八种经典线性规划例题最全总结(经典)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性规划常见题型及解法

由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围

例1、若x、y满足约束条件

2

2

2

x

y

x y

⎪+≥

,则z=x+2y的取值范围是()

A、[2,6]

B、[2,5]

C、[3,6]

D、(3,5]

解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A

二、求可行域的面积

例2、不等式组

260

30

2

x y

x y

y

+-≥

+-≤

⎪≤

表示的平面区域的面积为()

A、4

B、1

C、5

D、无穷大

解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选 B

三、求可行域中整点个数

例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()

A、9个

B、10个

C、13个

D、14个

解:|x|+|y|≤2等价于

2(0,0)

2(0,0)

2(0,0)

2(0,0) x y x y

x y x y

x y x y

x y x y

+≤≥≥

⎪-≤≥

-+≤≥⎪

⎪--≤

作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D

四、求线性目标函数中参数的取值范围

例4、已知x、y满足以下约束条件

5

50

3

x y

x y

x

+≥

-+≤

⎪≤

,使z=x+ay(a>0)

取得最小值的最优解有无数个,则a的值为()

A、-3

B、3

C、-1

D、1

解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选 D

五、求非线性目标函数的最值

例5、已知x、y满足以下约束条件

220

240

330

x y

x y

x y

+-≥

-+≥

⎪--≤

,则z=x2+y2的最大值和最小值分别是()

A、13,1

B、13,2

C、13,4

5

D

5

解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,

即为4

5

,选 C

六、求约束条件中参数的取值范围

例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()

A、(-3,6)

B、(0,6)

C、(0,3)

D、(-3,3)

解:|2x-y+m|<3等价于

230 230

x y m

x y m

-++>⎧

-+-<⎩

由右图可知

33

30

m

m

+>

-<

,故0<m<3,选 C

七、比值问题

当目标函数形如y a

z x b

-=

-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

例 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≤0,x ≥1,x +y -7≤0,

则 y

x 的取值范围是( ).

(A )[95,6] (B )(-∞,9

5]∪[6,+∞)

(C )(-∞,3]∪[6,+∞) (D )[3,6] 解析 y x

是可行域内的点M (x ,y )与原点O

(0,0)连线的斜率,当直线OM 过点(52,92)时,y

x 取得

最小值95;当直线OM 过点(1,6)时,y

x

取得最大值6. 答案A

八、线性规划应用

例1、某工厂利用两种燃料生产三种不同的产品A 、B 、C ,每消耗一吨燃料与产品A 、B 、C 有下列关系:

现知每吨燃料甲与燃料乙的价格之比为3:2,现需要三种产品A 、B 、C 各50吨、63吨、65吨.问如何使用两种燃料,才能使该厂成本最低?

分析:由于该厂成本与两种燃料使用量有关,而产品A 、B 、C 又与这两种燃料有关,且这三种产品的产量也有限制,因此这是一道求线性目标函数在线性约束条件下的最小值问题,这类简单的线性规划问题一般都可以利用二元一次不等式求在可行域上的最优解.

解:设该厂使用燃料甲x 吨,燃料乙y 吨,甲每吨t 2元,

则成本为)32(32y x t ty tx z +=+=.因此只须求y x 32+的最小值即可.

又由题意可得x 、y 满足条件⎪⎩⎪

⎨⎧≥+≥+≥+.

65135,6397,50510y x y x y x

作出不等式组所表示的平面区域(如图)

相关文档
最新文档