激光共聚焦显微镜的使用和应用
激光扫描共聚焦显微镜的原理和应用
激光扫描共聚焦显微镜的原理和应用一、激光扫描共聚焦显微镜的原理传统的光学显微镜使用的是场光源,标本上每一点的图像都会受到邻近点的衍射或散射光的干扰;激光扫描共焦显微镜(Laser Scanning Confocal Microscope,LSCM)采用点光源照射样本,在焦平面上形成一个轮廓分明的小的光点,该点被照射后发出的荧光被物镜搜集,并沿原照射光路回送到由双色镜构成的分光器。
分光器将荧光直接送到探测器。
光源和探测器前方都各有一个针孔,分别称为照明针孔和探测针孔。
照明针孔与探测针孔相对于物镜焦平面是共轭的,焦平面上的点同时聚焦于照明针孔和发射针孔,焦平面以外的点被挡在探测针孔之外不能成像,这样得到的共聚焦图像是标本的光学切面,避免了非焦平面上杂散光线的干扰,克服了普通显微镜图像模糊的缺点,因此能得到整个焦平面上清晰的共聚焦图像。
原理图二、激光扫描共聚焦显微镜组成特点LSCM由显微镜光学系统,激光光源,扫描装置和检测系统构成,整套仪器由计算机控制,各部件之间的操作切换都可在计算机操作平台界面中方便灵活地进行。
显微镜是LSCM的主要组件,它关系到系统的成像质量。
通常有倒置和正置两种形式,前者在切片、活细胞检测等生物医学应用中使用更广泛。
三、激光扫描共聚焦显微镜的应用(一)细胞的三维重建普通荧光显微镜分辨率低,显示的图像结构为多层面的图像叠加,结构不够清晰。
LSCM能以0.1μm的步距沿轴向对细胞进行分层扫描,得到一组光学切片,经A/D转换后作为二维数组贮存。
这些数组通过计算机进行不同的三维重建算法,可作单色或双色图像处理,组合成细胞真实的三维结构。
旋转不同角度可观察各侧面的表面形态,也可从不同的断面观察细胞内部结构,测量细胞的长宽高、体积和断层面积等形态学参数。
通过模拟荧光处理算法,可以产生在不同照明角度形成的阴影效果,突出立体感。
通过角度旋转和细胞位置变化可产生三维动画效果。
LSCM的三维重建广泛用于各类细胞骨架和形态学分析、染色体分析、细胞程序化死亡的观察、细胞内细胞质和细胞器的结构变化的分析和探测等方面。
激光共聚焦显微镜原理
LSCM的优越性
动态连续扫描及三维图像重组 LSCM可以对对活细胞和
组织或细胞切片样品的不同层面进行连续逐层扫描, 来获得各个 层面的图像,即所谓的“无损伤的光学切片”。激光扫描共聚 焦显微镜扫描的每个层面之间的间距可以达到0.1um甚至更小。 获得的图像通过计算机重组,可获得精细的细胞骨架、染色体、 细胞器和细胞膜系统的三维图像。与普通光学显微镜获得的图 像相比,LSCM所得 到的重组三维图像清晰度高、立体感强, 可通过计算机软件对细胞内所研究的结构进行各种测量,对细 胞内的空间结构和某些物质在细胞内的定位方面的研究中有广 泛的应用。
发展历史
1957年,Malwin Minsky在其专利中首次阐明了激光共聚焦显微镜技 术的基本工作原理, 1967年,Egger第一次成功能共聚焦显微镜产生了一个光学横断面, 1970年,Sheppard和Wilson 推出第一台单光束共聚集激光扫描显微 镜 1987年,White 和Amos在Nature杂志发表了“Confocal microscopy come of age”,标志着LSCM已成为科学研究的重要工具。
普通荧光显微镜和激光共聚焦显微镜图像的差别
激光共聚焦显微镜的基本原理
利用放置在光源后的照明针孔 (P1)和放置在检测器前的探测针 孔(P2)实现点照明和点探测;激 光经过照明针孔形成点光源, 由物镜聚焦在样品焦面的某个 点上,只有该点所发射 的荧光 成像在探测针孔上,该点以外 的任何发射光线被探测器阻挡, 不能到达PMT探测器,从而提 高了成像效果。照明针孔和探 测针孔 共焦,共焦点为被探测 点,被探测点所在的平面为共 焦平面。
计算机系统
数据采集、处理、转换、应用软件
激光共聚焦显微镜的原理与应用范围讲解
激光共聚焦显微镜的原理与应用范围激光扫描共聚焦显微镜是采用激光作为光源,在传统光学显微镜基础上采用共轭聚焦原理和装置,并利用计算机对所观察的对象进行数字图象处理的一套观察、分析和输出系统。
把光学成像的分辨率提高了30%~40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代的研究工具。
1 激光扫描共聚焦显微镜(LSCM )的原理从基本原理上讲, 共聚焦显微镜是一种现代化的光学显微镜, 它对普通光镜从技术上作了以下几点改进:1.1用激光做光源因为激光的单色性非常好, 光源波束的波长相同, 从根本上消除了色差。
1. 2采用共聚焦技术在物镜的焦平面上放置了一个当中带有小孔的挡板, 将焦平面以外的杂散光挡住, 消除了球差; 并进一步消除了色差1. 3采用点扫描技术将样品分解成二维或三维空间上的无数点, 用十分细小的激光束(点光源逐点逐行扫描成像, 再通过微机组合成一个整体平面的或立体的像。
而传统的光镜是在场光源下一次成像的, 标本上每一点的图像都会受到相邻点的衍射光和散射光的干扰。
这两种图像的清晰度和精密度是无法相比的。
1.4用计算机采集和处理光信号, 并利用光电倍增管放大信号图在共聚焦显微镜中, 计算机代替了人眼或照相机进行观察、摄像, 得到的图像是数字化的, 可以在电脑中进行处理, 再一次提高图像的清晰度。
而且利用了光电倍增管, 可以将很微弱的信号放大, 灵敏度大大提高。
由于综合利用了以上技术。
可以说LSCM是显微镜制作技术、光电技术、计算机技术的完美结合, 是现代技术发展的必然产物。
2 LSCM在生物医学研究中的应用目前, 一台配置完备的LSCM在功能上已经完全能够取代以往的任何一种光学显微镜, 它相当于多种制作精良的常用光学显微镜的有机组合, 如倒置光学显微镜、紫外线显微镜、荧光显微镜、暗视野显微镜、相差显微镜(PH、微分干涉差显微镜(DIC等, 因此被称为万能显微镜, 通过它所得到的精细图像可使其他的显微镜图像无比逊色。
激光共聚焦显微镜的原理和应用
激光共聚焦显微镜的原理和应用1. 引言激光共聚焦显微镜(Laser Scanning Confocal Microscope,简称LSCM)是一种高分辨率的显微镜技术,已经广泛应用于生物学、医学和材料科学等领域。
本文将介绍激光共聚焦显微镜的原理和应用。
2. 原理激光共聚焦显微镜通过激光束的共聚焦和通过物体的反射或荧光发射来实现图像的采集。
2.1 激光共聚焦•通过透镜来聚焦激光束•聚焦点在样本表面上产生光斑•样本反射或发射出来的光再次通过透镜,聚焦到探测器上•透镜的位置可以移动,可以扫描整个样本2.2 反射和荧光信号的采集•激光束照射到样本上,经过反射或荧光发射•光学系统收集并聚焦这些发射的光•通过探测器记录下发射光的强度和位置•通过移动透镜和探测器,可以获得样本的三维图像3. 应用激光共聚焦显微镜在许多领域都得到了广泛的应用,以下是其中的几个典型应用。
3.1 细胞生物学•可以观察细胞的形态和结构•可以追踪细胞内的生物分子运动•可以观察细胞的生物化学过程3.2 分子生物学•可以观察和定量细胞器的分布和聚集情况•可以观察和测量分子的扩散速率•可以研究蛋白质的合成和代谢过程3.3 医学研究•可以观察和诊断组织和器官的病理变化•可以研究疾病的发生和发展机制•可以评估治疗方法的有效性和副作用3.4 材料科学•可以观察材料的微观结构和表面形貌•可以研究材料的热力学和力学性质•可以评估材料的耐久性和可靠性4. 总结激光共聚焦显微镜是一种高分辨率的显微镜技术,通过激光束的共聚焦和物体的反射或荧光发射来实现图像的采集。
它在细胞生物学、分子生物学、医学研究和材料科学等领域都有着广泛的应用。
利用激光共聚焦显微镜,科研人员可以观察和研究生物和材料的微观结构、功能和相互作用,为科学研究和应用提供了强大的工具。
共聚焦显微镜的应用
共聚焦显微镜的应用共聚焦显微镜是一种常见且广泛应用于生物学、材料科学和其他领域的先进显微镜技术。
它通过使用一种特殊的激光光束和精确的光学系统,可以获取高分辨率和高对比度的显微图像。
共聚焦显微镜的原理是利用聚焦在样本上的激光光束与样本中的荧光信号进行交互,然后通过成像系统收集并转换这些信号为可视化的图像。
共聚焦显微镜的应用范围非常广泛。
下面,我将从多个角度讨论共聚焦显微镜在不同领域的应用。
1. 生物学中的应用:共聚焦显微镜在生物学研究中具有重要作用。
它可以提供高分辨率的细胞和组织结构图像。
在细胞生物学中,共聚焦显微镜可以用于观察细胞内蛋白质、细胞器和细胞核等结构的分布和运动。
共聚焦显微镜还可以用于观察细胞分裂过程、细胞内信号传导和细胞凋亡等关键生物学过程。
2. 材料科学中的应用:在材料科学领域,共聚焦显微镜被广泛应用于材料的表征和分析。
它可以提供高分辨率的表面形貌和内部结构信息。
在材料表面缺陷分析中,共聚焦显微镜能够观察到微观缺陷的形貌和位置。
共聚焦显微镜还可用于材料的化学成分分析和荧光标记探针的检测。
3. 医学领域中的应用:在医学领域,共聚焦显微镜可用于细胞和组织的诊断和研究。
在癌症研究中,共聚焦显微镜可以观察到癌细胞的形貌和分布,从而帮助医生确定病情和制定治疗方案。
共聚焦显微镜还可以用于血液和生物标本的显微观察,以及对药物在体内的分布和代谢过程的研究。
总结回顾:共聚焦显微镜是一种在生物学、材料科学和医学领域具有广泛应用的先进显微镜技术。
它通过高分辨率和高对比度的显微图像提供了对样本的详细观察。
在生物学中,共聚焦显微镜可以用于观察细胞结构、蛋白质分布和细胞内过程。
在材料科学中,共聚焦显微镜广泛应用于材料的表征和分析。
在医学领域,共聚焦显微镜对癌症诊断和研究具有重要意义。
通过综合利用共聚焦显微镜的特点和功能,我们可以更深入地理解和研究生物、材料和医学等领域的重要问题。
观点和理解:共聚焦显微镜作为一项先进的显微镜技术,为我们提供了探索微观世界的窗口。
激光共聚焦显微镜的原理与应用范围
激光共聚焦显微镜的原理与应用范围激光扫描共聚焦显微镜是采用激光作为光源,在传统光学显微镜基础上采用共轭聚焦原理和装置,并利用计算机对所观察的对象进行数字图象处理的一套观察、分析和输出系统。
把光学成像的分辨率提高了30%~40%,使用紫外或可见光激发荧光探针,从而得到细胞或组织内部微细结构的荧光图像,在亚细胞水平上观察生理信号及细胞形态的变化,成为形态学,分子生物学,神经科学,药理学,遗传学等领域中新一代的研究工具。
1 激光扫描共聚焦显微镜(LSCM)的原理从基本原理上讲,共聚焦显微镜是一种现代化的光学显微镜,它对普通光镜从技术上作了以下几点改进:1.1用激光做光源因为激光的单色性非常好,光源波束的波长相同,从根本上消除了色差。
1.2采用共聚焦技术在物镜的焦平面上放置了一个当中带有小孔的挡板,将焦平面以外的杂散光挡住,消除了球差;并进一步消除了色差1.3采用点扫描技术将样品分解成二维或三维空间上的无数点,用十分细小的激光束(点光源)逐点逐行扫描成像,再通过微机组合成一个整体平面的或立体的像。
而传统的光镜是在场光源下一次成像的,标本上每一点的图像都会受到相邻点的衍射光和散射光的干扰。
这两种图像的清晰度和精密度是无法相比的。
1.4用计算机采集和处理光信号,并利用光电倍增管放大信号图在共聚焦显微镜中,计算机代替了人眼或照相机进行观察、摄像,得到的图像是数字化的,可以在电脑中进行处理,再一次提高图像的清晰度。
而且利用了光电倍增管,可以将很微弱的信号放大,灵敏度大大提高。
由于综合利用了以上技术。
可以说LSCM是显微镜制作技术、光电技术、计算机技术的完美结合,是现代技术发展的必然产物。
2 LSCM在生物医学研究中的应用目前,一台配置完备的LSCM在功能上已经完全能够取代以往的任何一种光学显微镜,它相当于多种制作精良的常用光学显微镜的有机组合,如倒置光学显微镜、紫外线显微镜、荧光显微镜、暗视野显微镜、相差显微镜(PH)、微分干涉差显微镜(DIC)等,因此被称为万能显微镜,通过它所得到的精细图像可使其他的显微镜图像无比逊色。
激光共聚焦显微镜原理和应用
激光共聚焦显微镜原理和应用共聚焦显微镜的发展历史1955年,Marvin Minsky利用共焦原理搭建了一台共焦显微镜,用来在体观察大脑的神经元网络。
1957年,Marvin Minsky申请了共聚焦显微镜的专利。
1970年,第一台单光束共聚焦激光扫描显微镜问世。
1985年,多个实验室的多篇报道显示共聚焦显微镜可以消除焦点模糊,得到非常清晰的图像。
1987年,BIO-RAD公司推出了第一台商业化的共聚焦显微镜。
共聚焦显微镜最大的优点就是可以只检测一个聚焦平面的信号。
样品聚焦平面和检测器(光电倍增管)之前均有一个针孔,针孔的设置可以有效地滤除非聚焦平面的信号,增加显微镜的信噪比。
激光扫描显微镜能够逐点和诸行对样品进行扫描,最终根据象素信息形成一个高对比度和高分辨率的图像。
通过逐层对样品扫描并把每一层的图像组合成一个整体,激光扫描显微镜能够对样品进行三维分析,非常适合于超厚样品的检测。
传统显微镜是一次性照明整个视野中的样品,因此可以用眼睛直接观察或者用CCD获取图像,没有时间延迟;而共聚焦显微镜是逐点成像,无法用眼睛成像,也无法用CCD获取图像,只能用探测器收集每个象素点的信号,再通过软件重构图象,有一定的时间延迟。
How a Confocal Image is FormedCondenser Lens Pinhole 1Pinhole 2Objective LensSpecimen DetectorWide Microscopy and Confocal MicoscopyWide Field Confocal Field Wide Field Confocal FieldConfocal Principle630 nm BandPass FilterTransmitted LightWhite Light Source620 -640 nm LightTransmitted LightLight Source520 nm Long Pass Filter>520 nm LightTransmitted Light Light Source575 nm Short Pass Filter<575 nm Light Standard Short Pass FiltersOptical FiltersDichroic Filter/Mirror at 45 degReflected light Transmitted Light Light Source 510 LP dichroic Mirror生命科学院的激光共聚焦显微镜Beam Path of Zeiss CLSM 510 METAThe unique scanning module is thecore of the LSM 510 META. It containsmotorized collimators, scanning mirrors,individually adjustable and positionablepinholes, and highly sensitive detectorsincluding the META detector. All thesecomponents are arranged to ensureoptimum specimen illumination andefficient collection of reflected oremitted light. A highly efficient opticalgrating provides an innovative way ofseparating the fluorescence emissions inthe META detector. The gratingprojects the entire fluorescencespectrum onto the 32 channels of theMETA detector. Thus, the spectralsignature is acquired for each pixel ofthe scanned image and subsequently canbe used for the digital separation intocomponent dyes.Focus ConeSpecimen X/Y ImageXYTo get an 2 D image, the excitation spot has to be moved over the specimen3 D information is acquired by moving the excitation focus not only in XY direction but also in Z direction. The result is a 3 D data stack consisting of number of XY images representing different optical sections from the specimenX/Y/Z StackZ-Driveoptical slice共聚焦显微镜的三维信息采集zxy# z sections =#imagesA confocal data set is similar to a book. A book has many pages, and Each page shows information only available if you move down to that page and ready it. Reading a page in a book, is just like scanning with a confocal microscope –you remove all of the other pages!z xy zyy The advantage of confocal microscopy is that you can visualize frames from a 3D object even in planes that you don’t image directly. This is called “slicing” an object and is an important component of confocal imaging.三维数据重构建荧光共振能量转移荧光共振能量转移(Fluorescence Resonance Energy Transfer,FRET)作为一种高效的光学“分子标尺”,在生物大分子相互作用、免疫分析、核酸检测等方面有广泛的应用。
激光共聚焦显微镜的原理与应用范围
激光共聚焦显微镜的原理与应用范围激光共聚焦显微镜(Laser Scanning Confocal Microscopy,简称LSCM),是一种先进的光学显微镜技术。
它利用激光光源,通过聚焦光束经过物镜透镜并聚焦到样品表面,然后通过探测光学系统和探测器来收集样品的荧光或反射信号。
该系统能够获得高对比、高分辨率的三维空间图像。
以下将从原理和应用范围两个方面详细介绍。
原理:其工作原理包含以下几个步骤:1.使用激光器产生激光光源。
2.激光光源通过透镜系统,以点状聚焦到样品表面。
3.将该激光光斑与物镜的孔径大小匹配,通过荧光或反射信号的收集,获得图像。
4.图像信号通过探测器转化为电信号,进而被放大、采集以及分析。
5.使用扫描式镜片的控制系统进行扫描,以获取多个平面上的图像,从而构建三维样品结构。
应用范围:1.生命科学研究:激光共聚焦显微镜广泛应用于生命科学领域,例如生物医学、细胞学和神经科学研究。
它可以观察和分析细胞结构、细胞器、蛋白质分布、细胞信号通路等生物过程。
2.材料科学研究:激光共聚焦显微镜可以用于材料表面和内部结构的分析。
例如,可以观察材料的纳米结构、微孔等特征,也可以用于观察材料的表面反应、拓扑结构等。
3.环境科学研究:激光共聚焦显微镜可以用于环境污染物的检测与分析。
例如,可以观察和分析水体、土壤等环境样品中微小颗粒、微生物的分布和数量。
4.医学诊断和临床应用:激光共聚焦显微镜可用于医学诊断和临床应用。
例如,用于检测肿瘤标志物、血液细胞计数、皮肤病变的分析等。
5.药物研发:激光共聚焦显微镜可以用于药物研发过程中的药效评估、药物代谢机制研究等。
6.光学器件和半导体工艺:激光共聚焦显微镜可以用于光学器件的检测和调试,例如芯片封装、薄膜材料的测试等。
总之,激光共聚焦显微镜在生命科学、材料科学、环境科学、医学、药物研发等领域具有广泛的应用价值。
随着科学技术的不断进步,激光共聚焦显微镜将会在更多的领域中发挥重要作用,推动科学研究和技术发展。
激光共聚焦扫描显微镜用途
激光共聚焦扫描显微镜用途激光共聚焦扫描显微镜(Laser Scanning Confocal Microscopy, LSCM)是一种高分辨率的成像技术,主要用于对细胞、组织和材料进行非破坏性的三维成像和分析。
它通过使用激光束扫描样品,获取高质量的荧光图像,并通过计算机处理和重建,实现对样品的横向和纵向解剖结构的可视化。
1.生物医学研究:激光共聚焦显微镜可用于观察活细胞的形态、结构和功能。
通过标记细胞的一些结构或分子,可以观察细胞器官的形态与位置、蛋白质的表达和分布、细胞的生理活动等。
同时,LSCM还可以进行细胞动力学研究,包括细胞迁移、分裂和凋亡等生物学过程。
2.神经科学研究:LSCM可以帮助神经科学家观察和研究神经元的形态和连接。
通过标记神经元的轴突和树突,可以实现对神经网络的全面观察和分析,从而揭示神经系统的组织构建和功能运作机制,并对神经退行性疾病和神经变性疾病的发生、发展和治疗提供重要参考。
3.组织学研究:激光共聚焦显微镜提供了对组织样本的高分辨率成像,在组织学研究中具有重要的应用前景。
可以观察和分析组织的细胞组织结构、器官形态、局部代谢情况等,进而探究组织发育、器官功能和疾病发展等问题。
4.生物材料分析:LSCM可用于研究生物材料的形态、结构和功能。
可以观察和分析材料的粒子分布、孔隙结构、表面性质、生物相容性等特征,从而用于材料的设计、制备和性能优化。
5.药物研究和药物筛选:激光共聚焦显微镜在药物研究和药物筛选中具有重要作用。
可以观察和分析药物的靶位结合情况、药物的进入细胞和细胞内分布、药物代谢等,从而揭示药物的作用机制和效应,对药物研发和药物筛选提供有力支持。
总之,激光共聚焦显微镜作为高分辨率的成像技术,在生命科学、材料科学和医学研究领域具有广泛应用前景。
通过对样本的高效成像和分析,可以揭示细胞和组织的细微结构和功能,进而促进研究人员对生命科学和材料科学的深入理解和应用发展。
附激光共聚焦扫描显微镜在生物领域的应用范围.
附:激光共聚焦扫描显微镜在生物领域的应用范围激光共聚焦扫描显微镜在生物领域的应用激光共聚焦显微镜的特点以及在生物领域的应用传统光学显微镜相比,激光共聚焦显微镜具有更高的分辨率,实现多重荧光的同时观察并可形成清晰的三维图象等优点。
所以它问世以来在生物学的研究领域中得到了广泛应用。
激光共聚焦显微镜的应用领域多重荧光影像 ( Multi-Color Fluorescence Imaging )3D 立体影像重建 ( 3D Reconstruction )3D 动态影像获取与分析 ( Dynamic 3D imaging )神经立体分布影像 ( 3D Neuron imaging )形态与动态分析 ( Morphology )次微米单晶荧光影像技术 ( Nano-crystal )多重荧光蛋白影像技术 ( Multi-Color GFP Imaging )荧光共振能量转移 ( FRET or FLIM, FRAP ) )细胞离子流定量分析 ( Cellular Ion Concentration and Ratio Imaging )长时间影像记录 ( Time-Lapse Recording )Z轴扫描与测量 ( Z-section and measurement )基因影像分析 ( Genetic FISH imaging and quantification )染色体多重荧光原色表現 ( Chromosome spectral analysis )活体胚胎研究 ( Embryo, Zebrafish / Drosophila embryo )穿透光影像 / 反射光影像材料表面分析 ( Surface and roughness analysis )材料显微硬度分析 ( Micro-Hardness analysis )晶园分析 ( Wafer analysis )薄膜分析 ( Thin layer analysis )在对生物样品的观察中,激光共聚焦显微镜有如下优越性:1.对活细胞和组织或细胞切片进行连续扫描,可获得精细的细胞骨架、染色体、细胞器和细胞膜系统的三维图像。
激光共聚焦显微镜的用途
激光共聚焦显微镜的用途激光共聚焦显微镜(Laser Scanning Confocal Microscope,简称LSCM)是一种高分辨率、高对比度的显微镜技术。
通过激光光源的激发和扫描,LSCM可以快速获取高质量的荧光图像,具有出色的三维成像能力。
下面将详细介绍LSCM的用途。
1.生物医学研究LSCM广泛应用于生物医学研究领域。
它可以对活体组织、细胞、蛋白质等进行实时观察和成像。
利用荧光探针标记的细胞、分子等在LSCM 下,可以观察到细胞器的结构和功能,探索细胞的生物学、病理学等方面的问题。
此外,LSCM还可以用于研究神经科学、免疫学和细菌学等领域,为相关疾病的诊断和治疗提供依据。
2.材料科学LSCM在材料科学研究中具有重要的应用价值。
它可以观察材料的微观结构、表面形貌和内部构造。
通过荧光染料标记或利用材料本身的荧光特性,可以研究材料的纳米结构、晶格缺陷、材料界面等特性。
LSCM还可以配合其他技术如拉曼光谱、傅里叶变换红外光谱等,进一步对材料进行分析和表征。
3.植物生物学LSCM在植物生物学研究中也起到关键作用。
通过激光共聚焦显微镜,可以观察到植物细胞的结构和功能,如叶片、根部、维管束等。
利用荧光标记技术,可以观察到植物的细胞器的分布和数量、蛋白质的表达和转运等。
此外,LSCM还可以用于研究植物的光合作用、生长发育等机制。
4.纳米科学LSCM在纳米科学领域也具有广泛应用。
它可以观察纳米材料的形貌、表面结构、聚集状态等。
利用纳米材料的特殊荧光性质,可以研究纳米颗粒的生长、聚集与分散、表面修饰等过程。
此外,LSCM还可以利用近场光学技术对纳米结构进行高分辨率成像,为纳米材料的设计与合成提供支持。
总之,激光共聚焦显微镜是一种用于观察微观结构和功能的强大工具。
在生物医学研究、材料科学、植物生物学和纳米科学等领域,LSCM发挥着重要的作用,为科学研究和技术应用提供了强有力的支持。
随着技术的不断进步,LSCM在未来的应用前景将更加广阔。
激光共聚焦显微镜
❖ 激光共聚焦扫描显微镜(laser confocal scanning microscope)用激光作扫描光源,逐 点、逐行、逐面快速扫描成像,扫描的激光与荧
光收集共用一个物镜,物镜的焦点即扫描激光的
聚焦点,也是瞬时成像的物点。由于激光束的波
长较短,光束很细,所以共焦激光扫描显微镜有 较高的分辨力,大约是普通光学显微镜的3倍。 系统经一次调焦,扫描限制在样品的一个平面内。
❖ 4·孵化膜形成前,示卵子皮层中的两种皮层囊泡,一种内含致 密颗粒(CG1),另一种内含颗粒稀少(CG fore hatching envelope was formed, showing two kinds of cortical vesicles, one contained high-density granules
物学、胚胎学的活体研究及生理生化成份的动态变 化的研究中已有很大的1994; Jaffeet al.,1994;Lindsayetal.,1992;Malindaet
al.,1994; Sardetet al.,1992; Strickeret al.,1992; Shenet al.,1993),而其在甲壳动物研究中的应用相
❖ 线粒体(mitochondria) Y:卵黄颗粒(yolk granule) CG:皮层 颗粒(cortical granule)×4 800
❖ 3·孵化膜正在形成,显示刚形成的孵化膜(HE)、两种皮层颗粒 (CG1、CG2)、卵黄颗粒(Y) [Hatching was forming, showing hatching envelope (HE) as just formed with two kinds of cortical granules (CG1、CG2) granule (Y)]×4 800
激光共聚焦扫描显微镜及其在生物学上的应用
激光共聚焦扫描显微镜及其在生物研究中的应用一.激光共聚焦扫描显微镜(以下简称LSM):1.利用激光作为光源,在传统光学显微镜基础上采用共轭聚焦原理和装置,并利用计算机对所观察分析对象进行数字图象处理的一套观察和分析系统。
2.主要系统组成:激光源、共聚焦显微镜(正置、倒置、透射、落射、荧光、微分干涉)、探测器(光电倍增管)、计算机以及数字图象输出设备(显示器、彩色打印机和照片幻灯片制作设备)。
二.LSM技术、原理和特点:对于一个在传统显微镜下观察的生物样品来说,其结构往往是非常复杂的,而且又互相重叠,给观察带来很大困难。
特别是在荧光显微镜观察中,由于荧光标记物质和自发荧光结构重叠,紧密合在一起,而传统落射荧光显微镜物镜不但收集来自焦平面的光线,而且还收集焦平面上下的散射光线,因此影响了光分辨率。
共聚焦成像仅检测反射自焦平面的光线部分,从而解决上述问题。
光源通过一个针孔使在焦平面上形成一个小而精细的光点,从焦平面上发射出的光线通过物镜收集,光束通过光束分离器,沿着光路返回,进入探测器,同样在进入探测器前也要通过一个针孔。
这种焦平面的几何共轭设计使来自焦平面的光点正好进入针孔会聚,而焦平面外的光束会聚于针孔板前或后,被阻挡不能通过针孔进入探测器。
探测到的就是来自焦平面的。
共聚焦显微镜的光分辨率以及Z轴上的光切厚度不但取决于光的波长,而且也决定于物镜的数值孔径和针孔的直径。
其中针孔孔径的大小与分辨率成反比。
通过精细平面光切,形成生物样品不同平面的精细图象,同时将一个连续的光切图象Z轴重叠就可形成一个三维图象。
另外,在同一平面上随时间进行连续扫描,就可分析细胞结构、内含、和标记等的动力学变化。
另外,为了适应目前生物医学研究技术的飞速发展,特别是各种荧光染料的运用,以及各种荧光蛋白家属标记的运用,多重荧光标记的生物样品观察。
现在最先进的激光共聚焦显微镜已经能够同时扫描这些多重标记的荧光标记,并加以精确的区分,同时也可以观察随时间变化,这些荧光标记由于各种生物学因素而产生的波长改变(具体见下述META技术简解),从而研究到组织和细胞内分子间的相互作用关系。
激光共聚焦显微镜的使用和应用
激光共聚焦显微镜的使用和应用激光共聚焦显微镜(Laser Scanning Confocal Microscope,简称LSM),是20世纪80年代发展起来的高级显微镜技术。
它利用激光聚焦光源、物镜光学系统和光电转换器件对样品进行扫描成像,通过探测荧光信号或反射信号来获取样品的细节信息。
激光共聚焦显微镜已经成为生命科学、材料科学和医学等领域研究的重要工具,其激光扫描成像技术具有高分辨率、三维成像、实时观察等优点,被广泛用于细胞生物学、神经生物学、免疫学、药物筛选、材料表征等研究中。
激光共聚焦显微镜的使用原理是通过扫描光学系统使激光束聚焦在待测样品上,通过荧光或反射信号来获取样品的特定区域的图像信息。
其主要包括激光光源、扫描单元、非荧光和荧光信号的收集系统、探测器和图像处理系统等四个部分。
其中,激光光源可以选择波长较窄的单频激光器,扫描单元通过一系列的反射镜和物镜实现激光束的扫描和聚焦过程,非荧光和荧光信号的收集系统则通过光学透镜和探测器将信号转换为电信号,最后通过图像处理系统将图像显示在计算机屏幕上。
激光共聚焦显微镜在细胞生物学研究中的应用非常广泛。
在细胞器标记研究中,激光共聚焦显微镜可以通过荧光标记的方式观察到蛋白质、核酸和细胞器等生物大分子在细胞中的定位和相互作用关系。
通过这种方法,科学家可以了解细胞内各种分子的准确位置和运动轨迹,为细胞的功能研究提供重要线索。
在细胞活动的实时观察中,激光共聚焦显微镜可以提供高度的时间和空间分辨率,可以连续观察活细胞内的各种生物过程,如膜翻转、循环脂质粒、蛋白质运输等。
此外,激光共聚焦显微镜还可以进行荧光共振能量转移(FRET)研究,用于观察蛋白质-蛋白质相互作用等分子相互作用过程。
在神经科学领域,激光共聚焦显微镜也得到了广泛应用。
它可以用于观察神经细胞的形态和连接关系,研究神经元发生和突触可塑性等基本问题。
同时,激光共聚焦显微镜还可以利用光遗传学技术,对神经元进行光刺激和光操作。
激光共聚焦显微镜的原理和应用讲解
激光共聚焦显微镜的原理和应用李楠王黎明杨军关键词激光; 显微镜; 原理和作用中国图书资料分类法分类号R 318. 51激光共聚焦显微镜是80年代发展起来的一项划时代意义的高科技新产品, 它是在荧光显微镜成像基础上加装了激光扫描装置, 利用计算机进行图象处理, 使用紫外或可见光激发荧光探针, 从而得到细胞或组织内部微细结构的荧光图象, 在亚细胞水平上观察诸如Ca 2+、pH 值, , 成为形态学, , , 学, 1994, 了目前世界次最高, 功能最全的美国M eridian 公司的产品:A cas 系列U lti m a 型和扫描速度最快的In sigh t 型两台激光共聚焦仪。
仪器自1995年5月份到货安装以来, 已为我院7个科室的10个课题所应用, 目前主要开展的研究内容有:(1 细胞内游离钙的实时监测; (2 细胞通讯的研究; (3 细胞形态学的研究。
1基本原理和功能1. 1基本原理传统的光学显微镜使用的是场光源, 标本上每一点的图象都会受到邻近点的衍射光或散射光的干扰; 激光共聚焦显微镜利用激光束经照明针孔形成点光源对标本内焦平面上的每一点扫描, 标本上的被照射点, 在探测针孔处成像, 由探测针孔后的光电倍增管(PM T 或冷电耦器件(cCCD 逐点或逐线接收, 迅速在计算机监视器屏幕上形成荧光图象。
照明针孔与探测针孔相对于物镜焦平面是共轭作者单位解放军总医院实验仪器中心, 北京100853的, 焦平面上的点同时聚焦于照明针孔和发射针孔, 焦平面以外的点不会在探测针孔处成像, 这样得到的共聚焦图象是标本的光学横断面, 克服了普通显微镜图象模糊的缺点。
在显微镜的载物台上加一个微量步进马达, 可使载物台上下步进移动, 最小步进距离为的0. 1Λm , 能清楚地显示, 实现了的目的, 这就是21. . CT ”功能通过狭缝扫描技术将我们对细胞的研究由多层迭加影像推进到真正的平面影像水平, 使图像更加清晰, 从而为分子细胞生物学的深入研究拓宽了视野。
激光共聚焦显微镜的使用和应用
激光共聚焦显微镜的使用和应用激光共聚焦显微镜(Laser Scanning Confocal Microscope,简称LSCM)是一种在生物医学领域应用十分广泛的高分辨率显微镜技术。
相比传统的荧光显微镜,LSCM独特的成像原理和功能使其在细胞生物学、生物医学研究以及材料科学等方面具有非常重要的应用。
LSCM使用的原理是激光扫描和共聚焦。
首先,通过激光光源发出的单色激光束照射样品,并经过镜片的调焦使得激光聚焦于单个样品点上。
样品中的物质吸收或发射荧光,在共焦点由反射镜反射回来,进入到光学检测系统中,并通过光学系统传达给光电倍增管,再由电信号转换为图像信息。
通过光学透镜逐点扫描整个样品,构建出样品的二维或三维图像。
LSCM相比传统显微镜具有以下几个优点:1.高分辨率:借助共焦技术,可以消除背景杂乱的荧光,只能检测到焦点附近的物质,因此在图像质量上表现出非常高的分辨率。
2.光学切片:可以通过调整镜片的焦距,只聚焦在感兴趣的层面上,可以在三维空间内获得细胞、组织的立体结构信息。
3.高亮度和低光毒性:由于采用单光子激发方式,LSCM提供了高亮度、低光毒性和低伤害的成像模式,可以更好地保护生物样品。
LSCM在生物医学领域的应用非常广泛:1.细胞观察与研究:LSCM可以观察到细胞的三维结构、蛋白质、DNA、RNA等生物分子标记,并通过共焦显微镜的三维成像技术,对细胞内的致病因子和细胞的活动过程进行实时观察和分析,从而揭示细胞的功能和机制。
2.分子定位和交互:通过标记荧光分子,LSCM可以实现对分子在细胞内的定位和相互作用的观察,如蛋白质的定位、互作关系等。
通过这些观测,可以更好地了解分子间的相互作用以及其在细胞功能和疾病发展中的作用。
3.组织学研究:LSCM在组织学研究中可以提供更高分辨率的图像,可以观察到组织的细胞构成、细胞外基质和多种细胞标志物等。
这对于了解组织结构与功能的关系,以及细胞增殖、细胞死亡等生理过程具有重要意义。
简述激光共聚焦显微镜的功能
简述激光共聚焦显微镜的功能
激光共聚焦显微镜(Laser Scanning Confocal Microscope,简
称LSCM)是一种高级显微镜,采用非常高的光学分辨率和敏锐度和适
用于广泛的生物物理学和生物化学应用,可以显示三维图像。
它的主要特点是可以从扫描区域收集图像信息,并将它们组合成
高质量的3D图像。
特别是在生物学领域,现在通常使用一些高度复杂
的技术来研究细胞和细胞的组织结构,而LSCM成为最常见的技术之一,并且在其他高级生命科学领域也是独一无二的。
LSCM主要包括两大工作原理:3D成像和3D测量。
首先,在3D成
像方面,通过高分辨率扫描激光束通过样本表面,并利用收集的散射
光产生图像。
这一过程产生了一个完整的3D图像,可以显示样本的清
晰细节。
其次,在3D测量方面,除了3D成像,LSCM还可以独立进行
常规显微镜的测量工作。
既可以是单一区域的测量,也可以是大区域
的测量,它们能够有效地揭示物体的几何形状和根系结构等。
此外,近年来,LSCM还被广泛用于药物研究领域,为新药评估提
供了更高质量和效益。
它在现代药物研究中扮演着重要角色,能够提
高新药的成本效益和实验准确性。
总的来说,LSCM作为一种高级、灵敏、精密的显微镜,具有广泛
应用和潜力。
未来,LSCM将不断发展和创新,为各行业提供高水平的
支持和服务。
透射式激光扫描共聚焦显微镜的改进与应用
透射式激光扫描共聚焦显微镜的改进与应用一、透射式激光扫描共聚焦显微镜概述透射式激光扫描共聚焦显微镜(Transmission Laser Scanning Confocal Microscope, TLSCM)是一种先进的显微成像技术,它利用激光作为光源,通过扫描样品并结合共聚焦技术,获取高分辨率的三维图像。
这种显微镜在生物医学、材料科学、纳米技术等领域有着广泛的应用。
TLSCM的核心优势在于其高分辨率和深度选择性,使其能够观察到样品的细微结构和动态变化。
1.1 TLSCM的基本原理TLSCM的工作原理基于激光扫描和共聚焦技术。
激光光源发射的光束经过聚焦后照射到样品上,样品的荧光或反射光被收集并通过一个共聚焦孔径,从而实现对样品的逐点扫描。
由于共聚焦孔径的深度选择性,TLSCM能够获得高分辨率的图像,并有效抑制背景噪声。
1.2 TLSCM的发展历程自20世纪80年代以来,TLSCM技术经历了不断的改进和创新。
最初的TLSCM系统主要应用于细胞生物学研究,随着技术的发展,其应用范围逐渐扩展到更广泛的领域。
现代TLSCM系统不仅在分辨率和成像速度上有了显著提升,还引入了多光子激发、荧光共振能量转移等先进技术,进一步提高了成像的灵敏度和特异性。
二、TLSCM的关键技术与改进TLSCM的性能和应用效果在很大程度上依赖于其关键技术的发展和改进。
以下是一些关键技术及其改进方向。
2.1 激光光源技术激光光源是TLSCM的核心组件之一。
随着激光技术的进步,激光光源的稳定性、功率和波长选择性得到了显著提升。
现代TLSCM系统通常采用固态激光器或光纤激光器,这些激光器具有更高的稳定性和可靠性。
此外,激光光源的波长可调性也使得TLSCM能够适应不同样品的成像需求。
2.2 扫描系统技术扫描系统是TLSCM的另一个关键技术。
传统的扫描系统采用机械扫描方式,存在扫描速度慢、精度低等问题。
现代TLSCM系统则采用电子扫描技术,通过控制激光束的偏转来实现快速、高精度的扫描。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Confocal
扫描模式:xy:观察样品不同层面的荧光强度变化 xz:观察样品沿Z轴的荧光强度变化
性能特点
二. 具有连续光学切片功能和Z向观察能力
Confocal
扫描模式决定了图像的扫描层次。基本上是扫描水平的xy切片或垂直的xz-切片。为建立样品的三维图像,需要在第三维方 向上进行连续的光学切片以产生图像垛。还可以以时间或波长为 第三维坐标进行图像扫描。
Cultured hippocampal neurons of ratFluo-3(AM)
性能特点
五. 细胞内各种离子的动态测量和分析
Confocal
Ca2+-imaging: UV-uncaging Ca-Indicator: Fluo 4, 488 nm Pancreatic acinar cells
Confocal
DM IRE2 倒直显微镜
Magnification 5x 10x 20x 40x 63x 100x Numeral aperture 0.15 0.4 0.7 1.25 1.4 1.4 Technique
IMM * OIL OIL OIL
780-900nm (DAPI、Hoechst、BFP、CFP)
性能特点
六. 多通道扫描同时获得几种颜色的重叠图像
Confocal
四色荧光标记
C. Elegans nervous system, separation of 4 fluorescent proteins: CFP, YFP, GFP, DS RED. Courtesy. Dr. Harald Hutter, MPI for Medical Research, Heidelberg
DM RBC 直立显微镜
Magnification 5x 10x 16x 50x 100x Numeral aperture 0.12 0.30 0.50 0.75 1.20-0.45 Technique Working distance(mm) 13.1 4.9 0.15 0.12 0.07
IMM * W* W
生物医学研究院干细胞研究所 (东安路130号西13号楼410)
基本情况介绍
Leica CLSM
Confocal
显微镜 激光器
基本情况介绍
Leica TCS-NT
Confocal
显微镜
Objective type PL FLUOTAR PL FLUOTAR PL FLUOTAR PL APO N PLAN
性能特点
五. 细胞内各种离子的动态测量和分析
Confocal
提供高分辨率二维图像和三维图像
Confocal
实时动态观察Ca++ 含量变化 准确测定单个细胞内不同部位的Ca++ 含量
钙敏荧光探针 激发波长 发射波长 -------------------------------------------Quin-2 339 nm 492 nm Indo-1 350 nm 485 nm Fura-2 380 nm 510 nm Fluo-3 490 nm 525 nm Calcium Green 505 nm 530 nm Calcium Orange 505 nm 530 nm
性能特比度或弱荧光信号 通过目镜可直接观察各种生物样品的弱自发荧光
性能特点
四. 观察活组织和活细胞的动态变化
Confocal
四.
性能特点
四. 观察活组织和活细胞的动态变化
Confocal
Drosophila mitosis
pre-cellularized embryo GFP-tagged histone, Tubulin: rhodamine
性能特点
八. 三维重建和三维显示
Confocal
模拟荧光处理法 (Simulated Fluorescence Press, SFP ) 焦点扩展深度法 (extended depth of focus) 双眼立体图对法 动画旋转法
性能特点
八. 三维重建和三维显示 模拟荧光处理法(SFP法)
Confocal
共聚焦激光扫描显微镜 Confocal Laser Scanning Microscopy (CLSM, Confocal) 共聚焦激光扫描显微镜在传统荧光显微镜成像 的基础上加装了激光扫描装置,利用紫外或可见激 光激发荧光探针,对生物样品进行断层扫描,结合 计算机对荧光图像进行加工处理观察细胞和组织内 部各个层面或不同侧面的形态变化。
仪器简介
Confocal
Leica CLSM (1994.5)
Leica TCS-SP2 (2004.9) Leica TCS-NT (1997.6)
医学神经生物学国家重点实验室 (医学院路138号治道楼801)
基本情况介绍
仪器简介
Confocal
Leica TCS-SP25 (2007.12)
基本情况介绍
Leica TCS-SP5
Confocal
工作原理
Confocal
Laser Pinhole
激光束经照明针孔反射至物镜, 在样品的某一焦平面形成一个点,并 进行扫描。聚焦平面内各个像素点的 荧光强度经探测针孔后由光电倍增管 收集放大,迅速形成高清晰度的荧光 图像。
♦ 照明针孔和探测针孔的共轭 ♦ 显微镜的步进马达装置
Confocal Confocal 共聚焦激光扫描显微镜技术
黄娅林 复旦大学上海医学院 医学神经生物学 国家重点实验室
Confocal
Confocal 技术基本情况介绍 Confocal 工作原理和性能特点 Confocal 样品制作和系统操作 Confocal 技术在科研中的作用
基本情况介绍
基本情况介绍
Leica TCS-SP2
Confocal
基本情况介绍
Leica TCS-SP5
显微镜
Objective type
Confocal
DMI6000 倒直显微镜
Magnification 10x 20x 20x 40x 63x Numeral aperture 0.4 0.4 0.7 1.25 1.4 Technique DRY DRY IMM * OIL OIL
* IMM=either water, glycerine or oil * W =water 激光器 Argon (488,514nm) He/Ne 543nm He/Ne 633nm
基本情况介绍
Leica TCS-NT
Confocal
基本情况介绍
Leica TCS-SP2
显微镜
Objective type HC PL FLUOTAR HC PL APO CS HC PL APO CS HCX PL APO CS HCX PL APO CS HCX PL APO CS * IMM=glycerin or oil 激光器 Argon (488,514nm) He/Ne 543nm He/Ne 633nm 双光子
性能特点
五. 细胞内各种离子的动态测量和分析
Confocal
性能特点
五. 细胞内各种离子的动态测量和分析
Confocal
Physiology Chart (Time: 10:15:21)
Channel 1
Int.
160.00
120.00
80.00
40.00
0.00 200.00 400.00 600.00 800.00 s
性能特点
八. 三维重建和三维显示 设定Z轴参数 (厚度、步距) 断层扫描
Confocal
三维软件 (数据重组)
A Series of Image of xy-section Three Dimensional Image Obj: 63.0/1.40 OIL Step: 0.40 64-section
Confocal
A Series of Image of xy-section Obj: 100/1.2NA W
性能特点
七. 荧光和透射光重叠图像观察和分析
Confocal
用于观察和分析荧光信号在形态结构上的精确定位。
性能特点
八. 三维重建和三维显示
Confocal
LSCM通过薄层光学切片功能,可获得标本真正意义上的三 维数据,经计算机图像处理及三维重建软件,产生生动逼真的 三维效果,可进行形态学观察,并揭示亚细胞结构的空间关系, 用以阐明三维结构与组织功能之间的关系。
性能特点
六. 多通道扫描同时获得几种颜色的重叠图像
Confocal
性能特点
六. 多通道扫描同时获得几种颜色的重叠图像
Confocal
Mouse cerebellar cortex. Hoechst 33258, anti-GFAP/Cy5, anti-calbindin-D28k/Cy3
基本情况介绍
Confocal
特殊结构
分辨率提高30%-40% 产生真正意义的三维图像 观察活细胞的动态变化 细胞内离子的动态测量
基本情况介绍
Confocal
系统构成
激光器 扫描装置 荧光显微镜 探测器 计算机 直立或倒置 PMT 系统控制软件 各种应用软件
图像储存和输出设备
基本情况介绍
Confocal
研究各种组织和细胞内物质之间的相互关系 共定位(Co-localization):是指两个或多 个分子(蛋白)完全处于同一空间位置上。
性能特点
六. 多通道扫描同时获得几种颜色的重叠图像
A B
Confocal
C
D
3 Channels (A, B, C) + Overlay (D)