二次函数定义教学设计
最新完整版二次函数教学设计

22.1.1二次函数一、教学设计1、知识与技能(1)理解并掌握二次函数的概念和一般形式。
(2)会判断一个函数是二次函数并会寻找二次函数的二次项系数、一次项系数、常数项。
(3)会列二次函数表达式解决实际问题。
2、过程与方法学生经历观察、思考、交流、归纳、辨析、实践运用等过程,体会函数中的常量与变量,深刻领悟二次函数意义。
3、情感态度与价值观使学生进一步体验函数是描述变量间对应关系的重要数学模型,培养学生合作交流意识和探索能力。
二、教学重点理解并掌握二次函数的概念和一般形式。
三、教学难点会列二次函数表达式解决实际问题。
四、教学方法引导法五、学习方法小组合作交流探讨得出二次函数的一般形式六、教学准备多媒体课件七、教学过程(一)复习引入1、一元二次方程的一般形式是什么?2、什么叫函数?3、什么是一次函数?正比例函数?追问:一次函数和正比例函数的图像是什么形状?生:一条直线教师用多媒体展示几张有关二次函数的图像的图片,问同学们这还是我们学过的一次函数和正比例函数的图像吗?学生很容易的回答说不是,接着教师很自然的告诉学生这将是我们本节课要学习的二次函数的图像,我们首先来学习二次函数的定义。
(引出本节课课题)(二)提出学习目标(1)理解并掌握二次函数的概念和一般形式。
(重点)(2)会判断一个函数是二次函数并会寻找二次函数的二次项系数、一次项系数、常数项。
(3)会列二次函数表达式解决实际问题。
(难点)(三)探究新知问题1 正方体六个面是全等的正方形,设正方体棱长为x,表面积为y,则y 关于x 的关系式为。
问题2n个球队参加比赛,每两个队之间进行一场比赛,比赛的场次数m与球队数n有什么关系?教师引导:每个球队n要与其他个球队各比赛一场,甲队对乙队的比赛与乙队对甲队的比赛时同一场比赛,所以比赛的场次数。
问题3某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系怎样表示?教师引导:这种产品的原产量是20件, 一年后的产量是件,再经过一年后的产量是件,即两年后的产量y=________。
22.1.1二次函数教学设计.doc

课题§22.1.1 二次函数的定义备课日期年月日课型新授1.能结合具体情景体会二次函数的意义, 理解二次函数的有关概念.知识与技能2.能够表示简单变量之间的二次函数关系.通过具体问题情境中的二次函数关系了解二次函数的一般表述式,在类比一教过程与方法次函数表达式时感受二次函数中二次项系数a≠0 的重要特征从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的学过程,进一步体验如何用数学的方法去描述变量之间的数量关系。
目情感态度把数学问题和实际问题相联系,使学生初步体会探索数学符号感的现实意与价值观义,并培养钻研精神。
标教学重点二次函数的概念和解析式教学难点会建立简单的二次函数的模型教学方法启发、引导、讲练结合教学用具多媒体、导学案课时安排 1教学内容师生活动设计意图复习旧知,加【图片欣赏,导入新课】教师提出问题,学多媒体演示生回顾旧知,两名学生口答深对函数定义【以旧引新】的理解.强调1.一元二次方程的一般形式是什么?2.什么是函数?我们学过哪些函数?k≠0 的条件,以备与二次函【自主学习合作探究】问题1:正方体的六个面是全等的正方形,如果正方形的棱数中的a 进行长为x,表面积为y,写出y 与x 的关系:问题2:n 个球队参加比赛,每两队之间进行一场比赛.比赛比较.的场次数m 与球队数n 有什么关系?通过具体事问题3:某种产品现在的年产量是20 t,计划今后两年增加三个问题学生先产量.如果每年都比上一年的产量增加 x 倍,那么两年后这种产品的产量 y 将随计划所定的 x 的值而确定,y 与 x 之间的独立思考完成 , 然 后合作交流 , 教师例,让学生列 关系怎样表示 ?1122+40x+202(2)(3)y=20xmn n (1)y=6x22思考:观察以上三个问题所写出来的三个函数关系式有什对个别 有困难 的 学生进行引导。
对于 “思考” 中提出关系式,启 发学生观察,思考,归纳出么共同特点 ?出的问题, 教师进归纳:二次函数的定义行如下 启发: 1.二次函数与一这几个 函数是 我 2+bx+c (a,b,ca 0)为常数,且 ≠ 的函数叫一般地,形如y=ax们已学 过的函 数二次函数 . 其中,x 是自变量,a,b,c 分别是函数解析式的二次次函数的联系吗? 2. 这些函数项系数、一次项系数和常数项.练习:1.下列函数表达式中, 哪些是二次函数?哪些不是?的自变量 x 的最高次数是多少? 若是二次函数,请指出各项对应项的系数.22+2x(1)y =1-3x (2)y =3x (3)y =x (x -5)+2 (4)y =3x3+2x 23. 比较三个式子, (1) 和(2)缺失了1 x(5)y =x +什么项, 你能补全 吗?4. 三个式 子2.函数 当a,y 2 ax bx c(其中 a,b, c 是常数 ), 可以统 一为什 么 形式? b,c满足什 么条 件时归纳定义, 叫一名(1) 它是二次函数 ? (2) 它是一次函数? (3) 它是正比例函 学生完成, 其他学 生进行补充数?【合作交流 展示讲解】例 1:若函数 y 2 (m 1)x2mm为二次函数,则 m 的值为学生自 主完成 巩 固练习, 教师提问理论学习完二多少?次函数的概念例2: 一个正方形的边长是12 cm,若从中挖去一个长为2xcm,宽为(x+1)cm 的小长方形,剩余部分的面积为y cm2.2.后,让学生在(1)出y 与x 之间的关系表达式,并指出y 是x 的什么实践中感悟什函数?(2)当小长方形中x 的值分别为 2 和4 时,相应的剩余部分的面积是多少?(3)当y=0 时,求自变量x 的值,并判断是否符合实际意义. 学生先自主完成,然后讨论交流. 教师在解题方法和么样的函数是二次函数,将【课堂检测】解题过程上进行引导理论知识应用基础达标:到实践操作1. 下列各式:例 2 中注意让学 生写出 自变量 的中.练习 2 题取值范围让学生进一步 2⑦y=(2x+1)( x ﹣2)﹣2x ;其中 y 是 x 的二次函数的有 体会二次函数__________(只填序号) . 1. 已知二次函数 y=1-3x+5x2,则二次项系数 a=_______,一与一次函数的次项系数 b=_______ ,常数项 c=_______.3.函数 y =(m -2)x2+mx -3(m 为常数). 联系(1)当 m__________时,该函数为二次函数; (2)当 m__________时,该函数为一次函数. 例 1 的教学目4. 在一定条件下,若物体运动的路段 s (米)与时间 t (秒)之间的关系为的是让学生进2+2t ,则当 t =4 秒时,该物体所经过的路程为s =5t ()A .28 米B .48 米C .68 米D .88 米学生自 主完成 练 习, 对本节课的知 识进行检测 . 教师巡视指导 , 帮一步巩固二次 函数的概念 .5. 已知函数 ,当 m=________时,它是二次函数.能力提升 :助有困难的学生, 集体存 在的问 题统一讲解例 2 的教学让 学生进一步学1. 二次函数 y=x ( ) 2+2x-7 的函数值是 8,那么对应的 x 的值是习表示简单变A.5B.3C.3 或-5D.-3 或 5量之间的二次2 2.已知 y 与 x成正比例,且当 x=3 时,y=﹣18,写函数关系的方出 y 与 x 之间的函数解析式,它是二次函数吗? [2+bx +3.当 x =2 时,y =3,求 这33. 已知二次函数 y =-x个二次函数解析式. 法,同时注意4. 已知,函数 y=(m+1)x23 2mm+(m-1)x(m 是常数 ).考虑自变量的①m 为何值时,它是二次函数? 取值,并巩固②m 为何值时,它是一次函数?5. 如图,在△ABC 中,∠B=90 ° ,AB=12 mm ,BC=24 mm ,函数值等知动点 P 从点 A 开始沿边 AB 向 B 以 2 mm/s 的速度移动 (不与 点 B 重合),动点 Q 从点 B 开始沿边 BC 向 C 以 4 mm/s 的速 识.度移动 (不与点 C 重合).如果 P 、Q 分别从 A 、B 同时出发,设运动的时间为 x s,四边形 APQC 的面积为 y mm 2. (1)求 y 与 x 之间的函数关系式;(2)求自变量x 的取值范围;巩固练习分层设置, 让不同层次的学生都有所获(3)四边形APQC 的面积能否等于172 mm 时间;若不能,说明理由. 2.若能,求出运动的让学生来谈本节课的收获,培养学生自我检查、自我小【小结与作业】这节课你有哪些收获?还有什么疑问吗 ?结的良好习作业: 1. 习题22.1 复习巩固第1、2 题惯,将知识进2. 完成同步训练行整理并系统安全提示:放学回家路上注意安全.化。
2024年浙教版数学九年级上册1.1《二次函数》教学设计

2024年浙教版数学九年级上册1.1《二次函数》教学设计一. 教材分析《二次函数》是2024年浙教版数学九年级上册的教学内容,本节课主要让学生掌握二次函数的定义、性质以及图象。
通过学习,学生能够理解二次函数在实际生活中的应用,提高解决问题的能力。
教材内容安排合理,由浅入深,逐步引导学生掌握二次函数的知识。
二. 学情分析九年级的学生已经具备了一定的函数知识,对一次函数和二次函数有一定的了解。
但学生在学习二次函数时,可能会觉得比较抽象,难以理解。
因此,在教学过程中,需要注重引导学生从实际问题中提炼出二次函数模型,培养学生的抽象思维能力。
三. 教学目标1.了解二次函数的定义及其一般形式;2.掌握二次函数的性质,包括开口方向、对称轴、顶点等;3.能够通过实际问题,建立二次函数模型,并解决相关问题;4.提高学生的抽象思维能力和解决问题的能力。
四. 教学重难点1.二次函数的定义及其一般形式;2.二次函数的性质,特别是开口方向、对称轴、顶点的理解;3.实际问题中二次函数模型的建立和应用。
五. 教学方法1.采用问题驱动法,引导学生从实际问题中发现二次函数的规律;2.利用数形结合法,让学生直观地理解二次函数的图象和性质;3.运用讨论法,鼓励学生积极参与,培养学生的合作意识;4.采用案例分析法,使学生能够将理论知识应用于实际问题。
六. 教学准备1.准备相关的实际问题,用于引入和巩固二次函数的知识;2.制作PPT,展示二次函数的图象和性质;3.准备一些练习题,用于让学生在课堂上练习和巩固所学知识;4.准备一些拓展问题,激发学生的思考。
七. 教学过程1.导入(5分钟)利用一个实际问题,如抛物线运动,引出二次函数的概念。
让学生观察实际问题中的数量关系,引导学生发现二次函数的规律。
2.呈现(10分钟)通过PPT展示二次函数的图象,让学生直观地了解二次函数的性质。
同时,引导学生总结二次函数的一般形式。
3.操练(10分钟)让学生根据二次函数的定义和性质,解决一些相关问题。
二次函数教案 (第一课时)

二次函数教案 (第一课时)二次函数的教学设计一、教学内容二次函数(新人教版九年级下册第26.1.1节)二、教学目标1.知识技能通过对多个实际问题的分析,让学生感受二次函数作为刻画现实世界有效模型的意义;通过观察和分析,学生归纳出二次函数的概念并能够根据函数特征识别二次函数。
2.教学思考学生能对具体情境中的数学息做出合理的解释,能用二次函数来描述和刻画现实事物间的函数关系。
3.解决问题体验数学与日常生活密切相关,让学生认识到许多问题可以用数学方法解决,体验实际问题“数学化”的过程。
4.情感态度通过观察、归纳、猜想、验证等教学活动,给学生创造成功机会,使他们爱学、乐学、学会,同时培养学生勇于探索,积极合作精神以及公平竞争的意识。
三、教学重点与难点1.教学重点认识二次函数,经历探索函数关系、归纳二次函数概念的过程。
2.教学困难根据函数解析式的结构特征,归纳出二次函数的概念。
第四,教学过程的安排教学活动流程活动1:温故知新,揭示课题活动内容和目的由回顾所学过的函数入手,引入函数大家庭中还会认识哪函数呢?然后从打篮球的例子引入二次函数。
学生能独立运用函数知识解决变量之间的关系。
2.活动:合作探究,获取新知识,制作探究环节,与学生互动,自主探索新知识,从而通过观察和归纳。
得到二次函数的解析式,获取新知。
本组题目是新知识的直接应用,目的是让学生能够区分。
活动3:小试身手,循序渐进认二次函数,循序渐进这一环节主要帮助学生处理解决问题,加深对二次函数的理解。
总结内容、应用、数学思维方法、获取知识的途径等。
活动四:回顾课堂,总结巩固方面,既总结知识,又提炼方法,让研究研究知识和运用知识都有很大的提升,方法就是学生讲收获。
活动5:课堂检测,测评反馈以测试的形式检测本节课的内容,检查学生的掌握程度,同时加深学生对知识的理解。
第五,教学过程的设计问题与情景【活动1】1.知识回顾:以问答式引起学生对知识的回忆。
2.揭示课题:以篮球为例。
二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!二次函数教学设计(精选6篇)二次函数教学设计(精选6篇)由好文档网本店铺整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二次函数教案教学设计”。
二次函数教案(全)

二次函数教案(一)教学目标:1. 理解二次函数的定义和基本性质。
2. 学会如何列写二次函数的一般形式。
3. 掌握二次函数的图像特点。
教学重点:1. 二次函数的定义和一般形式。
2. 二次函数的图像特点。
教学难点:1. 理解二次函数的图像特点。
2. 掌握如何求解二次函数的零点。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入(5分钟)1. 引入二次函数的概念,让学生回顾一次函数的知识。
2. 提问:一次函数的图像是一条直线,二次函数的图像会是什么样子呢?二、新课讲解(15分钟)1. 讲解二次函数的定义:一般形式为y=ax^2+bx+c(a≠0)。
2. 解释二次函数的各个参数的含义:a是二次项系数,b是一次项系数,c是常数项。
3. 举例说明如何列写二次函数的一般形式。
4. 讲解二次函数的图像特点:开口方向、顶点、对称轴等。
三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 讲解练习题的答案,解析解题思路。
四、课堂小结(5分钟)2. 强调二次函数的图像特点。
教学反思:本节课通过讲解和练习,让学生掌握了二次函数的定义和一般形式,以及图像特点。
在教学中,可以通过举例和互动提问的方式,激发学生的兴趣和思考。
在课堂练习环节,要注意关注学生的解题过程,培养学生的思维能力。
二次函数教案(二)教学目标:1. 学会如何求解二次方程。
2. 理解二次函数的零点与二次方程的关系。
3. 掌握二次函数的图像与x轴的交点。
教学重点:1. 求解二次方程的方法。
2. 二次函数的零点与图像的关系。
教学难点:1. 理解二次方程的解法。
2. 掌握二次函数的图像与x轴的交点。
1. 教学课件或黑板。
2. 练习题。
教学过程:一、复习导入(5分钟)1. 复习二次函数的定义和一般形式。
2. 提问:二次函数的图像与x轴的交点有什么关系?二、新课讲解(15分钟)1. 讲解如何求解二次方程:公式法、因式分解法等。
2. 解释二次函数的零点与二次方程的关系:零点是二次方程的解。
《二次函数》教学设计最新6篇

《二次函数》教学设计最新6篇作为一名无私奉献的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。
那么大家知道正规的教案是怎么写的吗?下面是书包范文为大家带来的《1.1二次函数》教学设计最新6篇,希望能够对大家的写作有一些帮助。
次函数教案篇一教学目标【知识与技能】使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质。
【过程与方法】使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力。
【情感、态度与价值观】使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质。
重点难点【重点】使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象。
【难点】用描点法画出二次函数y=ax2的图象以及探索二次函数的性质。
教学过程一、问题引入1、一次函数的图象是什么?反比例函数的图象是什么?(一次函数的图象是一条直线,反比例函数的图象是双曲线。
)2、画函数图象的一般步骤是什么?一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线)。
3、二次函数的图象是什么形状?二次函数有哪些性质?(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质。
)二、新课教授【例1】画出二次函数y=x2的图象。
解:(1)列表中自变量x可以是任意实数,列表表示几组对应值。
(2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y)。
(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示。
思考:观察二次函数y=x2的图象,思考下列问题:(1)二次函数y=x2的图象是什么形状?(2)图象是轴对称图形吗?如果是,它的对称轴是什么?(3)图象有最低点吗?如果有,最低点的坐标是什么?师生活动:教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题。
《二次函数》教案8篇(二次函数应用教案设计)

《二次函数》教案8篇(二次函数应用教案设计)下面是整理的《二次函数》教案8篇(二次函数应用教案设计),欢迎参阅。
《二次函数》教案1教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。
重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。
教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。
活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。
(3)求方程x2-x-6=0的解。
(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。
(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。
三、例题分析例1.不画图象,判断下列函数与x轴交点情况。
(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。
(完整版)二次函数教学设计

(完整版)二次函数教学设计引言本教学设计旨在帮助学生理解和掌握二次函数的基本概念、性质和应用。
通过合理的教学安排和活动设计,希望能够提高学生的研究兴趣和参与度,使他们在研究二次函数的过程中获得良好的研究成果。
教学目标- 掌握二次函数的基本定义和表示形式- 理解二次函数的图像特征和性质- 学会求解二次函数的零点和顶点- 掌握二次函数的应用,如最值问题和解析几何问题教学内容和安排第一课时:二次函数的基本定义和表示形式(40分钟)- 引导学生回顾线性函数的概念和特征- 介绍二次函数的定义和一般形式:$y=ax^2+bx+c$- 解释二次函数的系数对图像的影响,包括平移、压缩和翻转等- 通过示例和练让学生熟练掌握二次函数的表示形式和图像第二课时:二次函数的图像特征和性质(40分钟)- 分析二次函数图像的对称轴、顶点和开口方向- 解释顶点与最值的关系以及对称轴的作用- 引导学生观察和推断二次函数图像的性质- 通过练巩固学生对二次函数图像的理解第三课时:二次函数的零点和顶点(40分钟)- 教授求解二次函数零点的方法和步骤- 解释零点的概念和意义,以及与方程解的关系- 引导学生利用顶点公式求解二次函数的顶点- 通过练让学生掌握求解二次函数零点和顶点的技巧第四课时:二次函数的应用(40分钟)- 介绍二次函数在最值问题中的应用场景,如求解最大或最小值- 解释应用问题的转化为二次函数模型的方法- 引导学生通过实际问题求解二次函数的最值问题- 关注解析几何问题,如求解抛物线和直线的交点等教学评估- 针对每个课时的教学目标设计对应的练和作业- 借助课堂讨论和互动,了解学生的研究进展和掌握程度- 对学生进行小测验和考试,评估他们对二次函数知识的掌握情况教学资源- 二次函数教材- 课堂展示工具,如投影仪和白板- 练册和作业本- 计算器和图形绘制工具结语本教学设计通过合理的教学安排和活动设计,能够帮助学生全面了解二次函数的基本概念、性质和应用。
九年级数学二次函数教案(优秀9篇)

九年级数学二次函数教案(优秀9篇)二次函数教学教案参考篇一教学目标(一)教学知识点1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
(二)能力训练要求1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。
2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。
3.通过学生共同观察和讨论,培养大家的合作交流意识。
(三)情感与价值观要求1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
2.具有初步的创新精神和实践能力。
教学重点1.体会方程与函数之间的联系。
2.理解何时方程有两个不等的实根,两个相等的实数和没有实根。
3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
教学难点1.探索方程与函数之间的联系的过程。
2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
教学方法讨论探索法。
教具准备投影片二张第一张:(记作§2.8.1A)第二张:(记作§2.8.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系。
当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。
现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。
初中数学二次函数教案(5篇)

初中数学二次函数教案(5篇)学校数学二次函数教案篇1一、说课内容:人教版九班级数学下册的二次函数的概念及相关习题二、教材分析:1、教材的地位和作用这节课是在同学已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。
二次函数是学校阶段讨论的最终一个详细的函数,也是最重要的,在历年来的中考题中占有较大比例。
同时,二次函数和以前学过的一元二次方程、一元二次不等式有着亲密的联系。
进一步学习二次函数将为它们的解法供应新的方法和途径,并使同学更为深刻的理解数形结合的重要思想。
而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。
所以这节课在整个教材中具有承上启下的重要作用。
2、教学目标和要求:(1)学问与技能:使同学理解二次函数的概念,把握依据实际问题列出二次函数关系式的方法,并了解如何依据实际问题确定自变量的取值范围。
(2)过程与方法:复习旧知,通过实际问题的引入,经受二次函数概念的探究过程,提高同学解决问题的力量.(3)情感、态度与价值观:通过观看、操作、沟通归纳等数学活动加深对二次函数概念的理解,进展同学的数学思维,增加学好数学的愿望与信念.3、教学重点:对二次函数概念的理解。
4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。
三、教法学法设计:1、从创设情境入手,通过学问再现,孕伏教学过程2、从同学活动动身,通过以旧引新,顺势教学过程3、利用探究、讨论手段,通过思维深化,领悟教学过程四、教学过程:(一)复习提问1.什么叫函数?我们之前学过了那些函数?(一次函数,正比例函数,反比例函数)2.它们的形式是怎样的?(y=kx+b,ky=kx ,ky= , k0)3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k0的条件? k值对函数性质有什么影响?【设计意图】复习这些问题是为了关心同学弄清自变量、函数、常量等概念,加深对函数定义的理解.强调k0的条件,以备与二次函数中的a进行比较.(二)引入新课函数是讨论两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。
最新-二次函数数学教案(优秀11篇)二次函数教案

二次函数数学教案(优秀11篇) 二次函数教案作为一名无私奉献的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。
那么大家知道正规的教案是怎么写的吗?它山之石可以攻玉,本页是爱岗敬业的小编小月月给大家整理的二次函数数学教案【优秀11篇】,希望对大家有所帮助。
《1.1二次函数》教学设计篇一【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式。
2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围。
【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系。
【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识。
【教学重点】二次函数的概念。
【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程。
一、情境导入,初步认识1.教材p2“动脑筋”中的两个问题:矩形植物园的面积s(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是s=-2x2+100x,(0x50);电脑价格y(元)与平均降价率x的关系式是y=6000x2-1+6000,(0x1).它们有什么共同点?一般形式是y=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数。
2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有。
二、思考探究,获取新知二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项。
注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出。
《1.1二次函数》教学设计篇二二次函数的教学设计马玉宝教学内容:人教版九年义务教育初中第三册第108页教学目标:1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。
二次函数教学设计(精选9篇)

二次函数教学设计(精选9篇)《二次函数》数学教案篇一教学目标:会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。
重点难点:重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。
难点:会运用二次函数知识解决有关综合问题。
教学过程:一、例题精析,强化练习,剖析知识点用待定系数法确定二次函数解析式.例:根据下列条件,求出二次函数的解析式。
(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。
(2)抛物线顶点P(-1,-8),且过点A(0,-6)。
(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。
(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y 轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。
学生活动:学生小组讨论,题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。
教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c(a≠0)(2)顶点式:y=a(x-h)2+k(a≠0)(3)两根式:y=a(x-x1)(x-x2)(a≠0)当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。
当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。
当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。
(1)若m为定值,求此二次函数的解析式;(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。
二、知识点串联,综合应用例:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交次函数教案篇二教学目标熟练地掌握二次函数的最值及其求法。
初中数学《二次函数》课程教学设计以及思维导图

初中数学《二次函数》课程教学设计以及思维导图一、教学设计1. 教学目标- 理解二次函数的定义及性质;- 掌握二次函数的图像特征和基本变换;- 能够求解二次函数的零点和最值;- 运用二次函数解决实际问题。
2. 教学内容- 二次函数的定义及性质;- 二次函数的图像特征和基本变换;- 二次函数的零点和最值;- 二次函数在实际问题中的应用。
3. 教学方法- 组织讲解:通过讲解二次函数的定义和性质,介绍二次函数的图像特征和基本变换;- 案例分析:通过具体案例分析,引导学生探索二次函数的零点和最值的求解方法;- 实际应用:引导学生运用二次函数解决实际问题,提高他们的数学建模能力。
4. 教学步骤第一步:导入- 通过引入一个与学生生活相关的问题,激发学生对二次函数的兴趣和思考,如:小明从家里出发骑自行车去学校,他的行程可以用二次函数表示吗?第二步:讲解- 介绍二次函数的定义和性质,包括二次函数的标准形式、顶点形式和描点法;- 解释二次函数的图像特征,包括开口方向、顶点坐标和对称轴;- 讲解二次函数的基本变换,包括平移、伸缩和翻转。
第三步:案例分析- 通过具体案例分析,引导学生探索二次函数的零点和最值的求解方法,包括利用图像、代数方法和函数性质等;- 给学生一些练习题,让他们独立思考和解决问题。
第四步:实际应用- 引导学生运用二次函数解决一些实际问题,如:抛物线的应用、物体的抛射运动等;- 鼓励学生分组合作,进行数学建模和实际问题求解。
第五步:总结与拓展- 对本节课所学内容进行总结,强调关键概念和解题方法;- 提供一些拓展性问题,让学生进一步思考和探索。
5. 教学评价- 通过学生课堂表现、小组讨论、个人作业等方式进行评价;- 评估学生对二次函数定义及性质的理解程度;- 评估学生对二次函数图像特征和基本变换的掌握程度;- 评估学生对二次函数零点和最值求解方法的应用能力;- 评估学生在实际问题中运用二次函数解决问题的数学建模能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十二章二次函数
22.1.1《二次函数》教学设计
一、教材分析:
《二次函数》是义务教育课程标准试验教科书《数学》(人教版)九年级上册第二十二章,这章是在学生学习了正比例函数与一次函数,对于函数已经有所认识,从一次函数和反比例函数的学习大家已经知道学习函数大致包括以下内容:1.通过具体的事例认识这种函数;2.探索这种函数的图像和性质;3.利用这种函数解决实际问题;4.探索这种函数与相应方程等的关系。
本章“二次函数”的学习也是从以上几个方面展开。
首先让学生认识二次函数,掌握二次函数的图像和性质,然后让学生探索二次函数与一元二次方程的关系,从而得出用二次函数的图像求一元二次方程的方法。
最后让学生运用二次函数的图像和性质解决一些实际问题。
二、学情分析:
学生对函数的相关知识已经很陌生,第一课时应对上学段学的一次函数和正比例函数的知识做一个回顾,让学生重温学习函数应该从以下四个内容入手:认识函数;研究图像及其性质;利用函数解决实际问题;函数与相应方程的关系。
再通过分析实际问题,以及用关系式表示这一关系的过程,引出二次函数的概念,获得用二次函数表示变量之间关系的体验。
然后根据这种体验能够表示简单变量之间的二次函数关系,并能利用尝试求值的方法解决实际问题。
三、教学目标:
㈠知识技能:
1.探索并归纳二次函数的定义;2.能够表示简单变量之间的二次函数关系。
㈡过程方法:
1.感悟新旧知识间的关系,让学生更深刻地体会数学中的类比思想方法;
2.经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系;
3.能够利用尝试求值的方法解决实际问题,进一步体会数学与生活的联系,增强用数学意识。
㈢情感态度:
1.把数学问题和实际问题相联系,从学生感兴趣的问题入手,能使学生积极参与数学学习活动,对数学有好奇心和求知欲;
2.使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用;
3.通过学生之间互相交流合作,让学生学会与人合作,并能与他人交流思
维的过程,培养大家的合作意识。
四、教学重点、难点:
㈠教学重点:
1.经历探索和表示二次函数关系的过程,获得二次函数的定义。
2.能够表示简单变量之间的二次函数关系。
㈡教学难点:
经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验。
五、教学方法:教师引导——自主探究——合作交流。
六、教具、学具:教学课件
七、教学媒体:计算机、实物投影。
八、教学过程:
九、板书设计:
十、教学反思:
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上。
二次函数第一课时,教材中安排的内容不多,但学生对函数的知识已经生疏,接受起来不会很顺利。
由此,我的设计是从温故知新开始,通过温故知新,引出课题、创设情境、探究新知、例题学习、内化新知、练习反馈、巩固新知等几个数学活动,引导学生用类比的思想,用已有的知识经验归纳总结出新知、内化新知、巩固应用新知的。
活动中也注意了学生的知识与实际问题的联系,使学生充分体会数学源于生活又服务于生活。