高考数学第二章函数与导数第7课时指数函数对数函数及幂函数

合集下载

高考数学考点7 指数函数、对数函数、幂函数

高考数学考点7 指数函数、对数函数、幂函数

温馨提示:考点7 指数函数、对数函数、幂函数一、选择题1.(2014·辽宁高考理科·T3)13212112,log ,log 33a b c -===.则()()()()A a b cB a c bC c a bD c b a >>>>>>>>【解题提示】结合指数函数与对数函数的图像及性质,判断,,a b c 的范围,确定大小. 【解析】选C.由于指数函数2xy =在R 上为增函数,则1030221-<<=;而对数函数2log y x =为(0,)+∞上的增函数,则221log log 103<=; 对数函数12log y x =为(0,)+∞上的减函数,则112211log log 132>=. 综上可知, .c a b >>2.(2014·陕西高考文科·T7)下列函数中,满足“f=ff”的单调递增函数是( )A.f =x 3B.f (x )=3xC.f= D.f (x )=【解题指南】由指数函数及幂函数的图像及性质可作出判断. 【解析】选B.根据函数满足“f=ff”可以推出该函数为指数函数,又函数为单调递增函数,所以底数大于1,从而确定函数为f(x)=3x . 3.(2014·山东高考文科·T3)函数1log 1)(2-=x x f 的定义域为( )A 、)20(,B 、]2,0(C 、),2(+∞D 、)2[∞+,【解题指南】 本题考查了函数的定义域,对数函数的性质,利用定义域的求法:1、分母不为零;2、被开方数为非负数;3、真数大于0. 【解析】选C由定义域的求法知:⎩⎨⎧>->01log 02x x ,解得2>x ,故选C.4. (2014·山东高考文科·T6)已知函数)10为常数.其中()(log ≠>+=,a a a,c c x y a 的图像如右图,则下列结论成立的是( )A 、11>>,c aB 、101<<>c ,aC 、1,10><<c aD 、1010<<<<c ,a【解题指南】 本题考查了对数函数的图像与性质及图像平移知识. 【解析】选D.由图象单调递减的性质可得01a <<,向左平移小于1个单位,故01c << 故选D.5. (2014·山东高考理科·T2)设集合{}[]{}2,0,2,21∈==<-=x y y B x x A x ,则=B A ( )[]2,0、A ()3,1、B [)3,1、C ()4,1、D 【解题指南】 本题考查了绝对值不等式的解法,指数函数的性质,集合的运算,可以先求出每个集合,然后再进行集合交集运算. 【解析】选C.由{}{}[]{}{}412,0,2,3121≤≤=∈==<<-=<-=y y x y y B x x x x A x , 所以[)3,1=B A .6. (2014·山东高考理科·T3)函数()f x =)A 、1(0,)2B 、(2,)+∞C 、1(0,)(2,)2+∞D 、1(0,][2,)2+∞【解题指南】 本题考查了函数的定义域,对数函数的性质,利用定义域的求法:1、分母不为零;2、被开方数为非负数;3、真数大于0. 【解析】选C由定义域的求法知:()⎩⎨⎧>->01log 022x x ,解得2>x 或210<<x ,故选C. 7.(2014·江西高考理科·T2)函数f (x )=ln (x 2-x )的定义域为( )A.(0,1)B.[0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞) 【解题指南】根据对数的真数大于零,转化为解一元二次不等式. 【解析】选C.要使函数有意义,需满足x 2-x>0,解得x<0或x>1.8.(2014·福建高考文科·T8)8.若函数()log 0,1a y x a a =>≠且的图象如右图所示,则下列函数正确的是( )【解题指南】利用图象的变换知识,或利用函数的增减性来排除干扰项。

指数对数幂函数知识点总结9篇

指数对数幂函数知识点总结9篇

指数对数幂函数知识点总结9篇第1篇示例:指数对数幂函数是高中数学中非常重要的内容之一,它在实际生活中有着广泛的应用。

指数对数幂函数是一种特殊的函数形式,通过指数、对数、以及幂运算的组合,可以描述各种复杂的变化关系。

在本文中,我们将对指数对数幂函数的相关知识点进行总结,帮助大家更好地理解和掌握这一重要内容。

一、指数函数指数函数是以自然常数e为底的幂函数,一般形式为f(x) = a^x,其中a为底数,x为指数。

指数函数的特点是底数a是一个固定的正数,指数x可以是任意实数。

指数函数的图像通常表现为一条逐渐增长或逐渐减小的曲线,其增长趋势取决于底数a的大小。

指数函数的性质有:1. 当底数a大于1时,函数呈现增长趋势;当底数a小于1且大于0时,函数呈现下降趋势。

2. 指数函数在x轴上的水平渐近线为y=0,在y轴上的垂直渐近线为x=0。

3. 在0<a<1时,指数函数是单调递减的;在a>1时,指数函数是单调递增的。

4. 指数函数的导数为f'(x)=a^x * ln(a),导数的值等于函数在该点的斜率。

1. 对数函数的图像是一条左开右闭的单调增函数。

2. ln(x)函数在x=1处的值为0,log(x)函数在x=1处的值也为0。

4. 对数函数的反函数是指数函数,即对数函数与指数函数是互为反函数的关系。

三、幂函数幂函数是指形如f(x) = x^n的函数,其中n为一个实数。

幂函数可以是单项式函数、分式函数以及多项式函数的基础函数形式。

幂函数的性质有:1. 当n为偶数时,幂函数呈现奇次函数的特点,曲线两侧对称于y 轴;当n为奇数时,幂函数呈现偶次函数的特点。

四、指数对数幂函数的综合应用指数对数幂函数在自然科学、工程技术、经济管理等领域有着广泛的应用。

在生态学中,人口增长规律可以用指数函数来描述;在物理学中,无阻射下的自由落体运动可以用幂函数来描述;在金融领域中,复利计算和收益增长也可以用指数函数和对数函数来分析。

指数对数幂函数知识点汇总

指数对数幂函数知识点汇总

指数函数、对数函数、幂函数单元复习与巩固一、知识框图二、知识要点梳理知识点一:指数及指数幂的运算1.根式的概念的次方根的定义:一般地,如果,那么叫做的次方根,其中当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为.负数没有偶次方根,0的任何次方根都是0.式子叫做根式,叫做根指数,叫做被开方数.2.n次方根的性质:(1)当为奇数时,;当为偶数时,(2)3.分数指数幂的意义:;注意:0的正分数指数幂等与0,负分数指数幂没有意义.4.有理数指数幂的运算性质:(1) (2) (3)知识点二:指数函数及其性质1.指数函数概念一般地,函数叫做指数函数,其中是自变量,函数的定义域为.2.指数函数函数性质:函数指数函数名称定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向象的影响看图象,逐渐减小.知识点三:对数与对数运算1.对数的定义(1)若,则叫做以为底的对数,记作,其中叫做底数,叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:.2.几个重要的对数恒等式,,.3.常用对数与自然对数常用对数:,即;自然对数:,即(其中…).4.对数的运算性质如果,那么①加法:②减法:③数乘:④⑤⑥换底公式:知识点四:对数函数及其性质1.对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域.2.对数函数性质:函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图象的影响在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向看图象,逐渐减小.知识点六:幂函数1.幂函数概念 形如的函数,叫做幂函数,其中为常数.2.幂函数的性质(1)图象分布:幂函数图象分布在第一、二、三象限,第四象限 无图象.幂函数是偶函数时,图象分布在第一、二象限(图象 关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象 限.(2)过定点:所有的幂函数在都有定义,并且图象都通过点.(3)单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.(4)奇偶性:具体函数具体讨论(5)图象特征:幂函数当时,在第一象限,图像与32,x y x y ==的图像大致趋势一样,当10<<α时,在第一象限,图像与21x y =的图像大致趋势一样,当0<α时,在第一象限,图像与1-=xy 的图像大致趋势一样一元二次方程、一元二次不等式与二次函数的关系设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表: 0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根)(,2121x x x x < 有两相等实根ab x x 221-==无实根 的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02>≥++a c bx ax{}21x x x x x ≥≤或RR 的解集)0(02><++a c bx ax {}21x x x x <<∅ ∅ 的解集)0(02>≤++a c bx ax{}21x x xx ≤≤⎭⎬⎫⎩⎨⎧-=a b x x 2∅。

幂函数指数函数对数函数比较大小 ppt课件

幂函数指数函数对数函数比较大小 ppt课件
• “太阳当空照,花儿对我笑,小鸟说早早早……”
(1)定义域:R (2)值域:(0, +)
(3)单调性:当01时,指数函数在定义域上是减函数 当1时,指数函数在定义域上是增函数
(4)奇偶性:非奇非偶
幂函数指数函数对数函数比较大小
幂函数指数函数对数函数比较大小
幂函数指数函数对数函数比较大小 Nhomakorabea精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”

人教高中数学必修二B版《指数与指数函数》指数函数、对数函数与幂函数说课复习(指数函数的性质与图像)

人教高中数学必修二B版《指数与指数函数》指数函数、对数函数与幂函数说课复习(指数函数的性质与图像)

5 -3
8
与 1;
.
分析:若两个数是同底指数幂,则直接利用指数函数的单调性比
较大小;若不同底,一般用中间值法.
课堂篇探究学习
探究一
探究二
探究三
探究四
规范解答
3
4
解:(1)∵0< <1,
3
∴y= 4 在定义域 R 内是减函数.
3 -1.8
3 -2.6
又∵-1.8>-2.6,∴
<
.
4
4
5
(2)∵0< <1,
1
(a>0,且

a≠1)的图像关于 y 轴对
称,分析指数函数 y=ax(a>0,且 a≠1)的图像时,需找三个关键
点:(1,a),(0,1),
1
-1,
.
③指数函数的图像永远在 x 轴的上方.当 a>1 时,图像越接近于
y 轴,底数 a 越大;当 0<a<1 时,图像越接近于 y 轴,底数 a 越小.
解:因为y=(a2-3a+3)ax是指数函数,
所以
2 -3 + 3 = 1,
> 0,且 ≠ 1,
所以 a=2.
解得
= 1 或 = 2,
> 0,且 ≠ 1,
课堂篇探究学习
探究一
探究二
探究三
探究四
规范解答
当堂检测
反思感悟1.判断一个函数是指数函数的方法:
(1)看形式:即看是否符合y=ax(a>0,a≠1,x∈R)这一结构形式.
课堂篇探究学习
探究一
探究二
探究三
探究四
规范解答

指数对数幂函数知识点总结8篇

指数对数幂函数知识点总结8篇

指数对数幂函数知识点总结8篇第1篇示例:指数对数幂函数是高等数学中重要、常用的一类函数。

它们是解决数学问题和建立数学模型中不可或缺的工具。

在学习指数对数幂函数的知识时,需要掌握函数的定义、性质、图像、导数等方面的内容。

本文将对指数对数幂函数进行系统总结,以便读者更好地理解和掌握这一知识点。

一、指数函数指数函数是形如y = a^x(其中a>0且a≠1)的函数,其中a称为底数,x称为指数。

指数函数的图像通常是一个以底为a的指数曲线,其特点是随着x的增大,y值迅速增大。

指数函数的性质有:1.当底数a>1时,函数y = a^x是递增函数;当0 0时,函数y = a^x是减函数。

2.指数函数的定义域是所有实数,值域是所有大于0的实数。

3.指数函数的图像通常是通过点(0,1) 并且随着x的增大发生指数增长。

4.指数函数满足f(x) * f(y) = f(x+y)。

5.指数函数的反函数是对数函数,即y = loga(x)。

3.对数函数的图像是一个S形曲线,随着x的增大,y值逐渐增大。

5.对数函数的导数为1/x*ln(a)。

三、幂函数幂函数是形如y = x^a(其中a为常数)的函数,其特点是x的次方为a。

幂函数的性质有:3.幂函数的特殊情况之一是y = x^2,即二次函数,其图像是一个开口向上的抛物线。

第2篇示例:指数对数幂函数是数学中常见的一类函数,主要包括指数函数、对数函数和幂函数。

在数学中,这些函数在图像、性质和应用等方面都有着重要的作用。

本文将从定义、性质和应用三个方面对指数对数幂函数进行总结。

一、指数函数指数函数的一般形式为f(x) = a^x,其中a为底数且a>0且a≠1,x为指数。

指数函数的定义域为实数集R,值域为正实数集R+。

指数函数的图像呈指数增长或指数衰减的特点,当底数a>1时为指数增长;当底数0<a<1时为指数衰减。

指数函数的特点包括:单调性、奇偶性、零点、渐近线等。

高中数学 第二章 指数函数、对数函数和幂函数 2.2.3 对数函数的图象和性质 第1课时 反函数及对

高中数学 第二章 指数函数、对数函数和幂函数 2.2.3 对数函数的图象和性质 第1课时 反函数及对

2.2.3 对数函数的图象和性质第1课时反函数及对数函数的图象和性质[学习目标] 1.理解对数函数的概念.2.初步掌握对数函数的图象及性质.3.会类比指数函数,研究对数函数的性质.[知识]1.作函数图象的步骤为列表、描点、连线.另外也可以采取图象变换法.2.指数函数y=a x(a>0且a≠1)的图象与性质.a>10<a<1 图象定义域R值域(0,+∞)性质过定点过点(0,1),即x=0时,y=1函数值的变化当x>0时,y>1;当x<0时,0<y<1当x>0时,0<y<1;当x<0时,y>1 单调性是R上的增函数是R上的减函数[预习导引]1.对数函数的概念把函数y=log a x(x>0,a>0,a≠1)叫作(以a为底的)对数函数,其中x是自变量,函数的定义域是(0,+∞).2.对数函数的图象与性质a>10<a<1 图象性质定义域(0,+∞)值域R过点过点(1,0),即x=1时,y=0函数值的变化当0<x<1时,y<0;当x>1时,y>0当0<x<1时,y>0;当x>1时,y<0单调性是(0,+∞)上的增函数是(0,+∞)上的减函数3.反函数(1)对数函数y=log a x(a>0且a≠1)与指数函数y=a x(a>0,且a≠1)互为反函数.(2)要寻找函数y=f(x)的反函数,可以先把x和y换位,写成x=f(y),再把y解出来,表示成y=g(x)的形式,如果这种形式是唯一确定的,就得到f(x)的反函数g(x).要点一对数函数的概念例1 指出下列函数哪些是对数函数?(1)y=3log2x;(2)y=log6x;(3)y=log x3;(4)y=log2x+1.解(1)log2x的系数是3,不是1,不是对数函数.(2)符合对数函数的结构形式,是对数函数.(3)自变量在底数位置上,不是对数函数.(4)对数式log2x后又加1,不是对数函数.规律方法判断一个函数是对数函数必须是形如y=log a x(a>0且a≠1)的形式,即必须满足以下条件(1)系数为1.(2)底数为大于0且不等于1的常数.(3)对数的真数仅有自变量x.跟踪演练1 若某对数函数的图象过点(4,2),则该对数函数的解析式为( )A.y=log2x B.y=2log4xC.y=log2x或y=2log4x D.不确定答案 A解析设对数函数的解析式为y=log a x(a>0且a≠1),由题意可知log a4=2,∴a2=4,∴a =2,∴该对数函数的解析式为y=log2x.要点二对数函数的图象例2 如图所示,曲线是对数函数y =log a x 的图象,已知a 取3,43,35、110,则相应于c 1、c 2、c 3、c 4的a 值依次为( )A.3、43、35、110B.3、43、110、35C.43、3、35、110D.43、3、110、35 答案 A解析 方法一 先排c 1、c 2底的顺序,底都大于1,当x >1时图低的底大,c 1、c 2对应的a 分别为3、43.然后考虑c 3、c 4底的顺序,底都小于1,当x <1时底大的图高,c 3、c 4对应的a 分别为35、110.综合以上分析,可得c 1、c 2、c 3、c 4的a 值依次为3、43、35、110.故选A.方法二 作直线y =1与四条曲线交于四点,由y =log a x =1,得x =a (即交点的横坐标等于底数),所以横坐标小的底数小,所以c 1、c 2、c 3、c 4对应的a 值分别为3、43、35、110,故选A.规律方法 函数y =log a x (a >0且a ≠1)的底数变化对图象位置的影响.观察图象,注意变化规律:(1)上下比较:在直线x =1的右侧,a >1时,a 越大,图象向右越靠近x 轴,0<a <1时a越小,图象向右越靠近x 轴.(2)左右比较:比较图象与y =1的交点,交点的横坐标越大,对应的对数函数的底数越大. 跟踪演练2 (1)函数y =log a (x +2)+1的图象过定点( ) A .(1,2) B .(2,1) C .(-2,1) D .(-1,1)(2)如图,若C 1,C 2分别为函数y =log a x 和y =log b x 的图象,则( )A .0<a <b <1B .0<b <a <1C .a >b >1D .b >a >1 答案 (1)D (2)B解析 (1)令x +2=1,即x =-1, 得y =log a 1+1=1,故函数y =log a (x +2)+1的图象过定点(-1,1).(2)作直线y =1,则直线与C 1,C 2的交点的横坐标分别为a ,b ,易知0<b <a <1. 要点三 对数函数的定义域例3 (1)函数f (x )=11-x +lg(1+x )的定义域是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞) D.(-∞,+∞) (2)若f (x )=121log (21)x +,则f (x )的定义域为( )A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎭⎪⎫-12,+∞ C.⎝ ⎛⎭⎪⎫-12,0∪(0,+∞) D.⎝ ⎛⎭⎪⎫-12,2 答案 (1)C (2)C解析 (1)由题意知⎩⎪⎨⎪⎧1+x >0,1-x ≠0,解得x >-1且x ≠1.(2)由题意有⎩⎪⎨⎪⎧2x +1>0,2x +1≠1,解得x >-12且x ≠0.规律方法 求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意对数的底数;三是按底数的取值应用单调性,有针对性地解不等式. 跟踪演练3 (1)函数y =x ln(1-x )的定义域为( ) A .(0,1) B .[0,1) C .(0,1] D .[0,1] (2)函数y =lgx +1x -1的定义域是( )A .(-1,+∞) B.[-1,+∞)C .(-1,1)∪(1,+∞) D.[-1,1)∪(1,+∞) 答案 (1)B (2)C解析 (1)因为y =x ln(1-x ),所以⎩⎪⎨⎪⎧x ≥0,1-x >0,解得0≤x <1.(2)要使函数有意义,需⎩⎪⎨⎪⎧x +1>0,x -1≠0,解得x >-1且x ≠1,故函数的定义域为(-1,1)∪(1,+∞),故选C. 要点四 反函数例4 求下列函数的反函数:(1)y =2x -5;(2)y =x1-x ;(3)y =1+e 2x . 解 (1)从x =2y -5中解得y =x +52,即为所求;(2)从x =y 1-y 中解得y =xx +1,即为所求;(3)从x =1+e 2y 移项得x -1=e 2y .两端取自然对数得到ln(x -1)=y2,解得y =2ln(x -1),即为所求.规律方法 要找寻函数y =f (x )的反函数,可以先把x 和y 换位,写成x =f (y ),再把y 解出来,表示成y =g (x )的形式.如果这种形式是唯一确定的,就得到了f (x )的反函数g (x ).既然y =g (x )是从x =f (y )解出来的,必有f (g (x ))=x ,这个等式也可以作为反函数的定义. 跟踪演练4 y =ln x 的反函数是________. 答案 y =e x解析 由y =ln x ,得x =e y ,所以反函数为y =e x.1.下列函数是对数函数的是( ) A .y =log a (2x ) B .y =log 22xC .y =log 2x +1D .y =lg x 答案 D解析 选项A 、B 、C 中的函数都不具有“y =log a x (a >0且a ≠1)”的形式,只有D 选项符合. 2.函数f (x )=11-x +lg(3x +1)的定义域是( )A .(-13,+∞) B.(-∞,-13)C .(-13,13)D .(-13,1)答案 D解析 由⎩⎪⎨⎪⎧1-x >0,3x +1>0,可得-13<x <1.3.函数y =a x与y =-log a x (a >0,且a ≠1)在同一坐标系中的图象形状可能是( )答案 A解析 函数y =-log a x 恒过定点(1,0),排除B 项; 当a >1时,y =a x是增函数,y =-log a x 是减函数,排除C 项,当0<a <1时,y =a x是减函数,y =-log a x 是增函数,排除D 项,A 项正确.4.若a >0且a ≠1,则函数y =log a (x -1)+1的图象恒过定点________. 答案 (2,1)解析 函数图象过定点,则与a 无关, 故log a (x -1)=0,所以x -1=1,x =2,y =1, 所以y =log a (x -1)+1过定点(2,1). 5.函数y =lg x 的反函数是________. 答案 y =10x解析 由反函数的定义知x =10y,故反函数为y =10x.1.判断一个函数是不是对数函数关键是分析所给函数是否具有y =log a x (a >0且a ≠1)这种形式.2.在对数函数y =log a x 中,底数a 对其图象直接产生影响,学会以分类的观点认识和掌握对数函数的图象和性质.3.涉及对数函数定义域的问题,常从真数和底数两个角度分析.一、基础达标1.函数y =log a x 的图象如图所示,则a 的值可以是( )A .0.5B .2C .eD .π 答案 A解析 ∵函数y =log a x 的图象单调递减,∴0<a <1,只有选项A 符合题意. 2.函数f (x )=lg(x -1)+4-x 的定义域为( ) A .(1,4] B .(1,4) C .[1,4] D .[1,4) 答案 A解析 由⎩⎪⎨⎪⎧x -1>0,4-x ≥0,解得1<x ≤4.3.在同一坐标系中,函数y =log 3x 与y =13log x 的图象之间的关系是( )A .关于y 轴对称B .关于x 轴对称C .关于原点对称D .关于直线y =x 对称 答案 B解析 ∵y =13log x =-log 3x ,∴函数y =log 3x 与y =13log x 的图象关于x 轴对称.4.如图是三个对数函数的图象,则a 、b 、c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b 答案 D解析 y =log a x 的图象在(0,+∞)上是上升的,所以底数a >1,函数y =log b x ,y =log c x 的图象在(0,+∞)上都是下降的,因此b ,c ∈(0,1),又易知c >b ,故a >c >b .5.已知函数f (x )=⎩⎪⎨⎪⎧3x, x ≤0,log 2x ,x >0,那么f (f (18))的值为( )A .27 B.127C .-27 D .-127答案 B解析 f (18)=log 218=log 22-3=-3,f (f (18))=f (-3)=3-3=127.6.已知对数函数f (x )的图象过点(8,-3),则f (22)=________. 答案 -32解析 设f (x )=log a x (a >0,且a ≠1), 则-3=log a 8,∴a =12.∴f (x )=log 12x ,f (22)=log 12(22)=-log 2(22)=-32.7.求下列函数的定义域: (1)f (x )=lg(x -2)+1x -3; (2)f (x )=log (x +1)(16-4x ).解 (1)要使函数有意义,需满足⎩⎪⎨⎪⎧x -2>0,x -3≠0,解之得x >2且x ≠3.∴函数定义域为(2,3)∪(3,+∞). (2)要使函数有意义,需满足⎩⎪⎨⎪⎧16-4x >0,x +1>0,x +1≠1,解之得-1<x <0或0<x <4. ∴函数定义域为(-1,0)∪(0,4). 二、能力提升8.设函数f (x )=log 2x 的反函数为y =g (x ),且g (a )=14,则a 等于( )A .2B .-2 C.12 D .-12答案 B解析 ∵函数f (x )=log 2x 的反函数为y =2x,即g (x )=2x. 又∵g (a )=14,∴2a=14,∴a =-2.9.若函数f (x )=log a (x +b )的图象如图,其中a ,b 为常数,则函数g (x )=a x+b 的图象大致是( )答案 D解析 由函数f (x )=log a (x +b )的图象可知,函数f (x )=log a (x +b )在(-b ,+∞)上是减函数.所以0<a <1且0<b <1.所以g (x )=a x+b 在R 上是减函数,故排除A ,B.由g (x )的值域为(b ,+∞).所以g (x )=a x+b 的图象应在直线y =b 的上方,故排除C. 10.若log 2a 1+a21+a<0,则a 的取值X 围是____________.答案 ⎝ ⎛⎭⎪⎫12,1解析 当2a >1时,∵log 2a 1+a21+a <0=log 2a 1,∴1+a 21+a <1.∵1+a >0,∴1+a 2<1+a , ∴a 2-a <0,∴0<a <1,∴12<a <1.当0<2a <1时,∵log 2a 1+a21+a <0=log 2a 1,∴1+a 21+a >1.∵1+a >0,∴1+a 2>1+a , ∴a 2-a >0,∴a <0或a >1,此时不合题意.综上所述,a ∈⎝ ⎛⎭⎪⎫12,1. 11.已知f (x )=log 3x . (1)作出这个函数的图象;(2)若f (a )<f (2),利用图象求a 的取值X 围. 解 (1)作出函数y =log 3x 的图象如图所示.(2)令f (x )=f (2),即log 3x =log 32,解得x =2.由图象知:函数f (x )为单调增函数,当0<a <2时,恒有f (a )<f (2).∴所求a 的取值X 围为(0,2). 三、探究与创新12.求y =(log 12x )2-12log 12x +5在区间[2,4]上的最大值和最小值.解 因为2≤x ≤4,所以log 122≥log 12x ≥log 124,即-1≥log 12x ≥-2.设t =log 12x ,则-2≤t ≤-1,所以y =t 2-12t +5,其图象的对称轴为直线t =14,所以当t =-2时,y max =10;当t =-1时,y min =132.13.若函数f (x )为定义在R 上的奇函数,且x ∈(0,+∞)时,f (x )=lg(x +1),求f (x )的word 11 / 11 表达式,并画出大致图象.解 ∵f (x )为R 上的奇函数,∴f (0)=0. 又当x ∈(-∞,0)时,-x ∈(0,+∞), ∴f (-x )=lg(1-x ).又f (-x )=-f (x ),∴f (x )=-lg(1-x ),∴f (x )的解析式为f (x )=⎩⎪⎨⎪⎧lg x +1,x >0,0,x =0,-lg 1-x ,x <0,∴f (x )的大致图象如图所示:。

2018版高考数学专题2指数函数对数函数和幂函数2.2.2换底公式课件湘教版必修

2018版高考数学专题2指数函数对数函数和幂函数2.2.2换底公式课件湘教版必修
2018版高考数学专题2指 数函数对数函数和幂函数 2.2.2换底公式课件湘教版 必修
在数学专题2中,我们将探讨指数函数、对数函数和幂函数的换底公式,包括 定义、推导过程、证明方法和应用场景。
换底公式的定义
换底公式是指在指数函数和对数函数中,将底数换成不同的数时,用于求解 等式的公式。
换底公式的推导过程
我们将详细解释换底公式的推导过程和思路,并探讨不同的证明方法和其直观解释。
换底公式的应用举例
通过举例,我们将展示换底公式在实际问题中的应用,以及其重要性和应用 场景。
换底公式的练习题目
选择题
根据换底公式求解给定的选 择题。
计算题
使用换底公式计算指数函数 和对数函数的值。
应关问题。
换底公式的表述和含义
换底公式是为了更好地理解指数函数和对数函数,并运用其特性解决实际问题而提出的重要工具。
换底公式的直观解释
我们将通过直观的解释方式,帮助您更加深入地理解换底公式的含义和作用。
换底公式的重要性和应用场景
我们将讨论换底公式在数学领域中的重要性,并探索其在实际应用中的不同场景。

幂函数、指数函数和对数函数·对数及其运算法则·教案

幂函数、指数函数和对数函数·对数及其运算法则·教案

幂函数、指数函数和对数函数·对数及其运算法则·教案教学目标:1. 理解幂函数、指数函数和对数函数的定义及性质。

2. 掌握对数的定义及其运算法则。

3. 能够运用幂函数、指数函数和对数函数解决实际问题。

教学内容:第一章:幂函数1.1 幂函数的定义与性质1.2 幂函数图像的特点1.3 幂函数的应用第二章:指数函数2.1 指数函数的定义与性质2.2 指数函数图像的特点2.3 指数函数的应用第三章:对数函数3.1 对数的定义与性质3.2 对数函数图像的特点3.3 对数函数的应用第四章:对数及其运算法则4.1 对数的换底公式4.2 对数的运算法则4.3 对数函数的图像与性质第五章:实际问题中的应用5.1 利用幂函数、指数函数和对数函数解决实际问题5.2 练习题及解答教学方法:1. 采用讲授法,讲解幂函数、指数函数和对数函数的定义、性质及应用。

2. 利用数形结合法,引导学生观察函数图像,加深对函数性质的理解。

3. 通过例题和实际问题,培养学生的应用能力。

教学评估:1. 课堂提问,检查学生对幂函数、指数函数和对数函数的理解程度。

2. 布置课后作业,巩固所学知识。

3. 进行单元测试,评估学生的掌握情况。

教学资源:1. 教学PPT,展示幂函数、指数函数和对数函数的图像及性质。

2. 教材和辅导书,提供相关知识点的详细讲解和例题。

3. 网络资源,查阅实际问题中的应用案例。

教学时间安排:1. 第一章:2课时2. 第二章:2课时3. 第三章:2课时4. 第四章:2课时5. 第五章:1课时幂函数、指数函数和对数函数·对数及其运算法则·教案(续)教学内容:第六章:指数与对数的互化6.1 指数与对数的关系6.2 指数与对数的互化方法6.3 指数与对数互化在实际问题中的应用第七章:对数函数的图像与性质7.1 对数函数的图像特点7.2 对数函数的性质7.3 对数函数图像与性质的应用第八章:对数函数在实际问题中的应用8.1 对数函数解决生长、衰减问题8.2 对数函数在几何问题中的应用8.3 对数函数在其他领域的应用第九章:对数方程与对数不等式9.1 对数方程的解法9.2 对数不等式的解法9.3 对数方程与对数不等式的应用第十章:总结与拓展10.1 幂函数、指数函数和对数函数的总结10.2 数学思想与方法的拓展10.3 课后习题与思考题教学方法:1. 采用讲授法,讲解指数与对数的关系、互化方法及其应用。

幂函数指数函数和对数函数单元教学设计

幂函数指数函数和对数函数单元教学设计

活动意图说明: 点评 考察定义,只有满足函数解析式右边的系数为1,底数为自变量x ,指数为常数这三个条件,才是幂函数.如:y =3x 2,y =(2x )3,y =⎝⎛⎭⎫x 24都不是幂函数. 环节二:教师活动2知识点二 五个幂函数的图象与性质 1.在同一平面直角坐标系内函数(1)y =x ;(2)12y x =;(3)y =x 2;(4)y =x -1;(5)y =x 3的图象如图.2.五个幂函数的性质y =x y =x 2 y =x 3 12y x =y =x -1定义域 R R R [0,+∞) {x |x ≠0} 值域 R [0,+∞) R [0,+∞) {y |y ≠0} 奇偶性奇偶 奇非奇非偶奇 单调性增在[0,+∞) 上增, 在(-∞,0] 上减增增在(0,+∞) 上减, 在(-∞,0) 上减知识点三 一般幂函数的图象特征一般幂函数特征:(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1);(2)当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸; (3)当α<0时,幂函数的图象在区间(0,+∞)上是减函数;(4)幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称; (5)在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列. 学生活动学生把自己的作图结果展示并比较,讨论,校对。

教师最后可以用课件动态展示结果。

并得出正确的图像。

学生先相互讨论,如有不足老师再提醒或补充。

活动意图说明学生通过作图从熟悉的图像到陌生的图像进一步学会做图和看图,学会图像这个工具进一步研究性质。

幂函数、指数函数和对数函数对数及其运算法则教案

幂函数、指数函数和对数函数对数及其运算法则教案

幂函数、指数函数和对数函数对数及其运算法则教案第一章:幂函数1.1 幂函数的定义与性质学习幂函数的定义:f(x) = x^a,其中a为常数。

探讨幂函数的性质,如奇偶性、单调性等。

1.2 幂函数的图像与解析式绘制常见的幂函数图像,如f(x) = x^2,f(x) = x^-1等。

学习如何从图像得出幂函数的解析式。

第二章:指数函数2.1 指数函数的定义与性质学习指数函数的定义:f(x) = a^x,其中a为正常数。

探讨指数函数的性质,如单调性、特殊点等。

2.2 指数函数的图像与解析式绘制常见的指数函数图像,如f(x) = 2^x,f(x) = 3^x等。

学习如何从图像得出指数函数的解析式。

第三章:对数函数3.1 对数函数的定义与性质学习对数函数的定义:f(x) = log_a(x),其中a为正常数。

探讨对数函数的性质,如单调性、特殊点等。

3.2 对数函数的图像与解析式绘制常见的对数函数图像,如f(x) = log_2(x),f(x) = log_3(x)等。

学习如何从图像得出对数函数的解析式。

第四章:对数运算法则4.1 对数的基本运算法则学习对数的加法、减法、乘法和除法法则。

4.2 对数的复合运算法则学习对数的乘方和除方法则。

第五章:对数函数的应用5.1 对数函数在实际问题中的应用探讨对数函数在实际问题中的应用,如人口增长、放射性衰变等。

5.2 对数函数在其他数学领域的应用探讨对数函数在其他数学领域的应用,如微积分中的对数微分等。

第六章:指数函数的应用6.1 指数函数在实际问题中的应用探讨指数函数在实际问题中的应用,如复利计算、生物种群增长等。

6.2 指数函数在其他数学领域的应用探讨指数函数在其他数学领域的应用,如概率论中的指数分布等。

第七章:幂函数和指数函数的综合应用7.1 幂函数和指数函数在实际问题中的应用探讨幂函数和指数函数在实际问题中的应用,如物理学中的能量公式、经济学中的需求函数等。

7.2 幂函数和指数函数在其他数学领域的应用探讨幂函数和指数函数在其他数学领域的应用,如图论中的指数时间算法等。

第二章 幂函数、指数函数、对数函数第四节对数函数

第二章  幂函数、指数函数、对数函数第四节对数函数
第二章 幂函数、指数函数、对数函数
第一节 第二节 第三节 第四节
函数 幂函数 指数函数 对数函数
第四节 对数函数
一、对数的定义及运算
1.对数的定义 我们知道 23 8,现在提出相反的问题,2 的多少次幂等于 8?如何表示这种逆运算?我们采用一个新
的式子:log 83表示,这里的 2 称为底数,8 称为真数,3 称为 2
(3) 在 0,+ 内单调递增
(4) 当x +,y +; x 0时,y -
(1) x > 0
(2) 当x = 1时,y = 0; 当x > 1时,y 0; 当0 < x < 1时,y 0
(3) 在 0,+ 内单调递减
(4) 当x +,y ; x 0时,y
例 7 比较下列各组里两个数的大小.
例 3 用loga x,loga y,loga z表示下列各式
(1) loga x2 y3;
(2)
loga
xy z2
.
解 (1) loga x2 y3 2loga x3loga y;
(2)
loga
xy z2
loga
xy
loga
z2
loga
x
loga
y
2loga
z.
4.常用对数、自然对数、对数的换底公式 我们规定,以
x
,
y
10x
,
y
ex
的反函数.
三、对数函数的图像和性质
y
y a x a>1
y
y= x
y ax
0<a<1
y log a x
1
a>1

(通用版)2020版高考数学复习专题二函数与导数2.2幂函数、指数函数、对数函数及分段函数课件

(通用版)2020版高考数学复习专题二函数与导数2.2幂函数、指数函数、对数函数及分段函数课件

的图象如图所示,由图可得 x1<x3<x2,故选 A.
-22-
高考真题体验
典题演练提能
5.已知函数 f(x)=ex-12(x<0)与 g(x)=ln(x+a)的图象上存在关于 y 轴对 称的点,则实数 a 的取值范围是( )
A.
-∞,
1 e
B. -∞, e
C.
-
1 e
,
e
D.
-
e,
1 e
答案:B
-23-
而lg 2-1<0,2lg 2-1<0,lg 3-1<0,lg 2>0,
∴a+b<0.
������+������ ������������
=
1 ������
+
1������=log0.32+log0.30.2=log0.30.4<log0.30.3=1.∴ab<a+b.故
选 B.
-4-
高考真题体验
项,y=(-x)3=-x3,其图象和B选项中y=x3的图象关于x轴对称,故C不正
确.D选项,y=log3(-x),其图象与y=log3x的图象关于y轴对称,故D选项 不正确.综上,可知选B.
-16-
高考真题体验
典题演练提能
1.在同一直角坐标系中,函数f(x)=2-ax,g(x)=loga(x+2)(a>0,且a≠1) 的图象大致为( )
������1 =log2(x1+1), 1
2
������2 =log3x2, 1
2
-21-
高考真题体验
典题演练提能
解析:x1,x2,x3 分别是函数 y=

2015届高考数学总复习(基础过关+能力训练):函数与导数 指数函数、对数函数及幂函数(1)(含答案)

2015届高考数学总复习(基础过关+能力训练):函数与导数 指数函数、对数函数及幂函数(1)(含答案)

第二章 函数与导数第7课时 指数函数、对数函数及幂函数(1)1. 化简 3b a ·3a 23b (a>0,b>0)=________. 答案:63ab2. 已知3a =2,3b =15,则32a -b =________. 答案:20 解析:32a -b =32a 3b =415=20. 3. 比较log 25与log 58的大小为________.答案:log 25>log 58 解析:log 25>log 24=2,log 58<log 525=2.4. ⎝⎛⎭⎫21412-⎝⎛⎭⎫338-23+15+2-9-45=________. 答案:19185. 设lg2=a ,lg3=b ,则log 512用a 、b 可表示为________.答案:2a +b 1-a解析:log 512=lg12lg5=2lg2+lg31-lg2. 6. 已知函数f(x)=alog 2x +blog 3x +2,且f ⎝⎛⎭⎫12 014=4,则f(2 014)=________.答案:0解析:因为f ⎝⎛⎭⎫12 014=-alog 22 014-blog 32 014+2,f(2 014)=alog 22 014+blog 32 014+2,所以f ⎝⎛⎭⎫12 014+f(2 014)=4.由于f ⎝⎛⎭⎫12 014=4,所以f(2 014)=0.7. 已知函数f(x)=⎩⎪⎨⎪⎧3x ,x ≤2,f (x -1),x>2,则f(2+log 32)=________. 答案:6解析:因为2<2+log 32<3,所以f(2+log 32)=f(1+log 32)=31+log 32=3·3log 32=3×2=6.8. 已知2lg x -y 2=lgx +lgy ,则x y=________. 答案:1+ 2解析:由已知得 lg ⎝⎛⎭⎫x -y 22=lg(xy),故⎝⎛⎭⎫x -y 22=xy ,即 x 2-6xy +y 2=0,所以⎝⎛⎭⎫x y 2-6x y+1=0,所以x y =3±2 2.因x -y 2>0及x 、y >0,故x >y >0,即x y >1,从而x y =3+22,x y=1+ 2.9. 计算:(1) lg25+lg2·lg50+(lg2)2;(2) (log 23+log 89)(log 34+log 38+log 272).解:(1) 原式=2lg5+lg2·(1+lg5)+(lg2)2=2lg5+lg2(1+lg5+lg2)=2lg5+2lg2=2.(2) 原式=⎝⎛⎭⎫log 23+23log 23(2log 32+3log 32+13log 32)=⎝⎛⎭⎫53log 23·⎝⎛⎭⎫163log 23=809. 10. 已知a >1,且a +a -1=3,求下列各式的值.(1) a 12-a -12; (2) a -a -1;(3) ⎝⎛⎭⎫a 12-a -12(a 2+a -2-4)a 4-a -4. 解:(1) ⎝⎛⎭⎫a 12-a -122=a +a -1-2=1. ∵ a >1,∴ a 12-a -12=1. (2) 由a +a -1=3,得a 2+a -2+2=9,即a 2+a -2=7,∴ (a -a -1)2=a 2+a -2-2=5.∵ a >1,∴ a -a -1= 5. (3) ⎝⎛⎭⎫a 12-a -12(a 2+a -2-4)a 4-a -4=⎝⎛⎭⎫a 12-a -12(a 2+a -2-4)(a -a -1)(a +a -1)(a 2+a -2)=1×(7-4)7×3×5=535. 11. 设x>1,y>1,且2log x y -2log y x +3=0,求T =x 2-4y 2的最小值.解:因为x>1,y>1,所以log x y>0.令t =log x y ,则log y x =1t .所以2t -1t+3=0,解得t =12或t =-2(舍去),即log x y =12,所以y =x.所以T =x 2-4y 2=x 2-4x =(x -2)2-4,由于x>1,所以当x =2,y =2时,T 的最小值是-4.。

高中数学幂函数指数函数对数函数三角函数求导公式以及积与商的函数导数求法

高中数学幂函数指数函数对数函数三角函数求导公式以及积与商的函数导数求法

高中数学幂函数指数函数对数函数三角函数求导公式以及积与商的函数导数求法高中数学中,幂函数、指数函数、对数函数和三角函数是常见的函数类型。

这些函数求导的公式常用于解决函数的速率和变化率等问题。

同时,积与商的函数导数求法也是数学中常用的方法之一1.幂函数的导数:幂函数的一般形式为y = ax^n (a ≠ 0, n为实数)。

其导数可以通过求导公式来计算。

对于幂函数 y = ax^n,其导数为 dy/dx = anx^(n-1)。

例如,对于函数 y = 2x^3,其导数为 dy/dx = 3*2x^(3-1) = 6x^2 2.指数函数的导数:指数函数的一般形式为y=a^x(a>0,a≠1)。

其导数可以通过自然对数的导数来计算。

对于指数函数 y = a^x,其导数为 dy/dx = ln(a) * a^x。

例如,对于函数 y = e^x,其导数为 dy/dx = ln(e) * e^x = e^x。

3.对数函数的导数:对数函数的一般形式为y = log_a(x) (a > 0, a ≠ 1)。

其导数可以通过换底公式和幂函数的导数来计算。

换底公式:log_a(x) = ln(x) / ln(a)对于对数函数 y = log_a(x),其导数为 dy/dx = 1/(xln(a))。

例如,对于函数 y = log_2(x),其导数为 dy/dx = 1/(xln(2))。

4.三角函数的导数:常见的三角函数包括正弦函数、余弦函数和正切函数等。

它们的导数可以通过基本导数公式来计算。

正弦函数的导数:d(sin(x))/dx = cos(x)余弦函数的导数:d(cos(x))/dx = -sin(x)正切函数的导数:d(tan(x))/dx = sec^2(x)5.积的函数导数求法:对于两个函数相乘的情况,可以使用乘积的求导法则来计算。

设函数 y = f(x) * g(x),其中 f(x) 和 g(x) 为可导函数,则它们的乘积的导数为 dy/dx = f'(x) * g(x) + f(x) * g'(x)。

指数函数对数函数和幂函数知识点归纳

指数函数对数函数和幂函数知识点归纳

指数函数对数函数和幂函数知识点归纳指数函数、对数函数和幂函数是数学中常见的函数类型,它们有着重要的数学性质,并广泛应用于科学、经济和工程等领域。

本文将对这三类函数的定义、性质和应用进行归纳。

指数函数是以一个常数为底数的一个数的幂次运算,具有以下一般形式:f(x)=a^x,其中a为常数且不等于1、指数函数的定义域为全体实数,值域为(0,+∞)或(a^m,+∞)(若a>1时,其中m为任意正数)。

指数函数具有以下性质:1.当x趋于负无穷时,指数函数趋于0;当x趋于正无穷时,指数函数趋于正无穷。

2.对于任意正实数a,指数函数都是严格递增的。

即,当x1<x2时,f(x1)<f(x2)。

3. 指数函数的导数与原函数相等。

即,f'(x) = a^x * ln(a),其中ln(a)为a的自然对数。

指数函数具有广泛的应用,例如在经济学中,指数函数可以描述人口增长、物价上涨等现象。

在科学领域中,指数函数可以用于描述放射性衰变、细菌繁殖等过程。

对数函数是指数函数的逆运算,具有以下一般形式:f(x) =log⁡a(x),其中a为常数且大于0且不等于1、对数函数的定义域为(x>0),值域为全体实数。

对数函数具有以下性质:1.当x趋于0时,对数函数趋于负无穷;当x趋于正无穷时,对数函数趋于正无穷。

2.对于任意正实数a,对数函数都是严格递增的。

即,当x1<x2时,f(x1)<f(x2)。

3. 对数函数的导数为f'(x) = 1/ (x * ln(a))。

对数函数同样具有广泛的应用。

例如在经济学中,对数函数可以用于描述复利计算、收益率等指标。

在物理学和工程学中,对数函数可以用于描述声音强度、震动等现象。

幂函数是指数函数和常数函数的乘积,具有以下一般形式:f(x)=x^a,其中a为常数。

幂函数的定义域为全体实数,值域为[0,+∞)或(-∞,+∞)。

幂函数具有以下性质:1.当a为正数时,幂函数是严格递增的。

高中数学 幂函数、指数函数、对数函数、三角函数求导公式以及积与商的函数导数求法

高中数学 幂函数、指数函数、对数函数、三角函数求导公式以及积与商的函数导数求法

高中数学幂函数、指数函数、对数函数、三角函数求导公式以及积与商的函数导数求法1、常见函数的导数公式:常数函数的导数:;幂函数的导数:;如下:;三角函数的导数:;对数函数的导数:指数函数的导数:2、求导数的法则(1)和与差函数的导数:.由此得多项式函数导数(2)积的函数的导数:,特例[C·f(x)]'=Cf'(x)。

如①已知函数的导数为,则_____(答:);②函数的导数为__________(答:);③若对任意,,则是______(答:)(3)商的函数的导数:例1、求下列导数(1)y =;(2)y =x · sin x · ln x;(3)y =;(4)y =.(1)解析:∵y ==∴(2)y'=(x ·sin x ·ln x) '=(x ·sin x) ' · ln x+(x · sin x )( ln x) '=[x'sinx+x(sinx) ']·lnx+(x · sin x )=[sinx+xcosx]lnx+sinx总结:如遇求多个积的导数,可以逐层分组进行;求导数前的变形,目的在于简化运算;求导数后应对结果进行整理化简.(3)y'=(4)∵y ==∴y'=例2、求函数的导数①y=(2 x2-5 x +1)e x②y=解析:①y'=(2 x2-5 x +1)′e x+(2 x2-5 x +1)(e x)′=(2x2-x-4)e x②∴y'总结:①求导数是在定义域内进行的.②求较复杂的函数积、商的导数,必须细心、耐心.例3、已知曲线C:y =3 x 4-2 x3-9 x2+4(1)求曲线C上横坐标为1的点的切线方程;(2)第(1)小题中切线与曲线C是否还有其他公共点?解析:(1)把x =1代入C的方程,求得y =-4.∴切点为(1,-4).Y'=12 x3-6 x2-18 x,∴切线斜率为k =12-6-18=-12.∴切线方程为y +4=-12(x-1),即y=-12 x +8.由得3 x 4-2 x3 -9 x2+12 x -4=0(x -1) 2 (x +2) (3 x -2)=0x =1,-2,.代入y =3 x 4-2 x 3 -9 x 2 +4,求得y =-4,32,0,即公共点为(1,-4)(切点),(-2,32),(,0).除切点外,还有两个交点(-2,32)、(,0).总结:直线和圆,直线和椭圆相切,可以用只有一个公共点来判定.一般曲线却要用割线的极限位置来定义切线.因此,曲线的切线可以和曲线有非切点的公共点.例4、曲线S :y =x 3-6 x 2-x +6哪一点切线的斜率最小? 设此点为P (x 0,y 0).证明:曲线S 关于P 中心对称. 解析:y'=3 x 2-12 x -1当x ==2时,y ′有最小值,故x 0=2,由P ∈S 知:y 0=23-6 · 22-2+6=-12 即在P (2,-12)处切线斜率最小. 设Q (x ,y )∈S ,即y =x 3-6 x 2-x +6则与Q 关于P 对称的点为R (4-x ,-24-y ),只需证R 的坐标满足S 的方程即可. (4-x)3-6(4-x)2-(4-x)+6 =64-48 x +12 x 2-x 3-6(16-8 x +x 2)+x +2=-x 3+6 x2+x -30=-x3+6 x 2 +x -6-24=-y -24故R ∈S ,由Q 点的任意性,S 关于点P 中心对称.总结:本题考查导数的几何意义.求切点时,要将取最小值的x 值代回原方程.例5、一质点的运动方程为s(t)=asint+bcost(a>0),若速度v(t)的最大值为,且对任意的t 0∈R,在t =t 0与t = -t 0时速度相同,求a 、b 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章函数与导数第7课时指数函数、对数函数及幂函数(1)第三章 (对应学生用书(文)、(理)20~21页),1. (必修1P63习题2改编)用分数指数幂表示下列各式(a>0,b>0):(1) 3a 2=________;(2) a a a =________;(3) ⎝⎛⎭⎫3a 2·ab 3=________.答案:(1) a 23 (2) a 78 (3) a 76b 322. (必修1P 80习题6改编)计算:(lg5)2+lg2×lg50=________. 答案:1解析:原式=(lg5)2+lg2×(1+lg5)=lg5(lg2+lg5)+lg2=1.3. (必修1P 80习题12改编)已知lg6=a ,lg12=b ,则用a 、b 表示lg24=________. 答案:2b -a解析:lg24=lg 1446=2lg12-lg6=2b -a.4. (必修1P 63习题6改编)若a +a -1=3,则a 32-a -32=______.答案:±4解析:a 32-a -32=(a 12-a -12)(a +a -1+1).∵ (a 12-a -12)2=a +a -1-2=1,∴ (a 12-a -12)=±1,∴ 原式=(±1)×(3+1)=±4. 5. 已知实数a 、b 满足等式⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b,下列五个关系式:① 0<b <a ;② a<b <0;③ 0<a <b ;④ b<a <0;⑤ a=b. 其中所有不可能成立的关系式为________.(填序号) 答案:③④解析:条件中的等式⇔2a =3b⇔a lg2=b lg3.若a ≠0,则lg 2lg3b a =∈(0,1).(1)当a >0时,有a >b >0,即关系式①成立,而③不可能成立; (2)当a <0时,则b <0,b >a ,即关系式②成立,而④不可能成立; 若a =0,则b =0,故关系式⑤可能成立.1. 根式(1) 根式的概念① n a n=⎩⎪⎨⎪⎧a (n 为奇数),|a|=⎩⎪⎨⎪⎧a (a≥0),-a (a<0)(n 为偶数); ② (n a)n =a(注意a 必须使na 有意义). 2. 有理指数幂(1) 分数指数幂的表示① 正数的正分数指数幂是a mn ,m 、n∈N *,n>1); ② 正数的负分数指数幂是a -m n =1a m n =1(a>0,m 、n∈N *,n>1);③ 0的正分数指数幂是0,0的负分数指数幂无意义.(2) 有理指数幂的运算性质① a s a t =a s +t(a>0,t 、s∈Q );② (a s )t =a st(a>0,t 、s∈Q );③ (ab)t =a t b t(a>0,b >0,t∈Q ). 3. 对数的概念 (1) 对数的定义如果a b=N ,那么就称b 是以a 为底N 的对数,记作log a N =b ,其中a 叫做对数的底数,N 叫做真数.(2) 几种常见对数4. (1) 对数的性质① alog a N =N ;② log a a N=N(a>0且a≠1). (2) 对数的重要公式① 换底公式:log b N =log a N log a b (a 、b 均大于零且不等于1);② log a b =1log b a .(3) 对数的运算法则如果a>0且a≠1,M>0,N>0,那么 ① log a (MN)=log a M +log a N ; ② log a MN =log a M -log a N ;③ log a M n=nlog a M (n∈R ); ④ log am M n=n m log a M.[备课札记]题型1 指数幂的运算例1 化简下列各式(其中各字母均为正数): (1) 1.5-13×⎝ ⎛⎭⎪⎫-760+80.25×42+(32×3)6-⎝ ⎛⎭⎪⎫2323; (2) (a 23·b -1)-12·a -12·b 136a ·b 5;(3) a 43-8a 13b 4b 23+23ab +a 23÷⎝ ⎛⎭⎪⎫1-23b a ×3a.解:(1) 原式=⎝ ⎛⎭⎪⎫2313+234×214+22×33-⎝ ⎛⎭⎪⎫2313=2+108=110.(2) 原式=a -13·b 12·a -12·b 13a 16·b 56=a -13-12-16·b 12+13-56=1a.(3) 原式=a 13(a -8b )(2b 13)2+2b 13a 13+(a 13)2×a 13a 13-2b 13×a 13=a 13(a -8b )a -8b×a 13×a 13=a.备选变式(教师专享) 化简下列各式:(1) 12523+⎝ ⎛⎭⎪⎫12-2+34313-⎝ ⎛⎭⎪⎫127-13;(2) 56a 13·b -2·(-3a -12b -1)÷(4a 23·b -3)12.解:(1)33;(2)-5ab 4ab 2.题型2 对数的运算例2 求下列各式的值.(1) log 535+2log 12 2-log 5150-log 514;(2) log 2125×log 318×log 519.解:(1) 原式=log 535×5014+2log 12212=log 553-1=2.(2) 原式=lg 125lg2×lg 18lg3×lg 19lg5=-2lg5lg2×-3lg2lg3×-2lg3lg5=-12.变式训练(1) 计算:lg 12-lg 58+lg12.5-log 89·log 278;(2) 已知log 189=a ,18b=5,用a 、b 表示log 3645.解:(1) 原式=lg ⎝ ⎛⎭⎪⎫1258×12.5-lg9lg8·lg8lg27=1-2lg33lg3=13. (2) 由题意,得b =log185,故log 3645=log 1845log 1836=log 189+log 185log 18324-log 189=a +b2-a.题型3 指数与对数的混合运算例3 已知实数x 、y 、z 满足3x =4y =6z>1. (1) 求证:2x +1y =2z;(2) 试比较3x 、4y 、6z 的大小.(1) 证明:令k =3x =4y =6z>1,则x =log 3k ,y =log 4k ,z =log 6k ,于是1x =log k 3,1y =log k 4,1z =log k 6,从而2x +1y =2log k 3+log k 4=log k 32+log k 4=log k 36=2log k 6,等式成立.(2) 解:由于k >1,故x 、y 、z >0.3x 4y =3log 3k 4log 4k =3lgklg34lgk lg4=3lg44lg3=lg43lg34=lg64lg81<1; 4y 6z =2log 4k 3log 6k =2lgklg43lgk lg6=2lg63lg4=lg62lg43=lg36lg64<1, 故3x <4y <6z.备选变式(教师专享)若xlog 34=1,求23x-2-3x2x +2-x 的值.解:由xlog 34=1,知4x=3, ∴23x-2-3x2x +2-x =()2x -2-x ()22x +2-2x +12x+2-x=(22x -1)(22x +2-2x+1)22x+1=(3-1)⎝ ⎛⎭⎪⎫3+13+13+1=136.1. (2013·四川)计算:lg 5+lg 20=________. 答案:1解析:lg 5+lg 20=lg(5×20)=lg10=1.2. (2013·长春调研)已知函数f(x)=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x,x ≥4,f (x +1),则f(2+log 23)=________.答案:124解析:由3<2+log 23<4,得3+log 23>4,所以f(2+log 23)=f(3+log 23)=⎝ ⎛⎭⎪⎫123+log 23=⎝ ⎛⎭⎪⎫12log 224=124. 3. (2013·新课标)已知a =log 36,b =log 510,c =log 714,则a 、b 、c 的大小关系为________.答案:a>b>c解析:a =log 36=1+log 32,b =1+log 52,c =1+log 72,由于log 32>log 52>log 72,所以a>b>c.4. (2013·温州二模)已知2a =3b =6c,若a +b c ∈(k ,k +1),则整数k 的值是________.答案:4解析:设2a =3b =6c=t ,则a =log 2t ,b =log 3t ,c =log 6t ,所以a +b c =log 2t log 6t +log 3t log 6t =log t 6log t 2+log t 6log t 3=log 26+log 36=2+log 23+log 32.因为2<log 23+log 32<3,所以4<a +bc <5,即整数k 的值是4.1. 设a =lge ,b =(lge)2,c =lg e ,则a 、b 、c 的大小关系是________. 答案:a >c >b解析:本题考查对数函数的增减性,由1>lge>0,知a>b.又c =lge ,作商比较知c>b ,故a>c>b.2. 已知三数x +log 272,x +log 92,x +log 32成等比数列,则公比为________. 答案:3解析:∵ 三数x +log 272,x +log 92,x +log 32成等比数列,∴ (x +log 92)2=(x +log 272)(x +log 32),即⎝ ⎛⎭⎪⎫x +12log 322=⎝ ⎛⎭⎪⎫x +13log 32(x +log 32),解得x =-14log 32,∴ 公比q =x +log 32x +12log 32=3.3. 设a >1,若对任意的x∈[a,2a],都有y∈[a,a 2]满足方程log a x +log a y =3,则a的取值范围是________.答案:a≥2解析:∵ a>1,x ∈[a ,2a], ∴ log a x ∈[1,1+log a 2].又由y∈[a,a 2],得 log a y∈[1,2], ∵ log a y =3-log a x , ∴ 3-log a x ∈[1,2], ∴ log a x ∈[1,2],∴ 1+log a 2≤2,log a 2≤1,即a≥2.4. 已知m 、n 为正整数,a >0且a≠1,且log a m +log a ⎝ ⎛⎭⎪⎫1+1m +log a ⎝ ⎛⎭⎪⎫1+1m +1+…+log a ⎝ ⎛⎭⎪⎫1+1m +n -1=log a m +log a n ,求m 、n 的值.解:左边=log a m +log a ⎝⎛⎭⎪⎫m +1m +log a ⎝ ⎛⎭⎪⎫m +2m +1+…+log a ⎝ ⎛⎭⎪⎫m +n m +n -1=log a ⎝⎛⎭⎪⎫m ·m +1m ·m +2m +1·…·m +n m +n -1=log a (m +n),∴ 已知等式可化为log a (m +n)=log a m +log a n =log a mn. 比较真数得m +n =mn ,即(m -1)(n -1)=1.∵ m 、n 为正整数,∴ ⎩⎪⎨⎪⎧m -1=1,n -1=1,解得⎩⎪⎨⎪⎧m =2,n =2.1. 根式与分数指数幂的实质是相同的,通常利用分数指数幂的意义把根式的运算转化为幂的运算,从而可以简化计算过程.2. 对数运算法则是在化同底的情况下进行的,在对含有字母的对数式化简时必须保证恒等变形.3. 在解决指数、对数问题时,指数式与对数式的互化起着重要作用.请使用课时训练(B)第7课时(见活页).[备课札记]。

相关文档
最新文档