐标与圆的半径 R 的比值,用cos(θ) 表示,可以通过以下公式计算:cos(θ) = x / R3.正切(Tangent):正切表示角度的正弦值与余弦值的比值,用tan(θ) 表示,可以通过以下公式计算:tan(θ) = sin(θ) / cos(θ)需要注意的是,上述定义中的正弦、余弦和正切都是任意角度θ 的函数,可以取任意实数值。

三角函数的性质与直角三角形的三角函数类似,任意角的三角函数也具有一些重要的性质:1.周期性:正弦和余弦函数在360度(或2π弧度)的整数倍处具有相同的值。

例如,sin(θ) = sin(θ + 360°) =sin(θ + 2π)。

2.奇偶性:正弦函数是奇函数,即 sin(-θ) = -sin(θ);余弦函数是偶函数,即 cos(-θ) = cos(θ)。

3.平方和恒等式:正弦和余弦函数的平方和恒等于1,即sin^2(θ) + cos^2(θ) = 1。

4.正切的周期性:正切函数的周期是180度(或π弧度),即tan(θ) = tan(θ + 180°) = tan(θ + π)。

任意角的应用任意角的三角函数在物理、工程、计算机图形学等领域中有着广泛的应用。

1.物理中的应用:三角函数在描述波动、振动、轨道运动等方面有着重要的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数的基本内容:
任意角的三角函数 同角关系式及诱导公式 两角和与差的正弦,余弦和正切公式 简单的三角变换 三角函数的图像 三角函数的性质 正弦函数定理,余弦定理 三角形的面积问题 三角形中范围与最值问题 正弦定理,余弦定理的应用问题
1、任意角的三角函数
设 是一个任意角,它的终边与单位圆交于点 P(x, y)
P Mo x
y=-x
x 12
练习:求值
cos
11
3
sin
71
6
tan
19
3
解:cos
11
3
sin
71
6
tan
19
3
cos
4
3
sin
12
6
tan
6
3
cos sin tan 1 1 3 1 3
3
6
3 22
1.在(0, 2 )内使cos x sin x tan x成立的x的取值范围是(C )
22
y
所以 sin 5 3 , cos 5 1 , tan 5 3.
5
32
32ቤተ መጻሕፍቲ ባይዱ
3
3
o

A
x
﹒B
已知角θ的终边过点P(-12,5) ,求θ的三个三角函数值.
解:由已知可得:
r x2 y2 122 52 13
于是,sin y 5 cos x 12
r 13
r 13
tan y 5
那么:(1)y 叫做 的正弦,记作sin ;即 sin y;
(2)x 叫做 的余弦,记作 cos,即 cos x;
(3)
y叫做
x
的正切,记作
tan
,即 tan
y x
(x
0) .
所以,正弦,余弦,正切都是以角为自变量,以单位圆上点的坐 标或坐标的比值为函数值的函数,我们将他们称为三角函数.
sin( k 2 ) _________; cos( k 2 ) _________; tan( k 2 ) _________.(k z)
y
A( , 3 ) B(5 , 3 ) C(3 , 2 ) D(3 , 7 )
44
42
2
24
MA
o
x
2.若 (3 , ),则下列各式错误的是( D )
PT
4
(A)sin cos 0 (B)sin cos 0
y
(C) | sin || cos | (D)sin cos 0
分析:sin 0,cos 0,| sin || cos |
根据三角函数的定义,确定它们的定义(弧度制)
三角函数
sin
cos tan
定义域
R
R
2
k (k
Z )
确定三角函数值在各象限的符号
y
++
y
-+
o
-
-x
o
-
x
+
sin
cos
y
-+
o
+
-x
tan
求 5
3
的正弦、余弦和正切值.
解:在直角坐标系中,作 AOB 5 ,易知 AOB
3
的终边与单位圆的交点坐标为 (1 , 3 ).
相关文档
最新文档