相交线同步练习题(教育材料)

合集下载

人教版七年级数学下册《5.1相交线》同步练习(含答案)

人教版七年级数学下册《5.1相交线》同步练习(含答案)

人教版七年级数学下册第五章订交线与平行线5.1 订交线同步练习一、单项选择题(共10 题;共 30 分)1.以以下列图,∠ 1 和∠ 2 是对顶角的图形有 ( )A. 1 个B. 个2C.个3D. 个42.如图,以下说法不正确的选项是()A. ∠1 和∠ 2 是同旁内角B.∠ 1 和∠ 3 是对顶角C.∠ 3 和∠ 4 是同位角D.∠ 1 和∠ 4 是内错角3.以以下列图,∠ 1 和∠ 2 是对顶角的是()A. B. C. D.4.以下说法中正确的个数为()① 两条直线订交成四个角,若是有两个角相等,那么这两条直线垂直;② 两条直线订交成四个角,若是有一个角是直角,那么这两条直线垂直;③ 一条直线的垂线能够画无数条;④ 在同一平面内,经过一个已知点能画一条且只能画一条直线和已知直线垂直.5.如图,∠ 1=15 °,∠ AOC=90°,点 B, O,D 在同素来线上,则∠ 2 的度数为()A.75 °B.15 °C.105 °D.165 °6.以以下列图,以下说法错误的选项是()A. ∠A 和∠ B 是同旁内角B. ∠A 和∠ 3 是内错角C. ∠ 1 和∠ 3 是内错角D. ∠ C 和∠ 3 是同位角17.如图,三条直线订交于点O.若 CO⊥ AB,∠ 1=56 °,则∠ 2 等于()A.30 °B. 34C. 45 °D. 56 °°8. 在以下语句中,正确的选项是().A. 在平面上,一条直线只有一条垂线;B. 过直线上一点的直线只有一条;C. 过直线上一点且垂直于这条直线的直线有且只有一条;D. 垂线段就是点到直线的距离9. 如图,以下 6 种说法:① ∠1与∠4 是内错角;② ∠ 1 与∠ 2 是同位角;③ ∠2 与∠ 4 是内错角;④ ∠4 与∠ 5 是同旁内角;⑤ ∠2 与∠ 4 是同位角;⑥ ∠2 与∠ 5 是内错角.其中正确的有( )A. 1 个B. 个2C.个3D. 个410.以以下列图, OA⊥ OC, OB⊥ OD,下面结论中,其中说法正确的选项是()① ∠AOB=∠ COD;② ∠ AOB+∠ COD= 90°;③ ∠BOC+∠ AOD=180 °;④ ∠ AOC-∠ COD=∠ BOC.A. ①②③B. ①②④C. ①③④D. ②③④二、填空题(共10 题;共 30 分)11.如图,直线AB, CD 订交于点O, EO⊥ AB,垂足为点O,若∠ AOD=132°,则∠ EOC=________12.如图,已知直线AB 与 CD 订交于点O, OA 均分∠ COE,若∠ DOE=70°,则∠ BOD=________.13.如图,∠ 1 和∠ 2 是 ________角,∠ 2 和∠ 3 是 ________角。

(2021年整理)相交线练习题及答案

(2021年整理)相交线练习题及答案

(完整)相交线练习题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)相交线练习题及答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)相交线练习题及答案的全部内容。

5.1 相交线练习一选择题:1.下列说法正确的是( ).A.在同一平面内,过已知直线外一点作这条直线的垂线有且只有一条。

B.连结直线外一点和直线上任一点,使这条线段垂直于已知直线。

C 。

作出点P 到直线的距离D.连结直线外一点和直线上任一点的线段长是点到直线的距离. 2.已知OA ⊥OC ,∠AOB :∠AOC=2:3,则∠BOC 的度数是( )。

A.30° B 。

150°C.30°或者说50°D.以上答案都不对3。

如果∠1与∠2互为补角,且∠1>∠2,那么∠2的余角是( ). A 。

21(∠1+∠2) B 。

21∠1C 。

21(∠1–∠2) D.21∠24。

两条相交直线与另外一条直线在同一平面内,它们的交点个数是( )。

A 。

1 B.2C 。

3或2 D.1或2或35。

下列语句正确的是( )。

A.相等的角为对顶角B.不相等的角一定不是对顶角C.不是对顶角的角都不相等D.有公共顶点且和为180°的两角填空题:6.经过直线外或直线上一点,有且只有_______________直线与已知直线垂直.7。

从直线外一点到这条直线的_______________叫做这点到直线的距离.8.直线外一点与直线上各点连结的线段中,以_______________为最短.9。

如图,直线AB,CD相交于O,OE平分∠AOD,FO⊥OD于O,∠1=40°,则∠2=_______________,∠4=_______________。

(精校版)人教版七年级下册第五章相交线与平行线5.1相交线同步练习题含答案

(精校版)人教版七年级下册第五章相交线与平行线5.1相交线同步练习题含答案

(直打版)人教版七年级下册第五章相交线与平行线5.1相交线同步练习题含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)人教版七年级下册第五章相交线与平行线5.1相交线同步练习题含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)人教版七年级下册第五章相交线与平行线5.1相交线同步练习题含答案(word版可编辑修改)的全部内容。

初一数学人教版七年级下册第五章 相交线与平行线5.1 相交线同步练习题1. 下列说法中正确的是( )A.不相等的角一定不是对顶角B.互补的两个角是邻补角C.互补且有一条公共边的两个角是邻补角D.两条直线相交所成的角是对顶角2. 下列说法正确的是( )A.在同一平面内,过直线外一点向该直线画垂线,垂足一定在该直线上B.在同一平面内,过线段或射线外一点向该线段或射线画垂线,垂足一定在该线段或射线上C.过线段或射线外一点不一定能画出该线段或射线的垂线D.过直线外一点与直线上一点画的一条直线与该直线垂直3. 已知∠α和∠β的对顶角,若∠α=60°,则∠β的度数为( )A.30° B.60° C.70° D.150°4。

如图,直线AB,CD相交于点O,因为∠1+∠3=180°,∠2+∠3=180°,所以∠1=∠2,其推理依据是( )A.同角的余角相等 B.对顶角相等C.同角的补角相等 D.等角的补角相等5. 如图,OB⊥CD于点O,∠1=∠2,则∠2与∠3的关系是( )A.∠2=∠3 B.∠2与∠3互补C.∠2与∠3互余 D.不能确定6。

2020-2021学年人教版数学 七年级下册 5.1 相交线 垂线段 同步练习

2020-2021学年人教版数学 七年级下册  5.1 相交线  垂线段 同步练习

5.1 相交线垂线段基础训练知识点1 垂线段的定义1.下列说法正确的是()A.垂线段就是垂直于已知直线的线段B.垂线段就是垂直于已知直线并且与已知直线相交的线段C.垂线段是一条竖起来的线段D.过直线外一点向该直线作垂线,这一点到垂足之间的线段叫垂线段2.如图,下列说法不正确的是()A.点B到AC的垂线段是线段ABB.点C到AB的垂线段是线段ACC.线段AC是点A到BC的垂线段D.线段BD是点B到AD的垂线段知识点2 垂线段的性质3.如图,计划在河边建一水厂,过C点作CD⊥AB于D点.在D点建水厂,可使水厂到村庄C的路程最短,这样设计的依据是__________.4.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B. B点C.C点D.D点5.如图,已知AC⊥BC,CD⊥AB,垂足分别是C,D,那么以下线段大小的比较必定成立的是()A.CD>ADB.AC<BCC.BC>BDD.CD<BD6.如图,AD⊥BD,BC⊥CD,AB=6 cm,BC=4 cm,则BD的长度的取值范围是()A.大于4 cmB.小于6 cmC.大于4 cm或小于6 cmD.大于4 cm且小于6 cm7.如图,在三角形ABC中,∠C=90°,AC=3,点P可以在直线BC上自由移动,则AP的长不可能是()A.2.5B.3C.4D.5知识点3 点到直线的距离8.如图所示的是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段的长度.9.下列图形中,线段PQ的长表示点P到直线MN的距离的是()10.如图,其长能表示点到直线(线段)的距离的线段的条数是()A.3B.4C.5D.611.如图,三角形ABC是锐角三角形,过点C作CD⊥AB,垂足为D,则点C到直线AB的距离是()A.线段CA的长B.线段CD的长C.线段AD的长D.线段AB的长12.点到直线的距离是指()A.直线外一点到这条直线的垂线的长度B.直线外一点到这条直线上的任意一点的距离C.直线外一点到这条直线的垂线段D.直线外一点到这条直线的垂线段的长度13.如图,AB⊥AC,AD⊥BC,如果AB=4 cm,AC=3 cm,AD=2.4 cm,那么点C到直线AB的距离为()A.3 cmB.4 cmC.2.4 cmD.无法确定易错点对垂线段的性质理解不透彻而致错14.点P为直线m外一点,点A,B,C为直线m上三点,PA=4 cm,PB=5 cm,PC=2 cm,则点P到直线m的距离()A.等于4 cmB.等于2 cmC.小于2 cmD.不大于2 cm提升训练考查角度1 利用点到直线的距离的定义进行识别15.如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有()A.2条B.3条C.4条D.5条考查角度2 利用作垂线法作图16.如图,已知钝角三角形ABC中,∠BAC为钝角.(1)画出点C到AB的垂线段;(2)过点A画BC的垂线;(3)画出点B到AC的垂线段,并量出其长度.考查角度3 利用垂线段的性质比较大小17.如图,直线AB,CD相交于点O,P是CD上一点.(1)过点P画AB的垂线段PE;(2)过点P画CD的垂线,与AB相交于F点;(3)说明线段PE,PO,FO三者的大小关系,其依据是什么?考查角度4 利用垂线段的性质解实际应用题18.如图,一辆汽车在直线形的公路AB上由A向B行驶,M,N分别是位于公路AB两侧的村庄,设汽车行驶到点P位置时,离村庄M最近,行驶到点Q位置时,离村庄N最近,请你在AB上分别画出P,Q两点的位置.探究培优拔尖角度1 利用垂线段的性质进行方案设计(建模思想)19.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H的位置,使它到四个村庄的距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短?并说明根据.拔尖角度2 利用垂线段的性质解决绝对值问题(数形结合思想)20.在如图所示的直角三角形ABC中,斜边为BC,两直角边分别为AB,AC,设BC=a,AC=b,AB=c.(1)试用所学知识说明斜边BC是最长的边;(2)试化简|a-b|+|c-a|+|b+c-a|.参考答案1.【答案】D2.【答案】C3.【答案】垂线段最短4.【答案】A5.【答案】C6.【答案】D解:根据“垂线段最短”可知BC<BD<AB,所以BD大于4 cm且小于6 cm.7.【答案】A8.【答案】BN或AM9.【答案】A解:对于选项A,PQ⊥MN,Q是垂足,故线段PQ的长为点P到直线MN 的距离.10.【答案】C解:线段AB的长度可表示点B到AC的距离,线段CA的长度可表示点C到AB的距离,线段AD的长度可表示点A到BC的距离,线段CD 的长度可表示点C到AD的距离,线段BD的长度可表示点B到AD的距离,所以共有5条.11.【答案】B12.【答案】D13.【答案】A解:因为AB⊥AC,所以点C到直线AB的距离是线段AC的长度,即3 cm.14.错解:B诊断:点到直线的距离是指这个点到直线的垂线段的长度.虽然垂线段最短,但是并没有说明PC是垂线段,所以垂线段的长度可能小于2 cm,也可能等于2 cm.正解:D15.【答案】D16.解:如图:(1)CD即为所求;(2)直线AE即为所求;(3)BF即为所求.长度略.17.解:(1)如图所示.(2)如图所示.(3)PE<PO<FO,其依据是垂线段最短.18.解:如图所示.19.解:(1)如图,连接AD,BC,交于点H,则H点为蓄水池的位置,它到四个村庄的距离之和最小.(2)如图,过点H作HG⊥EF,垂足为G,则沿HG开渠最短.根据:连接直线外一点与直线上各点的所有线段中,垂线段最短.分析:本题考查了垂线段的性质在实际生活中的运用.体现了建模思想的运用.20.解:(1)因为点C与直线AB上点A,B的连线中,CA是垂线段,所以AC<BC.因为点B与直线AC上点A,C的连线中,AB是垂线段,所以AB<BC.故AB,AC,BC中,斜边BC最长.(2)因为BC>AC,AB<BC,AC+AB>BC,所以原式=a-b-(c-a)+b+c-a=a.。

相交线相关试题及答案

相交线相关试题及答案

相交线相关试题及答案一、选择题1. 下列关于相交线的说法中,正确的是()。

A. 相交线一定有且只有一个交点B. 相交线可以是两条直线或一条直线和一条曲线C. 两条直线相交,其交点只有一个D. 两条直线相交,其交点可以有无数个答案:C2. 在同一平面内,两条直线的位置关系是()。

A. 平行或相交B. 垂直或相交C. 垂直或平行D. 重合或相交答案:A二、填空题3. 两条直线相交所成的四个角中,有2个对角相等且都为90°时,这两条直线互相______。

答案:垂直4. 在平面直角坐标系中,若两条直线的斜率都存在,且它们的斜率互为相反数,则这两条直线的关系是______。

答案:垂直三、解答题5. 如图所示,直线l₁和l₂相交于点O,∠AOB=90°,∠BOC=45°,求∠AOC的度数。

解:由于∠AOB和∠BOC是直线l₁和l₂相交所形成的邻补角,根据题意,∠AOB=90°,∠BOC=45°。

因此,∠AOC = ∠AOB + ∠BOC = 90° + 45° = 135°。

6. 已知直线l₁:y = 2x - 1与直线l₂:y = -3x + 2相交于点P,求点P的坐标。

解:要求出点P的坐标,我们需要解这个方程组:\begin{cases}y = 2x - 1 \\y = -3x + 2\end{cases}将第二个方程的y代入第一个方程,得到:-3x + 2 = 2x - 1解得:x = 1将x的值代入任意一个方程求y,例如代入第二个方程:y = -3(1) + 2 = -1因此,点P的坐标为(1, -1)。

四、证明题7. 已知平面内两条直线l₁和l₂相交,且∠AOB和∠BOC是直线l₁和l₂相交所形成的邻补角,若∠AOB = 60°,求证:∠BOC = 120°。

证明:根据邻补角的定义,两个角的和为180°。

5.1.1 相交线(解析版)

5.1.1 相交线(解析版)

5.1.1 相交线七年级【下】人教版同步练习一、单选题1.在下面四个图形中,1∠与2∠是对顶角的是( ).A .B .C .D .【答案】B解:A 、∠1与∠2不是对顶角,故此选项不符合题意;B 、∠1与∠2是对顶角,故此选项符合题意;C 、∠1与∠2不是对顶角,故此选项不符合题意;D 、∠1与∠2不是对顶角,故此选项不符合题意;故选择:B .2.下面四个图形中,1∠与2∠是邻补角的是( )A .B .C .D .【答案】C【详解】选项A 、D 中1∠与2∠不互补,不是邻补角,故A 、D 均错误;选项B 中1∠与2∠没有公共顶点,且不相邻,不是邻补角,故B 错误;选项C 中1∠与2∠互补且相邻,是邻补角,故C 正确,故选:C .3.如图,直线AB 与CD 相交于点O ,若13AOC AOD ∠=∠,则BOD ∠的度数为( )A .30B .45︒C .60︒D .135︒【答案】B 解:13AOC AOD ∠=∠,3AOD AOC ∴∠=∠,又180AOC AOD ∠+=︒,3180AOC AOC ∴∠+∠=︒,解得45AOC ∠=︒,45BOD AOC ∴∠=∠=︒(对顶角相等).故选:B .4.下列说法中,正确的是A .相等的角是对顶角B .有公共点并且相等的角是对顶角C .如果1∠和2∠是对顶角,那么12∠=∠D .两条直线相交所成的角是对顶角【答案】CA 、对顶角是有公共顶点,且两边互为反向延长线,相等只是其性质,错误;B 、对顶角应该是有公共顶点,且两边互为反向延长线,错误;C 、角的两边互为反向延长线的两个角是对顶角,符合对顶角的定义,正确.D 、两条直线相交所成的角有对顶角、邻补角,错误;故选C .5.如图,直线AB 、CD 交于点O ,OE 平分BOC ∠,若136∠=︒,则DOE ∠等于()A .72︒B .90︒C .108︒D .144︒ 【答案】C解:136∠=︒,COB 144∠∴=︒,BOD 36∠=︒, OE 平分BOC ∠,1EOB COB 722∠∠∴==︒, EOD 7236108∠∴=︒+︒=︒,故选C .6.1∠的对顶角是2,2∠∠的邻补角是3∠,若350︒∠=,则1∠的度数是( )A .40︒B .50︒C .130︒D .50︒或130︒【答案】C 解:∵∠2的邻补角是∠3,∠3=50°,∴∠2=180°-∠3=130°.∵∠1的对顶角是∠2,∴∠1=∠2=130°.故选C .7.如图,直线AB 与CD 相交于点O ,OE 为DOB ∠的角平分线,若54AOC ∠=︒,则DOE ∠的度数为( )A .25︒B .26︒C .27︒D .28︒【答案】C 解:∵54AOC ∠=︒,∴∠BOD=54°,∵OE 为DOB ∠的角平分线,∴DOE ∠=27°.故选C .8.如图,直线AC 和直线BD 相交于点,O 若1280,∠+∠=︒则BOC ∠的度数是( )A .100B .120C .130D .140 【答案】D解:1212801240∠=∠∠+∠=︒∴∠=∠=︒,,∴1801140BOC ∠=︒-∠=︒故选D .9.如图,直线AB ,CD 相交于点O ,已知∠AOC =80°,∠BOE :∠EOD =3:2,则∠AOE 的度数是( )A .100°B .116°C .120°D .132°【答案】D解:∵∠AOC =80°,∴∠DOB =80°,∠AOD =100°,∵∠BOE :∠EOD =3:2,∴∠DOE =80°×25=32°, ∴∠AOE =100°+32°=132°,故选:D .10.如图,两条直线AB ,CD 交于点O ,射线OM 是∠AOC 的平分线,若∠BOD =80°,则∠COM 的大小为( )A .70°B .60°C .50°D .40°【答案】D 解:∴∴BOD =∴AOC (对顶角相等),∴BOD =80°,∴∴AOC =80°,∴射线OM 是∴AOC 的平分线,∴∴COM =12×∴AOC =12×80°=40°. 故选:D .二、填空题11.如图,直线AB ,CD 相交于点O ,OE AB ⊥,OB 平分DOF ∠,若115EOC ∠=︒,则COF ∠=_____度.【详解】∵直线AB 、CD 相交于O ,∴∠AOC =∠BOD ,∵OB 平分∠DOF ,∴∠BOD =∠BOF∴∠AOC =∠BOD =∠BOF∵EO ⊥AB∴∠EOA=90°,∠EOC=115°∴∠AOC =∠EOC -∠EOA =115°-90°=25°∴∠AOC =∠BOD =∠BOF =25°∴∠COF=180°-∠BOF -∠COA =180°-25°-25°=130°故答案为:130.12.已知,∠B 与∠A 互为邻补角,且∠B=2∠A ,那么∠A 为________度.【答案】60解:设A x ∠=,则2B x ∠=根据题意得,2180x x +=︒,解得:60x =︒,∴60A ∠=︒,故答案为:60.13.如图4,已知O 是直线AB 上一点,∠1=30°,OD 平分∠BOC ,则∠2的度数是_______度.解:∵∠1=30°,∴∠COB=180°-30°=150°,∵OD 平分∠BOC ,∴∠2=12∠BOC=12×150°=75°. 故答案为:75.14.如图所示,直线AB 与CD 相交于点O ,:2:3AOC AOD ∠∠= ,则BOD ∠的度数为______________.解:由邻补角的性质,得180AOC AOD ∠+∠=︒,:2:3AOC AOD ∠∠=, 得32AOD AOC ∠=∠,31802AOC AOC ∠+∠=︒, 72AOC ∠=,由对顶角相等,得72BOD AOC ∠=∠=︒,故答案是:72°.15.如图所示直线AB 、CD 交于点O ,如果12BOD BOC ∠=∠,那么BOC ∠=___.解:∵180BOD BOC ∠+∠=︒,12BOD BOC ∠=∠, ∴120BOC ∠=︒,故答案为:120︒.16.如图,直线a ,b 相交于点O ,若12220∠+∠=︒,则3∠=________.解:∵∠1+∠2=220°,∠1=∠2(对顶角相等),∴∠1=∠2=110°,∵∠1与∠3互为邻补角,∴∠3=180°-∠1=180°-110°=70°.故答案为:70°.三、解答题17.如图,O 为直线AB 上一点,50AOC ∠=︒,OD 平分AOC ∠,90DOE ∠=︒.(1)求出BOD ∠的度数.(2)请通过计算 OE 是否平分BOC ∠.【详解】(1)∵50AOC ∠=︒,OD 平分AOC ∠,∴∠AOD=12∠AOC=25︒, ∴BOD ∠=180155AOD ︒-∠=︒;(2)∵90DOE ∠=︒,∠AOD=25︒,∴∠BOE=18065AOD DOE ︒-∠-∠=︒,∵OD 平分AOC ∠,∴∠COD=∠AOD=25︒,∴∠COE=9065COD ︒-∠=︒,∴∠BOE=∠COE ,∴OE 平分BOC ∠.18.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)∠AOC 的对顶角为______,∠AOC 的邻补角为______;(2)若∠EOC =70°,求∠BOD 的度数;(3)若∠EOC :∠EOD =2:3,求∠BOD 的度数.【详解】(1)根据对顶角、邻补角的意义得:∠AOC 的对顶角为∠BOD ,∠AOC 的邻补角为∠BOC 或∠AOD ,故答案为:∠BOD ,∠BOC 或∠AOD(2)∵OA 平分∠EOC.∠EOC =70°,∴∠AOE =∠AOC 12=∠EOC =35°,∵∠AOC=∠BOD,∴∠BOD=35°,(3)∵∠EOC:∠EOD=2:3,∠EOC+∠EOD=180°,∴∠EOC=180°×25=72°,∠EOD=180°×35=108°,∵OA平分∠EOC,∴∠AOE=∠AOC12∠EOC=36°,又∵∠AOC=∠BOD,∴∠BOD=36°.19.如图,直线AB和CD相交于点O.(1)∠1的邻补角是____________,对顶角是___________;(2)若∠1=40°,求出∠2,∠3,∠4的度数.【详解】(1)∠1的邻补角是∴2和∴4,对顶角是∴3;(2)∵∴1∴40°∴∴∴2=180°−∴1∴180°−40°∴140°∴∴∴3∴∴1∴40°∴∴4∴∴2∴140°∴20.如图所示,已知直线AB、CD相交于点O,OE、OF为射线,∠AOE=90°,OF平分∠AOC,∠AOF+∠BOD=57°,求∠EOD的度数解:∵∠AOC=∠BOD,∵OF平分∠AOC,∴∠AOF=12∠AOC=12∠BOD,∵∠AOF+∠BOD=57°,∴∠AOF=19°,∠BOD=38°,∵∠AOE=90°,∴∠BOE=180°-∠AOE=90°,∴∠EOD=90°+38°=128°.试卷第11页,总11页。

(完整版)七年级数学下册_5.1同步练习及答案

(完整版)七年级数学下册_5.1同步练习及答案

5.1.1 相交线姓名_____________一、选择题:1.如图所示,∠1和∠2是对顶角的图形有( )12121221A.1个B.2个C.3个D.4个2.如图1所示,三条直线AB,CD,EF 相交于一点O,则∠AOE+∠DOB+∠COF 等于( • )A.150°B.180°C.210°D.120°OFE D CB A O DCBA 60︒30︒34l 3l 2l 112(1) (2) (3) 3.下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1个B.2个C.3个D.4个4.如图2所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠AOC•的度数为( )A.62°B.118°C.72°D.59°5.如图3所示,直线L 1,L 2,L 3相交于一点,则下列答案中,全对的一组是( ) A.∠1=90°,∠2=30°,∠3=∠4=60°; B.∠1=∠3=90°,∠2=∠4=30C.∠1=∠3=90°,∠2=∠4=60°;D.∠1=∠3=90°,∠2=60°,∠4=30° 二、填空题:1. 如图4所示,AB 与CD 相交所成的四个角中,∠1的邻补角是______,∠1的对顶角___.34D CBA 12OFED CB A OED CBA(4) (5) (6) 2.如图4所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______.3.如图5所示,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角是_____,∠AOC 的邻补角是_______;若∠AOC=50°,则∠BOD=______,∠COB=_______.4.如图6所示,已知直线AB,CD 相交于O,OA 平分∠EOC,∠EOC=70°,则∠BOD =•______.5.对顶角的性质是______________________.6.如图7所示,直线AB,CD 相交于点O,若∠1-∠2=70,则∠BOD=_____,∠2=____.ODC BA 12OE D CBA OE DCBA(7) (8) (9)7.如图8所示,直线AB,CD 相交于点O,OE 平分∠AOC,若∠AOD-∠DOB=50°,•则∠EOB=______________. 8.如图9所示,直线AB,CD 相交于点O,已知∠AOC=70°,OE 把∠BOD 分成两部分,• 且∠BOE:∠EOD=2:3,则∠EOD=________. 三、解答题:1. 如图所示,AB,CD,EF 交于点O,∠1=20°,∠BOC=80°,求∠2的度数.OF EDCBA 122,如图所示,直线a,b,c 两两相交,∠1=2∠3,∠2=65°,求∠4的度数.cba3412答案:一、1.A 2.B 3.B 4.A 5.D 二、1.∠2和∠4 ∠3 2.155° 25° 155° 4.35° 5.对顶角相等 •6 .125° 55° 7.147.5° 8.42°三、1.∠2=60° 2.∠4=36°四、1.∠BOD=120°,∠AOE=30° 2.∠BOD=72° 3.∠4=32.5° 五、1.4条不同的直线相交于一点,图中共有12对对顶角(平角除外),n 条不同的直线相交于一点,图中共有(n 2-n)对对顶角(平角除外).2.6条直线最多可以把平面分成22个部分,n 条直线最多可以把平面分成(1)12n n +⎡⎤+⎢⎥⎣⎦个部分.六、∠AOC 与∠BOD 不一定是对顶角.如图1所示,当射线OC,OD 位于直线AB 的一侧 时,不是对顶角;如图2所示,当射线OC,OD 位于直线AB 的两侧时,是对顶角.(1)O D C BA21(2)O DCBA七、140°.5.1.3同位角、内错角、同旁内角同步练习姓名_____________一、填空题1.如图1,直线a 、b 被直线c 所截,∠1和∠2是 ,∠3和∠4是 ,∠3和∠2是 。

相交线同步练习题

相交线同步练习题

相 交 线 练 习 题一、选择题:1.如图所示,∠1和∠2是对顶角的图形有( )12121221A.1个B.2个C.3个D.4个2.如图1所示,三条直线AB,CD,EF 相交于一点O,则∠A OE+∠DOB +∠COF 等于( • )A.150° B.180° C.210° D.120°OFE D CB A O DCBA 60︒30︒34l 3l 2l 112(1) (2) (3) 3.下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1个B.2个C.3个 D .4个4.如图2所示,直线A B和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠AOC•的度数为( ) A.62° B.118° C.72° D.59°5.如图3所示,直线L 1,L2,L 3相交于一点,则下列答案中,全对的一组是( )A.∠1=90°,∠2=30°,∠3=∠4=60°; B.∠1=∠3=90°,∠2=∠4=30C.∠1=∠3=90°,∠2=∠4=60°;D.∠1=∠3=90°,∠2=60°,∠4=30° 二、填空题:1.如图4所示,AB 与CD 相交所成的四个角中,∠1的邻补角是______,∠1的对顶角___.34D CBA 12OFED CB A OE D CBA(4) (5) (6) 2.如图4所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______.3.如图5所示,直线AB,CD,EF 相交于点O ,则∠AOD 的对顶角是_____,∠AOC 的邻补角是_______;若∠AOC =50°,则∠BO D=______,∠COB=_______.4.如图6所示,已知直线A B,CD 相交于O ,OA 平分∠E OC,∠EOC=70°,则∠B OD =•______. 5.对顶角的性质是______________________.6.如图7所示,直线AB ,C D相交于点O,若∠1-∠2=70,则∠BOD=_____,∠2=____.ODC BA 12OE D CBA OE DCBA(7) (8) (9)7.如图8所示,直线A B,CD 相交于点O,O E平分∠AO C,若∠AO D-∠DO B=50°,•则∠EOB=______________. 8.如图9所示,直线A B,CD 相交于点O,已知∠AOC =70°,OE把∠BOD 分成两部分,• 且∠BO E:∠EOD =2:3,则∠E OD=___ 三、训练平台:1.如图所示,A B,CD,EF 交于点O,∠1=20°,∠BOC=80°,求∠2的度数.OF EDCBA 122.如图所示,L1,L 2,L 3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.34l 3l 2l 1123.如图所示,A B,CD 相交于点O,OE 平分∠AOD,∠AOC=120°,求∠B OD,∠AOE•的 度数.OE CBA4.如图所示,直线AB 与CD 相交于点O ,∠AOC:∠AOD=2:3,求∠BOD 的度数.ODCBA5.如图所示,直线a,b ,c 两两相交,∠1=2∠3,∠2=65°,求∠4的度数.cba34126.若4条不同的直线相交于一点,则图中共有几对对顶角?若n条不同的直线相交 于一点呢? 7.在一个平面内任意画出6条直线,最多可以把平面分成几个部分?n条直线呢?•8. 已知点O 是直线AB 上一点,OC ,OD 是两条射线,且∠A OC=∠BOD,则∠A OC 与∠B OD 是 对顶角吗?为什么?垂线一、选择题:(每小题3分,共18分)1.如图1所示,下列说法不正确的是( )A.点B 到A C的垂线段是线段AB;B.点C 到AB 的垂线段是线段ACC.线段AD 是点D 到BC 的垂线段; D .线段BD 是点B 到A D的垂线段DCBADCBAO DCBA(1) (2) (3) 2.如图1所示,能表示点到直线(线段)的距离的线段有( ) A.2条 B.3条 C .4条 D .5条 3.下列说法正确的有( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线; ②在平面内,过直线外一点有且只有一条直线垂直于已知直线; ③在平面内,过一点可以任意画一条直线垂直于已知直线; ④在平面内,有且只有一条直线垂直于已知直线. A.1个 B.2个 C.3个 D.4个4.如图2所示,AD ⊥BD,BC ⊥CD,AB=acm,BC=b cm,则BD 的范围是( ) A.大于acm B.小于bcmC .大于acm 或小于b cm D.大于b cm 且小于a cm 5.到直线L 的距离等于2c m的点有( )A.0个B.1个; C .无数个 D.无法确定 6.点P 为直线m 外一点,点A,B,C 为直线m上三点,P A=4cm ,P B=5cm,PC =2cm,则点P 到 直线m的距离为( ) A.4cm B.2cm ;C.小于2cmD.不大于2cm 二、填空题:(每小题3分,共12分)1.如图3所示,直线AB 与直线CD 的位置关系是_______,记作_______,此时,•∠A O D =∠_______=∠_______=∠_______=90°.2.过一点有且只有________直线与已知直线垂直.3.画一条线段或射线的垂线,就是画它们________的垂线.4.直线外一点到这条直线的_________,叫做点到直线的距离. 三、训练平台:(共15分)如图所示,直线AB,C D,EF 交于点O,OG 平分∠BOF,且C D⊥EF,∠AOE=70°,•求∠DOG 的度数.GOF EDCBA四、提高训练:(共15分)如图所示,村庄A要从河流L 引水入庄, 需修筑一水渠,请你画出修筑水渠的路线图. 五、探索发现:(共20分)如图6所示,O 为直线AB 上一点,∠AOC=13∠BOC,OC 是∠AOD 的平分线. (1)求∠COD 的度数;(2)判断OD 与A B的位置关系,并说明理由.ODC BA六、中考题与竞赛题:(共20分)(2001.杭州)如图7所示,一辆汽车在直线形的公路AB 上由A 向B 行驶,M,N•分别是 位于公路AB 两侧的村庄,设汽车行驶到P 点位置时,离村庄M 最近,行驶到Q 点位置时,•离村庄N 最近,请你在AB上分别画出P,Q 两点的位置.NBA答案:一、1.C 2.D 3.C 4.D 5.C 6.D二、1.垂直 AB ⊥C D DOB B OC COA 2.一条 3.所在直线 4.•垂线段的长度 三、∠DOG=55°四、解:如图3所示.l五、解:(1)∵∠AO C+∠BOC=∠AOB=180°,lA∴13∠BOC+∠BOC=180°,∴43∠BOC=•180°,∴∠BOC=135°,∠AOC=45°,又∵OC是∠AOD的平分线,∴∠COD=∠AOC=45°.•(2)∵∠AOD=∠AOC+∠COD=90°,∴OD⊥AB.六、解:如图4所示.NA--。

人教版数学七年级下册5.1 相交线 第1课时 相交线 同步练习

人教版数学七年级下册5.1 相交线 第1课时 相交线 同步练习

5.1 相交线第1课时相交线基础训练知识点1 邻补角1.识别邻补角应同时满足以下三条:①有公共_____________;②有一条公共边;③两角的另一边_____________. 2·1·c·n·j·y2.邻补角是指()A.和为180°的两个角B.有公共顶点且互补的两个角C.有一条公共边且相等的两个角D.有公共顶点且有一条公共边,另一边互为反向延长线的两个角3.下列选项中,∠1与∠2互为邻补角的是()4.如图,∠1的邻补角是()A.∠BOCB.∠BOE和∠AOFC.∠AOFD.∠BOC和∠AOF5.如图,∠α的度数等于()A.135°B.125°C.115°D.105°知识点2 对顶角及其性质6.识别对顶角应同时满足:①有公共___________;②两个角的两边___________.7.如图,小强和小丽一起玩跷跷板,横板AB绕O上下转动,当小强从A到A'的位置时,∠AOA'=45°,则∠BOB'的度数为___________,理由是___________.8.如图,直线AB,CD相交于点O,则∠1∠2,根据的是;∠2+∠3=,根据的是.9.下列选项中,∠1与∠2是对顶角的是()10.如图,直线AB,CD交于点O,下列说法中,错误的是()A.∠AOC与∠BOD是对顶角B.∠AOE与∠BOE是邻补角C.∠DOE与∠BOC是对顶角D.∠AOD与∠BOC都是∠AOC的邻补角11.如图,三条直线交于点O,则∠1+∠2+∠3等于()A.90°B.120°C.180°D.360°12.下列语句正确的是()A.顶点相对的两个角是对顶角B.有公共顶点并且相等的两个角是对顶角C.两条直线相交,有公共顶点的两个角是对顶角D.两条直线相交,有公共顶点且没有公共边的两个角是对顶角易错点邻补角与补角区别不清13.如图,点O是直线AB上的任意一点,OC,OD,OE是过点O的三条射线,若∠AOD=∠COE=90°,则下列说法:①与∠AOC互为邻补角的角只有一个;②与∠AOC互为补角的角只有一个;③与∠AOC互为邻补角的角有两个;④与∠AOC互为补角的角有两个.其中正确的是()A.②③B.①②C.③④D.①④易错点2 对对顶角的定义理解不透而产生错误14.下列说法正确的有()①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1个B.2个C.3个D.4个提升训练考查角度1 利用对顶角的性质求角15.如图,直线AB,CD,EF相交于点O,如果∠AOC=65°,∠DOF=50°.(1)求∠BOE的度数;(2)通过计算∠AOF的度数,你发现射线OA有什么特殊性吗?考查角度2 利用邻补角及对顶角的性质求角(方程思想)16.补全解答过程:如图,已知直线AB,CD相交于点O,OA平分∠EOC,若∠EOC∶∠EOD=2∶3,求∠BOD的度数.解:由∠EOC∶∠EOD=2∶3,设∠EOC=2x°,则∠EOD=3x°.因为∠EOC+∠____________=180°(____________),所以2x+3x=180,解得x=36.所以∠EOC=72°.因为OA平分∠EOC(已知),所以∠AOC=错误!未找到引用源。

《5.1相交线》练习题

《5.1相交线》练习题

(D)(C)(B)(A)22211121《5.1相交线》练习题一1、下列各图中,∠1和∠2是对顶角的是( )2、已知直线AB 、CD 相交于点O ,则与∠AOC 互补的角有 ( ) A 、1个 B 、2个 C 、3个 D 、4个3、如图,三条直线两两相交,其中对顶角共有 ( ) A 、3对 B 、4对 C 、5对 D 、6对4、如图,直线AB 、CD 交于点O ,OE 、OF 是过O 点的两条射线,其中构成对顶角的是 ( )A 、∠AOF 与 ∠DOEB 、∠EOF 与∠BOEC 、∠BOC 与∠AOD D 、∠COF 与∠BOD5、下列说法错误的是 ( )A 、对顶角的平分线成一个平角B 、对顶角相等C 、相等的角是对顶角D 、对顶角的余角相等 6、如图,直线AB 与CD 相交于点O ,∠AOD+∠BOC=236度,则∠AOC 的度数为 ( )A 、72度B 、62度C 、124度D 、144度 7、如图,点A 到直线CD 的距离是指哪条线段长 ( )A 、ACB 、CDC 、AD D 、BD 8、在“同一平面内,过一点有且只有一条直线与已知直线垂直”中这一点的位置 ( )A 、在直线的上方B 、在直线的下方C 、在直线上D 、可以任意位置9、下列说法中正确的个数有 ( ) (1)直线外一点与直线上各点连接的所有线中垂线段最短。

(2)画一条直线的垂线段可以画无数条。

(3)在同一平面内,经过一个已知点能画一条且只能画一条直线和已知直线垂直。

(4)从直线外一点到这条直线的垂线段叫做点到直线的距离。

A 、1个 B 、2个 C 、3个 D 、4个10、如图2-27,∠BAC 和∠ACD 是( )A .同位角B .同旁内角C .内错角D .以上结论都不对O F E D CBA ODCBADABC11、如图2-28,∠1与∠2不能构成同位角的图形是 ( )12、如图2-29,图中共有同旁内角 对A .2B .3C .4D .513、如图2-30,与∠1构成同位角的共有 ( )A .1个B .2个C .3个D .4个 14、如图2-31,下列判断正确的是 [ ]A .4对同位角,4对内错角,2对同旁内角B .4对同位角、4对内错角,4对同旁内角C .6对同位角,4对内错角,4对同旁内角D .6对同位角,4对内错角,2对同旁内角15、如图,直线AB 、CD 相交于点O ,若∠AOC=50度,则∠BOC= ,∠AOD= ∠BOD= 。

人教版初中数学七年级下册第五章第一节《5.1相交线》同步练习题(含答案)

人教版初中数学七年级下册第五章第一节《5.1相交线》同步练习题(含答案)

人教版初中数学七年级下册第五章第一节《5.1相交线》同步练习题(含答案)1 / 65.1《相交线》同步练习题一、选择题(每小题只有一个正确答案)1.在下列四个图中,∠1与∠2是同位角的图是( ).A. ①②B. ①③C. ②③D. ③④2.如图所示,在灌溉农田时,要把河(直线l 表示一条河)中的水引到农田P 处,设计了四条路线PA ,PB ,PC ,PD(其中PB ⊥l),你选择哪条路线挖渠才能使渠道最短( )A. PAB. PBC. PCD. PD3.三条直线相交于同一点时,有m 对对顶角,交于不同三点时,有n 对对顶角,则m 与n 的关系是( )A. m=nB. m >nC. m <nD. m +n=104.下列说法正确的是( )A. 在同一平面内,过直线外一点向该直线画垂线,垂足一定在该直线上B. 在同一平面内,过线段或射线外一点向该线段或射线画垂线,垂足一定在该线段或射线上C. 过线段或射线外一点不一定能画出该线段或射线的垂线D. 过直线外一点与直线上一点画的一条直线与该直线垂直5.如图所示,下列结论中正确的是( )A. ∠1和∠2是同位角B. ∠2和∠3是同旁内角C. ∠1和∠4是内错角D. ∠3和∠4是对顶角6.如图,OA ⊥OB ,∠BOC=50°,OD 平分∠AOC ,则∠BOD 的度数是( )A. 20oB. 30oC. 40oD. 50o7.如图,直线相交于点O ,则∠1+∠2+∠3等于()A. 90°B. 120°C. 180°D. 360°二、填空题8.如图,直线AB、CD、EF相交于同一点O,而且∠BOC=∠AOC,∠DOF=∠AOD,那么∠FOC=_____度.9.如图所示,∠B与____是直线_________和直线_______被直线____所截得的同位角.10.同一平面内的三条直线,其交点的个数可能为________.11.如图,已知直线AB,CD,EF相交于点O.(1)∠AOD的对顶角是______;∠EOC的对顶角是_____;(2)∠AOC的邻补角是_________;∠EOB的邻补角是_______.12.在同一平面内,OA⊥MN,OB⊥MN,所以OA,OB在同一直线上,理由是________________.三、解答题13.如图,已知直线AB与CD交于点O,OE⊥AB,垂足为O,若∠DOE=3∠COE,求∠BOC的度数.14.在同一平面内三条直线交点有多少个?甲:同一平面三直线相交交点的个数为0个,因为a∥b∥c,如图(1)所示.乙:同一平面内三条直线交点个数只有1个,因为a,b,c交于同一点O,如图(2)人教版初中数学七年级下册第五章第一节《5.1相交线》同步练习题(含答案)所示.以上说法谁对谁错?为什么?15.已知:如图,直线AB,射线OC交于点O,OD平分∠BOC,OE平分∠AOC.试判断OD 与OE的位置关系.16.观察图形,回答下列各题:(1)图A中,共有____对对顶角;(2)图B中,共有____对对顶角;(3)图C中,共有____对对顶角;(4)探究(1)--(3)各题中直线条数与对顶角对数之间的关系,若有n条直线相交于一点,则可形成________对对顶角;3 / 6人教版初中数学七年级下册第五章第一节《5.1相交线》同步练习题(含答案)1 / 6参考答案1.B2.B3.A4.A5.B6.A7.C8.1569. ∠FAC AC BC FB11. ∠BOC ∠DOF ∠AOD 和∠BOC ∠EOA 和∠BOF13.135°解析:∵∠DOE=3∠COE ,∠DOE+∠COE=180°,∴3∠COE+∠COE=180°,∴∠COE=45°,∵OE ⊥AB ,∴∠AOC=45°=∠BOD∴∠BOC=180°-∠BOD=135°14.甲,乙说法都不对,各自少了三种情况,具体见解析.解析:甲、乙说法都不对,都少了三种情况.a ∥b ,c 与a ,b 相交如图(1);a ,b ,c 两两相交如图(2),所以三条直线互不重合,交点有0个或1个或2个或3个,共四种情况.15.垂直.理由见解析.解析:OD 与OE 的位置关系垂直.因为OD 平分∠BOC所以∠DOC=12∠BOC. 由OE 平分∠AOC ,即∠EOC=12∠AOC. 即∠DOE=∠DOC+∠EOC=12 (∠BOC+∠AOC)= 12 180°=90°. 16.(1)2对;(2)6对;(3)12对;(4)n(n-1) (n≥2).解析:(1)2对;(2)6对;(3)12对;(4)2条直线相交时,对顶角对数为:1×2=2对;3条直线相交时,对顶角对数为:3×2=6对;4条直线相交时,对顶角对数为:4×3=12对;…n条直线相交时,对顶角对数为:n(n-1)(n≥2)对.点睛:本题关键在于找出直线的条数与对顶角对数的关系式.。

相交线练习题及答案

相交线练习题及答案

相交线练习题及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(相交线练习题及答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为相交线练习题及答案的全部内容。

相交线练习题及答案一、选择题1、如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为( ) A.20°B.60°C.70°D.160°2、如图,下列各组角中,是对顶角的一组是()A.∠1和∠2 B.∠2和∠3C.∠2和∠4 D.∠1和∠53、下列图形中,与互为邻补角的是()4、如图所示,点P到直线l的距离是()A.线段PA的长度 B.线段PB的长度B.C.线段PC的长度 D.线段PD的长度5、如图,将∠BAC沿DE向∠BAC内折叠,使AD与A′D重合,A′E与AE重合,若∠A=30°,则∠1+∠2=()A.50° B.60° C.45° D.以上都不对6、如图所示,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是() A.26° B.64°C.54° D.以上答案都不对7、四条直线相交于一点,总共有对顶角()A.8对 B.10对 C.4对 D.12对8、如图,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是()A.∠1=90°,∠2=30°,∠3=∠4=60° B.∠1=∠3=90°,∠2=∠4=30°C.∠1=∠3=90°,∠2=∠4=60° D.∠1=∠3=90°,∠2=60°,∠4=30°9、已知∠1与∠2是同位角,则A .∠1 = ∠2B .∠1 〉 ∠2C .∠1 < ∠2D .以上都有可能10、如图,AB⊥AC ,AD⊥BC ,垂足分别为A,D,则图中能表示点到直线距离的线段共有( ) A .2条 B .3条 C .4条 D .5条 11、.如图,与∠4是同旁内角的是( )A .∠1B .∠2C .∠3D .∠5二、填空题13、如图,直线AB ,CD 交于点O ,OE⊥AB ,若∠AOD =50°,则∠CO E 的度数为________.14、如图,已知直线AB 与CD 相交于点O ,OA 平分∠COE ,若∠DOE=70°,则∠BOD= .15、如图,已知AB⊥CD ,垂足为点O,直线EF 经过O 点,若∠1=55°,则∠COE 的度数为 度.16、如图直线AB,CD,EF 相交于点O ,图中∠AOB 的对顶角是______ ,∠COF 的邻补角是______ . 17、如图,直线AB ,CD 相交于点O ,OE⊥AB ,O 为垂足,∠EOD=26°,则∠AOC= ,∠COB= .18、如图所示,直线AB ,CD 被DE 所截,则∠1和∠ 是同位角,∠1和∠ 是内错角,∠1和∠ 是同旁内角.第16题图 第17题图第18题图第13题图 第14题图 第15题图19、一机器人以0。

人教版七年级下册 第五章 相交线与平行线 相交线 同步练习(含答案)

人教版七年级下册 第五章 相交线与平行线 相交线 同步练习(含答案)

相交线同步练习一.选择题(共12小题)1.下列各图中,∠1=∠2一定成立的是()A.B.C.D.2.毛泽东主席在《水调歌头游泳》中写道“一桥飞架南北,天堑变通途”.正如从黄果树风景区到关岭县城的坝陵河大桥建成后,从黄果树风景区到关岭县城经大桥通过的路程缩短20公里,用所学数学知识解释这一现象恰当的是()A.两点确定条直线B.两点之间线段最短C.垂线段最短D.连接两点间线段的长度是两点间的距离3.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.4.下列图形中,∠1和∠2是内错角的是()A.B.C.D.5.如图,直线a,b相交于点O,若∠1等于30°,则∠2等于()A.60°B.70°C.150°D.170°6.如图,下列说法正确的是()A.∠A与∠B是同旁内角B.∠1与∠2是对顶角C.∠2与∠A是内错角D.∠2与∠3是同位角7.已知:如图,直线BO⊥AO于点O,OB平分∠COD,∠BOD=22°.则∠AOC的度数是()A.22°B.46°C.68°D.78°8.下列结论:①平面内3条直线两两相交,共有3个交点;②在平面内,若∠AOB=40°,∠AOC=∠BOC,则∠AOC的度数为20°;⑨若线段AB=3,BC=2,则线段AC的长为1或5;④若∠α+∠β=180°,且∠α<∠β,则∠α的余角为(∠β-∠α).其中正确结论的个数有()A.1个B.2个C.3个D.4个9.如图,OA⊥OB,∠BOC=30°,OD平分∠AOC,则∠BOD的大小是()A.20°B.30°C.40°D.60°10.如图所示,直线AB与CD相交于O点,∠1=∠2.若∠AOE=140°,则∠AOC 的度数为()A.40°B.60°C.80°D.100°11.如图,直线AB、CD相交于O,OE平分∠AOC,∠EOA:∠AOD=1:4,则∠EOB的度数为()A.60°B.90°C.120°D.150°12.如图所示,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°30′,则下列结论中不正确的是()A.∠AOF=45°B.∠1=∠AOCC.∠DOE=74.3°D.∠COE=105.5°二.填空题(共6小题)13.若∠1和∠2是对顶角,∠1=35°,则∠2的补角是.14.如图,已知OA⊥OC,OB⊥OD,∠3=24°,则∠1= .15.如图所示,∠A和∠ACD是直线AB,CD被所截形成的内错角;∠B的同位角有.16.如图,直线AB、CD相交于点O,∠1=∠2,若∠AOD=68°,则∠1的度数为.17.如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM,若∠AOM=35°,则∠CON的度数为.18.如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE.(1)若∠AOC=76°,∠BOF= 度;(2)若∠BOF=36°,∠AOC= 度.三.解答题(共5小题)19.如图,直线AB,CD相交于点O,∠BOE=90°,OF平分∠AOD,∠COE=20°.(1)求∠BOD与∠DOF的度数.(2)写出∠COE的所有余角.20.如图,直线AB、CD相交于点O,OE平分∠BOC,∠COF=90°.(1)若∠BOE=64°,求∠AOF的度数;(2)若∠BOD:∠BOE=2:3,求∠AOF度数.21.直线AB,CD相交于点O,OE平分∠BOD,OF⊥CD,垂足为O,若∠EOF=54°.求∠AOF的度数.22.如图,直线AB,CD相交于点O,OE平分∠AOD,FO⊥OD于O,∠1=40°,试求∠2和∠4的度数.23.如图,直线AB与CD相交于点E,射线EG在∠AEC内(如图1).(1)若∠BEC的补角是它的余角的3倍,则∠BEC= 度;(2)在(1)的条件下,若∠CEG比∠AEG小25度,求∠AEG的大小;(3)若射线EF平分∠AED,∠FEG=100°(如图2),则∠AEG-∠CEG= 度.参考答案1-5:CBDDC 6-10:ACABC 11-12:DC13、145°14、24°15、AC;∠ECD,∠ACE16、34°17、55°18、33;7219、(1)∵∵BOE=90°,∵∵AOE=180°-∵BOE=180°-90°=90°,∵∵COE=20°,∵∵COA=90°-∵COE=90°-20°=70°,∵∵BOD=∵COA=70°,∵∵AOD=180°-∵COA=180°-70°=110°,又∵OF平分∵AOD,∵∵DOF=0.5×110°=55°;(2)∵∵AOE=90°,∵∵AOC+∵COE=90°,∵∵BOD=∵AOC,∵∵BOD+∵COE=90°,∵∵COE的余角有:∵COA,∵BOD.20、解:(1)∵OE平分∠BOC,∴∠BOC=2∠BOE=2×64°=128°,∴∠AOC=180°-128°=52°,∵∠COF=90°,∴∠AOF=38°;(2)∵OE平分∠BOC,∴∠BOC=2∠BOE,∵∠BOD:∠BOE=2:3,∴∠BOD=45°,∴∠AOC=∠BOD=45°,∵∠COF=90°,∴∠AOF=45°21、解:∵OF⊥CD,∠EOF=54°,∴∠DOE=90°-54°=36°,又∵OE平分∠BOD,∴∠BOD=2∠DOE=72°,∴∠AOC=72°,又∵∠COF=90°,∴∠AOF=90°+72°=162°.22、解:∵FO⊥OD于O,∠1=40°,∴∠BOD=50°,根据对顶角相等,得∠2=50°,∴∠AOD=130°,又OE平分∠AOD,∴∠4=65°.23、解:(1)设∠BEC的度数为x,则180-x=3(90-x),x=45°,∴∠BEC=45°,故答案为:45;(2)∵∠BEC=45°,∴∠AEC=135°,设∠AEG=x°,则∠CEG=x-25,由∠AEC=135°,得x+(x-25)=135,解得x=80°,∴∠AEG=80°;(3)∵射线EF平分∠AED,∴∠AEF=∠DEF,∵∠FEG=100°,∴∠AEG+∠AEF=100°,∵∠CEG=180°-100°-∠DEF=80°-∠DEF,∴∠AEG-∠CEG=100°-∠AEF-(80°-∠DEF)=20°,故答案为:20.。

人教版初中数学七年级下册第五章第一节《5.1相交线》同步练习题(含答案)

人教版初中数学七年级下册第五章第一节《5.1相交线》同步练习题(含答案)

人教版初中数学七年级下册第五章第一节《 5.1相交线》同步练习题(含答案)5.1《相交线》同步练习题、选择题(每小题只有一个正确答案) 1 •如图所示,/ 1与/2不是同位角的是()A.2 .在同一平面内,下列说法中,错误的是 A. 过两点有且只有一条直线B. 过一点有无数条直线与已知直线平行C. 过直线外一点有且只有一条直线与已知直线平行D. 过一点有且只有一条直线与已知直线垂直3 .已知:0A 丄 0C , / AOB :/ AOC , 2 : 3,则/ BOC 的度数为( ),A. 30 °B.60 °C. 150 °D.30。

或 150 °4.如图,点A 到线段BC 所在直线的距离是线段()A. / 1和/ 3是同位角B. / 1和/ 5是同位角C. / 1和/ 2是同旁内角D. / 5和/6是内错角6 .两条直线相交所构成的四个角中:①有三个角都相等;②有一对对顶角互补;③有 一个角是直角;④有一对邻补角相等.其中能判定这两条直线垂直的有 ( ) A. 1个 B. 2个 C. 3个 D. 4个7 .平面上三条直线两两相交最多能构成对顶角的对数是( A. 7 B. 6 C. 5 D. 4二、填空题8.如图,直线a 与b 相交于点 0,直线c 丄b ,且垂足为0,若/仁35 °,则/2= ______________D.A. AC 的长度B. AD 的长度C. AE 的长度5. 如图所示,下列说法错误的是()D. AB 的长度9 .如图,计划把河水引到水池 A 中,先作AB 丄CD ,垂足为B ,然后沿AB 开渠,能使 所开的渠道最短,这样设计的依据是 _______________10 .两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x) °,则 x= _________11 .如图,在平面内,两条直线 l i , 12相交于点0,对于平面内任意一点 M ,若p , q 分 别是点M 到直线11,12的距离,则称(p, q)为点M 的距离坐标”.根据上述规定, 距离 坐标”是(2,1的点共有 _____________________ 个.三、解答题13 .如图,直线 AB, CD 相交于点 0, / BOE=90°,OF 平分/ AOD / COE=20°,求/ BOD 与/ DOF 的度数.BC D(1)/ 1和/ 3是直线 被直线 所截得的 (2)/ 1和/ 4是直线 被直线 所截得的 (3)/ B 和/2是直线被直线 所截得的 (4)/ B 和/4是直线被直线所截得的12 .看图填空:人教版初中数学七年级下册第五章第一节《 5.1相交线》同步练习题(含答案)14 .在同一平面内三条直线交点有多少个? 甲:同一平面三直线相交交点的个数为 0个,因为a , b ,c 如图(1)所示.乙:同一平面内三条直线交点个数只有 1个,因为a , b,c 交于同一点0,如图(2)所示.以上说法谁对谁错?为什么?15 .已知,如图,直线AB 和CD 相交于点 0, / C0E 是直角,0F 平分/ AOE, / COF=34°, 求/ A0C和/ BOD 的度数.16 .探究题:(I)(1) 三条直线相交,最少有____ 个交点;最多有 _____ 个交点,画出图形,并数出图形中的对顶角和邻补角的对数;(2) 四条直线相交,最少有____ 个交点;最多有 _______ 个交点,画出图形,并数出图形中的对顶角和邻补角的对数;(3) 依次类推,n条直线相交,最少有________ 个交点;最多有_______ 个交点,对顶角有对,邻补角有__________ 对.参考答案I. B2. B3. D4. B5. B6. D7. B8. 55°9•垂线段最短10. 40 或80II. 4,12. 解析:根据同旁内角、同位角及内错角的概念可得:(1) / 1和/3是直线AB、BC被直线AC所截得的同旁内角;(2) / 1和/ 4是直线AB, BC被直线AC所截得的同位角;(3) / B和/ 2是直线AB, AC被直线BC所截得的同位角;(4) / B和/4是直线AC, BC被直线AB所截得的内错角•13. / BOD=70°, / DOF=55°解:•••/ COE=20°,Z BOE=90°,•••/ BOD=180°, 20°, 90° =70°,•••/ AOD—180°, 70° =110°,•/ OF 平分/ AOD ,1• / DOF=-/AOD=55°,•••/ BOD=70°,Z DOF=55°.14. 甲,乙说法都不对,各自少了三种情况,具体见解析解析:甲、乙说法都不对,都少了三种情况.a// b,c与a,b相交如图(1);a,b,c两两相交如图(2),所以三条直线互不重合,交点有0个或1个或2个或3个,共四种情况15. / AOC=22 , / BOD=22 .解析:,,COE=90 , , COF=34 ,,,EOF= COE , COF=56°,,OF是,AOE的平分线,,,AOE=2, EOF=112°,,,AOC=112°, 90 ° =22 ° ,,,BOD和,AOC是对顶角,,,BOD=22°,16. (1)1,3,画图见解析,对顶角有6对,邻补角有12对;(2)1,6, 画图见解析,对顶角有12对,邻补角有24对;(3)1, n n 1,n(n —1),2 n(n —1).2分析:当直线同交于一点时,只有一个交点;当直线两两相交,且不过同一点时,交点个数2最多;根据对顶角与邻补角的定义找出即可.;1三条直线相交,最少有 1个交点,最多有3个交点,如图:对顶角:6对,邻补角:12对;;2四条直线相交,最少有 1个交点,最多有6个交点,如图:对顶角:12对,邻补角:24对;n n 1(3) n 条直线相交,最少有 1个交点,最多有 个交点,对顶角有 n (n - 1)对,2邻补角有2n (n - 1)对. 丄,“宀,n n 1故答案为:(1) 1, 3 ; (2) 1, 6; (3) 1, , n ( n- 1), 2n (n - 1).2。

人教版初中数学七年级下册第五章《相交线》同步练习(含答案)

人教版初中数学七年级下册第五章《相交线》同步练习(含答案)

《相交线与平行线》同步练习一、选择题(每小题只有一个正确答案)1.下列语句中,指的是对顶角的是( )A.有公共顶点并且相等的两个角 B.有公共顶点的两个角C.角的两边互为反向延长线的两个角 D.两直线相交所成的两个角2.如图1,直线AB CD EF ,,相交于点O ,且AB CD ⊥,若70BOE ∠,则DOF ∠的度数为( )A.10 B.20C.30 D.403.已知直线a b c ,,在同一平面内,则下列说法错误的是( )A.如果a b ∥,b c ∥,那么a c ∥ B.如果a b ⊥,c d ⊥,那么a c ∥ C.如果a 与b 相交, 那么a b ∥ D .如果a b ⊥,,a c ∥,那么b c ∥4.如图,已知∠1=∠2=∠3=∠4,则图形中平行的是( )A .AB ∥CD ∥EF;B .CD ∥EF;C .AB ∥EF;D .AB ∥CD ∥EF ,BC ∥DE5.如图,已知∠1=∠2,则在结论:(1)∠3=∠4,(2)AB ∥CD ,(3)AD ∥BC 中 ( )A .三个都正确B .只有一个正确;C .三个都不正确D .只有一个不正确6.如图,在△ABC 中,D 、E 、F 分别在AB 、BC 、AC 上,且EF ∥AB ,要使DF ∥BC ,只需再有下列条件中的( )A ∠1=∠2B .∠EFD=∠ADEC .∠AFD=∠2D .都不正确7.如果∠α与∠β的两边分别平行,∠α与∠β的3倍少36°,则∠α的度数是( )A 、18°B 、126C 、18°或126°D 、以上都不对8.P 为直线l 上的一点,Q 为l 外一点,下列说法不正确的是( )A 、过P 可画直线垂直于lB 、过Q 可画直线l 的垂线C 、连结PQ 使PQ ⊥lD 、过Q 可画直线与l 垂直9.下列关系中,互相垂直的两条直线是( )A 、互为对顶角的两角的平分线B.互为补角的两角的平分线C 、两直线相交所成的四个角中相邻两角的角平分线D 、相邻两角的角平分线10.如图,AB ⊥BC ,BC ⊥CD ,∠EBC=∠BCF ,那么∠ABE 与∠DCF 的位置和大小关系是( )A 、是同位角且相等B 、不是同位角但相等C 、是同位角但不等D 、不是同位角也不等二、 填空题1.如图4,已知三条直线AB CD EF ,,两两相交于点P Q R ,,,则图中邻补角有____对,对顶角有____对(平角除外).2.图5,90AOC = ∠,45BOC =∠,OD 平分AOB ∠,则AOD ∠的度数为____,COD ∠的度数为____.3.定点P 在直线AB 外,动点O 在直线AB 上移动,当PO 最短时,∠POA=_______,这时线段PO 所在的直线是AB 的___________,线段PO 叫做直线AB 的______________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相 交 线 练 习 题
一、选择题:
1.如图所示,∠1和∠2是对顶角的图形有( )
1
2
1
2
1
2
2
1
A.1个
B.2个
C.3个
D.4个
2.如图1所示,三条直线AB,CD,EF 相交于一点O,则∠AOE+∠DOB+∠COF 等于( • )
A.150°
B.180°
C.210°
D.120°
O
F
E D C
B A O D
C
B
A 60︒30︒
34
l 3
l 2
l 1
12
(1) (2) (3) 3.下列说法正确的有( )
①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,
则这两个角不相等.
A.1个
B.2个
C.3个
D.4个
4.如图2所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠AOC•的度数为( ) A.62°
B.118°
C.72°
D.59°
5.如图3所示,直线L 1,L 2,L 3相交于一点,则下列答案中,全对的一组是( ) A.∠1=90°,∠2=30°,∠3=∠4=60°; B.∠1=∠3=90°,∠2=∠4=30
C.∠1=∠3=90°,∠2=∠4=60°;
D.∠1=∠3=90°,∠2=60°,∠4=30° 二、填空题:
1.如图4所示,AB 与CD 相交所成的四个角中,∠1的邻补角是______,∠1的对顶角___.
3
4D C
B
A 12O
F
E
D C
B A O
E
D C
B
A
(4) (5) (6) 2.如图4所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______.
3.如图5所示,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角是_____,∠AOC 的邻补角是_______;若∠AOC=50°,则∠
BOD=______,∠COB=_______.
4.如图6所示,已知直线AB,CD 相交于O,OA 平分∠EOC,∠EOC=70°,则∠BOD=•______.
5.对顶角的性质是______________________.
6.如图7所示,直线AB,CD 相交于点O,若∠1-∠2=70,则∠BOD=_____,∠2=____.
O
D
C B
A 1
2
O
E D C
B
A O
E D
C
B
A
(7) (8) (9)
7.如图8所示,直线AB,CD 相交于点O,OE 平分∠AOC,若∠AOD-∠DOB=50°,•则∠EOB=______________.
8.如图9所示,直线AB,CD 相交于点O,已知∠AOC=70°,OE 把∠BOD 分成两部分,• 且∠BOE:∠EOD=2:3,则∠EOD=___ 三、训练平台:
1.如图所示,AB,CD,EF 交于点O,∠1=20°,∠BOC=80°,求∠2的度数.
O
F E
D
C
B
A 1
2
2.如图所示,L 1,L 2,L 3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.
34
l 3
l 2l 1
1
2
3.如图所示,AB,CD 相交于点O,OE 平分∠AOD,∠AOC=120°,求∠BOD,∠AOE•的 度数.
O
E D
C
B
A
4.如图所示,直线AB 与CD 相交于点O,∠AOC:∠AOD=2:3,求∠BOD 的度数.
O
D
C
B
A
5.如图所示,直线a,b,c 两两相交,∠1=2∠3,∠2=65°,求∠4的度数.
c
b
a
3
4
1
2
6.若4条不同的直线相交于一点,则图中共有几对对顶角?若n 条不同的直线相交 于一点呢?
7.在一个平面内任意画出6条直线,最多可以把平面分成几个部分?n 条直线呢?•
8. 已知点O 是直线AB 上一点,OC,OD 是两条射线,且∠AOC=∠BOD,则∠AOC 与∠BOD 是 对顶角吗?为什么?
垂线
一、选择题:(每小题3分,共18分)
1.如图1所示,下列说法不正确的是( )
A.点B 到AC 的垂线段是线段AB;
B.点C 到AB 的垂线段是线段AC
C.线段AD 是点D 到BC 的垂线段;
D.线段BD 是点B 到AD 的垂线段
D
C
B
A
D
C
B
A
O D
C
A
(1) (2) (3) 2.如图1所示,能表示点到直线(线段)的距离的线段有( ) A.2条 B.3条 C.4条 D.5条 3.下列说法正确的有( )
①在平面内,过直线上一点有且只有一条直线垂直于已知直线; ②在平面内,过直线外一点有且只有一条直线垂直于已知直线; ③在平面内,过一点可以任意画一条直线垂直于已知直线; ④在平面内,有且只有一条直线垂直于已知直线. A.1个 B.2个 C.3个 D.4个
4.如图2所示,AD ⊥BD,BC ⊥CD,AB=acm,BC=bcm,则BD 的范围是( ) A.大于acm B.小于bcm
C.大于acm 或小于bcm
D.大于bcm 且小于acm 5.到直线L 的距离等于2cm 的点有( )
A.0个
B.1个;
C.无数个
D.无法确定
6.点P 为直线m 外一点,点A,B,C 为直线m 上三点,PA=4cm,PB=5cm,PC=2cm,则点P 到 直线m 的距离为( ) A.4cm B.2cm; C.小于2cm D.不大于2cm 二、填空题:(每小题3分,共12分)
1.如图3所示,直线AB 与直线CD 的位置关系是_______,记作_______,此时,•∠AO D=∠_______=∠_______=∠
_______=90°.
2.过一点有且只有________直线与已知直线垂直.
3.画一条线段或射线的垂线,就是画它们________的垂线.
4.直线外一点到这条直线的_________,叫做点到直线的距离. 三、训练平台:(共15分)
如图所示,直线AB,CD,EF 交于点O,OG 平分∠BOF,且CD ⊥EF,∠AOE=70°,•求∠DOG 的度数.
G
O
F
E
D
C
B
A
A
四、提高训练:(共15分)
如图所示,村庄A 要从河流L 引水入庄, 需修筑一水渠,请你画出修筑水渠的路线图.
五、探索发现:(共20分)
如图6所示,O 为直线AB 上一点,∠AOC=
1
3
∠BOC,OC 是∠AOD 的平分线. (1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.
O
D
C B
A
六、中考题与竞赛题:(共20分)
(2001.杭州)如图7所示,一辆汽车在直线形的公路AB 上由A 向B 行驶,M,N•分别是 位于公路AB 两侧的村庄,设汽
车行驶到P 点位置时,离村庄M 最近,行驶到Q 点位置时,•离村庄N 最近,请你在AB 上分别画出P,Q 两点的位置.
N
B
A
答案:
一、1.C 2.D 3.C 4.D 5.C 6.D
二、1.垂直 AB⊥CD DOB BOC COA 2.一条 3.所在直线 4.•垂线段的长度
三、∠DOG=55°
四、解:如图3所示.
l
五、解:(1)∵∠AOC+∠BOC=∠AOB=180°,
∴1
3
∠BOC+∠BOC=180°,
∴4
3
∠BOC=•180°,
∴∠BOC=135°,∠AOC=45°,
又∵OC是∠AOD的平分线,
∴∠COD=∠AOC=45°.• (2)∵∠AOD=∠AOC+∠COD=90°,
∴OD⊥AB.
六、解:如图4所示.
Q
N
P
M A。

相关文档
最新文档