线性代数发展史

合集下载

线性代数发展史

线性代数发展史

线性代数发展史由于研究关联着多个因素的量所引起的问题,则需要考察多元函数。

如果所研究的关联性是线性的,那么称这个问题为线性问题。

历史上线性代数的第一个问题是关于解线性方程组的问题,而线性方程组理论的发展又促成了作为工具的矩阵论和行列式理论的创立与发展,这些内容已成为我们线性代数教材的主要部分。

最初的线性方程组问题大都是来源于生活实践,正是实际问题刺激了线性代数这一学科的诞生与发展。

另外,近现代数学分析与几何学等数学分支的要求也促使了线性代数的进一步发展。

行列式行列式出现于线性方程组的求解,它最早是一种速记的表达式,现在已经是数学中一种非常有用的工具。

行列式是由莱布尼茨和日本数学家关孝和发明的。

1693 年4 月,莱布尼茨在写给洛比达的一封信中使用并给出了行列式,并给出方程组的系数行列式为零的条件。

同时代的日本数学家关孝和在其著作《解伏题元法》中也提出了行列式的概念与算法。

1750 年,瑞士数学家克莱姆(G.Cramer,1704-1752) 在其著作《线性代数分析导引》中,对行列式的定义和展开法则给出了比较完整、明确的阐述,并给出了现在我们所称的解线性方程组的克莱姆法则。

稍后,数学家贝祖(E.Bezout,1730-1783) 将确定行列式每一项符号的方法进行了系统化,利用系数行列式概念指出了如何判断一个齐次线性方程组有非零解。

总之,在很长一段时间内,行列式只是作为解线性方程组的一种工具使用,并没有人意识到它可以独立于线性方程组之外,单独形成一门理论加以研究。

在行列式的发展史上,第一个对行列式理论做出连贯的逻辑的阐述,即把行列式理论与线性方程组求解相分离的人,是法国数学家范德蒙(A-T.Vandermonde,1735-1796) 。

范德蒙自幼在父亲的知道下学习音乐,但对数学有浓厚的兴趣,后来终于成为法兰西科学院院士。

特别地,他给出了用二阶子式和它们的余子式来展开行列式的法则。

就对行列式本身这一点来说,他是这门理论的奠基人。

线性代数的历史

线性代数的历史

线性代数的历史译自Israel Kleiner《A History of Abstract Algebra》线性代数是一个非常有用的学科,它的基本概念产生并被应用在数学和它的应用的各个不同领域,因此这门学科植根于诸如数论(初等数论和代数数论)、几何学、抽象代数(群,环,域和伽罗瓦(Galois)理论)、分析学(微分方程,积分方程和泛函分析)和物理学这些如此丰富多彩的领域就毫不奇怪了。

线性代数的基本概念是线性方程组、矩阵、行列式、线性变换、线性无关、维数、双线性型、二次型和向量空间。

由于这些概念之间是密切关联的,所以有些概念通常会出现在同一段内容中(例如线性方程组和矩阵),从而使得我们往往不能将它们分离开来。

到1880年为止,已经得到许多线性代数的基本结果,但它们还不属于某个一般性的理论。

特别要指出的是,那时还尚未提出向量空间这个构建这种理论的基本观念。

这个观念仅在1888年由皮亚诺(Peano)提出过。

即使如此,它那时也被大大地忽视了(如同格拉斯曼(Grassmann)更早前的开创性工作),直到20世纪早期作为一个完整理论的基本要素这个观念才再次起飞。

因此线性代数这个学科的历史发展顺序与它的逻辑顺序正好相反。

我们将按照下面的顺序来描述线性代数的基本演变史:线性方程组;行列式;矩阵和线性变换;线性无关,基和维数;向量空间。

在这个过程中,我们将评述上面提到的某些其他概念。

5.1线性方程组大约4000年前,巴比伦人就知道如何解两个二元一次线性方程组成的线性方程组(2*2的线性方程组)。

在著名的《九章算术》(大约公元前200年,Nine Chapters of the Mathematical Art)中,中国人解出了3*3的线性方程组,解法中只使用了线性方程组的(数值)系数。

这些做法是矩阵方法的原型,但和高斯(Gauss)以及其他人2000年后提出的“消元法”并不相同。

见[20]。

对线性方程组的现代研究可以说肇始自莱布尼兹(Leibniz),为了研究线性方程组他于1693年提出了行列式的观念。

线性代数的历史里程碑

线性代数的历史里程碑

线性代数的历史里程碑线性代数是数学的一个重要分支,它研究了线性方程组、向量空间和线性映射等基本概念,具有广泛的应用。

本文将重点回顾线性代数的历史里程碑,介绍了几个具有重大意义的事件和突破。

1. 古希腊时期:线性方程组的发展古希腊数学家克拉美(Cramer)在18世纪提出了Cramer's Rule,他通过研究线性方程组的解,发现了一种可以推导出方程组解的方法。

这一重要的发现为线性方程组的求解提供了理论基础,并为线性代数的发展奠定了坚实的基础。

2. 17世纪:高斯消元法的提出高斯是线性代数史上的一个重要人物,他在17世纪提出了高斯消元法。

通过对线性方程组进行行变换,高斯消元法能够将方程组化为简化的行阶梯形式,从而更容易求解。

高斯消元法的出现使得线性方程组的解法更加简单和直观,极大地推动了线性代数的发展。

3. 19世纪:向量空间的提出向量空间是线性代数中一个重要的概念,它由德国数学家Grassmann在19世纪首次提出。

Grassmann通过对向量的研究,发现了一种新的数学结构,将多维空间中的向量和运算规则进行了抽象和概括。

向量空间的出现使得线性代数的研究更加具有一般性和抽象性,为后来的理论建立提供了坚实的基础。

4. 20世纪:矩阵理论的兴起20世纪是线性代数发展的关键时期,矩阵理论作为线性代数的一个重要分支逐渐兴起。

矩阵是线性代数中的一种特殊形式,通过研究矩阵的性质和运算规则,人们可以更加方便地应用线性代数的方法解决实际问题。

矩阵理论的兴起为线性代数的应用提供了强大的工具和方法,极大地拓展了线性代数的领域。

5. 当代:高维线性代数的研究随着科技的发展和实际问题的复杂性增加,线性代数的研究也不断深入。

人们开始关注高维线性代数,并研究了在高维空间中线性方程组、向量空间和线性映射等的性质和应用。

高维线性代数的研究推动了数学理论的发展,同时也为计算机图形学、数据分析和人工智能等领域提供了重要的数学基础。

行列式发展历史

行列式发展历史

行列式发展历史行列式是线性代数中一个重要的概念,它在数学和工程领域具有广泛的应用。

本文将介绍行列式的发展历史,包括其起源、发展和重要里程碑。

起源行列式最早可以追溯到18世纪的欧洲数学家克莱姆(Cramer)。

他在1750年左右首次提出了行列式的概念,但当时行列式的定义还不完善,只是作为解线性方程组的一种方法。

发展随着数学的发展,行列式逐渐被人们重视,并成为线性代数的重要内容之一。

19世纪初,法国数学家拉普拉斯(Laplace)对行列式进行了深入研究,并提出了行列式的定义和性质。

他的研究成果为后来的数学家提供了重要的理论基础。

在拉普拉斯的基础上,德国数学家高斯(Gauss)进一步发展了行列式的理论。

他提出了行列式的消元法则和行列式展开定理,为解线性方程组和矩阵运算提供了重要的工具。

高斯的研究成果对行列式的发展起到了里程碑的作用。

重要里程碑20世纪初,行列式的研究进一步深化。

瑞士数学家狄利克雷(Dirichlet)和德国数学家克罗内克(Kronecker)分别提出了行列式的性质和应用。

狄利克雷证明了行列式的交换律和结合律,为行列式的运算提供了更加严谨的理论基础。

克罗内克则将行列式与线性方程组的解联系起来,提出了克罗内克定理,为线性代数的发展做出了重要贡献。

此外,20世纪的数学家们对行列式的研究也取得了一系列重要的成果。

例如,俄罗斯数学家勒贝格(Lieb)和英国数学家艾利斯(Alexander)证明了行列式的正定性,为矩阵理论和数学物理学的发展提供了重要的支持。

美国数学家斯特拉斯(Strauss)则将行列式应用于微分方程的研究,提出了行列式的微分方程理论。

总结行列式作为线性代数的重要内容,经历了数百年的发展。

从最初的解线性方程组的工具,到逐渐完善的定义和性质,再到与矩阵运算、微分方程等领域的深入结合,行列式的研究不断取得新的突破。

数学家们的努力和贡献使得行列式成为了解决实际问题的重要工具,对数学和工程领域的发展起到了重要的推动作用。

数学史话线性代数发展史简介

数学史话线性代数发展史简介

数学史话线性代数发展史简介数学史话—线性代数发展史简介一门科学的历史是那门科学中最宝贵的一部分,因为科学只能给我们知识,而历史却能给我们智慧。

傅鹰数学的历史是重要的,它是文明史的有价值的组成部分,人类的进步和科学思想是一致的。

F. Cajori从事数学研究,发现新的定理和技巧是一回事;而以一种能使其他人也能掌握的方式来阐述这些定理和技巧则又是一回事。

学习那些伟大的数学家们的思想,使今天的学生能够看到某些论题在过去是怎样被处理的。

V. Z.卡兹数学不仅是一种方法、一门艺术或一种语言,数学更主要的是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时是影响政治家和神学家的学说。

M(Kline一、了解数学史的重要意义数学是人类文明的一个重要组成部分,是一项非常重要的人类活动。

与其他文化一样,数学科学是几千年来人类智慧的结晶。

在学习数学时,我们基本是通过学习教材来认识这门学科的。

教材是将历史上的数学材料按照一定的逻辑结构和学习要求加以重组、取舍编撰而成,因此,数学教材往往舍去了许多数学概念和方法形成的实际背景、演化历程以及导致其演化的各种因素。

由于数学发展的实际情况与教材的编写体系有着许多不同,所以,对数学教材的学习,往往难以了解数学的全貌和数学思想产生的过程。

正因为如此,许多人往往把数学当成了枯燥的符号、无源的死水,学了很多却理解得很少。

数学和任何一门科学一样,有着自身发展的丰富历史,是积累性的科学。

数学的发展历史展示了人类追求理想和美好生活的力量,历史上数学家的成果、业绩和品德无不闪耀着人类思想的光辉,照亮着人类社会发展和进步的历程。

通过了解一些数学史,可以使我们了解数学科学发生、发展的规律,通过追溯数学概念、思想和方法的演变和发展过程,探究数学科学发展的规律和文化内涵,帮助我们认识数学科学与人类社会发展的互动关系以及数学概念和方法的重要意义。

二、代数学的历史发展情况数学发展到今天,已经成为科学世界中拥有一百多个主要分支学科的庞大的“共和国”。

线性代数发展简史

线性代数发展简史

华北水利水电学院线性代数发展简史课程名称:线性代数专业班级:2012084成员组成:201208420联系方式:************2013年11月6日摘要:线性代数是高等代数的一大分支。

我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。

在线性代数中最重要的内容就是行列式和矩阵。

关键词:行列式,矩阵,,,,正文:线性代数的发展简史引言代数学可以笼统地解释为关于字母运算的学科。

在中学所学的初等代数中,字母仅用来表示数。

初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。

沿着这两个方向继续发展,代数学在讨论任意多个未知数的一次方程组,也叫线性方程组的同时,还研究次数更高的一元方程及多元方程组。

发展到这个阶段,就叫做高等代数。

线性代数是高等代数的一大分支,是研究如何求解线性方程组而发展起来的。

线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧氏空间和二次型等。

在线性代数中,字母的含义也推广了,不仅用来表示数,也可以表示行列式、矩阵、向量等代数量。

笼统地说,线性代数是研究具有线性关系的代数量的一门学科。

线性代数不仅在内容上,更重要的是在观点和方法上比初等代数有很大提高。

在线性代数中最重要的内容就是行列式和矩阵。

虽然表面上看,行列式和矩阵不过是一种语言或速记,但从数学史上来看,优良的数学符号和生动的概念是数学思想产生的动力和钥匙。

行列式出现于线性方程组的求解。

行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683 年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。

欧洲第一个提出行列式概念的是德国的数学家、微积分学奠基人之一莱布尼兹(Leibnitz)。

1750 年克莱姆(Cramer)在他的《线性代数分析导言》中发表了求解线性方程组的重要基本公式(即人们熟悉的Cramer 克莱姆法则)。

线性代数发展史

线性代数发展史

线性代数发展简介幻灯片制作: 张小向东南大学数学系版本: 2008.1行列式出现于线性方程组的求解最早是一种速记的表达式现已是数学中一种非常有用的工具发明人:德国数学家莱布尼茨日本数学家关孝和行列式1750 年,瑞士数学家克莱姆《线性代数分析导引》行列式的定义和展开法则,克莱姆法则稍后,法国数学家贝祖将确定行列式每一项符号的方法进行了系统化,利用系数行列式概念指出了如何判断一个齐次线性方程组有非零解行列式法国数学家范德蒙(Alexandre-Théophile Vandermonde, 1735.2.28-1796.1.1)对行列式理论做出连贯的逻辑的阐述把行列式理论与线性方程组求解相分离给出了用余子式来展开行列式的法则自幼在父亲的指导下学习音乐但对数学有浓厚的兴趣后来终于成为法兰西科学院院士行列式1772 年,法国数学家拉普拉斯证明了范德蒙提出的一些规则推广了范德蒙展开行列式的方法1815 年,法国数学家柯西第一个系统的几乎是近代的处理乘法定理, 方阵, 双足标记法改进了拉普拉斯的行列式展开定理并给出了一个证明行列式19 世纪,英国数学家西尔维斯特活泼、敏感、兴奋、热情,甚至容易激动他(犹太人)受到剑桥大学的不平等对待改进了从一个n次和一个m次的多项式中消去x的方法(他称之为配析法)并给出形成的行列式为零时这两个多项式方程有公共根充分必要条件这一结果(但没有给出证明)行列式德国数学家雅可比继柯西之后,在行列式理论方面最多产引进了函数行列式(雅可比行列式)指出函数行列式在多重积分的变量替换中的作用,给出了函数行列式的导数公式雅可比的著名论文《论行列式的形成和性质》标志着行列式系统理论的建成行列式由于行列式在数学分析、几何学、线性方程组理论、二次型理论等多方面的应用,促使行列式理论自身在19 世纪也得到了很大发展。

整个19 世纪都有行列式的新结果。

除了一般行列式的大量定理之外,还有许多有关特殊行列式的其他定理都相继得到。

线性代数发展史

线性代数发展史

线性代数发展史
线性代数的发展可以追溯到古希腊时期,当时古希腊数学家们就开始研究线性方程组的解法,其中最著名的是欧几里得算法,由他提出了解决线性方程组的有效方法。

随后,17世纪,法国数学家雅克·德·拉斐尔(Jacques de Laplace)发现了矩阵的性质,他发现矩阵可以用来描述线性方程组的解法,并且提出了特征值和特征向量的概念,从而开辟了线性代数的新天地。

19世纪,英国数学家詹姆斯·威尔逊(James Williamson)发现了矩阵的可逆性,他发现可以使用矩阵来求解线性方程组,而不需要使用欧几里得算法。

20世纪,美国数学家艾伦·克莱因(Alan Cayley)提出了矩阵的乘法,他发现可以使用矩阵乘法来求解线性方程组,从而使线性代数变得更加强大。

现在,线性代数已经成为数学的一个重要分支,它在许多领域都有着重要的应用,比如机器学习、统计学、计算机科学等等,都离不开线性代数的支持。

线性代数

线性代数

线性代数一、线性代数的形成和发展历史在代数学发展的第二个时期,即在19世纪时,线性代数就获得了光辉的成就。

线性代数内容广泛,而行列式、矩阵、线性方程组等只是线性代数的初等部分,线性代数还有更深入的内容,如线性空间、欧式空间、酉空间、线性变换和线性函数、 -矩阵、矩阵的特征值等等以及与其相关联的一系列理论。

有材料说,在代数学的所有分支中,线性代数的这些理论按其应用的重要性和广泛性来说,是第一位的,很难指出数学、理论力学、理论物理等学科中有不用到线性代数的结果和方法的。

例如,线性代数对于泛函分析的发展就有着决定性的影响。

下面着重对线性代数的初等部分的形成和发展简述如下:1.行列式最早引入行列式概念的,是十七世纪的日本的数学奠基人关孝和。

他1383年著《解优题之法》一书,对行列式及其展已经有了清楚的叙述。

但是在公元一世纪(东汉初年)。

中国古算术《九章算术》中已有用矩阵(当时称为“方程”)的初等变换来解线性方程组的内容了。

关孝和的思想的产生,大概多受惠于中国而非西方的影响。

1693年,莱不尼兹用指标数的子统集合表示含两个未知量和三个线性方程组所组成的系统,他从三个方程的系数中消去两个未知量,得到一个行列式,就是现在所称的方程组的法式。

用行列式去解含二、三、四个未知量的方程组,可能在1729年由马克劳林所首创,且于1748年发表在他的遗作《代数绝著》中,其法则基本就是现在所使用的法则。

瑞士数学家克莱姆(Cramer)于1750年把马克劳林的法则发表在他的《线性代数分析导言》中,这就是现在所谓的克莱姆法则。

1772年,范德蒙(Vander monde)把行列式脱离开线性方程组作为一个独立的理论研究。

给出行列式的定义与确立符号的法则,被认为是行列式理论的奠基人。

1812年,柯西(Cauchy)首先采取“行列式”(Determinant)这一名称。

他还于1815年把行列式的元素记为a ij,带双重足码。

他的著作给出行列式第一个系统的也几乎是近代的处理,其中一个主要结果之一是行列式的乘法规则。

数学研究性学习数学发展史

数学研究性学习数学发展史

03
欧洲数学家在代数方面的重要贡献包括符号代数的发展和代数的公理化。
04
欧洲数学家在几何学方面的重要贡献包括射影几何和解析几何的发展,以及对微积分学的研究和应用。
03
近代数学的发展
CHAPTER
解析几何是数学的一个重要分支,它通过代数方法研究几何对象,将几何问题转化为代数问题,从而实现了几何与代数的结合。
数学发展史
目录
CONTENTS
数学的起源 中世纪数学的发展 近代数学的发展 现代数学的发展 数学的应用领域
01
数学的起源
CHAPTER
数学的起源
01
数学起源于人类早期的生产和生活实践,如计数、测量、几何等。
02
最早的数学概念可以追溯到公元前5000年左右的古埃及和巴比伦文明。
数学的发展经历了从简单计数到复杂运算的演变,逐渐形成了完整的数学体系。
域论的研究
域论是研究域的代数性质的数学分支,包括有限域、伽罗瓦域等。域论在编码理论、量子力学等领域有广泛的应用。
群论的建立
拓扑学的发展
拓扑学的定义和基本概念
拓扑学是研究几何图形在连续变形下保持不变的性质的数学分支。拓扑学的基本概念包括连通性、紧致性、同胚等。
代数拓扑的研究
代数拓扑是拓扑学的一个重要分支,主要通过代数工具来研究几何图形的性质。代数拓扑在微分流形、纤维丛等领域有广泛的应用。
古代建筑中广泛应用了几何学和算术,如金字塔、古罗马建筑等。
古代商业中应用了计数和算术,如记账、计算利息等。
03
02
01
数学在古代的应用
02
中世纪数学的发展
CHAPTER
阿拉伯数学是中世纪数学的重要组成部分,其发展主要集中在阿拉伯帝国的各个时期。

线性代数发展简史

线性代数发展简史

线性代数发展简史代数学可以笼统地解释为关于字母运算的学科。

在中学所学的初等代数中,字母仅用来表示数。

初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。

沿着这两个方向继续发展,代数学在讨论任意多个未知数的一次方程组,也叫线性方程组的同时,还研究次数更高的一元方程及多元方程组。

发展到这个阶段,就叫做高等代数。

线性代数是高等代数的一大分支,是研究如何求解线性方程组而发展起来的。

线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧氏空间和二次型等。

在线性代数中,字母的含义也推广了,它不仅用来表示数,也可以表示行列式、矩阵、向量等代数量。

笼统地说,线性代数是研究具有线性关系的代数量的一门学科。

线性代数不仅在内容上,更重要的是在观点和方法上比初等代数有很大提高。

行列式出现于线性方程组的求解。

行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。

欧洲第一个提出行列式概念的是德国的数学家、微积分学奠基人之一莱布尼兹(Leibnitz)。

1750年克莱姆(Cramer)在他的《线性代数分析导言》中发表了求解线性方程组的重要基本公式(即人们熟悉的Cramer 克莱姆法则)。

1764年,法国数学家贝佐特(Bezout)把确定行列式每一项的符号的.相对而言,最早利用矩阵概念的是拉格朗日(Lagrange)在1700年后的双线性型工作中体现的。

拉格朗日期望了解多元函数的最大、最小值问题,其方法就是人们知道的拉格朗日乘数法。

为了判定多元函数的最大、最小值,他首先需要一阶偏导数为0,另外还要有二阶偏导数矩阵的条件。

这个条件就是今天所谓的正、负定二次型及正、负定矩阵的定义。

尽管拉格朗日没有明确地提出利用矩阵。

线性代数发展史

线性代数发展史

线性代数发展史由于研究关联着多个因素的量所引起的问题,则需要考察多元函数。

如果所研究的关联性是线性的,那么称这个问题为线性问题。

历史上线性代数的第一个问题是关于解线性方程组的问题,而线性方程组理论的发展又促成了作为工具的矩阵论和行列式理论的创立与发展,这些内容已成为我们线性代数教材的主要部分。

最初的线性方程组问题大都是来源于生活实践,正是实际问题刺激了线性代数这一学科的诞生与发展。

另外,近现代数学分析与几何学等数学分支的要求也促使了线性代数的进一步发展。

行列式行列式出现于线性方程组的求解,它最早是一种速记的表达式,现在已经是数学中一种非常有用的工具。

行列式是由和日本数学家发明的。

1693 年4 月,莱布尼茨在写给洛比达的一封信中使用并给出了行列式,并给出方程组的系数行列式为零的条件。

同时代的日本数学家关孝和在其著作《解伏题元法》中也提出了行列式的概念与算法。

1750 年,瑞士数学家(G.Cramer,1704-1752) 在其著作《线性代数分析导引》中,对行列式的定义和展开法则给出了比较完整、明确的阐述,并给出了现在我们所称的解线性方程组的克莱姆法则。

稍后,数学家贝祖(E.Bezout,1730-1783) 将确定行列式每一项符号的方法进行了系统化,利用系数行列式概念指出了如何判断一个齐次线性方程组有非零解。

总之,在很长一段时间内,行列式只是作为解线性方程组的一种工具使用,并没有人意识到它可以独立于线性方程组之外,单独形成一门理论加以研究。

在行列式的发展史上,第一个对行列式理论做出连贯的逻辑的阐述,即把行列式理论与线性方程组求解相分离的人,是法国数学家范德蒙(A-T.Vandermonde,1735-1796) 。

范德蒙自幼在父亲的知道下学习音乐,但对数学有浓厚的兴趣,后来终于成为法兰西科学院院士。

特别地,他给出了用二阶子式和它们的余子式来展开行列式的法则。

就对行列式本身这一点来说,他是这门理论的奠基人。

近世代数发展简史

近世代数发展简史

近世代数发展简史引言概述:近世代数是数学中一个重要的分支,它的发展可以追溯到16世纪。

近世代数的发展不仅对数学本身产生了深远的影响,也在其他科学领域中发挥了重要作用。

本文将介绍近世代数的发展历程,分为五个部分,分别是:1. 代数基础的奠定;2. 方程论的发展;3. 群论的兴起;4. 环论的发展;5. 近世代数的应用。

一、代数基础的奠定:1.1 古希腊代数的起源:古希腊数学家毕达哥拉斯和欧几里得等人奠定了代数的基础,提出了平方数和立方数的概念,并研究了它们的性质。

1.2 文艺复兴时期的代数发展:文艺复兴时期,数学家卡尔丹诺和维埃塔等人开始研究代数方程,并提出了求解一元二次方程的方法。

1.3 笛卡尔的坐标系:17世纪,笛卡尔引入了坐标系的概念,将代数问题转化为几何问题,为代数的发展开辟了新的道路。

二、方程论的发展:2.1 代数方程的分类:18世纪,数学家拉格朗日将代数方程分为代数方程和超越方程,并研究了它们的性质和解法。

2.2 高次方程的解法:19世纪初,数学家阿贝尔和伽罗瓦等人独立地证明了五次及以上的代数方程无法用根式解出,这一结果被称为“阿贝尔-伽罗瓦定理”。

2.3 线性代数的发展:19世纪,数学家凯莱和哈密尔顿等人提出了线性代数的概念,研究了线性方程组和线性变换等内容。

三、群论的兴起:3.1 群的定义与性质:19世纪,数学家狄利克雷和凯莱等人提出了群的定义,并研究了群的性质,如封闭性、结合律和逆元等。

3.2 群论的应用:群论不仅在代数中有广泛应用,还在物理学、化学和密码学等领域中发挥了重要作用。

3.3 群论的扩展:20世纪,数学家冯·诺伊曼和埃米·诺特等人进一步发展了群论,提出了正规子群、商群和群同态等概念。

四、环论的发展:4.1 环的定义与性质:20世纪初,数学家费罗和诺特等人提出了环的定义,并研究了环的性质,如加法和乘法的封闭性、结合律和分配律等。

4.2 环论的应用:环论在代数几何、代数编码和数论等领域中有广泛应用,为解决实际问题提供了有力的工具。

线性代数历史背景及应用

线性代数历史背景及应用

线性代数历史背景及应用线性代数是一门研究向量空间和线性映射的数学学科。

它具有悠久的历史背景和广泛的应用。

本文将从历史背景和应用两个方面介绍线性代数。

首先,我们来看线性代数的历史背景。

线性代数的起源可以追溯到古希腊的数学家欧几里得。

他在《几何原本》中首次提出了向量概念。

然而,线性代数的真正发展始于18世纪至19世纪的欧洲。

在这一时期,数学家们开始研究向量空间,提出了线性代数的基本概念和理论基础。

著名的数学家伽罗瓦、高斯、爱尔米特等人对线性代数的发展做出了巨大贡献。

以高斯为例,他在矩阵理论的发展史上占有重要地位,他定义了矩阵的概念,并进行了深入的研究。

随着近代数学的发展,矩阵理论和线性代数的应用在物理学、工程学、计算机科学等领域中变得越来越重要。

接下来,我们将探讨线性代数的应用。

线性代数在各种实际问题中具有广泛的应用。

首先,在物理学中,线性代数被广泛用于描述物理系统和求解物理问题。

例如,量子力学中的波函数可以用复数向量表示,量子态的演化可以通过线性变换描述,而且量子测量可以通过矩阵的特征值问题来求解。

其次,在工程学中,线性代数的应用也非常重要。

例如,电力系统的分析和控制、通信系统的信号处理和编码、电路分析中的基尔霍夫定律、机械系统中的力学分析等都需要运用线性代数的知识。

另外,在图像处理和计算机图形学中,线性代数被广泛应用于图像压缩、三维图形的表示和变换等方面。

此外,在经济学和金融学中,线性代数的应用也非常重要。

例如,经济学家经常使用线性模型来描述经济关系,并通过线性代数的方法进行模型的参数估计和假设检验。

在金融学中,线性代数被用于股票价格走势的预测、投资组合的优化、风险管理等方面的研究。

最后,在计算机科学中,线性代数的应用非常广泛。

例如,线性代数在计算机图形学中被广泛用于动画、游戏和计算机模拟等方面。

同时,在机器学习和数据挖掘领域中,线性代数被用于数据的降维、特征选择、分类和聚类等任务中。

综上所述,线性代数作为一门重要的数学学科,具有悠久的历史背景和广泛的应用。

行列式发展历史

行列式发展历史

行列式发展历史行列式是线性代数中的重要概念,它在数学和工程领域中有着广泛的应用。

本文将介绍行列式的发展历史,从最早的发现开始,逐步展示了行列式的演变和应用。

1. 古希腊时期在古希腊时期,数学家们开始研究线性方程组的解法。

然而,由于缺乏有效的符号表示方法,他们无法解决复杂的方程组。

这导致了对行列式概念的出现。

古希腊数学家们发现了一种称为“三角形数”或“三角形阵”的特殊矩阵,这种矩阵具有一些特殊的性质,后来被称为行列式。

2. 欧洲中世纪在欧洲中世纪,数学的发展相对较慢。

然而,一些数学家开始研究行列式的性质,并在代数方程的解法中应用行列式。

这些数学家中最著名的是法国数学家拉普拉斯,他在18世纪末提出了行列式的定义和性质,并将其应用于线性方程组的解法。

3. 行列式的性质和应用行列式的性质在19世纪得到了更深入的研究和发展。

数学家们发现了行列式的一些重要性质,例如行列式的行列互换、行列式的线性性质等。

这些性质使得行列式成为解决线性方程组、计算矩阵的逆和求解特征值等问题的有力工具。

4. 行列式的计算方法随着数学的发展,人们提出了多种行列式的计算方法。

最常用的方法是展开定理,它允许我们将一个n阶行列式展开为n个n-1阶行列式的和。

此外,还有利用矩阵的性质进行计算的方法,例如高斯消元法和克拉默法则等。

5. 行列式的应用领域行列式在数学和工程领域中有着广泛的应用。

在数学领域,行列式被用于解决线性方程组、计算矩阵的逆和求解特征值等问题。

在工程领域,行列式被用于计算刚体的转动惯量、求解电路方程和图像处理等。

6. 行列式的发展趋势随着计算机技术的进步,行列式的计算变得更加高效和精确。

现代数学家们正在研究更复杂的行列式结构和更高阶的行列式计算方法。

行列式的发展趋势将继续向着更广泛的领域拓展,为数学和工程领域的发展做出更大的贡献。

总结:行列式作为线性代数中的重要概念,经历了漫长的发展历程。

从古希腊时期的发现到现代的应用,行列式在数学和工程领域中发挥着重要作用。

行列式发展历史

行列式发展历史

行列式发展历史行列式是线性代数中的一个重要概念,它在数学和科学领域中有着广泛的应用。

本文将详细介绍行列式的发展历史,从最早的发现到现代应用。

1. 古希腊时期行列式的起源可以追溯到古希腊时期。

古希腊数学家欧几里得在其著作《几何原本》中首次提到了类似于行列式的概念。

他研究了二阶和三阶行列式,并给出了一些性质和计算方法。

2. 17世纪17世纪,数学家克莱姆(Cramer)在其著作《行列式论》中系统地研究了行列式的性质和计算方法。

他提出了克莱姆法则,用于解线性方程组,这是行列式在代数方程中的首次应用。

3. 18世纪18世纪,欧拉(Euler)对行列式进行了深入研究,并提出了行列式的定义和性质。

他发现了行列式的行列互换性质和行列式的乘法规则,为行列式的理论奠定了基础。

4. 19世纪19世纪,高斯(Gauss)对行列式的理论进行了进一步的发展。

他提出了行列式的消元法和行列式的性质,为行列式的计算提供了更加简便的方法。

高斯还将行列式的概念应用于线性代数和矩阵理论中,为后续的研究提供了重要的基础。

5. 20世纪20世纪,行列式在数学和科学领域中得到了广泛的应用。

行列式的概念被应用于线性方程组的求解、矩阵的特征值和特征向量的计算、线性变换的研究等方面。

行列式的理论也得到了进一步的发展和完善。

6. 现代应用行列式在现代科学和工程领域中有着广泛的应用。

在物理学中,行列式被用于描述量子力学中的波函数和态矢量。

在计算机图形学中,行列式被用于计算几何变换和图像处理。

在经济学和金融学中,行列式被用于分析市场和预测趋势。

行列式的应用还涉及到统计学、生物学、电子工程等领域。

总结:行列式的发展历史可以追溯到古希腊时期,经过欧几里得、克莱姆、欧拉、高斯等数学家的研究和发展,行列式的理论得到了完善和应用。

行列式在数学和科学领域中有着广泛的应用,包括线性方程组的求解、矩阵的特征值和特征向量的计算、量子力学中的波函数描述、计算机图形学中的几何变换等。

代数发展史

代数发展史

代数发展史一门科学的历史是那门科学中最宝贵的一部分,因为科学只能给我们知识,而历史却能给我们智慧。

数学的历史是重要的,它是文明史的有价值的组成部分,人类的进步和科学思想是一致的。

数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的‚共和国‛。

大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的部分,属于分析学的范围。

这三大类数学构成了整个数学的本体与核心。

在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。

在此简要介绍代数学的有关历史发展情况。

‚代数‛(algebra)一词最初来源于公元9世纪阿拉伯数学家、天文学家阿尔·花拉子米(al-Khowārizmī,约780-850)一本著作的名称,书名的阿拉伯文是‘ilm al-jabr wa’l muqabalah,直译应为《还原与对消的科学》.al-jabr 意为‚还原‛,这里指把负项移到方程另一端‚还原‛为正项;muqabalah 意即‚对消‛或‚化简‛,指方程两端可以消去相同的项或合并同类项.在翻译中把‚a l-jabr‛译为拉丁文‚aljebra‛,拉丁文‚aljebra‛一词后来被许多国家采用,英文译作‚algebra‛。

阿布·贾法尔·穆罕默德·伊本·穆萨·阿尔—花拉子米的传记材料,很少流传下来.一般认为他生于花拉子模[Khwarizm,位于阿姆河下游,今乌兹别克境内的希瓦城(Хива)附近],故以花拉子米为姓.另一说他生于巴格达附近的库特鲁伯利(Qut-rubbullī).祖先是花拉子模人.花拉子米是拜火教徒的后裔,早年在家乡接受初等教育,后到中亚细亚古城默夫(Мерв)继续深造,并到过阿富汗、印度等地游学,不久成为远近闻名的科学家.东部地区的总督马蒙(al-Ma’mūn,公元786—833年)曾在默夫召见过花拉子米.公元813年,马蒙成为阿拔斯王朝的哈利发后,聘请花拉子米到首都巴格达工作.公元830年,马蒙在巴格达创办了著名的‚智慧馆‛(Bayt al-Hikmah,是自公元前3世纪亚历山大博物馆之后最重要的学术机关),花拉子米是智慧馆学术工作的主要领导人之一.马蒙去世后,花拉子米在后继的哈利发统治下仍留在巴格达工作,直至去世.花拉子米生活和工作的时期,是阿拉伯帝国的政治局势日渐安定、经济发展、文化生活繁荣昌盛的时期.花拉子米科学研究的范围十分广泛,包括数学、天文学、历史学和地理学等领域.他撰写了许多重要的科学著作.在数学方面,花拉子米编著了两部传世之作:《代数学》和《印度的计算术》. 1859年,我国数学家李善兰首次把‚algebra‛译成‚代数‛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数发展史
一行列式
行列式的出现已有300余年,1683年日本数学家关孝和在<解伏题之法)中首先引人此概念。

1693年,莱布尼兹(G.W.工ezbniz)著作中亦有行列式叙述,世人们仍认为此概念在西方源于数学家柯西(A.L CaMchy)
1750年,克莱姆(G cramer)出版的(线性代数分析导言>一书中已给出行列式的今日形式。

1841年,雅谷比(c.G JaMM在(论行列式形成与性质)一书中对行列式及其性质、计算作了较系统的阐述
此后.范德蒙(A.T vandeMondl)、裴蜀(E.Be肋Mt)、拉普拉斯(P.s M de I品PLace)等人在行列式研究中也作了许多工作,
但行列式在当今线性代数中似已被淡化,原因是:首先它的大多数功能已被矩阵运算取代,而矩阵(代数)理论与计算已相当成熟;再者是电子计算机的出现与飞速发展,已省去人们许多机械而繁琐的计算.然而行列式也有其自身的魅力:技巧性强、形式漂亮,因而它在历年考研中不断出现.
行列式的主要应用是:求矩阵(或向量组)的秩;解线性方程组;求矩阵特征多项式等行列式与矩阵有着密不可分的连带关系,尽管它们本质上不是一回事(短阵是数表,而行列式是数).
二矩阵代数
矩阵一词系1850年英国数学家薛尔维斯特(J—J sylves贮r)首先倡用,它原指组成行列式的数字阵列。

矩阵的性质研究是在行列式理论研究中逐渐发展的.
凯莱(A cayley)于1858年定义了矩阵的某些运算,发表<矩阵论研究报告>,因而他成了矩阵论的创始人。

德国数学家弗罗伯尼(F.G.Fmbenius)于1879年引进矩阵秩的概念,且做了较丰富的工作(发表在(克雷尔杂志>上)
尔后矩阵作为一种独立的数学分支迅速发展起来.
20世纪40年代,为响应电子计算机出现而诞生厂短阵数值分析,1947年冯·纽曼(Ven Neumann)等人提出分析误差的条件数,1948年图灵(A.Turing)给出厂矩阵的Lu分解,矩阵的另一种分解QR分解的实际应用在上世纪50年代末得以实现.这一切使矩阵计算得以迅猛发展。

如今,矩阵已成为一种重要的数学工具,它的理论和方法在数学和其他科技领域(如数值分析、优化理论、微分方程、概率统计、运筹学、控制论、系统工程、数量经济等)都有广泛应用,甚至经济管理、社会科学等方而亦然。

三向量
向量概念是由复数概念扩张而来。

1843年哈密顿(w.R Hsmil仍n)的“四元数”概念引入的同时,引入了向量概念,从而开创它的计算与理论研究
1844年,德国数学家格拉斯(G.H.Grassmann)发表<线性扩张论>,提出“n维超复数”概念.即n元有序数组,相当于今天的向量概念.此外他还定义了超复数的运算,且将Euclid几何的许多概念拓广至高维空间.
向量空间的现代定义是内皮亚诺(G Peano)于1888年引入的。

不久,以函数乃至线性变换为元素的抽象向量空间随之建立,即1906午法国数学家费雷歇(M.Frechet)开创了抽象空间研究*包括无穷维向量空间(如今空间维数概念已拓至分数,产生“分形”这门新的数学分枝)
四线性方程组
我国古算书<九章算术>中已有“方程”概念,对于线性方程组,书中给出如何用“算筹”去演解(今人称筹算),而书中方程组系数排列成的数阵,实际上相当于今天的矩阵,而其中的算法相当于今天的矩阵运算。

宋、元时期的数学家秦九韶于1247年完成的<数书九章>,已给出相当于今天的对增广短阵实施初等变换解方程组的方法
莱布尼兹(G W.Leibniz)于1693年曾用行列式法解二元线性方程组;麦克劳林(C Maclaurin)创立了解三、四元线性方程组的方法.
1750年,瑞士数学家克莱姆(C.Cramer)建方了解线性方程组的“克莱姆(Crsmer)法则”
1820年前后,高斯(c F Gauss)给出解线性方程组的消元法(它常作为大地测量学发展的一部分).
如今矩阵理论已成为解线性方程组的有力工具.
五矩阵的特征问题
柯西(A L Cauchy)在1826年,研究二次型在直角坐标变换下的形变问题时,首先使用了特征方程概念即│A-λI│=0,且证明了其不变性.1892年他从二次型束入手研究了特征方程的一般问题,1851年给出了│ A +λB │的初等因子、不变因子概念,且证明了—些有关结论。

1852年,希尔维斯特(J J Sylvester)给出n元二次型化成标准型的“惯性定律”
1870午,约当(M E c Jordan)证明了n阶复阵可通化相似变换化成约当标准形的结论尔后,弗罗伯尼(F.G.Fmbenius)引进了矩阵的最小多项式(由特征多项式因子形成的满足矩阵化零的次数最低的多项式)概念,此外还证明凯莱一哈密顿(Cayley—Hamilton)定理.
六二次型
如上章所述,二次型理论与行列式(确切地讲与矩阵)密切相关,人们对它的研究是从其系数矩阵的特征问题人手的,而这一问题系柯西(A.L Cauchy)首先系统提出的.1852年,希尔维斯持(J J Sylvester)利用短阵特征理论证明了二次型的惯性定律,此后,维尔斯持拉斯(K.weirstrass)完成了二次型的一般理论(他利用了J J Sylvester的某些成果) 尔后,人们又找到了它们的几何应用.
由此可看出,:二次齐次多项式(二次型)的研究与矩阵研究对应起来。

相关文档
最新文档