四川省乐山市2019年数学真题卷及答案
四川省乐山市2019年中考数学试卷(Word解析版)
2019年四川省乐山市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.-3的绝对值是()A. 3B.C.D.2.下列四个图形中,可以由图通过平移得到的是()A. B. C. D.3.小强同学从-1,0,1,2,3,4这六个数中任选一个数,满足不等式x+1<2的概率是()A. B. C. D.4.-a一定是()A. 正数B. 负数C. 0D. 以上选项都不正确5.如图,直线a∥b,点B在a上,且AB⊥BC.若∠1=35°,那么∠2等于()A. B. C. D.6.不等式组<的解集在数轴上表示正确的是()A. B.C. D.7.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A. 1,11B. 7,53C. 7,61D. 6,508.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A.B.C.D.9.如图,在边长为的菱形ABCD中,∠B=30°,过点A作AE⊥BC于点E,现将△ABE沿直线AE翻折至△AFE的位置,AF与CD交于点G.则CG等于()A. B. 1 C. D.10.如图,抛物线y=x2-4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是()A. 3B.C.D. 4二、填空题(本大题共6小题,共18.0分)11.-的相反数是______.12.某地某天早晨的气温是-2℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是______℃.13.若3m=9n=2.则3m+2n=______.14.如图,在△ABC中,∠B=30°,AC=2,cos C=.则AB边的长为______.15.如图,点P是双曲线C:y=(x>0)上的一点,过点P作x轴的垂线交直线AB:y=x-2于点Q,连结OP,OQ.当点P在曲线C上运动,且点P在Q的上方时,△POQ面积的最大值是______.16.如图1,在四边形ABCD中,AD∥BC,∠B=30°,直线l⊥AB.当直线l沿射线BC方向,从点B开始向右平移时,直线l与四边形ABCD的边分别相交于点E、F.设直线l向右平移的距离为x,线段EF的长为y,且y与x的函数关系如图2所示,则四边形ABCD的周长是______.三、解答题(本大题共10小题,共102.0分)17.计算:()-1-(2019-π)0+2sin30°.18.如图,点A、B在数轴上,它们对应的数分别为-2,,且点A、B到原点的距离相等.求x的值.19.如图,线段AC、BD相交于点E,AE=DE,BE=CE.求证:∠B=∠C.20.化简:÷.21.如图,已知过点B(1,0)的直线l1与直线l2:y=2x+4相交于点P(-1,a).(1)求直线l1的解析式;(2)求四边形PAOC的面积.22.某校组织学生参加“安全知识竞赛”,测试结束后,张老师从七年级720名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示.试根据统计图提供的信息,回答下列问题:(1)张老师抽取的这部分学生中,共有______名男生,______名女生;(2)张老师抽取的这部分学生中,女生成绩的众数是______;(3)若将不低于27分的成绩定为优秀,请估计七年级720名学生中成绩为优秀的学生人数大约是多少.23.已知关于x的一元二次方程x2-(k+4)x+4k=0.(1)求证:无论k为任何实数,此方程总有两个实数根;(2)若方程的两个实数根为x1、x2,满足+=,求k的值;(3)若Rt△ABC的斜边为5,另外两条边的长恰好是方程的两个根x1、x2,求Rt△ABC 的内切圆半径.24.如图,直线l与⊙O相离,OA⊥l于点A,与⊙O相交于点P,OA=5.C是直线l上一点,连结CP并延长交⊙O于另一点B,且AB=AC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为3,求线段BP的长.25.在△ABC中,已知D是BC边的中点,G是△ABC的重心,过G点的直线分别交AB、AC于点E、F.(1)如图1,当EF∥BC时,求证:+=1;(2)如图2,当EF和BC不平行,且点E、F分别在线段AB、AC上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.(3)如图3,当点E在AB的延长线上或点F在AC的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.26.如图,已知抛物线y=a(x+2)(x-6)与x轴相交于A、B两点,与y轴交于C点,且tan∠CAB=.设抛物线的顶点为M,对称轴交x轴于点N.(1)求抛物线的解析式;(2)P为抛物线的对称轴上一点,Q(n,0)为x轴上一点,且PQ⊥PC.①当点P在线段MN(含端点)上运动时,求n的变化范围;②当n取最大值时,求点P到线段CQ的距离;③当n取最大值时,将线段CQ向上平移t个单位长度,使得线段CQ与抛物线有两个交点,求t的取值范围.答案和解析1.【答案】A【解析】解:|-3|=-(-3)=3.故选:A.根据一个负数的绝对值等于它的相反数得出.考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】D【解析】解:∵只有D的图形的形状和大小没有变化,符合平移的性质,属于平移得到;故选:D.根据平移的性质解答即可.本题考查的是平移的性质,熟知图形平移后所得图形与原图形全等是解答此题的关键.3.【答案】C【解析】解:在-1,0,1,2,3,4这六个数中,满足不等式x+1<2的有-1、0这两个,所以满足不等式x+1<2的概率是=,故选:C.找到满足不等式x+1<2的结果数,再根据概率公式计算可得.本题主要考查概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.4.【答案】D【解析】解:-a中a的符号无法确定,故-a的符号无法确定.故选:D.利用正数与负数定义分析得出答案.此题主要考查了正数和负数,正确理解正负数的定义是解题关键.5.【答案】C【解析】解:∵a∥b,∠1=35°,∴∠BAC=∠1=35°.∵AB⊥BC,∴∠2=∠BCA=90°-∠BAC=55°.故选:C.先根据∠1=35°,a∥b求出∠BAC的度数,再由AB⊥BC即可得出答案.本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.6.【答案】B【解析】解:,解①得:x>-6,解②得:x≤13,故不等式组的解集为:-6<x≤13,在数轴上表示为:.故选:B.分别解不等式进而得出不等式组的解集,进而得出答案.此题主要考查了解一元一次不等式组,正确解不等式是解题关键.7.【答案】B【解析】解:设有x人,物价为y,可得:,解得:,故选:B.设有x人,物价为y,根据该物品价格不变,即可得出关于x、y的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.【答案】A【解析】解:如图,设BC=x,则CE=1-x易证△ABC∽△FEC∴===解得x=∴阴影部分面积为:S△ABC=××1=故选:A.如图,易证△ABC∽△FEC,可设BC=x,只需求出BC即可.本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答9.【答案】A【解析】解:在Rt△ABE中,∠B=30°,AB=,∴BE=.根据折叠性质可得BF=2BE=3.∴CF=3-.∵AD∥CF,∴△ADG∽△FCG.∴.设CG=x,则,解得x=-1.故选:A.先利用30°直角三角形的性质,求出BE,再根据折叠性质求得BF,从而得到CF长,最后根据△ADG∽△FCG得出与CG有关的比例式,即可求解CG长.本题主要考查了菱形的性质、相似三角形的判定和性质、折叠的性质,解题的关键是找到与CG相关的三角形,利用相似知识求解.10.【答案】C【解析】解:连接BP,如图,当y=0时,x2-4=0,解得x1=4,x2=-4,则A(-4,0),B(4,0),∵Q是线段PA的中点,∴OQ为△ABP的中位线,∴OQ=BP,当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC==5,∴BP′=5+2=7,∴线段OQ的最大值是.故选:C.连接BP,如图,先解方程x2-4=0得A(-4,0),B(4,0),再判断OQ为△ABP的中位线得到OQ=BP,利用点与圆的位置关系,BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,然后计算出BP′即可得到线段OQ的最大值.本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了三角形中位线.11.【答案】【解析】解:的相反数是,故答案为:.根据只有符号不同的两个数互为相反数,可得一个数的相反数.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.12.【答案】-3【解析】解:-2+6-7=-3,故答案为:-3由题意列出算式进行计算求解即可.本题主要考查有理数的加减法,正确列出算式是解题的关键.13.【答案】4【解析】解:∵3m=32n=2,∴3m+2n=3m•32n=2×2=4,故答案为:4根据幂的乘方与积的乘方进行解答即可.此题考查幂的乘方与积的乘方,关键是根据幂的乘方与积的乘方解答.14.【答案】【解析】解:如图,作AH⊥BC于H.在Rt△ACH中,∵∠AHC=90°,AC=2,COSC=,∴=,∴CH=,∴AH===,在Rt△ABH中,∵∠AHB=90°,∠B=30°,∴AB=2AH=,故答案为.如图,作AH⊥BC于H.解直角三角形求出AH,再根据AB=2AH即可解决问题.本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.15.【答案】3【解析】解:∵PQ⊥x轴,∴设P(x,),则Q(x,x-2),∴PQ=-x+2,∴S△POQ=(-+2)•x=-(x-2)2+3,∵-<0,∴△POQ面积有最大值,最大值是3,故答案为3.设P(x,),则Q(x,x-2),得到PQ=-x+2,根据三角形面积公式得到S△POQ=-(x-2)2+3,根据二次函数的性质即可求得最大值.本题考查了一次函数图象上点的坐标特征,二次函数的性质,反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.16.【答案】【解析】解:∵∠B=30°,直线l⊥AB,∴BE=2EF,由图可得,AB=4cos30°=4×=2,BC=5,AD=7-4=3,当EF平移到点F与点D重合时,如右图所示,∵∠EFB=60°,∴∠DEC=60°,∵DE=CE=2,∴△DEC为等边三角形,∴CD=2.∴四边形ABCD的周长是:AB+BC+AD+CD=2+5+3+2=10+2,故答案为:10+2.根据题意和函数图象中的数据,可以得到AB、BC、AD的长,再根据平行线的性质和图形中的数据可以得到CD的长,从而可以求得四边形ABCD的周长.本题考查动点问题的函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.17.【答案】解:原式=,=2-1+1,=2.【解析】根据实数的混合计算解答即可.此题考查实数的运算,关键是根据实数的混合计算解答.18.【答案】解:根据题意得:,去分母,得x=2(x+1),去括号,得x=2x+2,解得x=-2经检验,x=-2是原方程的解.【解析】根据题意得出分式方程解答即可.此题考查解分式方程,关键是根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论解答.19.【答案】证明:在△AEB和△DEC中,∵ ∠ ∠∴△AEB≌△DEC,∴∠B=∠C.【解析】根据AE=DE,∠AEB=∠DEC,BE=CE,证出△AEB≌△DEC,即可得出∠B=∠C.此题主要考查学生对全等三角形的判定与性质这一知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.20.【答案】解:原式=÷,=×,=.【解析】首先将分式的分子与分母分解因式,进而约分得出答案.此题主要考查了分式的乘除运算,正确分解因式是解题关键.21.【答案】解:(1)∵点P(-1,a)在直线l2:y=2x+4上,∴2×(-1)+4=a,即a=2,则P的坐标为(-1,2),设直线l1的解析式为:y=kx+b(k≠0),那么,解得:.∴l1的解析式为:y=-x+1.(2)∵直线l1与y轴相交于点C,∴C的坐标为(0,1),又∵直线l2与x轴相交于点A,∴A点的坐标为(-2,0),则AB=3,而S四边形PAOC=S△PAB-S△BOC,∴S四边形PAOC=.【解析】(1)由点P(-1,a)在直线l2上,利用一次函数图象上点的坐标特征,即可求出a 值,再利用点P的坐标和点B的坐标可求直线l1的解析式;(2)根据面积差可得结论.本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征和三角形的面积,在函数的图象上的点,就一定满足函数解析式.并利用数形结合的思想解决问题.22.【答案】40 40 27【解析】解:(1)男生:1+2+2+4+9+14+5+2+1=40(人)女生:1+1+2+3+11++13+7+1+1=40(人)故答案为40,40;(2)女生成绩27的人数最多,所以众数为27,故答案为27;(3)(人),七年级720名学生中成绩为优秀的学生人数大约是396人.(1)男生:1+2+2+4+9+14+5+2+1=40(人)女生:1+1+2+3+11++13+7+1+1=40(人);(2)女生成绩27的人数最多,所以众数为27;(3)(人).此题同时考查了条形统计图,考查了利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、认真分析、认真研究统计图,只有这样才能作出正确的判断,准确地解决问题.23.【答案】(1)证明:∵△=(k+4)2-16k=k2-8k+16=(k-4)2≥0,∴无论k为任何实数时,此方程总有两个实数根;(2)解:由题意得:x1+x2=k+4,x1•x2=4k,∵,∴,即,解得:k=2;(3)解:解方程x2-(k+4)x+4k=0得:x1=4,x2=k,根据题意得:42+k2=52,即k=3,设直角三角形ABC的内切圆半径为r,如图,由切线长定理可得:(3-r)+(4-r)=5,∴直角三角形ABC的内切圆半径r=.【解析】(1)根据根的判别式△=(k+4)2-16k=k2-8k+16=(k-4)2≥0,即可得到结论;(2)由题意得到x1+x2=k+4,x1•x2=4k,代入,解方程即可得到结论;(3)解方程x2-(k+4)x+4k=0得到x1=4,x2=k,根据题意根据勾股定理列方程得到k=3,设直角三角形ABC的内切圆半径为r,根据切线长定理即可得到结论.本题考查了三角形的内切圆和内心,切线的性质,一元二次方程根的判别式,一元二次方程根与系数的关系,熟练掌握切线长定理是解题的关键.24.【答案】(1)证明:如图,连结OB,则OP=OB,∴∠OBP=∠OPB=∠CPA,AB=AC,∴∠ACB=∠ABC,而OA⊥l,即∠OAC=90°,∴∠ACB+∠CPA=90°,即∠ABP+∠OBP=90°,∴∠ABO=90°,OB⊥AB,故AB是⊙O的切线;(2)解:由(1)知:∠ABO=90°,而OA=5,OB=OP=3,由勾股定理,得:AB=4,过O作OD⊥PB于D,则PD=DB,∵∠OPD=∠CPA,∠ODP=∠CAP=90°,∴△ODP∽△CAP,∴,又∵AC=AB=4,AP=OA-OP=2,∴,∴,∴.【解析】(1)连接OB,由AB=AC得∠ABC=∠ACB,由OP=OB得∠OPB=∠OBP,由OA⊥l得∠OAC=90°,则∠ACB+∠APC=90°,而∠APC=∠OPB=∠OBP,所以∠OBP+∠ABC=90°,即∠OBA=90°,于是根据切线的判定定理得到直线AB是⊙O的切线;(2)根据勾股定理求得AB=4,PC=2,过O作OD⊥PB于D,则PD=DB,通过证得△ODP∽△CAP,得到,求得PD,即可求得PB.本题考查了切线的判定和性质,勾股定理的应用研究三角形相似的判定和性质,熟练掌握性质定理是解题的关键.25.【答案】(1)证明:∵G是△ABC重心,∴,又∵EF∥BC,∴,,则;(2)解:(1)中结论成立,理由如下:如图2,过点A作AN∥BC交EF的延长线于点N,FE、CB的延长线相交于点M,则△BME∽△ANE,△CMF∽△ANF,,,∴,又∵BM+CM=BM+CD+DM,而D是BC的中点,即BD=CD,∴BM+CM=BM+BD+DM=DM+DM=2DM,∴,又∵,∴,故结论成立;(3)解:(1)中结论不成立,理由如下:当F点与C点重合时,E为AB中点,BE=AE,点F在AC的延长线上时,BE>AE,∴>,则>,同理:当点E在AB的延长线上时,>,∴结论不成立.【解析】(1)根据三角形重心定理和平行线分线段成比例解答即可;(2)过点A作AN∥BC交EF的延长线于点N,FE、CB的延长线相交于点M,得出△BME∽△ANE,△CMF∽△ANF,得出比例式解答即可;(3)分两种情况:当F点与C点重合时,E为AB中点,BE=AE;点F在AC的延长线上时,BE>AE,得出,则,同理:当点E在AB的延长线上时,,即可得出结论.此题是相似三角形综合题,考查了相似三角形的判定与性质、三角形重心定理、平行线分线段成比例定理等知识;本题综合性强,熟练掌握三角形的重心定理和平行线分线段成比例定理,证明三角形相似是解题的关键.26.【答案】解:(1)根据题意得:A(-2,0),B(6,0),在Rt△AOC中,∵ ∠ ,且OA=2,得CO=3,∴C(0,3),将C点坐标代入y=a(x+2)(x-6)得:,抛物线解析式为:;整理得:y=-故抛物线解析式为:得:y=-;(2)①由(1)知,抛物线的对称轴为:x=2,顶点M(2,4),设P点坐标为(2,m)(其中0≤m≤4),则PC2=22+(m-3)2,PQ2=m2+(n-2)2,CQ2=32+n2,∵PQ⊥PC,∴在Rt△PCQ中,由勾股定理得:PC2+PQ2=CQ2,即22+(m-3)2+m2+(n-2)2=32+n2,整理得:=(0≤m≤4),∴当时,n取得最小值为;当m=4时,n取得最大值为4,所以,;②由①知:当n取最大值4时,m=4,∴P(2,4),Q(4,0),则,,CQ=5,设点P到线段CQ距离为h,由△ ,得:,故点P到线段CQ距离为2;③由②可知:当n取最大值4时,Q(4,0),∴线段CQ的解析式为:,设线段CQ向上平移t个单位长度后的解析式为:,当线段CQ向上平移,使点Q恰好在抛物线上时,线段CQ与抛物线有两个交点,此时对应的点Q'的纵坐标为:,将Q'(4,3)代入得:t=3,当线段CQ继续向上平移,线段CQ与抛物线只有一个交点时,联解得:,化简得:x2-7x+4t=0,由△=49-16t=0,得,∴当线段CQ与抛物线有两个交点时,<.【解析】(1)由函数解析式,可以求出点A、B的坐标分别为(-2,0),(6,0),在Rt△OAC中由tan∠CAB=,可以求出点C的坐标为(0,3),进而可以求出抛物线的解析式;(2)①抛物线的对称轴为:x=2,顶点M(2,4),在Rt△PCQ中,由勾股定理得:PC2+PQ2=CQ2,把三角形三边长用点P,Q的坐标表达出来,整理得:,利用0≤m≤4,求出n的取值范围;②由,得:,求出点P到线段CQ距离为2;③设线段CQ向上平移t个单位长度后的解析式为:,联立抛物线方程,可求出x2-7x+4t=0,由△=49-16t=0,得,∴当线段CQ与抛物线有两个交点时,主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,处理问题和解决问题.。
四川省乐山市2019年中考数学真题试题解析版
2019年四川省乐山市中考数学试卷注:请使用office word软件打开,wps word会导致公式错乱一、选择题(本大题共10小题,共30.0分)1.-3的绝对值是()A. 3B. −3C. 13D. −132.下列四个图形中,可以由图通过平移得到的是()A. B. C. D.3.小强同学从-1,0,1,2,3,4这六个数中任选一个数,满足不等式x+1<2的概率是()A. 15B. 14C. 13D. 124.-a一定是()A. 正数B. 负数C. 0D. 以上选项都不正确5.如图,直线a∥b,点B在a上,且AB⊥BC.若∠1=35°,那么∠2等于()A. 45∘B. 50∘C. 55∘D. 60∘6.不等式组{2x−6<3xx+25−x−14≥0的解集在数轴上表示正确的是()A. B.C. D.7.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A. 1,11B. 7,53C. 7,61D. 6,508.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A. 16B. 13C. 15D. 149.如图,在边长为√3的菱形ABCD中,∠B=30°,过点A作AE⊥BC于点E,现将△ABE沿直线AE翻折至△AFE的位置,AF与CD交于点G.则CG等于()A. √3−1B. 1C. 12D. √3210.如图,抛物线y=14x2-4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是()A. 3B. √412C. 72D. 4二、填空题(本大题共6小题,共18.0分)11.-12的相反数是______.12.某地某天早晨的气温是-2℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是______℃.13.若3m=9n=2.则3m+2n=______.14.如图,在△ABC中,∠B=30°,AC=2,cos C=35.则AB边的长为______.15.如图,点P是双曲线C:y=4x(x>0)上的一点,过点P作x轴的垂线交直线AB:y=12x-2于点Q,连结OP,OQ.当点P在曲线C上运动,且点P在Q的上方时,△POQ 面积的最大值是______.16.17.如图1,在四边形ABCD中,AD∥BC,∠B=30°,直线l⊥AB.当直线l沿射线BC方向,从点B开始向右平移时,直线l与四边形ABCD的边分别相交于点E、F.设直线l 向右平移的距离为x ,线段EF 的长为y ,且y 与x 的函数关系如图2所示,则四边形ABCD 的周长是______.三、解答题(本大题共10小题,共102.0分)18. 计算:(12)-1-(2019-π)0+2sin30°. 19.20. 如图,点A 、B 在数轴上,它们对应的数分别为-2,xx +1,且点A 、B 到原点的距离相等.求x 的值.21. 如图,线段AC 、BD 相交于点E ,AE =DE ,BE =CE .求证:∠B =∠C . 22. 23.24. 化简:x 2−2x +1x 2−1÷x 2−xx +1. 25.26. 如图,已知过点B (1,0)的直线l 1与直线l 2:y =2x +4相交于点P (-1,a ). 27. (1)求直线l 1的解析式; 28. (2)求四边形PAOC 的面积. 29.30. 某校组织学生参加“安全知识竞赛”,测试结束后,张老师从七年级720名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示.试根据统计图提供的信息,回答下列问题:31. (1)张老师抽取的这部分学生中,共有______名男生,______名女生; 32. (2)张老师抽取的这部分学生中,女生成绩的众数是______;33. (3)若将不低于27分的成绩定为优秀,请估计七年级720名学生中成绩为优秀的学生人数大约是多少. 34.35. 已知关于x 的一元二次方程x 2-(k +4)x +4k =0.36. (1)求证:无论k 为任何实数,此方程总有两个实数根; 37. (2)若方程的两个实数根为x 1、x 2,满足1x 1+1x 2=34,求k 的值;38. (3)若Rt △ABC 的斜边为5,另外两条边的长恰好是方程的两个根x 1、x 2,求Rt △ABC的内切圆半径. 39.40. 如图,直线l 与⊙O 相离,OA ⊥l 于点A ,与⊙O 相交于点P ,OA =5.C 是直线l 上一点,连结CP 并延长交⊙O 于另一点B ,且AB =AC . 41. (1)求证:AB 是⊙O 的切线;42. (2)若⊙O 的半径为3,求线段BP 的长.43. 在△ABC 中,已知D 是BC 边的中点,G 是△ABC 的重心,过G 点的直线分别交AB 、AC 于点E 、F .44. (1)如图1,当EF ∥BC 时,求证:xx xx +xxxx =1;45. (2)如图2,当EF 和BC 不平行,且点E 、F 分别在线段AB 、AC 上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.46. (3)如图3,当点E 在AB 的延长线上或点F 在AC 的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.47. 如图,已知抛物线y =a (x +2)(x -6)与x 轴相交于A 、B 两点,与y 轴交于C 点,且tan ∠CAB =32.设抛物线的顶点为M ,对称轴交x 轴于点N .48. (1)求抛物线的解析式;49. (2)P 为抛物线的对称轴上一点,Q (n ,0)为x 轴上一点,且PQ ⊥PC . 50. ①当点P 在线段MN (含端点)上运动时,求n 的变化范围; 51. ②当n 取最大值时,求点P 到线段CQ 的距离;52. ③当n 取最大值时,将线段CQ 向上平移t 个单位长度,使得线段CQ 与抛物线有两个交点,求t 的取值范围.答案和解析1.【答案】A【解析】解:|-3|=-(-3)=3.故选:A.根据一个负数的绝对值等于它的相反数得出.考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】D【解析】解:∵只有D的图形的形状和大小没有变化,符合平移的性质,属于平移得到;故选:D.根据平移的性质解答即可.本题考查的是平移的性质,熟知图形平移后所得图形与原图形全等是解答此题的关键.3.【答案】C【解析】解:在-1,0,1,2,3,4这六个数中,满足不等式x+1<2的有-1、0这两个,所以满足不等式x+1<2的概率是=,故选:C.找到满足不等式x+1<2的结果数,再根据概率公式计算可得.本题主要考查概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.4.【答案】D【解析】解:-a中a的符号无法确定,故-a的符号无法确定.故选:D.利用正数与负数定义分析得出答案.此题主要考查了正数和负数,正确理解正负数的定义是解题关键.5.【答案】C【解析】解:∵a∥b,∠1=35°,∴∠BAC=∠1=35°.∵AB⊥BC,∴∠2=∠BCA=90°-∠BAC=55°.故选:C.先根据∠1=35°,a∥b求出∠BAC的度数,再由AB⊥BC即可得出答案.本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.6.【答案】B【解析】解:,解①得:x>-6,解②得:x≤13,故不等式组的解集为:-6<x≤13,在数轴上表示为:.故选:B.分别解不等式进而得出不等式组的解集,进而得出答案.此题主要考查了解一元一次不等式组,正确解不等式是解题关键.7.【答案】B【解析】解:设有x人,物价为y,可得:,解得:,故选:B.设有x人,物价为y,根据该物品价格不变,即可得出关于x、y的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.【答案】A【解析】解:如图,设BC=x,则CE=1-x易证△ABC∽△FEC∴===解得x=∴阴影部分面积为:S△ABC=××1=故选:A.如图,易证△ABC∽△FEC,可设BC=x,只需求出BC即可.本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答9.【答案】A【解析】解:在Rt△ABE中,∠B=30°,AB=,∴BE=.根据折叠性质可得BF=2BE=3.∴CF=3-.∵AD∥CF,∴△ADG∽△FCG.∴.设CG=x,则,解得x=-1.故选:A.先利用30°直角三角形的性质,求出BE,再根据折叠性质求得BF,从而得到CF长,最后根据△ADG∽△FCG得出与CG有关的比例式,即可求解CG长.本题主要考查了菱形的性质、相似三角形的判定和性质、折叠的性质,解题的关键是找到与CG相关的三角形,利用相似知识求解.10.【答案】C【解析】解:连接BP,如图,当y=0时, x2-4=0,解得x1=4,x2=-4,则A(-4,0),B(4,0),∵Q是线段PA的中点,∴OQ为△ABP的中位线,∴OQ=BP,当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC==5,∴BP′=5+2=7,∴线段OQ的最大值是.故选:C.连接BP,如图,先解方程x2-4=0得A(-4,0),B(4,0),再判断OQ为△ABP的中位线得到OQ=BP,利用点与圆的位置关系,BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,然后计算出BP′即可得到线段OQ的最大值.本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了三角形中位线.11.【答案】12【解析】解:的相反数是,故答案为:.根据只有符号不同的两个数互为相反数,可得一个数的相反数.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.12.【答案】-3【解析】解:-2+6-7=-3,故答案为:-3由题意列出算式进行计算求解即可.本题主要考查有理数的加减法,正确列出算式是解题的关键.13.【答案】4【解析】解:∵3m=32n=2,∴3m+2n=3m•32n=2×2=4,故答案为:4根据幂的乘方与积的乘方进行解答即可.此题考查幂的乘方与积的乘方,关键是根据幂的乘方与积的乘方解答.14.【答案】165【解析】解:如图,作AH⊥BC于H.在Rt△ACH中,∵∠AHC=90°,AC=2,COSC=,∴=,∴CH=,∴AH===,在Rt△ABH中,∵∠AHB=90°,∠B=30°,∴AB=2AH=,故答案为.如图,作AH⊥BC于H.解直角三角形求出AH,再根据AB=2AH即可解决问题.本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.15.【答案】3【解析】解:∵PQ⊥x轴,∴设P(x,),则Q(x, x-2),∴PQ=-x+2,∴S△POQ=(-+2)•x=-(x-2)2+3,∵-<0,∴△POQ面积有最大值,最大值是3,故答案为3.设P(x,),则Q(x, x-2),得到PQ=-x+2,根据三角形面积公式得到S△POQ=-(x-2)2+3,根据二次函数的性质即可求得最大值.本题考查了一次函数图象上点的坐标特征,二次函数的性质,反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.16.【答案】10+2√3【解析】解:∵∠B=30°,直线l⊥AB,∴BE=2EF,由图可得,AB=4cos30°=4×=2,BC=5,AD=7-4=3,当EF平移到点F与点D重合时,如右图所示,∵∠EFB=60°,∴∠DEC=60°,∵DE=CE=2,∴△DEC 为等边三角形, ∴CD=2.∴四边形ABCD 的周长是:AB+BC+AD+CD=2+5+3+2=10+2, 故答案为:10+2.根据题意和函数图象中的数据,可以得到AB 、BC 、AD 的长,再根据平行线的性质和图形中的数据可以得到CD 的长,从而可以求得四边形ABCD 的周长. 本题考查动点问题的函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.17.【答案】解:原式=2−1+2×12,=2-1+1, =2. 【解析】根据实数的混合计算解答即可.此题考查实数的运算,关键是根据实数的混合计算解答.18.【答案】解:根据题意得:xx +1=2, 去分母,得x =2(x +1), 去括号,得x =2x +2, 解得x =-2经检验,x =-2是原方程的解. 【解析】根据题意得出分式方程解答即可. 此题考查解分式方程,关键是根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论解答.19.【答案】证明:在△AEB 和△DEC 中, ∵{xx =xx∠xxx =∠xxx xx =xx ∴△AEB ≌△DEC , ∴∠B =∠C . 【解析】根据AE=DE ,∠AEB=∠DEC ,BE=CE ,证出△AEB ≌△DEC ,即可得出∠B=∠C . 此题主要考查学生对全等三角形的判定与性质这一知识点的理解和掌握,此题难度不大,要求学生应熟练掌握. 20.【答案】解:原式=(x −1)2(x +1)(x −1)÷x (x −1)x +1, =(x −1)(x +1)×x +1x (x −1), =1x . 【解析】首先将分式的分子与分母分解因式,进而约分得出答案. 此题主要考查了分式的乘除运算,正确分解因式是解题关键. 21.【答案】解:(1)∵点P (-1,a )在直线l 2:y =2x +4上, ∴2×(-1)+4=a ,即a =2, 则P 的坐标为(-1,2),设直线l 1的解析式为:y =kx +b (k ≠0),那么{−x +x =2x +x =0,解得:{x =1x =−1.∴l 1的解析式为:y =-x +1.(2)∵直线l 1与y 轴相交于点C , ∴C 的坐标为(0,1),又∵直线l 2与x 轴相交于点A ,∴A 点的坐标为(-2,0),则AB =3, 而S 四边形PAOC =S △PAB -S △BOC ,∴S 四边形PAOC =12×3×2−12×1×1=52.【解析】(1)由点P (-1,a )在直线l 2上,利用一次函数图象上点的坐标特征,即可求出a 值,再利用点P 的坐标和点B 的坐标可求直线l 1的解析式; (2)根据面积差可得结论.本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征和三角形的面积,在函数的图象上的点,就一定满足函数解析式.并利用数形结合的思想解决问题. 22.【答案】40 40 27 【解析】解:(1)男生:1+2+2+4+9+14+5+2+1=40(人) 女生:1+1+2+3+11++13+7+1+1=40(人) 故答案为40,40;(2)女生成绩27的人数最多,所以众数为27, 故答案为27; (3)(人),七年级720名学生中成绩为优秀的学生人数大约是396人.(1)男生:1+2+2+4+9+14+5+2+1=40(人)女生:1+1+2+3+11++13+7+1+1=40(人); (2)女生成绩27的人数最多,所以众数为27; (3)(人).此题同时考查了条形统计图,考查了利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、认真分析、认真研究统计图,只有这样才能作出正确的判断,准确地解决问题.23.【答案】(1)证明:∵△=(k +4)2-16k =k 2-8k +16=(k -4)2≥0, ∴无论k 为任何实数时,此方程总有两个实数根; (2)解:由题意得:x 1+x 2=k +4,x 1•x 2=4k , ∵1x 1+1x 2=34,∴x 1+x 2x 1⋅x 2=34,即x +44x =34,解得:k =2;(3)解:解方程x 2-(k +4)x +4k =0得:x 1=4,x 2=k ,根据题意得:42+k 2=52,即k =3,设直角三角形ABC 的内切圆半径为r ,如图, 由切线长定理可得:(3-r )+(4-r )=5,∴直角三角形ABC 的内切圆半径r =3+4−52=1.【解析】(1)根据根的判别式△=(k+4)2-16k=k 2-8k+16=(k-4)2≥0,即可得到结论; (2)由题意得到x 1+x 2=k+4,x 1•x 2=4k ,代入,解方程即可得到结论;(3)解方程x 2-(k+4)x+4k=0得到x 1=4,x 2=k ,根据题意根据勾股定理列方程得到k=3,设直角三角形ABC 的内切圆半径为r ,根据切线长定理即可得到结论.本题考查了三角形的内切圆和内心,切线的性质,一元二次方程根的判别式,一元二次方程根与系数的关系,熟练掌握切线长定理是解题的关键. 24.【答案】(1)证明:如图,连结OB ,则OP =OB , ∴∠OBP =∠OPB =∠CPA , AB =AC ,∴∠ACB =∠ABC ,而OA ⊥l ,即∠OAC =90°, ∴∠ACB +∠CPA =90°, 即∠ABP +∠OBP =90°, ∴∠ABO =90°, OB ⊥AB ,故AB 是⊙O 的切线;(2)解:由(1)知:∠ABO =90°, 而OA =5,OB =OP =3,由勾股定理,得:AB =4,过O 作OD ⊥PB 于D ,则PD =DB ,∵∠OPD =∠CPA ,∠ODP =∠CAP =90°, ∴△ODP ∽△CAP , ∴xx xx =xx xx ,又∵AC =AB =4,AP =OA -OP =2,∴xx =√xx 2+xx 2=2√5, ∴xx =xx ⋅xx xx=35√5, ∴xx =2xx =65√5. 【解析】 (1)连接OB ,由AB=AC 得∠ABC=∠ACB ,由OP=OB 得∠OPB=∠OBP ,由OA ⊥l 得∠OAC=90°,则∠ACB+∠APC=90°,而∠APC=∠OPB=∠OBP ,所以∠OBP+∠ABC=90°,即∠OBA=90°,于是根据切线的判定定理得到直线AB 是⊙O 的切线; (2)根据勾股定理求得AB=4,PC=2,过O 作OD ⊥PB 于D ,则PD=DB ,通过证得△ODP ∽△CAP ,得到,求得PD ,即可求得PB .本题考查了切线的判定和性质,勾股定理的应用研究三角形相似的判定和性质,熟练掌握性质定理是解题的关键.25.【答案】(1)证明:∵G 是△ABC 重心, ∴xx xx=12, 又∵EF ∥BC , ∴xx xx =xx xx =12,xx xx =xx xx =12, 则xxxx +xxxx =12+12=1;(2)解:(1)中结论成立,理由如下:如图2,过点A 作AN ∥BC 交EF 的延长线于点N ,FE 、CB 的延长线相交于点M , 则△BME ∽△ANE ,△CMF ∽△ANF , xx xx =xx xx ,xx xx =xxxx , ∴xx xx +xx xx =xx xx +xx xx =xx +xx xx , 又∵BM +CM =BM +CD +DM ,而D 是BC 的中点,即BD =CD , ∴BM +CM =BM +BD +DM =DM +DM =2DM , ∴xx xx +xx xx =2xx xx , 又∵xxxx =xxxx =12, ∴xxxx +xxxx =2×12=1,故结论成立;(3)解:(1)中结论不成立,理由如下: 当F 点与C 点重合时,E 为AB 中点,BE =AE , 点F 在AC 的延长线上时,BE >AE , ∴xx xx >1,则xx xx +xxxx >1,同理:当点E 在AB 的延长线上时,xxxx +xxxx >1, ∴结论不成立. 【解析】(1)根据三角形重心定理和平行线分线段成比例解答即可;(2)过点A 作AN ∥BC 交EF 的延长线于点N ,FE 、CB 的延长线相交于点M ,得出△BME ∽△ANE ,△CMF ∽△ANF ,得出比例式解答即可;(3)分两种情况:当F 点与C 点重合时,E 为AB 中点,BE=AE ;点F 在AC 的延长线上时,BE >AE ,得出,则,同理:当点E 在AB 的延长线上时,,即可得出结论.此题是相似三角形综合题,考查了相似三角形的判定与性质、三角形重心定理、平行线分线段成比例定理等知识;本题综合性强,熟练掌握三角形的重心定理和平行线分线段成比例定理,证明三角形相似是解题的关键. 26.【答案】解:(1)根据题意得:A (-2,0),B (6,0),在Rt △AOC 中,∵xxx∠xxx =xx xx =32,且OA =2,得CO =3,∴C (0,3),将C 点坐标代入y =a (x +2)(x -6)得:x =−14, 抛物线解析式为:x =−14(x +2)(x −6); 整理得:y =-14x 2+x +3故抛物线解析式为:得:y =-14x 2+x +3;(2)①由(1)知,抛物线的对称轴为:x =2,顶点M (2,4),设P 点坐标为(2,m )(其中0≤m ≤4),则PC 2=22+(m -3)2,PQ 2=m 2+(n -2)2,CQ 2=32+n 2,∵PQ ⊥PC ,∴在Rt △PCQ 中,由勾股定理得:PC 2+PQ 2=CQ 2,即22+(m -3)2+m 2+(n -2)2=32+n 2,整理得:x =12(x 2−3x +4)=12(x −32)2+78(0≤m ≤4),∴当x =32时,n 取得最小值为78;当m =4时,n 取得最大值为4, 所以,78≤x ≤4;②由①知:当n 取最大值4时,m =4, ∴P (2,4),Q (4,0),则xx =√5,xx =2√5,CQ =5, 设点P 到线段CQ 距离为h ,由x △xxx =12xx ⋅x =12xx ⋅xx ,得:x =xx ⋅xxxx =2,故点P 到线段CQ 距离为2; ③由②可知:当n 取最大值4时,Q (4,0),∴线段CQ 的解析式为:x =−34x +3, 设线段CQ 向上平移t 个单位长度后的解析式为:x =−34x +3+x ,当线段CQ 向上平移,使点Q 恰好在抛物线上时,线段CQ 与抛物线有两个交点,此时对应的点Q '的纵坐标为:−14(4+2)(4−6)=3, 将Q '(4,3)代入x =−34x +3+x 得:t =3,当线段CQ 继续向上平移,线段CQ 与抛物线只有一个交点时, 联解{x =−14(x +2)(x −6)x =−34x +3+x得:−14(x +2)(x −6)=−34x +3+x ,化简得:x 2-7x +4t =0,由△=49-16t =0,得x =4916,∴当线段CQ 与抛物线有两个交点时,3≤x<4916.【解析】(1)由函数解析式,可以求出点A 、B 的坐标分别为(-2,0),(6,0),在Rt △OAC 中由tan ∠CAB=,可以求出点C 的坐标为(0,3),进而可以求出抛物线的解析式;(2)①抛物线的对称轴为:x=2,顶点M (2,4),在Rt △PCQ 中,由勾股定理得:PC 2+PQ 2=CQ 2,把三角形三边长用点P ,Q 的坐标表达出来,整理得:,利用0≤m≤4,求出n 的取值范围;②由,得:,求出点P 到线段CQ 距离为2;③设线段CQ 向上平移t 个单位长度后的解析式为:,联立抛物线方程,可求出x 2-7x+4t=0,由△=49-16t=0,得, ∴当线段CQ 与抛物线有两个交点时,主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,处理问题和解决问题.。
四川省乐山市2019中考数学试卷(解析版)
2019年四川省乐山市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.-3的绝对值是()A. 3B. −3C. 13D. −132.下列四个图形中,可以由图通过平移得到的是()A. B. C. D.3.小强同学从-1,0,1,2,3,4这六个数中任选一个数,满足不等式x+1<2的概率是()A. 15B. 14C. 13D. 124.-a一定是()A. 正数B. 负数C. 0D. 以上选项都不正确5.如图,直线a∥b,点B在a上,且AB⊥BC.若∠1=35°,那么∠2等于()A. 45∘B. 50∘C. 55∘D. 60∘6.不等式组{2x−6<3xx+25−x−14≥0的解集在数轴上表示正确的是()A. B.C. D.7.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A. 1,11B. 7,53C. 7,61D. 6,508.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A. 16B. 13C. 15D. 149.如图,在边长为√3的菱形ABCD中,∠B=30°,过点A作AE⊥BC于点E,现将△ABE沿直线AE翻折至△AFE的位置,AF与CD交于点G.则CG等于()A. √3−1B. 1C. 12D. √3210.如图,抛物线y=14x2-4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是()A. 3B. √412C. 72D. 4二、填空题(本大题共6小题,共18.0分)11.-12的相反数是______.12.某地某天早晨的气温是-2℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是______℃.13.若3m=9n=2.则3m+2n=______.14.如图,在△ABC中,∠B=30°,AC=2,cos C=35.则AB边的长为______.15.如图,点P是双曲线C:y=4x(x>0)上的一点,过点P作x轴的垂线交直线AB:y=12x-2于点Q,连结OP,OQ.当点P在曲线C上运动,且点P在Q的上方时,△POQ面积的最大值是______.16.如图1,在四边形ABCD中,AD∥BC,∠B=30°,直线l⊥AB.当直线l沿射线BC方向,从点B开始向右平移时,直线l与四边形ABCD的边分别相交于点E、F.设直线l向右平移的距离为x,线段EF的长为y,且y与x的函数关系如图2所示,则四边形ABCD的周长是______.三、解答题(本大题共10小题,共102.0分)17.计算:(1)-1-(2019-π)0+2sin30°.218.如图,点A、B在数轴上,它们对应的数分别为-2,x,且点A、B到原点的距离x+1相等.求x的值.19.如图,线段AC、BD相交于点E,AE=DE,BE=CE.求证:∠B=∠C.20. 化简:x 2−2x+1x 2−1÷x 2−xx+1.21. 如图,已知过点B (1,0)的直线l 1与直线l 2:y =2x +4相交于点P (-1,a ).(1)求直线l 1的解析式;(2)求四边形PAOC 的面积.22. 某校组织学生参加“安全知识竞赛”,测试结束后,张老师从七年级720名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示.试根据统计图提供的信息,回答下列问题:(1)张老师抽取的这部分学生中,共有______名男生,______名女生;(2)张老师抽取的这部分学生中,女生成绩的众数是______;(3)若将不低于27分的成绩定为优秀,请估计七年级720名学生中成绩为优秀的学生人数大约是多少.23.已知关于x的一元二次方程x2-(k+4)x+4k=0.(1)求证:无论k为任何实数,此方程总有两个实数根;(2)若方程的两个实数根为x1、x2,满足1x1+1x2=34,求k的值;(3)若Rt△ABC的斜边为5,另外两条边的长恰好是方程的两个根x1、x2,求Rt△ABC 的内切圆半径.24.如图,直线l与⊙O相离,OA⊥l于点A,与⊙O相交于点P,OA=5.C是直线l上一点,连结CP并延长交⊙O于另一点B,且AB=AC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为3,求线段BP的长.25.在△ABC中,已知D是BC边的中点,G是△ABC的重心,过G点的直线分别交AB、AC于点E、F.(1)如图1,当EF∥BC时,求证:BEAE +CFAF=1;(2)如图2,当EF和BC不平行,且点E、F分别在线段AB、AC上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.(3)如图3,当点E在AB的延长线上或点F在AC的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.26.如图,已知抛物线y=a(x+2)(x-6)与x轴相交于A、B两点,与y轴交于C点,.设抛物线的顶点为M,对称轴交x轴于点N.且tan∠CAB=32(1)求抛物线的解析式;(2)P为抛物线的对称轴上一点,Q(n,0)为x轴上一点,且PQ⊥PC.①当点P在线段MN(含端点)上运动时,求n的变化范围;②当n取最大值时,求点P到线段CQ的距离;③当n取最大值时,将线段CQ向上平移t个单位长度,使得线段CQ与抛物线有两个交点,求t的取值范围.答案和解析1.【答案】A【解析】解:|-3|=-(-3)=3.故选:A.根据一个负数的绝对值等于它的相反数得出.考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】D【解析】解:∵只有D的图形的形状和大小没有变化,符合平移的性质,属于平移得到;故选:D.根据平移的性质解答即可.本题考查的是平移的性质,熟知图形平移后所得图形与原图形全等是解答此题的关键.3.【答案】C【解析】解:在-1,0,1,2,3,4这六个数中,满足不等式x+1<2的有-1、0这两个,所以满足不等式x+1<2的概率是=,故选:C.找到满足不等式x+1<2的结果数,再根据概率公式计算可得.本题主要考查概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.4.【答案】D【解析】解:-a中a的符号无法确定,故-a的符号无法确定.故选:D.利用正数与负数定义分析得出答案.此题主要考查了正数和负数,正确理解正负数的定义是解题关键.解:∵a∥b,∠1=35°,∴∠BAC=∠1=35°.∵AB⊥BC,∴∠2=∠BCA=90°-∠BAC=55°.故选:C.先根据∠1=35°,a∥b求出∠BAC的度数,再由AB⊥BC即可得出答案.本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.6.【答案】B【解析】解:,解①得:x>-6,解②得:x≤13,故不等式组的解集为:-6<x≤13,在数轴上表示为:.故选:B.分别解不等式进而得出不等式组的解集,进而得出答案.此题主要考查了解一元一次不等式组,正确解不等式是解题关键.7.【答案】B【解析】解:设有x人,物价为y,可得:,解得:,故选:B.设有x人,物价为y,根据该物品价格不变,即可得出关于x、y的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.解:如图,设BC=x,则CE=1-x易证△ABC∽△FEC∴===解得x=∴阴影部分面积为:S△ABC=××1=故选:A.如图,易证△ABC∽△FEC,可设BC=x,只需求出BC即可.本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答9.【答案】A【解析】解:在Rt△ABE中,∠B=30°,AB=,∴BE=.根据折叠性质可得BF=2BE=3.∴CF=3-.∵AD∥CF,∴△ADG∽△FCG.∴.设CG=x,则,解得x=-1.故选:A.先利用30°直角三角形的性质,求出BE,再根据折叠性质求得BF,从而得到CF长,最后根据△ADG∽△FCG得出与CG有关的比例式,即可求解CG长.本题主要考查了菱形的性质、相似三角形的判定和性质、折叠的性质,解题的关键是找到与CG相关的三角形,利用相似知识求解.10.【答案】C【解析】解:连接BP,如图,当y=0时,x2-4=0,解得x1=4,x2=-4,则A(-4,0),B(4,0),∵Q是线段PA的中点,∴OQ为△ABP的中位线,∴OQ=BP,当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC==5,∴BP′=5+2=7,∴线段OQ的最大值是.故选:C.连接BP,如图,先解方程x2-4=0得A(-4,0),B(4,0),再判断OQ为△ABP 的中位线得到OQ=BP,利用点与圆的位置关系,BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,然后计算出BP′即可得到线段OQ的最大值.本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了三角形中位线.11.【答案】12【解析】解:的相反数是,故答案为:.根据只有符号不同的两个数互为相反数,可得一个数的相反数.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.12.【答案】-3【解析】解:-2+6-7=-3,故答案为:-3由题意列出算式进行计算求解即可.本题主要考查有理数的加减法,正确列出算式是解题的关键.13.【答案】4【解析】解:∵3m=32n=2,∴3m+2n=3m•32n=2×2=4,故答案为:4根据幂的乘方与积的乘方进行解答即可.此题考查幂的乘方与积的乘方,关键是根据幂的乘方与积的乘方解答.14.【答案】165【解析】解:如图,作AH⊥BC于H.在Rt△ACH中,∵∠AHC=90°,AC=2,COSC=,∴=,∴CH=,∴AH===,在Rt△ABH中,∵∠AHB=90°,∠B=30°,∴AB=2AH=,故答案为.如图,作AH⊥BC于H.解直角三角形求出AH,再根据AB=2AH即可解决问题.本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.15.【答案】3【解析】解:∵PQ⊥x轴,∴设P(x,),则Q(x,x-2),∴PQ=-x+2,∴S△POQ=(-+2)•x=-(x-2)2+3,∵-<0,∴△POQ面积有最大值,最大值是3,故答案为3.设P(x,),则Q(x,x-2),得到PQ=-x+2,根据三角形面积公式得到S△POQ=-(x-2)2+3,根据二次函数的性质即可求得最大值.本题考查了一次函数图象上点的坐标特征,二次函数的性质,反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.16.【答案】10+2√3【解析】解:∵∠B=30°,直线l⊥AB,∴BE=2EF,由图可得,AB=4cos30°=4×=2,BC=5,AD=7-4=3,当EF平移到点F与点D重合时,如右图所示,∵∠EFB=60°,∴∠DEC=60°,∵DE=CE=2,∴△DEC为等边三角形,∴CD=2.∴四边形ABCD的周长是:AB+BC+AD+CD=2+5+3+2=10+2,故答案为:10+2.根据题意和函数图象中的数据,可以得到AB、BC、AD的长,再根据平行线的性质和图形中的数据可以得到CD的长,从而可以求得四边形ABCD的周长.本题考查动点问题的函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.17.【答案】解:原式=2−1+2×12,=2-1+1,=2.【解析】根据实数的混合计算解答即可.此题考查实数的运算,关键是根据实数的混合计算解答.18.【答案】解:根据题意得:xx+1=2,去分母,得x=2(x+1),去括号,得x=2x+2,解得x=-2经检验,x=-2是原方程的解.【解析】根据题意得出分式方程解答即可.此题考查解分式方程,关键是根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论解答.19.【答案】证明:在△AEB和△DEC中,∵{AE=DE∠AEB=∠DEC BE=CE∴△AEB≌△DEC,∴∠B=∠C.【解析】根据AE=DE,∠AEB=∠DEC,BE=CE,证出△AEB≌△DEC,即可得出∠B=∠C.此题主要考查学生对全等三角形的判定与性质这一知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.20.【答案】解:原式=(x−1)2(x+1)(x−1)÷x(x−1)x+1,=(x−1)(x+1)×x+1x(x−1), =1x .【解析】首先将分式的分子与分母分解因式,进而约分得出答案.此题主要考查了分式的乘除运算,正确分解因式是解题关键.21.【答案】解:(1)∵点P (-1,a )在直线l 2:y =2x +4上,∴2×(-1)+4=a ,即a =2,则P 的坐标为(-1,2),设直线l 1的解析式为:y =kx +b (k ≠0),那么{−k +b =2k+b=0,解得:{b =1k=−1.∴l 1的解析式为:y =-x +1.(2)∵直线l 1与y 轴相交于点C ,∴C 的坐标为(0,1),又∵直线l 2与x 轴相交于点A ,∴A 点的坐标为(-2,0),则AB =3,而S 四边形PAOC =S △PAB -S △BOC ,∴S 四边形PAOC =12×3×2−12×1×1=52.【解析】(1)由点P (-1,a )在直线l 2上,利用一次函数图象上点的坐标特征,即可求出a 值,再利用点P 的坐标和点B 的坐标可求直线l 1的解析式;(2)根据面积差可得结论.本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征和三角形的面积,在函数的图象上的点,就一定满足函数解析式.并利用数形结合的思想解决问题.22.【答案】40 40 27【解析】解:(1)男生:1+2+2+4+9+14+5+2+1=40(人)女生:1+1+2+3+11++13+7+1+1=40(人)故答案为40,40;(2)女生成绩27的人数最多,所以众数为27,故答案为27;(3)(人),七年级720名学生中成绩为优秀的学生人数大约是396人.(1)男生:1+2+2+4+9+14+5+2+1=40(人)女生:1+1+2+3+11++13+7+1+1=40(人);(2)女生成绩27的人数最多,所以众数为27;(3)(人).此题同时考查了条形统计图,考查了利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、认真分析、认真研究统计图,只有这样才能作出正确的判断,准确地解决问题.23.【答案】(1)证明:∵△=(k+4)2-16k=k2-8k+16=(k-4)2≥0,∴无论k为任何实数时,此方程总有两个实数根;(2)解:由题意得:x1+x2=k+4,x1•x2=4k,∵1 x1+1x2=34,∴x1+x2 x1⋅x2=34,即k+44k =34,解得:k=2;(3)解:解方程x2-(k+4)x+4k=0得:x1=4,x2=k,根据题意得:42+k2=52,即k=3,设直角三角形ABC的内切圆半径为r,如图,由切线长定理可得:(3-r)+(4-r)=5,∴直角三角形ABC的内切圆半径r=3+4−52=1.【解析】(1)根据根的判别式△=(k+4)2-16k=k2-8k+16=(k-4)2≥0,即可得到结论;(2)由题意得到x1+x2=k+4,x1•x2=4k,代入,解方程即可得到结论;(3)解方程x2-(k+4)x+4k=0得到x1=4,x2=k,根据题意根据勾股定理列方程得到k=3,设直角三角形ABC的内切圆半径为r,根据切线长定理即可得到结论.本题考查了三角形的内切圆和内心,切线的性质,一元二次方程根的判别式,一元二次方程根与系数的关系,熟练掌握切线长定理是解题的关键.24.【答案】(1)证明:如图,连结OB,则OP=OB,∴∠OBP=∠OPB=∠CPA,AB=AC,∴∠ACB=∠ABC,而OA⊥l,即∠OAC=90°,∴∠ACB+∠CPA=90°,即∠ABP+∠OBP=90°,∴∠ABO=90°,OB⊥AB,故AB是⊙O的切线;(2)解:由(1)知:∠ABO=90°,而OA=5,OB=OP=3,由勾股定理,得:AB=4,过O作OD⊥PB于D,则PD=DB,∵∠OPD=∠CPA,∠ODP=∠CAP=90°,∴△ODP∽△CAP,∴PD PA =OPCP,又∵AC=AB=4,AP=OA-OP=2,∴PC=√AC2+AP2=2√5,∴PD=OP⋅PACP =35√5,∴BP=2PD=65√5.【解析】(1)连接OB,由AB=AC得∠ABC=∠ACB,由OP=OB得∠OPB=∠OBP,由OA⊥l得∠OAC=90°,则∠ACB+∠APC=90°,而∠APC=∠OPB=∠OBP,所以∠OBP+∠ABC=90°,即∠OBA=90°,于是根据切线的判定定理得到直线AB是⊙O的切线;(2)根据勾股定理求得AB=4,PC=2,过O作OD⊥PB于D,则PD=DB,通过证得△ODP∽△CAP,得到,求得PD,即可求得PB.本题考查了切线的判定和性质,勾股定理的应用研究三角形相似的判定和性质,熟练掌握性质定理是解题的关键.25.【答案】(1)证明:∵G是△ABC重心,∴DG AG =12,又∵EF∥BC,∴BE AE =DGAG=12,CFAF=DGAG=12,则BEAE +CFAF=12+12=1;(2)解:(1)中结论成立,理由如下:如图2,过点A作AN∥BC交EF的延长线于点N,FE、CB的延长线相交于点M,则△BME∽△ANE,△CMF∽△ANF,BE AE =BMAN,CFAF=CMAN,∴BE AE +CFAF=BMAN+CMAN=BM+CMAN,又∵BM+CM=BM+CD+DM,而D是BC的中点,即BD=CD,∴BM+CM=BM+BD+DM=D M+DM=2DM,∴BE AE +CFAF=2DMAN,又∵DMAN =DGAG=12,∴BE AE +CFAF=2×12=1,故结论成立;(3)解:(1)中结论不成立,理由如下:当F点与C点重合时,E为AB中点,BE=AE,点F在AC的延长线上时,BE>AE,∴BE AE >1,则BEAE+CFAF>1,同理:当点E在AB的延长线上时,BEAE +CFAF>1,∴结论不成立.【解析】(1)根据三角形重心定理和平行线分线段成比例解答即可;(2)过点A作AN∥BC交EF的延长线于点N,FE、CB的延长线相交于点M,得出△BME∽△ANE,△CMF∽△ANF,得出比例式解答即可;(3)分两种情况:当F点与C点重合时,E为AB中点,BE=AE;点F在AC的延长线上时,BE>AE,得出,则,同理:当点E在AB的延长线上时,,即可得出结论.此题是相似三角形综合题,考查了相似三角形的判定与性质、三角形重心定理、平行线分线段成比例定理等知识;本题综合性强,熟练掌握三角形的重心定理和平行线分线段成比例定理,证明三角形相似是解题的关键.26.【答案】解:(1)根据题意得:A(-2,0),B(6,0),在Rt△AOC中,∵tan∠CAO=COAO =32,且OA=2,得CO=3,∴C(0,3),将C点坐标代入y=a(x+2)(x-6)得:a=−14,抛物线解析式为:y=−14(x+2)(x−6);整理得:y=-14x2+x+3故抛物线解析式为:得:y=-14x2+x+3;(2)①由(1)知,抛物线的对称轴为:x =2,顶点M (2,4),设P 点坐标为(2,m )(其中0≤m ≤4),则PC 2=22+(m -3)2,PQ 2=m 2+(n -2)2,CQ 2=32+n 2,∵PQ ⊥PC ,∴在Rt △PCQ 中,由勾股定理得:PC 2+PQ 2=CQ 2,即22+(m -3)2+m 2+(n -2)2=32+n 2,整理得:n =12(m 2−3m +4)=12(m −32)2+78(0≤m ≤4),∴当m =32时,n 取得最小值为78;当m =4时,n 取得最大值为4,所以,78≤n ≤4;②由①知:当n 取最大值4时,m =4,∴P (2,4),Q (4,0),则PC =√5,PQ =2√5,CQ =5,设点P 到线段CQ 距离为h ,由S △PCQ =12CQ ⋅ℎ=12PC ⋅PQ ,得:ℎ=PC⋅PQ CQ =2,故点P 到线段CQ 距离为2;③由②可知:当n 取最大值4时,Q (4,0),∴线段CQ 的解析式为:y =−34x +3,设线段CQ 向上平移t 个单位长度后的解析式为:y =−34x +3+t ,当线段CQ 向上平移,使点Q 恰好在抛物线上时,线段CQ 与抛物线有两个交点,此时对应的点Q '的纵坐标为:−14(4+2)(4−6)=3,将Q '(4,3)代入y =−34x +3+t 得:t =3,当线段CQ 继续向上平移,线段CQ 与抛物线只有一个交点时,联解{y =−14(x +2)(x −6)y =−34x +3+t 得:−14(x +2)(x −6)=−34x +3+t ,化简得:x 2-7x +4t =0,由△=49-16t =0,得t =4916,∴当线段CQ 与抛物线有两个交点时,3≤t <4916.【解析】(1)由函数解析式,可以求出点A 、B 的坐标分别为(-2,0),(6,0),在Rt △OAC 中由tan ∠CAB=,可以求出点C 的坐标为(0,3),进而可以求出抛物线的解析式;(2)①抛物线的对称轴为:x=2,顶点M (2,4),在Rt △PCQ 中,由勾股定理得:PC 2+PQ 2=CQ 2,把三角形三边长用点P ,Q 的坐标表达出来,整理得:,利用0≤m≤4,求出n 的取值范围;②由,得:,求出点P 到线段CQ 距离为2;③设线段CQ 向上平移t 个单位长度后的解析式为:,联立抛物线方程,可求出x 2-7x+4t=0,由△=49-16t=0,得, ∴当线段CQ 与抛物线有两个交点时,主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,处理问题和解决问题.。
四川省乐山市2019年中考数学试卷(解析版)
2019年四川省乐山市中考数学试卷注:请使用office word软件打开,wps word会导致公式错乱一、选择题(本大题共10小题,共30.0分)1.-3的绝对值是()A. 3B. −3C. 13D. −132.下列四个图形中,可以由图通过平移得到的是()A. B. C. D.3.小强同学从-1,0,1,2,3,4这六个数中任选一个数,满足不等式x+1<2的概率是()A. 15B. 14C. 13D. 124.-a一定是()A. 正数B. 负数C. 0D. 以上选项都不正确5.如图,直线a∥b,点B在a上,且AB⊥BC.若∠1=35°,那么∠2等于()A. 45∘B. 50∘C. 55∘D. 60∘6.不等式组{2x−6<3xx+25−x−14≥0的解集在数轴上表示正确的是()A. B.C. D.7.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A. 1,11B. 7,53C. 7,61D. 6,508.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A. 16B. 13C. 15D. 149.如图,在边长为√3的菱形ABCD中,∠B=30°,过点A作AE⊥BC于点E,现将△ABE沿直线AE翻折至△AFE的位置,AF与CD交于点G.则CG等于()A. √3−1B. 1C. 12D. √3210.如图,抛物线y=14x2-4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是()A. 3B. √412C. 72D. 4二、填空题(本大题共6小题,共18.0分)11.-12的相反数是______.12.某地某天早晨的气温是-2℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是______℃.13.若3m=9n=2.则3m+2n=______.14.如图,在△ABC中,∠B=30°,AC=2,cos C=3.则AB边的长为______.515.如图,点P是双曲线C:y=4(x>0)上的一点,过点P作xxx-2于点Q,连结OP,OQ.当点P轴的垂线交直线AB:y=12在曲线C上运动,且点P在Q的上方时,△POQ面积的最大值是______.16.如图1,在四边形ABCD中,AD∥BC,∠B=30°,直线l⊥AB.当直线l沿射线BC方向,从点B开始向右平移时,直线l与四边形ABCD的边分别相交于点E、F.设直线l向右平移的距离为x,线段EF的长为y,且y与x的函数关系如图2所示,则四边形ABCD 的周长是______.三、解答题(本大题共10小题,共102.0分)17.计算:(1)-1-(2019-π)0+2sin30°.218.如图,点A、B在数轴上,它们对应的数分别为-2,x,且点A、B到原点的距离相等.求x+1x的值.19. 如图,线段AC 、BD 相交于点E ,AE =DE ,BE =CE .求证:∠B =∠C .20. 化简:x 2−2x+1x 2−1÷x 2−x x+1.21. 如图,已知过点B (1,0)的直线l 1与直线l 2:y =2x +4相交于点P (-1,a ).(1)求直线l 1的解析式; (2)求四边形PAOC 的面积.22.某校组织学生参加“安全知识竞赛”,测试结束后,张老师从七年级720名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示.试根据统计图提供的信息,回答下列问题:(1)张老师抽取的这部分学生中,共有______名男生,______名女生;(2)张老师抽取的这部分学生中,女生成绩的众数是______;(3)若将不低于27分的成绩定为优秀,请估计七年级720名学生中成绩为优秀的学生人数大约是多少.23.已知关于x的一元二次方程x2-(k+4)x+4k=0.(1)求证:无论k为任何实数,此方程总有两个实数根;(2)若方程的两个实数根为x1、x2,满足1x1+1x2=34,求k的值;(3)若Rt△ABC的斜边为5,另外两条边的长恰好是方程的两个根x1、x2,求Rt△ABC 的内切圆半径.24.如图,直线l与⊙O相离,OA⊥l于点A,与⊙O相交于点P,OA=5.C是直线l上一点,连结CP并延长交⊙O于另一点B,且AB=AC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为3,求线段BP的长.25.在△ABC中,已知D是BC边的中点,G是△ABC的重心,过G点的直线分别交AB、AC于点E、F.(1)如图1,当EF∥BC时,求证:BEAE +CFAF=1;(2)如图2,当EF和BC不平行,且点E、F分别在线段AB、AC上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.(3)如图3,当点E在AB的延长线上或点F在AC的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.26.如图,已知抛物线y=a(x+2)(x-6)与x轴相交于A、B两点,与y轴交于C点,且tan∠CAB=32.设抛物线的顶点为M,对称轴交x轴于点N.(1)求抛物线的解析式;(2)P为抛物线的对称轴上一点,Q(n,0)为x轴上一点,且PQ⊥PC.①当点P在线段MN(含端点)上运动时,求n的变化范围;②当n取最大值时,求点P到线段CQ的距离;③当n取最大值时,将线段CQ向上平移t个单位长度,使得线段CQ与抛物线有两个交点,求t的取值范围.答案和解析1.【答案】A【解析】解:|-3|=-(-3)=3.故选:A.根据一个负数的绝对值等于它的相反数得出.考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】D【解析】解:∵只有D的图形的形状和大小没有变化,符合平移的性质,属于平移得到;故选:D.根据平移的性质解答即可.本题考查的是平移的性质,熟知图形平移后所得图形与原图形全等是解答此题的关键.3.【答案】C【解析】解:在-1,0,1,2,3,4这六个数中,满足不等式x+1<2的有-1、0这两个,所以满足不等式x+1<2的概率是=,故选:C.找到满足不等式x+1<2的结果数,再根据概率公式计算可得.本题主要考查概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.4.【答案】D【解析】解:-a中a的符号无法确定,故-a的符号无法确定.故选:D.利用正数与负数定义分析得出答案.此题主要考查了正数和负数,正确理解正负数的定义是解题关键.5.【答案】C【解析】解:∵a∥b,∠1=35°,∴∠BAC=∠1=35°.∵AB⊥BC,∴∠2=∠BCA=90°-∠BAC=55°.故选:C.先根据∠1=35°,a∥b求出∠BAC的度数,再由AB⊥BC即可得出答案.本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.6.【答案】B【解析】解:,解①得:x>-6,解②得:x≤13,故不等式组的解集为:-6<x≤13,在数轴上表示为:.故选:B.分别解不等式进而得出不等式组的解集,进而得出答案.此题主要考查了解一元一次不等式组,正确解不等式是解题关键.7.【答案】B【解析】解:设有x人,物价为y,可得:,解得:,故选:B.设有x人,物价为y,根据该物品价格不变,即可得出关于x、y的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.【答案】A【解析】解:如图,设BC=x,则CE=1-x易证△ABC∽△FEC∴===解得x=∴阴影部分面积为:S△ABC=××1=故选:A.如图,易证△ABC∽△FEC,可设BC=x,只需求出BC即可.本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答9.【答案】A【解析】解:在Rt△ABE中,∠B=30°,AB=,∴BE=.根据折叠性质可得BF=2BE=3.∴CF=3-.∵AD∥CF,∴△ADG∽△FCG.∴.设CG=x,则,解得x=-1.故选:A.先利用30°直角三角形的性质,求出BE,再根据折叠性质求得BF,从而得到CF 长,最后根据△ADG∽△FCG得出与CG有关的比例式,即可求解CG长.本题主要考查了菱形的性质、相似三角形的判定和性质、折叠的性质,解题的关键是找到与CG相关的三角形,利用相似知识求解.10.【答案】C【解析】解:连接BP,如图,当y=0时,x2-4=0,解得x1=4,x2=-4,则A(-4,0),B(4,0),∵Q是线段PA的中点,∴OQ为△ABP的中位线,∴OQ=BP,当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC==5,∴BP′=5+2=7,∴线段OQ的最大值是.故选:C.连接BP,如图,先解方程x2-4=0得A(-4,0),B(4,0),再判断OQ为△ABP的中位线得到OQ=BP,利用点与圆的位置关系,BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,然后计算出BP′即可得到线段OQ的最大值.本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了三角形中位线.11.【答案】12【解析】解:的相反数是,故答案为:.根据只有符号不同的两个数互为相反数,可得一个数的相反数.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.12.【答案】-3【解析】解:-2+6-7=-3,故答案为:-3由题意列出算式进行计算求解即可.本题主要考查有理数的加减法,正确列出算式是解题的关键.13.【答案】4【解析】解:∵3m=32n=2,∴3m+2n=3m•32n=2×2=4,故答案为:4根据幂的乘方与积的乘方进行解答即可.此题考查幂的乘方与积的乘方,关键是根据幂的乘方与积的乘方解答.14.【答案】165【解析】解:如图,作AH⊥BC于H.在Rt△ACH中,∵∠AHC=90°,AC=2,COSC=,∴=,∴CH=,∴AH===,在Rt△ABH中,∵∠AHB=90°,∠B=30°,∴AB=2AH=,故答案为.如图,作AH⊥BC于H.解直角三角形求出AH,再根据AB=2AH即可解决问题.本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.15.【答案】3【解析】解:∵PQ⊥x轴,∴设P(x,),则Q(x,x-2),∴PQ=-x+2,∴S△POQ=(-+2)•x=-(x-2)2+3,∵-<0,∴△POQ面积有最大值,最大值是3,故答案为3.设P(x,),则Q(x,x-2),得到PQ=-x+2,根据三角形面积公式得到S△POQ=-(x-2)2+3,根据二次函数的性质即可求得最大值.本题考查了一次函数图象上点的坐标特征,二次函数的性质,反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.16.【答案】10+2√3【解析】解:∵∠B=30°,直线l⊥AB,∴BE=2EF,由图可得,AB=4cos30°=4×=2,BC=5,AD=7-4=3,当EF平移到点F与点D重合时,如右图所示,∵∠EFB=60°,∴∠DEC=60°,∵DE=CE=2,∴△DEC为等边三角形,∴CD=2.∴四边形ABCD的周长是:AB+BC+AD+CD=2+5+3+2=10+2,故答案为:10+2.根据题意和函数图象中的数据,可以得到AB、BC、AD的长,再根据平行线的性质和图形中的数据可以得到CD的长,从而可以求得四边形ABCD的周长.本题考查动点问题的函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.17.【答案】解:原式=2−1+2×1,2=2-1+1,=2.【解析】根据实数的混合计算解答即可.此题考查实数的运算,关键是根据实数的混合计算解答.=2,18.【答案】解:根据题意得:xx+1去分母,得x=2(x+1),去括号,得x=2x+2,解得x =-2经检验,x =-2是原方程的解. 【解析】根据题意得出分式方程解答即可.此题考查解分式方程,关键是根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论解答. 19.【答案】证明:在△AEB 和△DEC 中,∵{AE =DE∠AEB =∠DEC BE =CE ∴△AEB ≌△DEC , ∴∠B =∠C . 【解析】根据AE=DE ,∠AEB=∠DEC ,BE=CE ,证出△AEB ≌△DEC ,即可得出∠B=∠C . 此题主要考查学生对全等三角形的判定与性质这一知识点的理解和掌握,此题难度不大,要求学生应熟练掌握. 20.【答案】解:原式=(x−1)2(x+1)(x−1)÷x(x−1)x+1,=(x−1)(x+1)×x+1x(x−1), =1x . 【解析】首先将分式的分子与分母分解因式,进而约分得出答案. 此题主要考查了分式的乘除运算,正确分解因式是解题关键. 21.【答案】解:(1)∵点P (-1,a )在直线l 2:y =2x +4上,∴2×(-1)+4=a ,即a =2, 则P 的坐标为(-1,2),设直线l 1的解析式为:y =kx +b (k ≠0), 那么{−k +b =2k+b=0, 解得:{b =1k=−1.∴l1的解析式为:y=-x+1.(2)∵直线l1与y轴相交于点C,∴C的坐标为(0,1),又∵直线l2与x轴相交于点A,∴A点的坐标为(-2,0),则AB=3,而S四边形PAOC=S△PAB-S△BOC,∴S四边形PAOC=12×3×2−12×1×1=52.【解析】(1)由点P(-1,a)在直线l2上,利用一次函数图象上点的坐标特征,即可求出a值,再利用点P的坐标和点B的坐标可求直线l1的解析式;(2)根据面积差可得结论.本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征和三角形的面积,在函数的图象上的点,就一定满足函数解析式.并利用数形结合的思想解决问题.22.【答案】40 40 27【解析】解:(1)男生:1+2+2+4+9+14+5+2+1=40(人)女生:1+1+2+3+11++13+7+1+1=40(人)故答案为40,40;(2)女生成绩27的人数最多,所以众数为27,故答案为27;(3)(人),七年级720名学生中成绩为优秀的学生人数大约是396人.(1)男生:1+2+2+4+9+14+5+2+1=40(人)女生:1+1+2+3+11++13+7+1+1=40(人);(2)女生成绩27的人数最多,所以众数为27;(3)(人).此题同时考查了条形统计图,考查了利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、认真分析、认真研究统计图,只有这样才能作出正确的判断,准确地解决问题.23.【答案】(1)证明:∵△=(k+4)2-16k=k2-8k+16=(k-4)2≥0,∴无论k为任何实数时,此方程总有两个实数根;(2)解:由题意得:x1+x2=k+4,x1•x2=4k,∵1 x1+1x2=34,∴x1+x2 x1⋅x2=34,即k+44k =34,解得:k=2;(3)解:解方程x2-(k+4)x+4k=0得:x1=4,x2=k,根据题意得:42+k2=52,即k=3,设直角三角形ABC的内切圆半径为r,如图,由切线长定理可得:(3-r)+(4-r)=5,∴直角三角形ABC的内切圆半径r=3+4−52=1.【解析】(1)根据根的判别式△=(k+4)2-16k=k2-8k+16=(k-4)2≥0,即可得到结论;(2)由题意得到x1+x2=k+4,x1•x2=4k,代入,解方程即可得到结论;(3)解方程x2-(k+4)x+4k=0得到x1=4,x2=k,根据题意根据勾股定理列方程得到k=3,设直角三角形ABC的内切圆半径为r,根据切线长定理即可得到结论.本题考查了三角形的内切圆和内心,切线的性质,一元二次方程根的判别式,一元二次方程根与系数的关系,熟练掌握切线长定理是解题的关键.24.【答案】(1)证明:如图,连结OB,则OP=OB,∴∠OBP=∠OPB=∠CPA,AB=AC,∴∠ACB=∠ABC,而OA⊥l,即∠OAC=90°,∴∠ACB+∠CPA=90°,即∠ABP+∠OBP=90°,∴∠ABO=90°,OB⊥AB,故AB是⊙O的切线;(2)解:由(1)知:∠ABO=90°,而OA=5,OB=OP=3,由勾股定理,得:AB=4,过O作OD⊥PB于D,则PD=DB,∵∠OPD=∠CPA,∠ODP=∠CAP=90°,∴△ODP∽△CAP,∴PD PA =OPCP,又∵AC=AB=4,AP=OA-OP=2,∴PC=√AC2+AP2=2√5,∴PD=OP⋅PACP =35√5,∴BP=2PD=65√5.【解析】(1)连接OB,由AB=AC得∠ABC=∠ACB,由OP=OB得∠OPB=∠OBP,由OA⊥l 得∠OAC=90°,则∠ACB+∠APC=90°,而∠APC=∠OPB=∠OBP,所以∠OBP+∠ABC=90°,即∠OBA=90°,于是根据切线的判定定理得到直线AB是⊙O 的切线;(2)根据勾股定理求得AB=4,PC=2,过O作OD⊥PB于D,则PD=DB,通过证得△ODP∽△CAP,得到,求得PD,即可求得PB.本题考查了切线的判定和性质,勾股定理的应用研究三角形相似的判定和性质,熟练掌握性质定理是解题的关键.25.【答案】(1)证明:∵G是△ABC重心,∴DG AG =12,又∵EF∥BC,∴BE AE =DGAG=12,CFAF=DGAG=12,则BEAE +CFAF=12+12=1;(2)解:(1)中结论成立,理由如下:如图2,过点A作AN∥BC交EF的延长线于点N,FE、CB的延长线相交于点M,则△BME∽△ANE,△CMF∽△ANF,BE AE =BMAN,CFAF=CMAN,∴BE AE +CFAF=BMAN+CMAN=BM+CMAN,又∵BM+CM=BM+CD+DM,而D是BC的中点,即BD=CD,∴BM+CM=BM+BD+DM=DM+D M=2DM,∴BE AE +CFAF=2DMAN,又∵DMAN =DGAG=12,∴BE AE +CFAF=2×12=1,故结论成立;(3)解:(1)中结论不成立,理由如下:当F点与C点重合时,E为AB中点,BE=AE,点F在AC的延长线上时,BE>AE,∴BE AE >1,则BEAE+CFAF>1,同理:当点E在AB的延长线上时,BEAE +CFAF>1,∴结论不成立.【解析】(1)根据三角形重心定理和平行线分线段成比例解答即可;(2)过点A作AN∥BC交EF的延长线于点N,FE、CB的延长线相交于点M,得出△BME∽△ANE,△CMF∽△ANF,得出比例式解答即可;(3)分两种情况:当F点与C点重合时,E为AB中点,BE=AE;点F在AC的延长线上时,BE>AE,得出,则,同理:当点E在AB的延长线上时,,即可得出结论.此题是相似三角形综合题,考查了相似三角形的判定与性质、三角形重心定理、平行线分线段成比例定理等知识;本题综合性强,熟练掌握三角形的重心定理和平行线分线段成比例定理,证明三角形相似是解题的关键.26.【答案】解:(1)根据题意得:A(-2,0),B(6,0),在Rt△AOC中,∵tan∠CAO=COAO =32,且OA=2,得CO=3,∴C(0,3),将C点坐标代入y=a(x+2)(x-6)得:a=−14,抛物线解析式为:y=−14(x+2)(x−6);整理得:y=-14x2+x+3故抛物线解析式为:得:y=-14x2+x+3;(2)①由(1)知,抛物线的对称轴为:x=2,顶点M(2,4),设P点坐标为(2,m)(其中0≤m≤4),则PC2=22+(m-3)2,PQ2=m2+(n-2)2,CQ2=32+n2,∵PQ⊥PC,∴在Rt△PCQ中,由勾股定理得:PC2+PQ2=CQ2,即22+(m-3)2+m2+(n-2)2=32+n2,整理得:n=12(m2−3m+4)=12(m−32)2+78(0≤m≤4),∴当m=32时,n取得最小值为78;当m=4时,n取得最大值为4,所以,78≤n≤4;②由①知:当n取最大值4时,m=4,∴P(2,4),Q(4,0),则PC=√5,PQ=2√5,CQ=5,设点P到线段CQ距离为h,由S△PCQ=12CQ⋅ℎ=12PC⋅PQ,得:ℎ=PC⋅PQCQ=2,故点P到线段CQ距离为2;③由②可知:当n取最大值4时,Q(4,0),∴线段CQ的解析式为:y=−34x+3,设线段CQ向上平移t个单位长度后的解析式为:y=−34x+3+t,当线段CQ向上平移,使点Q恰好在抛物线上时,线段CQ与抛物线有两个交点,此时对应的点Q'的纵坐标为:−14(4+2)(4−6)=3,将Q'(4,3)代入y=−34x+3+t得:t=3,当线段CQ继续向上平移,线段CQ与抛物线只有一个交点时,联解{y =−14(x +2)(x −6)y =−34x +3+t得:−14(x +2)(x −6)=−34x +3+t ,化简得:x 2-7x +4t =0,由△=49-16t =0,得t =4916,∴当线段CQ 与抛物线有两个交点时,3≤t <4916.【解析】(1)由函数解析式,可以求出点A 、B 的坐标分别为(-2,0),(6,0),在Rt △OAC 中由tan ∠CAB=,可以求出点C 的坐标为(0,3),进而可以求出抛物线的解析式;(2)①抛物线的对称轴为:x=2,顶点M (2,4),在Rt △PCQ 中,由勾股定理得:PC 2+PQ 2=CQ 2,把三角形三边长用点P ,Q 的坐标表达出来,整理得:,利用0≤m≤4,求出n 的取值范围;②由,得:,求出点P 到线段CQ 距离为2;③设线段CQ 向上平移t 个单位长度后的解析式为:,联立抛物线方程,可求出x 2-7x+4t=0,由△=49-16t=0,得,∴当线段CQ 与抛物线有两个交点时, 主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,处理问题和解决问题.。
2019年初中毕业升学考试(四川乐山卷)数学【含答案及解析】
2019年初中毕业升学考试(四川乐山卷)数学【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. ﹣2的倒数是()A._________B._________C.2_________D.﹣22. 随着经济发展,人民的生活水平不断提高,旅游业快速增长,2016年国民出境旅游超过120 000 000人次,将120 000 000用科学记数法表示为()A.1.2×109_________B.12×107_________C.0.12×109_________D.1.2×1083. 下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.4. 含30°角的直角三角板与直线l1、l2的位置关系如图所示,已知l1∥l2,∠ACD=∠A,则∠1=()A.70°_________B.60°_________C.40°_________D.30°5. 下列说法正确的是()A.打开电视,它正在播广告是必然事件B.要考察一个班级中的学生对建立生物角的看法适合用抽样调查C.在抽样调查过程中,样本容量越大,对总体的估计就越准确D.甲、乙两人射中环数的方差分别为,,说明乙的射击成绩比甲稳定6. 若(b≠0),则=()A.0_________B._________C.0或_________D.1或 27. 如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB=CD=0.25米,BD=1.5米,且AB.CD与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是()A.2米_________B.2.5米_________C.2.4米_________D.2.1米8. 已知,则下列三个等式:①,②,③中,正确的个数有()A.0个_________B.1个_________C.2个_________D.3个9. 已知二次函数(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是()A._________B._________C.或_________D.或10. 如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是()A._________B._________C._________D.二、填空题11. =_________.12. 二元一次方程组的解是_________.13. 如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A的对称点是点A',AB⊥a于点B,A'D⊥b于点D.若OB=3,OD=2,则阴影部分的面积之和为_________.14. 点A、B、C在格点图中的位置如图5所示,格点小正方形的边长为1,则点C到线段AB所在直线的距离是_________.15. 庄子说:“一尺之椎,日取其半,万世不竭”.这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):.图2也是一种无限分割:在△ABC中,∠C=90°,∠B=30°,过点C作CC1⊥AB于点C1,再过点C1作C1C2⊥BC于点C2,又过点C2作C2C3⊥AB于点C3,如此无限继续下去,则可将利△ABC分割成△ACC1、△CC1C2、△C1C2C3、△C2C3C4、…、△Cn﹣2Cn﹣1Cn、….假设AC=2,这些三角形的面积和可以得到一个等式是_________.16. 对于函数,我们定义(为常数).例如,则.已知:.(1)若方程有两个相等实数根,则m的值为_________;(2)若方程有两个正数根,则m的取值范围为_________.三、解答题17. 计算:.18. 求不等式组的所有整数解.19. 如图,延长▱ABCD的边AD到F,使DF=DC,延长CB到点E,使BE=BA,分别连结点A、E和C、F.求证:AE=CF.20. 化简:.21. 为了了解我市中学生参加“科普知识”竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解答下列问题:(1)在表中:m=_________,n=_________;(2)补全频数分布直方图;(3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在_________组;(4)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中A、C 两组学生的概率是多少?并列表或画树状图说明.22. 如图,在水平地面上有一幢房屋BC与一棵树DE,在地面观测点A处测得屋顶C与树梢D的仰角分别是45°与60°,∠CAD=60°,在屋顶C处测得∠DCA=90°.若房屋的高BC=6米,求树高DE的长度.23. 某公司从2014年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:(1)请你认真分析表中数据,从一次函数和反比例函数中确定哪一个函数能表示其变化规律,给出理由,并求出其解析式;(2)按照这种变化规律,若2017年已投入资金5万元.①预计生产成本每件比2016年降低多少万元?②若打算在2017年把每件产品成本降低到3.2万元,则还需要投入技改资金多少万元?(结果精确到0.01万元).24. 如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若点C是弧AB的中点,已知AB=4,求CE•CP的值.25. 在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.(1)如图1,若∠DAB=120°,且∠B=90°,试探究边AD、AB与对角线AC的数量关系并说明理由.(2)如图2,若将(1)中的条件“∠B=90°”去掉,(1)中的结论是否成立?请说明理由.(3)如图3,若∠DAB=90°,探究边AD、AB与对角线AC的数量关系并说明理由.26. 如图1,抛物线:与:相交于点O、C,与分别交x轴于点B、A,且B为线段AO的中点.(1)求的值;(2)若OC⊥AC,求△OAC的面积;(3)抛物线C2的对称轴为l,顶点为M,在(2)的条件下:①点P为抛物线C2对称轴l上一动点,当△PAC的周长最小时,求点P的坐标;②如图2,点E在抛物线C2上点O与点M之间运动,四边形OBCE的面积是否存在最大值?若存在,求出面积的最大值和点E的坐标;若不存在,请说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】。
2019年四川乐山中考数学真题--含解析
2019年四川省乐山市初中毕业、升学考试数学(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内. 1.(2019四川省乐山市,1,3) 3-的绝对值是 ( )A .3B .-3C .13D .31-【答案】A【解析】本题考查了有理数的绝对值求法,()333-=--=,故选A.【知识点】有理数的绝对值 2.(2019四川省乐山市,2,3)下列四个图形中,可以由如图通过平移得到的是 ( )第2题图A .B .C .D .【答案】D【解析】本题考查了平移的定义,已知原图到A 、B 、C 三个选项的图形都是旋转只有原图到D 选项的图形是平移,故选D. 【知识点】平移的定义3.(2019四川省乐山市,3,3)小强同学从1-,0,1,2,3,4这六个数中任选一个数,满足不等式21<+x 的概率是 ( )A .15B .24C .13D .12【答案】C【解析】本题考查了概率的计算与不等式解法的综合,21<+x 的解集为x<1,1-,0,1,2,3,4这六个数中有1-,0两个符合,故满足不等式21<+x 的概率是21=63,故选 C. 【知识点】一元一次不等式的解法;概率的计算 4.(2019四川省乐山市,4,3) a -一定是( )A .正数B .负数C .0D .以上选项都不正确 【答案】D【解析】本题考查了有理数相反数的求法,a -的符号由字母a 的符号确定:当a 为正数,则a -一定是负数;当a 为0,则a -一定是0;当a 为负数,则a -一定是正数. 【知识点】有理数的相反数5.(2019四川省乐山市,5,3)如图,直线a ∥b ,点B 在a 上,且BC AB ⊥.若︒=∠351,那么2∠等于( ) A .45° B .50°C .55°D .60°第5题图【答案】C【解析】本题考查了平行线的性质,∵BC AB ⊥,∴∠ABC=90°,∴ ∠3=180°-∠ABC-∠1=55°,∵直线a ∥b ,∴ 2∠=∠3=55°,故选C. 【知识点】垂直的定义;平行线的性质6.(2019四川省乐山市,6,3) 不等式组⎪⎩⎪⎨⎧≥--+<-04152362x x x x 的解集在数轴上表示正确的是( )A .﹣ B .﹣C .D .﹣【答案】B【解析】本题考查了一元一次不等式组的解法与解集的表示,由第1个不等式解得x>-6,由第2个不等式解得x ≤13,故选B【知识点】一元一次不等式组的解法;不等式组解集的表示; 7.(2019四川省乐山市,7,3)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱。
四川省乐山市2019年中考[数学]考试真题与答案解析
四川省乐山市2019年中考[数学]考试真题与答案解析一、选择题:本大题共10个小题,每小题,共30分.1.的倒数是21)A (21-)B (21)C (2-)D (22.某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、 “优”划分为四个等级,并绘制成如图1所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为)A (1100)B (1000)C (900)D (1103.如图2,是直线上一点,,射线平分,.E CA ︒=∠40FEA EB CEF ∠EF GE ⊥则=∠GEB)A (︒10 )B (︒20)C (︒30)D (︒404. 数轴上点表示的数是,将点在数轴上平移个单位长度得到点.则点A 3-A 7B B 表示的数是或)(A 4)(B 4-10或)(C 10-)(D 410-5.如图3,在菱形中,,,是对角线的中点,过点ABCD 4=AB ︒=∠120BAD O BD O 作 于点,连结.则四边形的周长为CD OE ⊥E OA AOED)(A 329+ )(B 39+ )(C 327+)(D 86.直线在平面直角坐标系中的位置如图4所示,则不等式的解集b kx y +=2≤+b kx 是)A (2-≤x )B (4-≤x )C (2-≥x)D (4-≥x 7.观察下列各方格图中阴影部分所示的图形(每一小方格的边长为),如果将它1们沿方格边线或对角线剪开重新拼接,不能拼成正方形的是)A ()B ()C ()D (8. 已知,.若,则的值为43=m 2342=-n m x n =9x )A (8)B (4)C (22)D (29. 在中,已知,,.如图5所示,将绕点ABC ∆︒=∠90ABC ︒=∠30BAC 1=BC ABC ∆A 按逆时针方向旋转后得到.则图中阴影部分面积为︒90''C AB ∆)A (4π)B (23-π)C (43-π)D (π2310. 如图6,在平面直角坐标系中,直线与双曲线交于、两点,x y -=xk y =A B P 是以点为圆心,半径长的圆上一动点,连结,为的中点.若线段)2,2(C 1AP Q AP OQ长度的最大值为,则的值为2k)A (21-)B (23-)C (2-)D (41-二、填空题11. 用“”或“”符号填空: ▲ .><7-9-12. 某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是 ▲ .13. 图7是某商场营业大厅自动扶梯示意图.自动扶梯的倾斜角为,在自动AB ︒30扶梯下方地面处测得扶梯顶端的仰角为,、之间的距离为4. 则自C B ︒60A C m 动扶梯的垂直高度=BD▲ .(结果保留根号)m14.已知,且.则的值是▲ .0≠y 04322=--y xy x yx 15.把两个含角的直角三角板按如图8所示拼接在一起,点为的中点,连︒30E AD结交于BE AC 点.则= ▲ .F ACAF16.我们用符号表示不大于的最大整数.例如:,.那么:[]x x []15.1=[]25.1-=-(1)当时,的取值范围是 ▲ ;[]21≤<-x x (2)当时,函数的图象始终在函数的图象下方.21<≤-x []322+-=x a x y []3+=x y 则实数的范围是 ▲ .a 三、计算题17. 计算:.0)2020(60cos 22-+︒--π18. 解二元一次方程组:⎩⎨⎧=+=+.938,22y x y x 19. 如图9,是矩形的边上的一点,于点,,,E ABCD CB DE AF ⊥F 3=AB 2=AD.1=CE 求的长度.DF 四、本大题共3个小题,每小题,共30分.20. 已知,且,求的值. xy 2=y x ≠22211(y x y x y x y x -÷++-21.如图10,已知点在双曲线上,过点的直线与双曲线的另一支)22(--,A xky =A交于点.)B,1(a(1)求直线的解析式;AB(2)过点作轴于点,连结,过点作于点.求线段的B xCD⊥D CD BC⊥C AC C AB长.22. 自新冠肺炎疫情爆发以来,我国人民上下一心,团结一致,基本控制住了疫情.然而,全球新冠肺炎疫情依然严重,境外许多国家的疫情尚在继续蔓延,疫情防控不可松懈. 图11是某国截止5月31日新冠病毒感染人数的扇形统计图和折线统计图.根据上面图表信息,回答下列问题:(1)截止5月31日该国新冠肺炎感染总人数累计为▲万人,扇形统计图中40-59岁感染人数对应圆心角的度数为▲º ;(2)请直接在图11中补充完整该国新冠肺炎感染人数的折线统计图;(3)在该国所有新冠肺炎感染病例中随机地抽取1人,求该患者年龄为60岁或60岁以上的概率;(4)若该国感染病例中从低到高各年龄段的死亡率依次为、、、.2%755.3%1%、10%,求该国新冠肺炎感染病例的平均死亡率.20%五、本大题共2个小题,每小题,共20分.23. 某汽车运输公司为了满足市场需要,推出商务车和轿车对外租赁业务.下面是乐山到成都两种车型的限载人数和单程租赁价格表:车型每车限载人数(人)租金(元/辆)商务车6300轿车4(1)如果单程租赁2辆商务车和3辆轿车共需付租金1320元,求一辆轿车的单程租金为多少元?(2)某公司准备组织34名职工从乐山赴成都参加业务培训,拟单程租用商务车或轿车前往.在不超载的情况下,怎样设计租车方案才能使所付租金最少?24. 如图12.1,是半圆的直径,是一条弦,是上一点,DE⊥AB O AC D AB 于点,交于点,连结交于点,且.E ACF BD ACG FGAF=(1)求证:点平分;D(2)如图12.2所示,延长至点,使,连结. 若点是线段BA H AOAH=DH E AO 的中点.求证:是⊙的切线.DH O六、本大题共2个小题,第25题1,第26题1,共25分.25. 点是平行四边形的对角线所在直线上的一个动点(点不与点、P ABCD AC P A 重合),分别过点、向直线作垂线,垂足分别为点、.点为的中C A C BP E F O AC 点.(1)如图13.1,当点与点重合时,线段和的关系是 ▲ ;P O OE OF (2)当点运动到如图13.2所示的位置时,请在图中补全图形并通过证明判断P (1)中的结论是否仍然成立?(3)如图13.3,点在线段的延长线上运动,当时,试探究线段、P OA ︒=∠30OEF CF 、之间的关系.AE OE26. 已知抛物线与轴交于,两点,为抛物线的顶c bx ax y ++=2x )01(,-A )05(,B C 点,抛物线的对称轴交轴于点,连结,且,如图14所示.x D BC 34tan =∠CBD (1)求抛物线的解析式;(2)设是抛物线的对称轴上的一个动点.P①过点作轴的平行线交线段于点,过点作交抛物线于点,连P x BC E E PE EF ⊥F 结、,求的面积的最大值;FB FC BCF ∆②连结,求的最小值.PB PB PC +53答案解析一、选择题题号12345678910答案D AB D BCD C B A二、填空题11.12. 13.>393214. 15.16.,14-或5320≤≤x 231≥-<a a 或三、本大题共3小题,每小题,共2.17.解:原式 =12122+⨯-=.218.解法1:②-①,得 3⨯32=x 解得 , 23=x 把代入①,得 ;23=x 1-=y ∴原方程组的解为⎪⎩⎪⎨⎧-==.123y x ,解法2:由②得:, 9)2(32=++y x x 把①代入上式,解得 ,23=x 把代入①,得 ;23=x 1-=y ∴原方程组的解为⎪⎩⎪⎨⎧-==.123y x ,19.解:∵四边形是矩形,ABCD ∴,, 3==AB DC ︒=∠=∠90C ADC ∵,1=CE ∴, 101322=+=DE ∵,,DE AF ⊥︒=∠+∠90EDC ADF ,︒=∠+∠90DAF ADF ∴, DAF EDC ∠=∠∴∽,EDC ∆DAF ∆∴,即, DF EC AD DE =DF1210=解得,即的长度为. 510=DF DF 510四、本大题共3小题,每小题,共30分.20.解法1:原式=222))((2y x yx y x y x x -÷-+=y x y x y x x 222222-⨯-=, xy 2∵,∴原式=.xy 2=122=⋅xx 解法2:同解法1,得原式=, xy2∵,∴ , xy 2=2=xy ∴原式==.22121. 解:(1)将点代入,得,即,1分)22(--,A x k y =4=k xy 4=将代入,得,即,)1(a B ,xy 4=4=a )41(,B 设直线的解析式为,AB n mx y +=将、代入,得)22(--,A )41(,B b kx y +=,解得⎩⎨⎧+=+-=-.422n m n m ,⎩⎨⎧==.22n m ,∴直线的解析式为. 5分AB 22+=x y(2)解法1:∵、,)22(--,A )41(,B ∴,53)42()12(22=--+--=AB ∵,32121⨯⨯=⨯⨯=∆BC CD AB S ABC ∴.55453343=⨯=⨯=AB BC CD 解法2:设与轴交于点,如图1.AB x E 将点代入,得 ,0=y 22+=x y 1-=x ∴,)01(,-E ∴,522==BE EC ,易知~,CDE ∆BCE ∆∴,即,图1BE ECBC CD =5224=CD ∴.554=CD 解法3:设与轴交于点,如图1.AB x E 将点代入,得 ,0=y 22+=x y 1-=x ∴,)01(,-E ∴,52,2==BE EC 在和中,BEC Rt ∆CED Rt ∆由,得 ,EC CDBE BCBEC ==∠sin 2524CD=∴.554=CD 22.解:(1),;2072(2)补全的折线统计图如图2所示;(3)该患者年龄为60岁及以上的概率为:; %5.67%100205.49=⨯+(4)该国新冠肺炎感染病例的平均死亡率为:.%10%10020%205.4%109%5.34%75.22%15.0=⨯⨯+⨯+⨯+⨯+⨯五、本大题共2小题,每小题,共20分.23.解:(1)设租用一辆轿车的租金为元.x 由题意得:.1分132032300=+⨯x 解得 ,240=x 答:租用一辆轿车的租金为元.240(2)方法1:①若只租用商务车,∵,325634=∴只租用商务车应租6辆,所付租金为(元);18006300=⨯②若只租用轿车,∵,5.8434=∴只租用轿车应租9辆,所付租金为(元); 5分21609240=⨯③若混和租用两种车,设租用商务车辆,租用轿车辆,租金为元.m n W 由题意,得 ⎩⎨⎧+==+n m W n m 2403003446由,得 ,3446=+n m 3464+-=m n ∴,204060)346(60300+-=+-+=m m m W ∵,∴,04346≥=+-n m 317≤m∴,且为整数,51≤≤m m ∵随的增大而减小,W m ∴当时,有最小值,此时,5=m W 17401=n 综上,租用商务车辆和轿车辆时,所付租金最少为元.511740方法2:设租用商务车辆,租用轿车辆,租金为元.m n W 由题意,得 ⎩⎨⎧+==+n m W n m 2403003446由,得 ,∴,3446=+n m 03464≥+-=m n 317≤m ∵为整数,∴只能取0,1,2,3,4,5,故租车方案有:m m 不租商务车,则需租9辆轿车,所需租金为(元);21602409=⨯租1商务车,则需租7辆轿车,所需租金为(元);198024073001=⨯+⨯租2商务车,则需租6辆轿车,所需租金为(元);204024063002=⨯+⨯租3商务车,则需租4辆轿车,所需租金为(元);186024043003=⨯+⨯租4商务车,则需租3辆轿车,所需租金为(元);192024033004=⨯+⨯租5商务车,则需租1辆轿车,所需租金为(元);174024013005=⨯+⨯由此可见,最佳租车方案是租用商务车辆和轿车辆,51此时所付租金最少,为元.174024. 证明:(1)连接、,如图3所示,AD BC ∵是半圆的直径,∴, 1分AB O ︒=∠90ADB ∵,∴,AB DE ⊥ABD ADE ∠=∠又∵,即点是的斜边的中点,FG AF =F AGD Rt ∆AG ∴,∴,AF DF =ABD ADF DAF ∠=∠=∠又∵,(同弧所对的圆周角相等)DBC DAC ∠=∠∴,DBC ABD ∠=∠∴ ,即点平分 ; 5分D(2)如图4所示,连接、,OD AD ∵点是线段的中点,E OA ∴,OD OA OE 2121==∴,∴是等边三角形,︒=∠60AOD OAD ∆∴,AH AO AD ==∴是直角三角形,且,ODH ∆︒=∠90HDO ∴是⊙的切线.DH O 六、本大题共2小题,第25题1,第26题1,共25分25.解:(1);OF OE =(2)补全图形如右图5所示,仍然成立.OF OE =证明如下:延长交于点,EO CF G ∵,∴,BP CF BP AE ⊥⊥,CF AE //∴,GCO EAO ∠=∠∵点为的中点,∴,O AC CO AO =又∵,∴,COG AOE ∠=∠COG AOE ∆≅∆∴,OG OE =∵,∴,︒=∠90GFE OF OE =(3)当点在线段的延长线上时,P OA 线段、、之间的关系为. CF AE OE AE CF OE +=证明如下:延长交的延长线于点,如图6所示,EO FC H 由(2) 可知 ,COH AOE ∆≅∆∴,,CH AE =OH OE =又∵,,︒=∠30OEF ︒=∠90HFE ∴,OE EH HF ==21∴. 1AE CF CH CF OE +=+=26.解:(1)根据题意,可设抛物线的解析式为:, 1分)5)(1(-+=x x a y ∵是抛物线的对称轴,∴,CD )02(,D 又∵,∴,即,34tan =∠CBD 4tan =∠⋅=CBD BD CD )42(,C 代入抛物线的解析式,得,解得 ,)52)(12(4-+=a 94-=a ∴二次函数的解析式为 或;)5)(1(94-+-=x x y 920916942++-=x x y (2)①设,其中,直线的解析式为 ,)2(t P ,40<<t BC b kx y +=∴ 解得 ⎩⎨⎧+=+=.2450b k b k ,⎪⎪⎩⎪⎪⎨⎧=-=.32034b k ,即直线的解析式为 , 5分BC 32034+-=x y 令,得:,即,t y =t x 435-=)435(t t E ,-把代入,得 ,t x 435-=)5)(1(94-+-=x x y )42(tt y -=即,)412435(2t t t F --,∴,4)412(22t t t t tEF -=--=∴的面积BCF ∆)4(23212t t BD EF S -=⨯⨯=, 23)2(83)4(8322+--=--=t t t ∴当时,的面积最大,且最大值为; 2=t BCF ∆23②如图6,连接,根据图形的对称性可知 ,,AC BCD ACD ∠=∠5==BC AC ∴, 53sin ==∠AC AD ACD过点作于,则在中,P AC PG ⊥G PCG Rt ∆,PC ACD PC PG 53sin =∠⋅=∴, 11分PB PG PB PC +=+53再过点作于点,则,B AC BH ⊥H BH PH PG ≥+∴线段的长就是的最小值,1BH PB PC +53∵,12462121=⨯⨯=⨯⨯=∆CD AB S ABC 又∵,BH BH AC S ABC 2521=⨯⨯=∆∴,即,1225=BH 524=BH ∴的最小值为. 1PB PC +53524。
乐山市2019年中考数学试题及答案
乐山市2019年中考数学试题及答案(试卷满分150分,考试时间120分钟)一、选择题(本大题共10小题,共30分)1.-3的绝对值是()A. 3B.C.D.2.下列四个图形中,可以由图通过平移得到的是()A. B. C. D.3.小强同学从-1,0,1,2,3,4这六个数中任选一个数,满足不等式x+1<2的概率是()A. B. C. D.4.-a一定是()A. 正数B. 负数C. 0D. 以上选项都不正确5.如图,直线a∥b,点B在a上,且AB⊥BC.若∠1=35°,那么∠2等于()A. B.C. D.6.不等式组的解集在数轴上表示正确的是()A. B.C. D.7.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A. 1,11B. 7,53C. 7,61D. 6,508.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A. B.C. D.9.10.如图,在边长为的菱形ABCD中,∠B=30°,过点A作AE⊥BC于点E,现将△ABE沿直线AE翻折至△AFE的位置,AF与CD交于点G.则CG等于()A. B. 1 C. D.11.如图,抛物线y=x2-4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是()A. 3B.C.D. 4二、填空题(本大题共6小题,共18分)12.-的相反数是______.13.某地某天早晨的气温是-2℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是___℃.14.若3m=9n=2.则3m+2n=______.15.如图,在△ABC中,∠B=30°,AC=2,cos C=.则AB边的长为______.16.如图,点P是双曲线C:y=(x>0)上的一点,过点P作x轴的垂线交直线AB:y=x-2于点Q,连结OP,OQ.当点P在曲线C上运动,且点P在Q的上方时,△POQ面积的最大值是______.17.如图1,在四边形ABCD中,AD∥BC,∠B=30°,直线l⊥AB.当直线l沿射线BC方向,从点B开始向右平移时,直线l与四边形ABCD的边分别相交于点E、F.设直线l向右平移的距离为x,线段EF的长为y,且y与x的函数关系如图2所示,则四边形ABCD的周长是______.三、解答题(本大题共10小题,共102分)18.计算:()-1-(2019-π)0+2sin30°.19.如图,点A、B在数轴上,它们对应的数分别为-2,,且点A、B到原点的距离相等.求x的值.19.如图,线段AC、BD相交于点E,AE=DE,BE=CE.求证:∠B=∠C.20.化简:÷.21.如图,已知过点B(1,0)的直线l1与直线l2:y=2x+4相交于点P(-1,a).(1)求直线l1的解析式;(2)求四边形PAOC的面积22.某校组织学生参加“安全知识竞赛”,测试结束后,张老师从七年级720名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示.试根据统计图提供的信息,回答下列问题:(1)张老师抽取的这部分学生中,共有______名男生,______名女生;(2)张老师抽取的这部分学生中,女生成绩的众数是______;(3)若将不低于27分的成绩定为优秀,请估计七年级720名学生中成绩为优秀的学生人数大约是多少23.已知关于x的一元二次方程x2-(k+4)x+4k=0.(1)求证:无论k为任何实数,此方程总有两个实数根;(2)若方程的两个实数根为x1、x2,满足+=,求k的值;(3)若Rt△ABC的斜边为5,另外两条边的长恰好是方程的两个根x1、x2,求Rt△ABC的内切圆半径.20.如图,直线l与⊙O相离,OA⊥l于点A,与⊙O相交于点P,OA=5.C是直线l上一点,连结CP并延长交⊙O于另一点B,且AB=AC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为3,求线段BP的长.21.在△ABC中,已知D是BC边的中点,G是△ABC的重心,过G点的直线分别交AB、AC于点E、F.(1)如图1,当EF∥BC时,求证:+=1;(2)如图2,当EF和BC不平行,且点E、F分别在线段AB、AC上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.(3)如图3,当点E在AB的延长线上或点F在AC的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.22.如图,已知抛物线y=a(x+2)(x-6)与x轴相交于A、B两点,与y轴交于C点,且tan∠CAB=.设抛物线的顶点为M,对称轴交x轴于点N.(1)求抛物线的解析式;(2)P为抛物线的对称轴上一点,Q(n,0)为x轴上一点,且PQ⊥PC.①当点P在线段MN(含端点)上运动时,求n的变化范围;②当n取最大值时,求点P到线段CQ的距离;③当n取最大值时,将线段CQ向上平移t个单位长度,使得线段CQ与抛物线有两个交点,求t的取值范围.参考答案1.A2.D3.C4.D5.C6.B7.B8.A9.A 10.C11. . 12. -3 13. 4 14. . 15. 3 16. 10+2.17.解:原式=,=2-1+1,=2.18.解:根据题意得:,去分母,得x=2(x+1),去括号,得x=2x+2,解得x=-2经检验,x=-2是原方程的解.19.证明:在△AEB和△DEC中,∵∴△AEB≌△DEC,∴∠B=∠C.20.解:原式=÷,=×,=.21.解:(1)∵点P(-1,a)在直线l2:y=2x+4上,∴2×(-1)+4=a,即a=2,则P的坐标为(-1,2),设直线l1的解析式为:y=kx+b(k≠0),那么,解得:.∴l1的解析式为:y=-x+1.(2)∵直线l1与y轴相交于点C,∴C的坐标为(0,1),又∵直线l2与x轴相交于点A,∴A点的坐标为(-2,0),则AB=3,而S四边形PAOC=S△PAB-S△BOC,∴S四边形PAOC=.22.解:(1)男生:1+2+2+4+9+14+5+2+1=40(人)女生:1+1+2+3+11++13+7+1+1=40(人)故答案为40,40;(2)女生成绩27的人数最多,所以众数为27,故答案为27;(3)(人),七年级720名学生中成绩为优秀的学生人数大约是396人.(1)男生:1+2+2+4+9+14+5+2+1=40(人)女生:1+1+2+3+11++13+7+1+1=40(人);(2)女生成绩27的人数最多,所以众数为27;(3)(人).23.(1)证明:∵△=(k+4)2-16k=k2-8k+16=(k-4)2≥0,∴无论k为任何实数时,此方程总有两个实数根;(2)解:由题意得:x1+x2=k+4,x1•x2=4k,∵,∴,即,解得:k=2;=4,x2=k,(3)解:解方程x2-(k+4)x+4k=0得:x根据题意得:42+k2=52,即k=3,设直角三角形ABC的内切圆半径为r,如图,由切线长定理可得:(3-r)+(4-r)=5,∴直角三角形ABC的内切圆半径r=.24.(1)证明:如图,连结OB,则OP=OB,∴∠OBP=∠OPB=∠CPA,AB=AC,∴∠ACB=∠ABC,而OA⊥l,即∠OAC=90°,∴∠ACB+∠CPA=90°,即∠ABP+∠OBP=90°,∴∠ABO=90°,OB⊥AB,故AB是⊙O的切线;(2)解:由(1)知:∠ABO=90°,而OA=5,OB=OP=3,由勾股定理,得:AB=4,过O作OD⊥PB于D,则PD=DB,∵∠OPD=∠CPA,∠ODP=∠CAP=90°,∴△ODP∽△CAP,∴,又∵AC=AB=4,AP=OA-OP=2,∴,∴,∴.25.(1)证明:∵G 是△ABC 重心,∴,又∵EF ∥BC , ∴,, 则; (2)解:(1)中结论成立,理由如下:如图2,过点A 作AN ∥BC 交EF 的延长线于点N ,FE 、CB 的延长线相交于点M ,则△BME ∽△ANE ,△CMF ∽△ANF ,,, ∴, 又∵BM +CM =BM +CD +DM ,而D 是BC 的中点,即BD =CD ,∴BM +CM =BM +BD +DM =DM +DM =2DM , ∴, 又∵, ∴, 故结论成立;(3)解:(1)中结论不成立,理由如下: 当F 点与C 点重合时,E 为AB 中点,BE =AE , 点F 在AC 的延长线上时,BE >AE , ∴,则,同理:当点E 在AB 的延长线上时,, ∴结论不成立.26.解:(1)根据题意得:A (-2,0),B (6,0),在Rt△AOC中,∵,且OA=2,得CO=3,∴C(0,3),将C点坐标代入y=a(x+2)(x-6)得:,抛物线解析式为:;整理得:y=-故抛物线解析式为:得:y=-;(2)①由(1)知,抛物线的对称轴为:x=2,顶点M(2,4),设P点坐标为(2,m)(其中0≤m≤4),则PC2=22+(m-3)2,PQ2=m2+(n-2)2,CQ2=32+n2,∵PQ⊥PC,∴在Rt△PCQ中,由勾股定理得:PC2+PQ2=CQ2,即22+(m-3)2+m2+(n-2)2=32+n2,整理得:=(0≤m≤4),∴当时,n取得最小值为;当m=4时,n取得最大值为4,所以,;②由①知:当n取最大值4时,m=4,∴P(2,4),Q(4,0),则,,CQ=5,设点P到线段CQ距离为h,由,得:,故点P到线段CQ距离为2;③由②可知:当n取最大值4时,Q(4,0),∴线段CQ的解析式为:,设线段CQ向上平移t个单位长度后的解析式为:,当线段CQ向上平移,使点Q恰好在抛物线上时,线段CQ与抛物线有两个交点,此时对应的点Q'的纵坐标为:,将Q'(4,3)代入得:t=3,当线段CQ继续向上平移,线段CQ与抛物线只有一个交点时,联解得:,化简得:x2-7x+4t=0,由△=49-16t=0,得,∴当线段CQ与抛物线有两个交点时,.。
中考_2019年四川省乐山市中考数学真题及答案
2019年四川省乐山市中考数学真题及答案本试题卷分第一部分(选择题)和第二部分(非选择题),共8页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.考生作答时,不能使用任何型号的计算器.第Ⅰ卷(选择题 共30分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡对应题目标号的位置上. 2.在每小题给出的四个选项中,只有一个选项符合题目要求. 一、选择题:本大题共10个小题,每小题3分,共30分. 1.3-的绝对值是 ()A 3()B 3-()C 31 ()D 31- 2.下列四个图形中,可以由图1通过平移得到的是()A ()B ()C ()D 3.小强同学从1-,0,1,2,3,4这六个数中任选一个数,满足不等式21<+x 的概率是 ()A 51 ()B 41 ()C 31 ()D 214.a -一定是()A 正数 ()B 负数 ()C 0 ()D 以上选项都不正确5.如图2,直线a ∥b ,点B 在a 上,且BC AB ⊥.若︒=∠351,那么2∠等于()A ︒45 ()B ︒50 ()C ︒55 ()D ︒606.不等式组⎪⎩⎪⎨⎧≥--+<-04152362x x x x 的解集在数轴上表示正确的是()A ()B()C ()D7.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱。
问人数、物价各多少?”根据所学知识,计算出人数、物价分别是 ()A 1,11()B 7,53 ()C 7,61 ()D 6,508.把边长分别为1和2的两个正方形按图3的方式放置.则图中阴影部分的面积为 ()A 61()B 31()C 51 ()D 419. 如图4,在边长为3的菱形ABCD 中,︒=∠30B ,过点A 作BC AE ⊥于点E ,现将△ABE 沿直线AE 翻折至△AFE 的位置,AF 与CD 交于点G .则CG 等于 ()A 13-()B 1 ()C 21 ()D 2310.如图5,抛物线4412-=x y 与x 轴交于A 、B 两点,P 是以点C (0,3)为圆心,2为半径的圆上的动点,Q 是线段PA 的中点,连结OQ .则线段OQ 的最大值是()A 3 ()B 241()C 27()D 4第Ⅱ卷(非选择题 共120分)注意事项1.考生使用0.5mm 黑色墨汁签字笔在答题卡上题目所指示的答题区域内作答,答在试题卷上无效. 2.作图时,可先用铅笔画线,确认后再用0.5mm 黑色墨汁签字笔描清楚.3.解答题应写出文字说明、证明过程或推演步骤.013﹣6013﹣612图3GFE DABC图4图54.本部分共16个小题,共120分.二、填空题:本大题共6个小题,每小题3分,共18分. 11.21-的相反数是 ▲ .12.某地某天早晨的气温是2-℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是 ▲ C ︒. 13.若293==nm.则=+nm 23▲ .14.如图6,在△ABC 中,︒=∠30B ,2=AC ,53cos =C .则AB 边的长为 ▲ .15.如图7,点P 是双曲线C :xy 4=(0>x )上的一点,过点P 作x 轴的垂线交直线 AB :221-=x y 于点Q ,连结OP ,OQ .当点P 在曲线C 上运动,且点P 在Q 的 上方时,△POQ 面积的最大值是 ▲ .16.如图1.8,在四边形ABCD 中,AD ∥BC ,︒=∠30B ,直线AB l ⊥.当直线l 沿射线BC方向,从点B 开始向右平移时,直线l 与四边形ABCD 的边分别相交于点E 、F .设直线l 向 右平移的距离为x ,线段EF 的长为y ,且y 与x 的函数关系如图2.8所示,则四边形ABCD 的周长是 ▲ .30°AB C图6图7lFA三、本大题共3个小题,每小题9分,共27分.17.计算:()︒-+--⎪⎭⎫ ⎝⎛30sin 220192101π.18.如图9,点A 、B 在数轴上,它们对应的数分别为2-,1+x x,且点A 、B 到原点的 距离相等.求x 的值.19.如图10,线段AC 、BD 相交于点E ,DE AE = ,CE BE =.求证:C B ∠=∠.四、本大题共3个小题,每小题10分,共30分.20.化简:1112222+-÷-+-x xx x x x .21.如图11,已知过点)0,1(B 的直线1l 与直线2l :42+=x y 相交于点),1(a P -. (1)求直线1l 的解析式; (2)求四边形PAOC 的面积.BA 图9 C 图1022.某校组织学生参加“安全知识竞赛”(满分为30分),测试结束后,张老师从七年级720名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图12所示.试根据统计图提供的信息,回答下列问题:(1)张老师抽取的这部分学生中,共有 ▲ 名男生, ▲ 名女生; (2)张老师抽取的这部分学生中,女生成绩....的众数是 ▲ ; (3)若将不低于27分的成绩定为优秀,请估计七年级720名学生中成绩为优秀的学生人数大约是多少.五、本大题共2个小题,每小题10分,共20分. 23. 已知关于x 的一元二次方程04)4(2=++-k x k x . (1)求证:无论k 为任何实数,此方程总有两个实数根; (2)若方程的两个实数根为1x 、2x ,满足431121=+x x ,求k 的值; (3)若ABC Rt ∆的斜边长为5,另外两边的长恰好是方程的两个根1x 、2x ,求ABC Rt ∆ 的内切圆半径.24.如图13,直线l 与⊙O 相离,l OA ⊥于点A ,与⊙O 相交于点P ,5=OA .C 是直线l 上一点,连结CP分数图12并延长交⊙O 于另一点B ,且AC AB =. (1)求证:AB 是⊙O 的切线;(2)若⊙O 的半径为3,求线段BP 的长.六、本大题共2个小题,第25题12分,第26题13分,共25分.25.在△ABC 中,已知D 是BC 边的中点,G 是△ABC 的重心,过G 点的直线分别交AB 、AC 于点E 、F .(1)如图1.14,当EF ∥BC 时,求证:1=+AFCFAE BE ; (2)如图2.14,当EF 和BC 不平行,且点E 、F 分别在线段AB 、AC 上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.(3)如图3.14,当点E 在AB 的延长线上或点F 在AC 的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.26. 如图15,已知抛物线)6)(2(-+=x x a y 与x 轴相交于A 、B 两点,与y 轴交于C 点,且tan 23=∠CAB .设抛物线的顶点为M ,对称轴交x 轴于点N .(1)求抛物线的解析式;(2)P 为抛物线的对称轴上一点,)0,(n Q 为x 轴上一点,且PC PQ ⊥.①当点P 在线段MN (含端点)上运动时,求n 的变化范围; ②当n 取最大值时,求点P 到线段CQ 的距离;③当n 取最大值时,将线段..CQ 向上平移t 个单位长度,使得线段..CQ 与抛物线有两个交点,求t 的取值范围.F GDBACE图1.14 FGDBACE图2.14 FGDB AC E图3.14乐山市2019年初中学业水平考试数学参考答案及评分意见 第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,每小题3分,共30分.1. )(A2. )(D3. )(C4.)(D5. )(C6. )(B7. )(B8. )(A9.)(A 10. )(C第Ⅱ卷(非选择题 共120分)二、填空题:本大题共6小题,每小题3分,共18分.11.21 12.3- 13.414.51615.316.3210+三、本大题共3小题,每小题9分,共27分.17.解:原式21212⨯+-= ……………………………………6分 112+-= …………………………………8分 2=. ………………………………9分18.解:根据题意得:21=+x x,…………………………………4分 去分母,得)1(2+=x x ,去括号,得22+=x x ,……………………………………6分解得2-=x经检验,2-=x 是原方程的解.(没有检验不扣分)…………9分 19.证明:在AEB ∆和DEC ∆中,DE AE = ,CE BE =,DEC AEB ∠=∠ …………………3分AEB ∆∴≌DEC ∆, …………………………………7分故C B ∠=∠,得证. …………………………………9分四、本大题共3小题,每小题10分,共30分.20.解:原式)1)(1()1(2-+-=x x x ÷1)1(+-x x x , …………………4分)1()1(+-=x x ×)1(1-+x x x ,…………………………………7分x1=. …………………………………10分 21. 解:(1)上,:在直线点42),1(2+=-x y l a Pa =+-⨯∴4)1(2,即2=a ,…………………………………2分 则P 的坐标为)2,1(-,设直线1l 的解析式为:b kx y +=)0(≠k , 那么⎩⎨⎧=+-=+20b k b k ,解得:⎩⎨⎧=-=11b k .1l ∴的解析式为:1+-=x y .…………………………………5分图11(2) 直线1l 与y 轴相交于点C ,∴C 的坐标为)1,0(, …………………………………6分 又 直线2l 与x 轴相交于点A ,A ∴点的坐标为)0,2(-,则3=AB ,……………………7分 而BOC PAB PAO C S S S ∆∆-=四边形, ∴PAOC S 四边形2511212321=⨯⨯-⨯⨯=.……………………10分22.解:(1)40 40 ………………………………………………………………4分 (2)27 ……………………………………………………2分(3)396804472080231227720=⨯=+++⨯(人) ……………………10分五、本大题共2小题,每小题10分,共20分. 23.解:(1)证明: 0)4(16816)4(222≥-=+-=-+=∆k k k k k ,……………………2分∴无论k 为任何实数时,此方程总有两个实数根. ………………3分(2)由题意得:421+=+k x x ,k x x 421=⋅, ……………………4分 431121=+x x,432121=⋅+∴x x x x ,即4344=+k k , ……………………5分 解得:2=k ; ……………………6分(3)方法1:根据题意得:222215=+x x ,而22221221222148)4(2)(+=-+=-+=+k k k x x x x x x ,∴22254=+k ,解得:3=k 或3-=k (舍去)…………8分 设直角三角形ABC 的内切圆半径为r ,如图, 由切线长定理,可得:5)4()3(=-+-r r , ∴直角三角形ABC 的内切圆半径r =12543=-+; ………10分 方法2:解方程得:41=x ,k x =2, ………………7分4根据题意得:22254=+k ,解得:3=k 或3-=k (舍去)………………8分设直角三角形ABC 的内切圆半径为r ,如图, 由切线长定理,可得:5)4()3(=-+-r r , ∴直角三角形ABC 的内切圆半径r =12543=-+; ………………10分 24. 证明:(1)如图,连结OB ,则OB OP =,∴CAP OPB OBP ∠=∠=∠, ……………………1分 AC AB =,ABC ACB ∠=∠∴,……………………2分而l OA ⊥,即︒=∠90OAC ,︒=∠+∠∴90CPA ACB ,即︒=∠+∠90OBP ABP ,︒=∠∴90ABO , ……………………4分 AB OB ⊥∴,故AB 是⊙O 的切线; ……………………5分 (2)由(1)知:︒=∠90ABO , 而5=OA ,3==OP OB ,在AOB Rt ∆中,由勾股定理,得:4=AB , ……6分 过O 作PB OD ⊥于D ,则DB PD =,………………7分 在ODP ∆和CAP ∆中,CPA OPD ∠=∠ ,︒=∠=∠90CAP ODP ,ODP ∆∴∽CAP ∆, ……………………8分CPOPPA PD =∴,……………………9分 又4==AB AC ,2=-=OP OA AP , 在PAC Rt ∆中,由勾股定理得:5222=+=AP AC PC ,553=⋅=∴CP PA OP PD , 5562==∴PD BP . ……………………10分 方法2:由(1)知:︒=∠90ABO , 而5=OA ,3==OP OB ,在AOB Rt ∆中,由勾股定理,得:4=AB , ……6分 又4==AB AC ,2=-=OP OA AP , 在PAC Rt ∆中,由勾股定理得:5222=+=AP AC PC ,……7分延长PO 交⊙O 于D ,连接BD ,CPA DPB ∠=∠ ,︒=∠=∠90CAP DBP ,∵DBP ∆∽CAP ∆, ……………………8分CPAPDP BP =∴,……………………9分 而62==OP DP , ∴5565262=⨯=⋅=CP DP AP BP .……………………10分六、本大题共2小题,第25题12分,第26题13分,共25分 25.解:(1) G 是△ABC 重心,∴21=AG DG , ……………………1分 又 BC EF //,21==∴AG DG AE BE ,21==AG DG AF CF , ……………………2分 则12121=+=+AF CF AE BE . ……………………3分 (2)(1)中结论成立,理由如下: ……………………4分 如图,过A 作BC AN //交EF 的延长线于点N延长FE 、CB 相交于点M ,则AN BM AE BE =,ANCMAF CF =, ……………………5分 ∴ANCMBM AN CM AN BM AF CF AE BE +=+=+, ……………………6分 又 DM CD BM CM BM ++=+, 而D 是BC 的中点,即CD BD =,∴DM DM DM DM BD BM CM BM 2=+=++=+,…………7分∴AN DMAF CF AE BE 2=+, 又 21==AG DG AN DM ,∴1212=⨯=+AF CF AE BE , 故结论成立; ……………………9分方法2:如图,过点D 、C 分别作AB 的平行线,交EF 或EF 的延长线于点H 、I ,则21==AG DG AE DH ,AECIAF CF =, ∴AECIBE AE CI AE BE AF CF AE BE +=+=+, 而D 是BC 的中点,即DH 是梯形BEIC 的中位线, ∴DH CI BE 2=+, ∴12122=⨯==+AE DH AF CF AE BE 故结论成立;方法3:如图,过点B 、C 分别作AD 的平行线,交EF 或EF 的延长线于点H 、I ,则AG BH AE BE =,AG CIAF CF =, ∴AGCIBH AG CI AG BH AF CF AE BE +=+=+, 而D 是BC 的中点,即DG 是梯形BHIC 的中位线, ∴DG CI BH 2=+,又∵21=AG DG , ∴12122=⨯==+AE DH AF CF AE BE , 故结论成立;(3)(1)中结论不成立,理由如下:……………………10分 当F 点与C 点重合时,E 为AB 中点,AE BE =, 点F 在AC 的延长线上时,AE BE >,1>∴AE BE ,则1>+AFCF AE BE , ……………………11分 同理:当点E 在AB 的延长线上时,1>+AFCFAE BE , ∴结论不成立. ……………………12分26.解:(1)根据题意得: )0,2(-A ,)0,6(B ,……………………1分在AOC Rt ∆中, 23tan ==∠AO CO CAB ,且2=OA ,得3=CO ,………2分 )3,0(C ∴,将C 点坐标代入)6)(2(-+=x x a y 得:41-=a ,故抛物线解析式为:)6)(2(41-+-=x x y ;……………………3分(2)①方法1:由(1)知,抛物线的对称轴为:2=x ,顶点M ()4,2,……4分 设P 点坐标为)2(m ,(其中40≤≤m ),则222)3(2-+=m PC ,222)2(-+=n m PQ ,2223n CQ +=,PC PQ ⊥,∴在PCQ Rt ∆中,由勾股定理得:222CQ PQ PC =+,………5分即2222223)2()3(2n n m m +=-++-+,整理得:)43(212+-=m m n 87)23(212+-=m (40≤≤m ),…6分∴当23=m 时,n 取得最小值为87;当4=m 时,n 取得最大值为4,所以,487≤≤n ;……………………7分方法2:由(1)知,抛物线的对称轴为:2=x ,顶点M ()4,2,……4分 设P 点坐标为)2(m ,(其中40≤≤m ),过P 作x PE ⊥轴于点E ,则PEC Rt ∆∽PNQ Rt ∆,∴NQPNEC PE =,其中2=PE ,3-=m EC ,m PN =,2-=n NQ , 而3-m 与2-n 始终同号,∴232-=-n mm , ∴)43(212+-=m m n 87)23(212+-=m (40≤≤m ),………………6分∴当23=m 时,n 取得最小值为87;当4=m 时,n 取得最大值为4,所以,487≤≤n ;………………7分方法3:①由(1)知,抛物线的对称轴为:2=x ,顶点M ()4,2,………4分 设P 点坐标为)2(m ,(其中40≤≤m ),直线PC 的解析式为:11b x k y +=,将P 、C 两点坐标代入得:⎩⎨⎧+==11123b k m b ,解得:⎪⎩⎪⎨⎧=-=32311b m k ,∴直线PC 解析式:323+-=x m y ,又 PC PQ ⊥,可设直线PQ 的解析式为:232b x m y +--=, 将P 点坐标为),2(m 代入232b x m y +--=得:34322-+-=m m m b , ∴直线PQ 的解析式为:343322-+-+--=m m m x m y , 令0=y 时,3433202-+-+--=m m m x m , 解得:)43(212+-=m m x , 即)43(212+-=m m n 87)23(212+-=m ,…………6分点P 在线段MN (含端点)上运动,40≤≤∴m , ∴当23=m 时,n 取得最小值为87, 当4=m 时,n 取得最大值为4, 故:487≤≤n ;………………7分 ②由①知:当n 取最大值4时,4=m ,∴ )4,2(P ,)0,4(Q ,则5=PC ,52=PQ ,5=CQ ,………………8分 设点P 到线段CQ 距离为h , 由PQ PC h CQ S PCQ ⋅=⋅=∆2121, 得:2=⋅=CQPQPC h ,故点P 到线段CQ 距离为2;………………9分③由②可知:当n 取最大值4时,)0,4(Q ,∴线段CQ 的解析式为:343+-=x y ,………………10分设线段CQ 向上平移t 个单位长度后的解析式为:t x y ++-=343,当线段CQ 向上平移,使点Q 恰好在抛物线上时,线段CQ 与抛物线有两个交点, 此时对应的点'Q 的纵坐标为:3)64)(24(41=-+-,将)3,4('Q 代入t x y ++-=343得:3=t ,………………11分 当线段CQ 继续向上平移与抛物线相切时,线段CQ 与抛物线只有一个交点,联解⎪⎪⎩⎪⎪⎨⎧++-=-+-=t x y x x y 343)6)(2(41,得:t x x x ++-=-+-343)6)(2(41,化简得: 0472=+-t x x ,由01649=-=∆t ,得1649=t ,………………12分 ∴当线段CQ 与抛物线有两个交点时,16493<≤t .………………13分。
四川省乐山市2019年中考数学试卷(Word解析版)
精品文档,欢迎下载!如果您喜欢这份文档,欢迎下载!祝您成绩进步,学习愉快!2019年四川省乐山市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.-3的绝对值是()A. 3B. −3C. 13D.−132.下列四个图形中,可以由图通过平移得到的是()A. B. C. D.3.小强同学从-1,0,1,2,3,4这六个数中任选一个数,满足不等式x+1<2的概率是()A. 15B. 14C. 13D. 124.-a一定是()A. 正数B. 负数C. 0D. 以上选项都不正确5.如图,直线a∥b,点B在a上,且AB⊥BC.若∠1=35°,那么∠2等于()A. 45∘B. 50∘C. 55∘D. 60∘6.不等式组{2x−6<3xx+25−x−14≥0的解集在数轴上表示正确的是()A. B.C. D.7.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A. 1,11B. 7,53C. 7,61D. 6,508.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A. 16B. 13C. 15D. 149.如图,在边长为√3的菱形ABCD中,∠B=30°,过点A作AE⊥BC于点E,现将△ABE沿直线AE翻折至△AFE的位置,AF与CD交于点G.则CG等于()A. √3−1B. 1C. 12D. √3210.如图,抛物线y=14x2-4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是()A. 3B. √412C. 72D. 4二、填空题(本大题共6小题,共18.0分)11.-12的相反数是______.12.某地某天早晨的气温是-2℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是______℃.13.若3m=9n=2.则3m+2n=______.14.如图,在△ABC中,∠B=30°,AC=2,cos C=35.则AB边的长为______.精品文档,欢迎下载!15.如图,点P是双曲线C:y=4(x>0)上的一点,过点Pxx-2于点Q,连结OP,OQ.当作x轴的垂线交直线AB:y=12点P在曲线C上运动,且点P在Q的上方时,△POQ面积的最大值是______.16.如图1,在四边形ABCD中,AD∥BC,∠B=30°,直线l⊥AB.当直线l沿射线BC方向,从点B开始向右平移时,直线l与四边形ABCD的边分别相交于点E、F.设直线l向右平移的距离为x,线段EF的长为y,且y与x的函数关系如图2所示,则四边形ABCD的周长是______.三、解答题(本大题共10小题,共102.0分)17.计算:(1)-1-(2019-π)0+2sin30°.218.如图,点A、B在数轴上,它们对应的数分别为-2,x,且点A、B到原点的距离x+1相等.求x的值.19. 如图,线段AC 、BD 相交于点E ,AE =DE ,BE =CE .求证:∠B =∠C .20. 化简:x 2−2x+1x 2−1÷x 2−x x+1.21. 如图,已知过点B (1,0)的直线l 1与直线l 2:y =2x +4相交于点P (-1,a ). (1)求直线l 1的解析式; (2)求四边形PAOC 的面积.22. 某校组织学生参加“安全知识竞赛”,测试结束后,张老师从七年级720名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示.试根据统计图提供的信息,回答下列问题:精品文档,欢迎下载!(1)张老师抽取的这部分学生中,共有______名男生,______名女生;(2)张老师抽取的这部分学生中,女生成绩的众数是______;(3)若将不低于27分的成绩定为优秀,请估计七年级720名学生中成绩为优秀的学生人数大约是多少.23.已知关于x的一元二次方程x2-(k+4)x+4k=0.(1)求证:无论k为任何实数,此方程总有两个实数根;(2)若方程的两个实数根为x1、x2,满足1x1+1x2=34,求k的值;(3)若Rt△ABC的斜边为5,另外两条边的长恰好是方程的两个根x1、x2,求Rt△ABC 的内切圆半径.24.如图,直线l与⊙O相离,OA⊥l于点A,与⊙O相交于点P,OA=5.C是直线l上一点,连结CP并延长交⊙O于另一点B,且AB=AC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为3,求线段BP的长.25.在△ABC中,已知D是BC边的中点,G是△ABC的重心,过G点的直线分别交AB、AC于点E、F.(1)如图1,当EF∥BC时,求证:BEAE +CFAF=1;(2)如图2,当EF和BC不平行,且点E、F分别在线段AB、AC上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.(3)如图3,当点E在AB的延长线上或点F在AC的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.26.如图,已知抛物线y=a(x+2)(x-6)与x轴相交于A、B两点,与y轴交于C点,且tan∠CAB=32.设抛物线的顶点为M,对称轴交x轴于点N.(1)求抛物线的解析式;(2)P为抛物线的对称轴上一点,Q(n,0)为x轴上一点,且PQ⊥PC.①当点P在线段MN(含端点)上运动时,求n的变化范围;②当n取最大值时,求点P到线段CQ的距离;③当n取最大值时,将线段CQ向上平移t个单位长度,使得线段CQ与抛物线有两个交点,求t的取值范围.精品文档,欢迎下载!答案和解析1.【答案】A【解析】解:|-3|=-(-3)=3.故选:A.根据一个负数的绝对值等于它的相反数得出.考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】D【解析】解:∵只有D的图形的形状和大小没有变化,符合平移的性质,属于平移得到;故选:D.根据平移的性质解答即可.本题考查的是平移的性质,熟知图形平移后所得图形与原图形全等是解答此题的关键.3.【答案】C【解析】解:在-1,0,1,2,3,4这六个数中,满足不等式x+1<2的有-1、0这两个,所以满足不等式x+1<2的概率是=,故选:C.找到满足不等式x+1<2的结果数,再根据概率公式计算可得.本题主要考查概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.4.【答案】D【解析】解:-a中a的符号无法确定,故-a的符号无法确定.故选:D.利用正数与负数定义分析得出答案.此题主要考查了正数和负数,正确理解正负数的定义是解题关键.精品文档,欢迎下载!5.【答案】C【解析】解:∵a∥b,∠1=35°,∴∠BAC=∠1=35°.∵AB⊥BC,∴∠2=∠BCA=90°-∠BAC=55°.故选:C.先根据∠1=35°,a∥b求出∠BAC的度数,再由AB⊥BC即可得出答案.本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.6.【答案】B【解析】解:,解①得:x>-6,解②得:x≤13,故不等式组的解集为:-6<x≤13,在数轴上表示为:.故选:B.分别解不等式进而得出不等式组的解集,进而得出答案.此题主要考查了解一元一次不等式组,正确解不等式是解题关键.7.【答案】B【解析】解:设有x人,物价为y,可得:,解得:,故选:B.设有x人,物价为y,根据该物品价格不变,即可得出关于x、y的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.【答案】A【解析】解:如图,设BC=x,则CE=1-x易证△ABC∽△FEC∴===解得x=∴阴影部分面积为:S△ABC=××1=故选:A.如图,易证△ABC∽△FEC,可设BC=x,只需求出BC即可.本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答9.【答案】A【解析】解:在Rt△ABE中,∠B=30°,AB=,∴BE=.根据折叠性质可得BF=2BE=3.∴CF=3-.∵AD∥CF,∴△ADG∽△FCG.∴.设CG=x,则,解得x=-1.故选:A.先利用30°直角三角形的性质,求出BE,再根据折叠性质求得BF,从而得到CF长,最后根据△ADG∽△FCG得出与CG有关的比例式,即可求解CG长.本题主要考查了菱形的性质、相似三角形的判定和性质、折叠的性质,解题的关键是找到与CG相关的三角形,利用相似知识求解.10.【答案】C【解析】精品文档,欢迎下载!解:连接BP,如图,当y=0时,x2-4=0,解得x1=4,x2=-4,则A(-4,0),B(4,0),∵Q是线段PA的中点,∴OQ为△ABP的中位线,∴OQ=BP,当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC==5,∴BP′=5+2=7,∴线段OQ的最大值是.故选:C.连接BP,如图,先解方程x2-4=0得A(-4,0),B(4,0),再判断OQ为△ABP 的中位线得到OQ=BP,利用点与圆的位置关系,BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,然后计算出BP′即可得到线段OQ的最大值.本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了三角形中位线.11.【答案】12【解析】解:的相反数是,故答案为:.根据只有符号不同的两个数互为相反数,可得一个数的相反数.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.12.【答案】-3【解析】解:-2+6-7=-3,故答案为:-3由题意列出算式进行计算求解即可.本题主要考查有理数的加减法,正确列出算式是解题的关键.13.【答案】4【解析】解:∵3m=32n=2,∴3m+2n=3m•32n=2×2=4,故答案为:4根据幂的乘方与积的乘方进行解答即可.此题考查幂的乘方与积的乘方,关键是根据幂的乘方与积的乘方解答.14.【答案】165【解析】解:如图,作AH⊥BC于H.在Rt△ACH中,∵∠AHC=90°,AC=2,COSC=,∴=,∴CH=,∴AH===,在Rt△ABH中,∵∠AHB=90°,∠B=30°,∴AB=2AH=,故答案为.如图,作AH⊥BC于H.解直角三角形求出AH,再根据AB=2AH即可解决问题.精品文档,欢迎下载!本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.15.【答案】3【解析】解:∵PQ⊥x轴,∴设P(x,),则Q(x,x-2),∴PQ=-x+2,∴S△POQ=(-+2)•x=-(x-2)2+3,∵-<0,∴△POQ面积有最大值,最大值是3,故答案为3.设P(x,),则Q(x,x-2),得到PQ=-x+2,根据三角形面积公式得到S△POQ=-(x-2)2+3,根据二次函数的性质即可求得最大值.本题考查了一次函数图象上点的坐标特征,二次函数的性质,反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.16.【答案】10+2√3【解析】解:∵∠B=30°,直线l⊥AB,∴BE=2EF,由图可得,AB=4cos30°=4×=2,BC=5,AD=7-4=3,当EF平移到点F与点D重合时,如右图所示,∵∠EFB=60°,∴∠DEC=60°,∵DE=CE=2,∴△DEC为等边三角形,∴CD=2.∴四边形ABCD的周长是:AB+BC+AD+CD=2+5+3+2=10+2,故答案为:10+2.根据题意和函数图象中的数据,可以得到AB、BC、AD的长,再根据平行线的性质和图形中的数据可以得到CD的长,从而可以求得四边形ABCD的周长.本题考查动点问题的函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.17.【答案】解:原式=2−1+2×12,=2-1+1,=2.【解析】根据实数的混合计算解答即可.此题考查实数的运算,关键是根据实数的混合计算解答.18.【答案】解:根据题意得:xx+1=2,去分母,得x=2(x+1),去括号,得x=2x+2,解得x=-2经检验,x=-2是原方程的解.【解析】根据题意得出分式方程解答即可.此题考查解分式方程,关键是根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论解答.19.【答案】证明:在△AEB和△DEC中,∵{AE=DE∠AEB=∠DEC BE=CE∴△AEB≌△DEC,∴∠B=∠C.【解析】根据AE=DE,∠AEB=∠DEC,BE=CE,证出△AEB≌△DEC,即可得出∠B=∠C.精品文档,欢迎下载!此题主要考查学生对全等三角形的判定与性质这一知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.20.【答案】解:原式=(x−1)2(x+1)(x−1)÷x(x−1)x+1,=(x−1)(x+1)×x+1x(x−1), =1x. 【解析】首先将分式的分子与分母分解因式,进而约分得出答案.此题主要考查了分式的乘除运算,正确分解因式是解题关键.21.【答案】解:(1)∵点P (-1,a )在直线l 2:y =2x +4上,∴2×(-1)+4=a ,即a =2,则P 的坐标为(-1,2),设直线l 1的解析式为:y =kx +b (k ≠0),那么{−k +b =2k+b=0,解得:{b =1k=−1.∴l 1的解析式为:y =-x +1.(2)∵直线l 1与y 轴相交于点C ,∴C 的坐标为(0,1),又∵直线l 2与x 轴相交于点A ,∴A 点的坐标为(-2,0),则AB =3,而S 四边形PAOC =S △PAB -S △BOC ,∴S 四边形PAOC =12×3×2−12×1×1=52.【解析】(1)由点P (-1,a )在直线l 2上,利用一次函数图象上点的坐标特征,即可求出a 值,再利用点P 的坐标和点B 的坐标可求直线l 1的解析式;(2)根据面积差可得结论.本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征和三角形的面积,在函数的图象上的点,就一定满足函数解析式.并利用数形结合的思想解决问题.22.【答案】40 40 27【解析】解:(1)男生:1+2+2+4+9+14+5+2+1=40(人)女生:1+1+2+3+11++13+7+1+1=40(人)故答案为40,40;(2)女生成绩27的人数最多,所以众数为27,故答案为27;(3)(人),七年级720名学生中成绩为优秀的学生人数大约是396人.(1)男生:1+2+2+4+9+14+5+2+1=40(人)女生:1+1+2+3+11++13+7+1+1=40(人);(2)女生成绩27的人数最多,所以众数为27;(3)(人).此题同时考查了条形统计图,考查了利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、认真分析、认真研究统计图,只有这样才能作出正确的判断,准确地解决问题.23.【答案】(1)证明:∵△=(k+4)2-16k=k2-8k+16=(k-4)2≥0,∴无论k为任何实数时,此方程总有两个实数根;(2)解:由题意得:x1+x2=k+4,x1•x2=4k,∵1 x1+1x2=34,∴x1+x2 x1⋅x2=34,即k+44k =34,解得:k=2;(3)解:解方程x2-(k+4)x+4k=0得:x1=4,x2=k,根据题意得:42+k2=52,即k=3,设直角三角形ABC的内切圆半径为r,如图,由切线长定理可得:(3-r)+(4-r)=5,∴直角三角形ABC的内切圆半径r=3+4−52=1.【解析】(1)根据根的判别式△=(k+4)2-16k=k2-8k+16=(k-4)2≥0,即可得到结论;(2)由题意得到x1+x2=k+4,x1•x2=4k,代入,解方程即可得到结论;精品文档,欢迎下载!(3)解方程x2-(k+4)x+4k=0得到x1=4,x2=k,根据题意根据勾股定理列方程得到k=3,设直角三角形ABC的内切圆半径为r,根据切线长定理即可得到结论.本题考查了三角形的内切圆和内心,切线的性质,一元二次方程根的判别式,一元二次方程根与系数的关系,熟练掌握切线长定理是解题的关键.24.【答案】(1)证明:如图,连结OB,则OP=OB,∴∠OBP=∠OPB=∠CPA,AB=AC,∴∠ACB=∠ABC,而OA⊥l,即∠OAC=90°,∴∠ACB+∠CPA=90°,即∠ABP+∠OBP=90°,∴∠ABO=90°,OB⊥AB,故AB是⊙O的切线;(2)解:由(1)知:∠ABO=90°,而OA=5,OB=OP=3,由勾股定理,得:AB=4,过O作OD⊥PB于D,则PD=DB,∵∠OPD=∠CPA,∠ODP=∠CAP=90°,∴△ODP∽△CAP,∴PD PA =OPCP,又∵AC=AB=4,AP=OA-OP=2,∴PC=√AC2+AP2=2√5,∴PD=OP⋅PACP =35√5,∴BP=2PD=65√5.【解析】(1)连接OB,由AB=AC得∠ABC=∠ACB,由OP=OB得∠OPB=∠OBP,由OA⊥l得∠OAC=90°,则∠ACB+∠APC=90°,而∠APC=∠OPB=∠OBP,所以∠OBP+∠ABC=90°,即∠OBA=90°,于是根据切线的判定定理得到直线AB是⊙O的切线;(2)根据勾股定理求得AB=4,PC=2,过O作OD⊥PB于D,则PD=DB,通过证得△ODP∽△CAP,得到,求得PD,即可求得PB.本题考查了切线的判定和性质,勾股定理的应用研究三角形相似的判定和性质,熟练掌握性质定理是解题的关键.25.【答案】(1)证明:∵G是△ABC重心,∴DG AG =12,又∵EF∥BC,∴BE AE =DGAG=12,CFAF=DGAG=12,则BEAE +CFAF=12+12=1;(2)解:(1)中结论成立,理由如下:如图2,过点A作AN∥BC交EF的延长线于点N,FE、CB的延长线相交于点M,则△BME∽△ANE,△CMF∽△ANF,BE AE =BMAN,CFAF=CMAN,∴BE AE +CFAF=BMAN+CMAN=BM+CMAN,又∵BM+CM=BM+CD+DM,而D是BC的中点,即BD=CD,∴BM+CM=BM+BD+DM=D M+DM=2DM,∴BE AE +CFAF=2DMAN,又∵DMAN =DGAG=12,∴BE AE +CFAF=2×12=1,故结论成立;(3)解:(1)中结论不成立,理由如下:当F点与C点重合时,E为AB中点,BE=AE,点F在AC的延长线上时,BE>AE,∴BE AE >1,则BEAE+CFAF>1,同理:当点E在AB的延长线上时,BEAE +CFAF>1,∴结论不成立.【解析】(1)根据三角形重心定理和平行线分线段成比例解答即可;精品文档,欢迎下载!(2)过点A作AN∥BC交EF的延长线于点N,FE、CB的延长线相交于点M,得出△BME∽△ANE,△CMF∽△ANF,得出比例式解答即可;(3)分两种情况:当F点与C点重合时,E为AB中点,BE=AE;点F在AC的延长线上时,BE>AE,得出,则,同理:当点E在AB的延长线上时,,即可得出结论.此题是相似三角形综合题,考查了相似三角形的判定与性质、三角形重心定理、平行线分线段成比例定理等知识;本题综合性强,熟练掌握三角形的重心定理和平行线分线段成比例定理,证明三角形相似是解题的关键.26.【答案】解:(1)根据题意得:A(-2,0),B(6,0),在Rt△AOC中,∵tan∠CAO=COAO =32,且OA=2,得CO=3,∴C(0,3),将C点坐标代入y=a(x+2)(x-6)得:a=−14,抛物线解析式为:y=−14(x+2)(x−6);整理得:y=-14x2+x+3故抛物线解析式为:得:y=-14x2+x+3;(2)①由(1)知,抛物线的对称轴为:x=2,顶点M(2,4),设P点坐标为(2,m)(其中0≤m≤4),则PC2=22+(m-3)2,PQ2=m2+(n-2)2,CQ2=32+n2,∵PQ⊥PC,∴在Rt△PCQ中,由勾股定理得:PC2+PQ2=CQ2,即22+(m-3)2+m2+(n-2)2=32+n2,整理得:n=12(m2−3m+4)=12(m−32)2+78(0≤m≤4),∴当m=32时,n取得最小值为78;当m=4时,n取得最大值为4,所以,78≤n≤4;②由①知:当n取最大值4时,m=4,∴P(2,4),Q(4,0),则PC=√5,PQ=2√5,CQ=5,设点P到线段CQ距离为h,由S△PCQ=12CQ⋅ℎ=12PC⋅PQ,得:ℎ=PC⋅PQCQ=2,故点P到线段CQ距离为2;③由②可知:当n取最大值4时,Q(4,0),∴线段CQ的解析式为:y=−34x+3,精品文档,欢迎下载!第21页,共22页 设线段CQ 向上平移t 个单位长度后的解析式为:y =−34x +3+t ,当线段CQ 向上平移,使点Q 恰好在抛物线上时,线段CQ 与抛物线有两个交点,此时对应的点Q '的纵坐标为:−14(4+2)(4−6)=3,将Q '(4,3)代入y =−34x +3+t 得:t =3,当线段CQ 继续向上平移,线段CQ 与抛物线只有一个交点时,联解{y =−14(x +2)(x −6)y =−34x +3+t得:−14(x +2)(x −6)=−34x +3+t ,化简得:x 2-7x +4t =0,由△=49-16t =0,得t =4916,∴当线段CQ 与抛物线有两个交点时,3≤t <4916.【解析】(1)由函数解析式,可以求出点A 、B 的坐标分别为(-2,0),(6,0),在Rt △OAC 中由tan ∠CAB=,可以求出点C 的坐标为(0,3),进而可以求出抛物线的解析式;(2)①抛物线的对称轴为:x=2,顶点M (2,4),在Rt △PCQ 中,由勾股定理得:PC 2+PQ 2=CQ 2,把三角形三边长用点P ,Q 的坐标表达出来,整理得:,利用0≤m≤4,求出n 的取值范围;②由,得:,求出点P 到线段CQ 距离为2;③设线段CQ 向上平移t 个单位长度后的解析式为:,联立抛物线方程,可求出x 2-7x+4t=0,由△=49-16t=0,得, ∴当线段CQ 与抛物线有两个交点时,主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,处理问题和解决问题.第22页,共22页。
【中考真题】2019年四川省乐山市中考数学真题试卷(附答案)
…………○…………订………学班级:___________考号:____…………○…………订………绝密★启用前2019年四川省乐山市中考数学真题试卷(附答案)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题1.13-的绝对值是( ) A .3B .3-C .13D .13-2.下列四个图形中,可以由图1通过平移得到的是( )A .B .C .D .3.小强同学从1-,0,1,2,3,4这六个数中任选一个数,满足不等式12x +<的概率是()A .15B .14C .13D .124.a -一定是A .正数B .负数C .0D .以上选项都不正确5.如图,直线a ∥b ,点B 在a 上,且AB BC ⊥.若135︒∠=,那么2∠等于( )A .45︒B .50︒C .55︒D .60︒6.不等式组26321054x x x x -<⎧⎪+-⎨-≥⎪⎩的解集在数轴上表示正确的是( )………外………装……………订………线…………○……不※※要※※在※※※※内※※答※………内………装……………订………线…………○……A.B.C.D.7.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱。
问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A.1,11 B.7,53 C.7,61 D.6,508.把边长分别为1和2的两个正方形按图3的方式放置.则图中阴影部分的面积为()A.16B.13C.15D.149的菱形ABCD中,30B∠=︒,过点A作AE BC⊥于点E,现将△ABE沿直线AE翻折至△AFE的位置,AF与CD交于点G.则CG等于()A1B.1C.12D10.如图,抛物线2144y x=-与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是()A.3B C.72D.4○…………外…………装…………订…………○________姓名:__________考号:__________○…………内…………装…………订…………○第II 卷(非选择题)二、填空题 11.12-的相反数是_________. 12.某地某天早晨的气温是2-℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是_______C ︒.13.若392m n ==.则23m n +=___________.14.如图,在△ABC 中,30B ∠=︒,2AC =,3cos 5C =.则AB 边的长为___________.15.如图,点P 是双曲线C :4y x=(0x >)上的一点,过点P 作x 轴的垂线交直线AB :122y x =-于点Q ,连结OP ,OQ .当点P 在曲线C 上运动,且点P 在Q 的上方时,△POQ 面积的最大值是______.16.如图1,在四边形ABCD 中,AD ∥BC ,30B ︒∠=,直线l AB ⊥.当直线l 沿射线BC 方向,从点B 开始向右平移时,直线l 与四边形ABCD 的边分别相交于点E 、F .设直线l 向右平移的距离为x ,线段EF 的长为y ,且y 与x 的函数关系如图2所示,则四边形ABCD 的周长是_____.…………装…………………○…………※请※※不※※要※※在※※※答※※题※※…………装…………………○…………三、解答题17.计算:()10120192sin 302π-︒⎛⎫--+ ⎪⎝⎭.18.如图,点A 、B 在数轴上,它们对应的数分别为2-,1xx +,且点A 、B 到原点的距离相等.求x 的值.19.如图,线段AC 、BD 相交于点E ,AE DE = ,BE CE =.求证:B C ∠=∠.20.化简:2222111x x x xx x -+-÷-+. 21.如图,已知过点(1,0)B 的直线1l 与直线2l :24y x =+相交于点(1,)P a -. (1)求直线1l 的解析式; (2)求四边形PAOC 的面积.22.某校组织学生参加“安全知识竞赛”(满分为30分),测试结束后,张老师从七年级720名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图12所示.试根据统计图提供的信息,回答下列问题:……外…………○○…………线…………○……学_……内…………○○…………线…………○……(1)张老师抽取的这部分学生中,共有 名男生, 名女生; (2)张老师抽取的这部分学生中,女生成绩....的众数是 ; (3)若将不低于27分的成绩定为优秀,请估计七年级720名学生中成绩为优秀的学生人数大约是多少.23.已知关于x 的一元二次方程2(4)40x k x k -++=. (1)求证:无论k 为任何实数,此方程总有两个实数根; (2)若方程的两个实数根为1x 、2x ,满足121134x x +=,求k 的值; (3)若Rt △ABC 的斜边为5,另外两条边的长恰好是方程的两个根1x 、2x ,求Rt ∆ABC 的内切圆半径.24.如图,直线l 与⊙O 相离,OA l ⊥于点A ,与⊙O 相交于点P ,5OA =.C 是直线l 上一点,连结CP 并延长交⊙O 于另一点B ,且AB AC =. (1)求证:AB 是⊙O 的切线; (2)若⊙O 的半径为3,求线段BP 的长.25.在△ABC 中,已知D 是BC 边的中点,G 是△ABC 的重心,过G 点的直线分别交AB 、AC 于点E 、F .BE CF…外…………○…………装……○…………线……※※请※※不※※要※※※…内…………○…………装……○…………线……(2)如图2,当EF 和BC 不平行,且点E 、F 分别在线段AB 、AC 上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.(3)如图3,当点E 在AB 的延长线上或点F 在AC 的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.26.如图,已知抛物线(2)(6)y a x x =+-与x 轴相交于A 、B 两点,与y 轴交于C 点,且tan 32CAB ∠=.设抛物线的顶点为M ,对称轴交x 轴于点N . (1)求抛物线的解析式;(2)P 为抛物线的对称轴上一点,(,0)Q n 为x 轴上一点,且PQ PC ⊥. ①当点P 在线段MN (含端点)上运动时,求n 的变化范围; ②当n 取最大值时,求点P 到线段CQ 的距离;③当n 取最大值时,将线段..CQ 向上平移t 个单位长度,使得线段..CQ 与抛物线有两个交点,求t 的取值范围.参考答案1.C【解析】【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义即可解决.【详解】在数轴上,点13-到原点的距离是13,所以,13-的绝对值是13,故选C.【点睛】错因分析容易题,失分原因:未掌握绝对值的概念.2.D【解析】【分析】平移不改变图形的形状和大小.根据原图形可知平移后的图形飞机头向上,即可解题. 【详解】考查图像的平移,平移前后的图像的大小、形状、方向是不变的,故选D.【点睛】本题考查了图形的平移,牢固掌握平移的性质即可解题.3.C【解析】【分析】首先解不等式得x<1,可知六个数中只有2个满足不等式,故通过概率公式可求得概率. 【详解】解:x+1<2解得:x<1∴六个数中满足条件的有2个,故概率是1 3 .【点睛】本题考查了解不等式,随机事件概率,解本题的关键是通过解不等式来求满足条件的随机事件概率.4.D【解析】【分析】根据题意,a可能为正数,故-a为负数;a可能为0,则-a为0;a可能为负数,-a为正数,由于题中未说明a是哪一种,故无法判断-a.【详解】∵a可正、可负、也可能是0∴选D.【点睛】本题考查了有理数的分类,解本题的关键是掌握a不确定正负性,-a就无法确定.5.C【解析】【分析】根据两直线平行内错角相等可知∠1=∠BAC=35°,由三角形内角和为180°可得∠BCA=180°-90°-35°=55°,故根据对顶角可得∠2.【详解】解:∵直线a∥b∴∠1=∠BAC=35°又∵∠ABC=90°,∴∠BCA=180°-90°-35°=55°∴∠2=∠BCA=55°故选C.【点睛】本题考查了平行线的性质,三角形内角和定理,对顶角相等,灵活运用是解题的关键. 6.B【解析】 【分析】解得将不等式组的解集为-613x <≤,再根据用数轴表示解集即可解得本题. 【详解】∵263x x -<,解得:6x >-;∵21054x x +-⎧-≥⎨⎩,解得:13x ≤; ∴不等式组的解集是:-613x <≤ 故选B. 【点睛】本题考查了解不等式组以及在数轴上表示解集,解本题的关键是不等式解集中是否可取等于在数轴上的不同表示. 7.B 【解析】 【分析】根据题意设人数x 人,物价y 钱,则由每人出8钱,会多3钱可列式8x-3=y ,由每人出7钱,又差4钱可列式7x+4=y ,联立两个方程解方程组即可解题. 【详解】解设人数x 人,物价y 钱.8374x y x y -=⎧⎨+=⎩ 解得:753x y =⎧⎨=⎩故选B. 【点睛】本题考查了二元一次方程组的应用,正确理解题意列出等量关系式是解题的关键. 8.A 【解析】 【分析】对图上各边标上字母,由题意可证得△ADH ∽△GCH ,利用相似三角形对应线段成比例可知121DH DH=-,可求得阴影部分面积的高DH ,进而求得阴影部分面积. 【详解】∵∠CHG=∠DHA ,∠HCG=∠ADH ∴△ADH ∽△GCH∴AD DHCG CH =即121DH DH=- 解得DH=13∴阴影部分面积=1×13×12=16【点睛】本题考查了相似三角形的性质与判定,求阴影部分的面积,解本题的关键是求得阴影部分的高进而即可解题. 9.A 【解析】 【分析】在Rt △ABE 中,∠B=30°,BE=32,根据△ABE 沿直线AE 翻折至△AFE 的位置可知BF=3,结合菱形ABCD 可知32,则CF=3-CG ∥AB ,再根据平行线段成比例可得CG CFAB BF=即=1 【详解】∵∠B=30°,AE ⊥BC∴BE=32∴BF=3,32,则又∵CG ∥AB ∴CG CF AB BF==解得1.【点睛】本题考查了菱形的性质,平行线段成比例,图形的翻折,解本题的关键是通过利用菱形对边平行发现与要求线段CG 与其他线段成比例的关系.10.C【解析】【分析】根据抛物线解析式可求得点A (-4,0),B (4,0),故O 点为AB 的中点,又Q 是AP 上的中点可知OQ=12BP ,故OQ 最大即为BP 最大,即连接BC 并延长BC 交圆于点P 时BP 最大,进而即可求得OQ 的最大值.【详解】∵抛物线2144y x =-与x 轴交于A 、B 两点 ∴A (-4,0),B (4,0),即OA=4.在直角三角形COB 中5==∵Q 是AP 上的中点,O 是AB 的中点∴OQ 为△ABP 中位线,即OQ=12BP 又∵P 在圆C 上,且半径为2,∴当B 、C 、P 共线时BP 最大,即OQ 最大此时BP=BC+CP=7OQ=12BP=72.【点睛】本题考查了勾股定理求长度,二次函数解析式求点的坐标及线段长度,中位线,与圆相离的点到圆上最长的距离,解本题的关键是将求OQ最大转化为求BP最长时的情况.11.1 2【解析】【分析】相反数:只有符号不同的两个数互为相反数. 【详解】∵12与12-只有符号不同∴答案是1 2 .【点睛】考相反数的概念,掌握即可解题.12.-3【解析】【分析】根据早晨的气温是2-℃,到中午升高了6℃,可知中午温度为-2+6=4℃,晚上又降低了7℃可知晚上温度为4-7=-3℃.【详解】∵-2+6-7=-3∴答案是-3.【点睛】本题考查了有理数的加减,解题的关键是掌握有理数运算中符号的变化.13.4【解析】【分析】利用同底数幂相乘的逆运算可将要求式子23+m n 化为2233339+=⨯=⨯m n m n m n ,代入已知即可求解.【详解】∵23=9=32=m n n∴2233339224+=⨯=⨯=⨯=m n m n m n【点睛】本题考查了同底数幂相乘的逆运算,幂的乘方逆运算,掌握运算法则即可求解.14.165【解析】【分析】过A 作AD ⊥BC 于D 点,根据3cos 5C =,可求得CD ,在Rt △ACD 中由勾股定理可求得AD ,再利用Rt △ADB 中30B ∠=︒,可知AB=2AD ,即可解题【详解】过A 作AD ⊥BC 于D 点,∵3cos 5CD C AC ==,AC=2 ∴CD=65在Rt△ACD 中由勾股定理得:AD=85 又∵∠B=30°∴AB=2AD=165. 【点睛】 本题考查了锐角三角函数,勾股定理求线段长度,30°所对的直角边是斜边的一半,灵活联合运用即可解题.15.3【解析】【分析】令PQ 与x 轴的交点为E ,根据双曲线的解析式可求得点A 、B 的坐标,由于点P 在双曲线上,由双曲线解析式中k 的几何意义可知△OPE 的面积恒为2,故当△OEQ 面积最大时△POQ 的面积最大.设Q (a ,122a -)则S △OEQ =12 ×a×(122a -)=214-a a =21(1)12-+a ,可知当a=2时S △OEQ 最大为1,即当Q 为AB 中点时△OEQ 为1,则求得△POQ 面积的最大值是是3.【详解】∵122y x =-交x 轴为B 点,交y 轴于点A, ∴A (0,-2),B (4,0)即OB=4,OA=2令PQ 与x 轴的交点为E∵P 在曲线C 上∴△OPE 的面积恒为2∴当△OEQ 面积最大时△POQ 的面积最大设Q (a,122a -) 则S △OEQ =12 ×a×(122a -)=214-a a =21(1)12-+a 当a=2时S △OEQ 最大为1即当Q 为AB 中点时△OEQ 为1故△POQ 面积的最大值是是3.【点睛】本题考查了反比例函数与一次函数几何图形面积问题,二次函数求最大值,解本题的关键是掌握反比例函数中k的几何意义,并且建立二次函数模型求最大值.16.10+【解析】【分析】根据图1直线l的平移过程分为三段,当F与A重合之前,x与y都不断增大,当当F与A 重合之后到点E与点C重合之前,x增加y不变,E与点C重合后继续运动至F与D重合x⊥且∠B=30°可知AB=F与增加y减小.结合图2可知BC=5,AD=7-4=3,由l ABA重合时,把CD平移到E点位置可得三角形AED′为正三角形,可得CD=2,进而可求得周长.【详解】由题意和图像易知BC=5,AD=7-4=3当BE=4时(即F与A重合),EF=2⊥且∠B=30°又∵l AB∴AB=∵当F与A重合时,把CD平移到E点位置可得三角形AED′为正三角形∴CD=2∴AB+BC+CD+AD=故答案时10+【点睛】本题考查了30°所对的直角边是斜边的一半,对四边形中动点问题几何图像的理解,解本题的关键是清楚掌握直线l平移的距离为x,线段EF的长为的图像和直线运动的过程的联系,找到对应线段长度.17.2【解析】【分析】111=12=212()-⎛⎫ ⎪⎝⎭,()012019=π-,sin 301=2︒ 【详解】 解:原式12122=-+⨯ 211=-+2=.【点睛】本题考查了负整数指数幂,零指数幂,特殊角的正弦值,掌握即可解题.18.2x =-【解析】【分析】根据点A 、B 到原点的距离相等可知点A 、B 表示的数值互为相反数,即21x x =+,解分式方程即可.【详解】解:∵点A 、B 到原点的距离相等∴A 、B 表示的数值互为相反数 即21x x =+, 去分母,得2(1)x x =+,去括号,得22x x =+,解得2x =-经检验,2x =-是原方程的解.【点睛】本题考查了相反数,绝对值的定义,解分式方程,解本题的关键是读懂题意,根据题中点A 、B 到原点的距离相等可知点A 、B 表示的数值互为相反数19.详见解析【解析】【分析】根据对顶角相等可知∠AEB=∠DEC ,又题意AE DE =,BE CE =,可证得△AEB ≌△DEC ,故∠B=∠C.【详解】证明:在△AEB 和△DEC 中,AE DE AEB DEC BE CE =⎧⎪∠=∠⎨⎪=⎩∴△AEB ≌△DEC故B C ∠=∠.【点睛】本题考查了全等三角形中角边角的判定,轴对称型全等三角形的模型,掌握即可解题. 20.1x【解析】【分析】平方差公式a 2-b 2=(a+b )(a-b )完全平方公式(a ±b )2=a 2±2ab+b 2【详解】 解:原式2(1)(1)(1)x x x -=+-÷(1)1x x x -+ (1)(1)x x -=+×1(1)x x x +- 1x=. 【点睛】本题考查了运用完全平方公式与平方差公式,提公因式进行因式分解,分式的化简,注意符号问题即可.21.(1)1y x =-+;(2)52【解析】【分析】(1)根据P 点是两直线交点,可求得点P 的纵坐标,再利用待定系数法将点B 、点P 的坐标代入直线l 1解析式,得到二元一次方程组,求解即可.(2)根据解析式可求得点啊(-2,0),点C (0,1),由四边形∆∆=-PAB BOC PAOC S S S 可求得四边形PAOC 的面积【详解】解:(1)∵点P 是两直线的交点,将点P (1,a )代入24y x =+得2(1)4⨯-+=a ,即2a =则P 的坐标为(1,2)-,设直线1l 的解析式为:y kx b =+(0)k ≠,那么02k b k b +=⎧⎨-+=⎩, 解得:11k b =-⎧⎨=⎩. 1l ∴的解析式为:1y x =-+.(2)直线1l 与y 轴相交于点C ,直线2l 与x 轴相交于点A∴C 的坐标为(0,1),A 点的坐标为(2,0)-则3AB =,而四边形∆∆=-PAB BOC PAOC S S S ,∴PAOC S 四边形1153211222=⨯⨯-⨯⨯= 【点睛】 本题考查了一次函数求解析式,求一次函数与坐标轴围成的图形面积,解本题的关键是求得各交点坐标求得线段长度,将不规则图形转化为规则图形求面积.22.(1)40,40(2)27;(3)396(人)【解析】【分析】(1)根据条形统计图将男生人数和女生人数分别加起来即可(2)众数:一组数据中出现次数最多的数值,叫众数(3)先计算所抽取的80中优秀的人数有14+13+5+7+2+1+1+1=44人,故七年级720名学生中成绩为优秀的学生人数大约是271232447207203968080+++⨯=⨯=(人) 【详解】解:(1)男生人数:1+2+2+4+9+14+5+2+1=40(人)女生人数:1+1+2+3+11+13+7+1+1=40(人)(2)根据条形统计图,分数为27时女生人数达到最大,故众数为27(3)271232447207203968080+++⨯=⨯=(人) 【点睛】本题考查了条形统计图,数据的分析,用样本估计总体,解题的关键是读懂统计图表,获取每项的准确数值.23.(1)详见解析;(2)2;(3)1【解析】【分析】(1)将二次项系数,一次项系数,常数项分别代入根的判别式△中,并进行整理,可得222(4)16816(4)0k k k k k ∆=+-=-+=-≥,恒大于等于0,故此一元二次方程无论k 为任何实数时,此方程总有两个实数根(2)根据根与系数的关系可知124x x k +=+,124x x k ⋅=,将1211+x x 进行分式的加法,再将124x x k +=+,124x x k ⋅=代入即可求得k.(3)解一元二次方程可得14x =,2x k =,由题意Rt △ABC 的斜边为5,通过勾股定理可求得,k=4,根据直角三角形中的内切圆半径为r=(a+b-c )/2 (a,b 为直角边,c 为斜边),代入即可求得半径.【详解】(1)证明:∵222(4)16816(4)0k k k k k ∆=+-=-+=-≥,∴无论k 为任何实数时,此方程总有两个实数根.(2)由题意得:124x x k +=+,124x x k ⋅=,121134x x Q += 121234x x x x +∴=⋅ 即4344k k +=, 解得:2k =;(3)解:解方程得:14x =,2x k =根据题意得:22245k +=,即3k =设直角三角形ABC 的内切圆半径为r ,如图,由切线长定理可得:(3)(4)5r r -+-=,∴直角三角形ABC 的内切圆半径r =34512+-=; 【点睛】 本题考查了一元二次方程根的判别式,根与系数的关系,直角三角形内切圆的半径,解本题的关键是掌握根据直角三角形三边求其内切圆的半径公式.24.(1)详见解析;(2【解析】【分析】 (1)连结OB ,则OP OB =,OBP OPB CPA ∠=∠=∠,已知AB=AC ,故∠=∠ACB ABC ,由OA l ⊥可得90∠+∠=︒ACB CPA ,则90ABP OBP ∠+∠=︒,证得90∠=︒ABO ,即AB 是⊙O 的切线.(2)在直角三角形AOB 中,OA=5,OB=3,可求得AB=AC=4.在直角三角形ACP 中,由勾股定理可求得==PC 过点O 做OD ⊥BC 于点D ,可得△ODP ∽△CAP ,则有=PD OP PA CP,代入线段长度即可求得PD ,进而利用垂径定理求得BP. 【详解】(1)证明:如图,连结OB ,则OP OB =,∴OBP OPB CPA ∠=∠=∠,AB AC =ACB ABC ∴∠=∠∵OA l ⊥,即90OAC ∠=︒,90ACB CPA ∴∠+∠=︒即90ABP OBP ∠+∠=︒90ABO ∴∠=︒OB AB ∴⊥故AB 是⊙O 的切线;(2)由(1)知:90∠=︒ABO而5OA =,3OB OP ==由勾股定理,得:4AB =4AC AB Q ==,2AP OA OP =-=PC ∴==过O 作OD PB ⊥于D ,则PD DB =在ODP ∆和CAP ∆中OPD CPA Q ∠=∠,90ODP CAP ∠=∠=︒ODP ∴∆∽CAP ∆PD OP PA CP∴=OP PA PD CP ⋅∴==2BP PD ∴==【点睛】本题考查了勾股定理,相似三角形的性质及判断,垂径定理,圆与直线的位置关系,解本题的关键是掌握常见求线段的方法,将知识点结合起来解题.25.(1)证明见解析;(2)(1)中结论成立,理由见解析;(3)(1)中结论不成立,理由见解析.【解析】【分析】(1)根据G 为重心可知12DG AG =,由EF ∥BC 可知12==BE DG AE AG ,12CF DG AF AG ==,故11122BE CF AE AF +=+= (2)过点A 作AN ∥BC 交EF 的延长线于点N ,FE 、CB 的延长线相交于点M ,则BE BM AE AN =,CF CM AF AN =,故要求式子BE CF BM CM BM CM AE AF AN AN AN++=+=,又BM CM BM CD DM +=++,D 是BC 的中点,即BD CD =,故有2BM CM BM BD DM DM DM DM +=++=+=,所以原式2BE CF DM AE AF AN +=,又有12DM DG AN AG ==,得1212BE CF AE AF +=⨯=,故结论成立; (3)由G 点为重心可知,当F 点与C 点重合时,E 为AB 中点,BE AE =,故当点F 在AC 的延长线上时,BE AE >,1>BE AE ,则1BE CF AE AF +>,同理:当点E 在AB 的延长线上时,1BE CF AE AF+>,故结论不成立. 【详解】(1)证明: Q G 是△ABC 重心 ∴12DG AG =, 又Q EF ∥BC ,12BE DG AE AG ∴==,12CF DG AF AG ==, 则11122BE CF AE AF +=+=. (2)(1)中结论成立,理由如下:如图,过点A 作AN ∥BC 交EF 的延长线于点N ,FE 、CB 的延长线相交于点M ,则BE BM AE AN =,CF CM AF AN= ∴BE CF BM CM BM CM AE AF AN AN AN++=+= 又Q BM CM BM CD DM +=++ 而D 是BC 的中点,即BD CD =∴2BM CM BM BD DM DM DM DM +=++=+= ∴2BE CF DM AE AF AN+= 又Q 12DM DG AN AG == ∴1212BE CF AE AF +=⨯= 结论成立;(3)(1)中结论不成立,理由如下:当F 点与C 点重合时,E 为AB 中点,BE AE =,点F 在AC 的延长线上时,BE AE >,1BE AE ∴>,则1BE CF AE AF+>, 同理:当点E 在AB 的延长线上时,1BE CF AE AF +>, ∴结论不成立.【点睛】本题考查了三角形的重心,相似三角形的性质和判定,分类讨论思想,解本题的关键是通过三角形重心到顶点的距离与重心到对边中点的距离之比为2:1与相似比结合来解题,并合理作出辅助线来解题.26.(1)1(2)(6)4y x x =-+-;(2)①748n ≤≤②2③49316t ≤< 【解析】【分析】(1)由解析式可知点A (-2,0),点B (6,0)根据∠=CAB 3tan 2CO CAO AO ∠==,可得OC=3,即点C (0,3),代入解析式即可求a.(2)①由解析式求得顶点M(2,4),设P 点坐标为(2,m )(其中0≤m ≤4),利用勾股定理将PC 、PQ 、CQ 用含m ,n 的式子表示,再利用△PCQ 为直角三角形,可利用勾股定理得PC 2+PQ 2=CQ 2,将含m ,n 的式子代入整理可得一个关于m ,n 的二次函数,且0≤m ≤4,通过二次函数增减性可求得n 取值范围.②当n 取最大值4时,m=4,可得点P (2,4),Q (4,0),故可求得CQ=5,利用直角三角形等面积法可求得点P 到线段CQ 距离③由题意求得线段CQ 的解析式为:334y x =-+,故可设线段CQ 向上平移t 个单位长度后的解析式为:334y x t =-++,当线段CQ 向上平移,使点Q 恰好在抛物线上时,线段CQ 与抛物线有两个交点,此时可求对应的点'Q 的纵坐标为,进而求得此时t 值,当线段CQ 继续向上平移,线段CQ 与抛物线只有一个交点时,联解抛物线与CQ ’的解析式并化简得一元二次方程,有一个交点可知由0∆=,得此时t 值,即可解题.【详解】解:(1)根据题意得:(2,0)A -,(6,0)B ,在Rt AOC ∆中 Q 3tan 2CO CAO AO ∠==,且2OA =, ∴3CO =, (0,3)C ∴,将C 点坐标代入(2)(6)y a x x =+-得:14a =-, 故抛物线解析式为:()()1264=-+-y x x ; (2)①由(1)知,抛物线的对称轴为:x=2,顶点M(2,4),设P 点坐标为(2,m )(其中0≤m ≤4),则PC 2=22+(m-3)2,PQ 2=m 2+(n-2)2,CQ 2=32+n 2,∵PQ ⊥PC ,∴在Rt △PCQ 中中,由勾股定理得:PC 2+PQ 2=CQ 2,即22+(m-3)2+ m 2+(n-2)2=32+n 2,整理得: n=()21342-+m m =2137228⎛⎫-+ ⎪⎝⎭m (0≤m ≤4), ∴当32m =时,n 取得最小值为78;当4m =时,n 取得最大值为4, ∴78≤n≤4; ②由①知:当n 取最大值4时,m=4,∴P (2,4),Q (4,0)则CQ=5,设点P 到线段CQ 距离为h , 由1122PCQ S CQ h PC PQ ∆=⋅=⋅, 得:2PC PQ h CQ⋅== 故点P 到线段CQ 距离为2;③由②可知:当n 取最大值4时,(4,0)Q ,∴线段CQ 的解析式为:334y x =-+,设线段CQ 向上平移t 个单位长度后的解析式为:334y x t =-++, 当线段CQ 向上平移,使点Q 恰好在抛物线上时,线段CQ 与抛物线有两个交点 此时对应的点'Q 的纵坐标为:1(42)(46)34-+-=, 将'(4,3)Q 代入334y x t =-++得:3t =, 当线段CQ 继续向上平移,线段CQ 与抛物线只有一个交点时,联解1(2)(6)4334y x x y x t ⎧=-+-⎪⎪⎨⎪=-++⎪⎩得:13(2)(6)344x x x t -+-=-++,化简得: 2740x x t -+=,由49160t ∆=-=,得4916t =, ∴当线段CQ 与抛物线有两个交点时,49316t ≤<. 【点睛】本题考查了二次函数求解析式,锐角三角函数,勾股定理,一次函数的平移,与二次函数的交点情况,解本题的关键是通过建立新的二次函数模型和一元二次方程模型来解题.。
2019年四川省乐山市中考数学试卷附分析答案
A.45°
B.50°
C.55°
D.60°
【解答】解:∵a∥b,∠1=35°,
∴∠BAC=∠1=35°.
∵AB⊥BC,
∴∠2=∠BCA=90°﹣∠BAC=55°.
故选:C.
t <t
6.(3 分)不等式组 tt t
的解集在数轴上表示正确的是( )
A.
B.
C.
D.
t 【解答】解: tt
A.
B.1
C.
D.
10.(3 分)如图,抛物线 y x2﹣4 与 x 轴交于 A、B 两点,P 是以点 C(0,3)为圆心,2
为半径的圆上的动点,Q 是线段 PA 的中点,连结 OQ.则线段 OQ 的最大值是( )
A.3
B.
C.
二、填空题:本大题共 6 个小题,每小题 3 分,共 18 分.
11.(3 分) 的相反数是
∴AB=2AH ,
故答案为 .
15.(3 分)如图,点 P 是双曲线 C:y t(x>0)上的一点,过点 P 作 x 轴的垂线交直线 AB:y x﹣2 于点 Q,连结 OP,OQ.当点 P 在曲线 C 上运动,且点 P 在 Q 的上方时, △POQ 面积的最大值是 3 .
【解答】解:∵PQ⊥x 轴,
14.(3 分)如图,在△ABC 中,∠B=30°,AC=2,cosC .则 AB 边的长为
.
【解答】解:如图,作 AH⊥BC 于 H.
第 11页(共 23页)
在 Rt△ACH 中,∵∠AHC=90°,AC=2,COSC ,
∴
,
∴CH ,
∴AH
t
答,
在 Rt△ABH 中,∵∠AHB=90°,∠B=30°,
四川省乐山市2019中考数学试卷(解析版)-精编
2019年四川省乐山市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.-3的绝对值是()A. 3B.C.D.2.下列四个图形中,可以由图通过平移得到的是()A. B. C. D.3.小强同学从-1,0,1,2,3,4这六个数中任选一个数,满足不等式x+1<2的概率是()A. B. C. D.4.-a一定是()A. 正数B. 负数C. 0D. 以上选项都不正确5.如图,直线a∥b,点B在a上,且AB⊥BC.若∠ = °,那么∠2等于()A. B. C. D.6.不等式组 <的解集在数轴上表示正确的是()A. B.C. D.7.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A. 1,11B. 7,53C. 7,61D. 6,508.把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A.B.C.D.9.如图,在边长为的菱形ABCD中,∠B= °,过点A作AE⊥BC于点E,现将△ABE沿直线AE翻折至△AFE的位置,AF与CD交于点G.则CG等于()A. B. 1 C. D.10.如图,抛物线y=x2-4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是()A. 3B.C.D. 4二、填空题(本大题共6小题,共18.0分)11.-的相反数是______.12.某地某天早晨的气温是-2℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是______℃.13.若3m=9n=2.则3m+2n=______.14.如图,在△ABC中,∠B= °,AC=2,cos C=.则AB边的长为______.15.如图,点P是双曲线C:y=(x>0)上的一点,过点P作x轴的垂线交直线AB:y=x-2于点Q,连结OP,OQ.当点P在曲线C上运动,且点P在Q的上方时,△POQ面积的最大值是______.16.如图1,在四边形ABCD中,AD∥BC,∠B= °,直线l⊥AB.当直线l沿射线BC方向,从点B开始向右平移时,直线l与四边形ABCD的边分别相交于点E、F.设直线l向右平移的距离为x,线段EF的长为y,且y与x的函数关系如图2所示,则四边形ABCD的周长是______.三、解答题(本大题共10小题,共102.0分)17.计算:()-1-(2019-π)0+ sin °.18.如图,点A、B在数轴上,它们对应的数分别为-2,,且点A、B到原点的距离相等.求x的值.19.如图,线段AC、BD相交于点E,AE=DE,BE=CE.求证:∠B=∠C.20.化简:÷.21.如图,已知过点B(1,0)的直线l1与直线l2:y=2x+4相交于点P(-1,a).(1)求直线l1的解析式;(2)求四边形PAOC的面积.22.某校组织学生参加“安全知识竞赛”,测试结束后,张老师从七年级720名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示.试根据统计图提供的信息,回答下列问题:(1)张老师抽取的这部分学生中,共有______名男生,______名女生;(2)张老师抽取的这部分学生中,女生成绩的众数是______;(3)若将不低于27分的成绩定为优秀,请估计七年级720名学生中成绩为优秀的学生人数大约是多少.23.已知关于x的一元二次方程x2-(k+4)x+4k=0.(1)求证:无论k为任何实数,此方程总有两个实数根;(2)若方程的两个实数根为x1、x2,满足+=,求k的值;(3)若Rt△ABC的斜边为5,另外两条边的长恰好是方程的两个根x1、x2,求Rt△ABC 的内切圆半径.24.如图,直线l与⊙O相离,OA⊥l于点A,与⊙O相交于点P,OA=5.C是直线l上一点,连结CP并延长交⊙O于另一点B,且AB=AC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为3,求线段BP的长.25.在△ABC中,已知D是BC边的中点,G是△ABC的重心,过G点的直线分别交AB、AC于点E、F.(1)如图1,当EF∥BC时,求证:+=1;(2)如图2,当EF和BC不平行,且点E、F分别在线段AB、AC上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.(3)如图3,当点E在AB的延长线上或点F在AC的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.26.如图,已知抛物线y=a(x+2)(x-6)与x轴相交于A、B两点,与y轴交于C点,且tan∠CAB=.设抛物线的顶点为M,对称轴交x轴于点N.(1)求抛物线的解析式;(2)P为抛物线的对称轴上一点,Q(n,0)为x轴上一点,且PQ⊥PC.①当点P在线段MN(含端点)上运动时,求n的变化范围;②当n取最大值时,求点P到线段CQ的距离;③当n取最大值时,将线段CQ向上平移t个单位长度,使得线段CQ与抛物线有两个交点,求t的取值范围.答案和解析1.【答案】A【解析】解:|-3|=-(-3)=3.故选:A.根据一个负数的绝对值等于它的相反数得出.考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】D【解析】解:∵只有D的图形的形状和大小没有变化,符合平移的性质,属于平移得到;故选:D.根据平移的性质解答即可.本题考查的是平移的性质,熟知图形平移后所得图形与原图形全等是解答此题的关键.3.【答案】C【解析】解:在-1,0,1,2,3,4这六个数中,满足不等式x+1<2的有-1、0这两个,所以满足不等式x+1<2的概率是=,故选:C.找到满足不等式x+1<2的结果数,再根据概率公式计算可得.本题主要考查概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.4.【答案】D【解析】解:-a中a的符号无法确定,故-a的符号无法确定.故选:D.利用正数与负数定义分析得出答案.此题主要考查了正数和负数,正确理解正负数的定义是解题关键.5.【答案】C【解析】解:∵a∥b,∠ = °,∴∠BAC=∠ = °.∵AB⊥BC,∴∠2=∠BCA=9 °-∠BAC= °.故选:C.先根据∠ = °,a∥b求出∠BAC的度数,再由AB⊥BC即可得出答案.本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.6.【答案】B【解析】解:,解①得:x>-6,解②得:x≤ ,故不等式组的解集为:-6<x≤ ,在数轴上表示为:.故选:B.分别解不等式进而得出不等式组的解集,进而得出答案.此题主要考查了解一元一次不等式组,正确解不等式是解题关键.7.【答案】B【解析】解:设有x人,物价为y,可得:,解得:,故选:B.设有x人,物价为y,根据该物品价格不变,即可得出关于x、y的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.【答案】A【解析】解:如图,设BC=x,则CE=1-x易证△ABC∽△FEC∴===解得x==×× =∴阴影部分面积为:S△ABC故选:A.如图,易证△ABC∽△FEC,可设BC=x,只需求出BC即可.本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答9.【答案】A【解析】解:在Rt△ABE中,∠B= °,AB=,∴BE=.根据折叠性质可得BF=2BE=3.∴CF=3-.∵AD∥CF,∴△ADG∽△FCG.∴.设CG=x,则,解得x=-1.故选:A.先利用 °直角三角形的性质,求出BE,再根据折叠性质求得BF,从而得到CF长,最后根据△ADG∽△FCG得出与CG有关的比例式,即可求解CG长.本题主要考查了菱形的性质、相似三角形的判定和性质、折叠的性质,解题的关键是找到与CG 相关的三角形,利用相似知识求解.10.【答案】C【解析】解:连接BP ,如图,当y=0时,x 2-4=0,解得x 1=4,x 2=-4,则A (-4,0),B (4,0),∵Q 是线段PA 的中点,∴OQ 为△ABP 的中位线,∴OQ=BP ,当BP 最大时,OQ 最大,而BP 过圆心C 时,PB 最大,如图,点P运动到P′位置时,BP 最大,∵BC==5,∴BP′= + = ,∴线段OQ 的最大值是.故选:C .连接BP ,如图,先解方程x 2-4=0得A (-4,0),B (4,0),再判断OQ 为△ABP 的中位线得到OQ=BP ,利用点与圆的位置关系,BP 过圆心C 时,PB 最大,如图,点P 运动到P′位置时,BP 最大,然后计算出BP′即可得到线段OQ 的最大值.本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了三角形中位线.11.【答案】【解析】 解:的相反数是, 故答案为:.根据只有符号不同的两个数互为相反数,可得一个数的相反数.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数. 12.【答案】-3【解析】解:-2+6-7=-3,故答案为:-3由题意列出算式进行计算求解即可.本题主要考查有理数的加减法,正确列出算式是解题的关键.13.【答案】4【解析】解:∵3m =32n=2,∴3m+2n =3m • 2n = × = ,故答案为:4根据幂的乘方与积的乘方进行解答即可.此题考查幂的乘方与积的乘方,关键是根据幂的乘方与积的乘方解答.14.【答案】【解析】解:如图,作AH⊥BC于H.在Rt△ACH中,∵∠AHC=9 °,AC=2,COSC=,∴=,∴CH=,∴AH===,在Rt△ABH中,∵∠AHB=9 °,∠B= °,∴AB=2AH=,故答案为.如图,作AH⊥BC于H.解直角三角形求出AH,再根据AB=2AH即可解决问题.本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.15.【答案】3【解析】解:∵PQ⊥x轴,∴设P(x,),则Q(x,x-2),∴PQ=-x+2,=(-+2)•x=-(x-2)2+3,∴S△POQ∵-<0,∴△POQ面积有最大值,最大值是3,故答案为3.设P(x,),则Q(x,x-2),得到PQ=-x+2,根据三角形面积公式得到S=-(x-2)2+3,根据二次函数的性质即可求得最大值.△POQ本题考查了一次函数图象上点的坐标特征,二次函数的性质,反比例函数y=(k≠ )系数k的几何意义:从反比例函数y=(k≠ )图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.16.【答案】【解析】解:∵∠B= °,直线l⊥AB,∴BE=2EF,由图可得,AB= cos °= ×=2,BC=5,AD=7-4=3,当EF平移到点F与点D重合时,如右图所示,∵∠EFB= °,∴∠DEC= °,∵DE=CE=2,∴△DEC为等边三角形,∴CD=2.∴四边形ABCD的周长是:AB+BC+AD+CD=2+5+3+2=10+2,故答案为:10+2.根据题意和函数图象中的数据,可以得到AB、BC、AD的长,再根据平行线的性质和图形中的数据可以得到CD的长,从而可以求得四边形ABCD的周长.本题考查动点问题的函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.17.【答案】解:原式=,=2-1+1,=2.【解析】根据实数的混合计算解答即可.此题考查实数的运算,关键是根据实数的混合计算解答.18.【答案】解:根据题意得:,去分母,得x=2(x+1),去括号,得x=2x+2,解得x=-2经检验,x=-2是原方程的解.【解析】根据题意得出分式方程解答即可.此题考查解分式方程,关键是根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论解答.19.【答案】证明:在△AEB和△DEC中,∵∠ ∠∴△AEB≌△DEC,∴∠B=∠C.【解析】根据AE=DE,∠AEB=∠DEC,BE=CE,证出△AEB≌△DEC,即可得出∠B=∠C.此题主要考查学生对全等三角形的判定与性质这一知识点的理解和掌握,此题难度不大,要求学生应熟练掌握.20.【答案】解:原式=÷,=×,=.【解析】首先将分式的分子与分母分解因式,进而约分得出答案.此题主要考查了分式的乘除运算,正确分解因式是解题关键.21.【答案】解:(1)∵点P(-1,a)在直线l2:y=2x+4上,∴ ×(-1)+4=a,即a=2,则P的坐标为(-1,2),设直线l1的解析式为:y=kx+b(k≠ ),那么,解得:.∴l1的解析式为:y=-x+1.(2)∵直线l1与y轴相交于点C,∴C的坐标为(0,1),又∵直线l2与x轴相交于点A,∴A点的坐标为(-2,0),则AB=3,而S四边形PAOC=S△PAB-S△BOC,∴S四边形PAOC=.【解析】(1)由点P(-1,a)在直线l上,利用一次函数图象上点的坐标特征,即2的解析式;可求出a值,再利用点P的坐标和点B的坐标可求直线l1(2)根据面积差可得结论.本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征和三角形的面积,在函数的图象上的点,就一定满足函数解析式.并利用数形结合的思想解决问题.22.【答案】40 40 27【解析】解:(1)男生:1+2+2+4+9+14+5+2+1=40(人)女生:1+1+2+3+11++13+7+1+1=40(人)故答案为40,40;(2)女生成绩27的人数最多,所以众数为27,故答案为27;(3)(人),七年级720名学生中成绩为优秀的学生人数大约是396人.(1)男生:1+2+2+4+9+14+5+2+1=40(人)女生:1+1+2+3+11++13+7+1+1=40(人);(2)女生成绩27的人数最多,所以众数为27;(3)(人).此题同时考查了条形统计图,考查了利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、认真分析、认真研究统计图,只有这样才能作出正确的判断,准确地解决问题.23.【答案】(1)证明:∵△=(k+4)2-16k=k2-8k+16=(k-4)2≥ ,∴无论k为任何实数时,此方程总有两个实数根;(2)解:由题意得:x1+x2=k+4,x1•x2=4k,∵,∴,即,解得:k=2;(3)解:解方程x2-(k+4)x+4k=0得:x1=4,x2=k,根据题意得:42+k2=52,即k=3,设直角三角形ABC的内切圆半径为r,如图,由切线长定理可得:(3-r)+(4-r)=5,∴直角三角形ABC的内切圆半径r=.【解析】(1)根据根的判别式△=(k+4)2-16k=k2-8k+16=(k-4)2≥ ,即可得到结论;(2)由题意得到x1+x2=k+4,x1•x2=4k,代入,解方程即可得到结论;(3)解方程x2-(k+4)x+4k=0得到x1=4,x2=k,根据题意根据勾股定理列方程得到k=3,设直角三角形ABC的内切圆半径为r,根据切线长定理即可得到结论.本题考查了三角形的内切圆和内心,切线的性质,一元二次方程根的判别式,一元二次方程根与系数的关系,熟练掌握切线长定理是解题的关键.24.【答案】(1)证明:如图,连结OB,则OP=OB,∴∠OBP=∠OPB=∠CPA,AB=AC,∴∠ACB=∠ABC,而OA⊥l,即∠OAC=9 °,∴∠ACB+∠CPA=9 °,即∠ABP+∠OBP=9 °,∴∠ABO=9 °,OB⊥AB,故AB是⊙O的切线;(2)解:由(1)知:∠ABO=9 °,而OA=5,OB=OP=3,由勾股定理,得:AB=4,过O作OD⊥PB于D,则PD=DB,∵∠OPD=∠CPA,∠ODP=∠CAP=9 °,∴△ODP∽△CAP,∴,又∵AC=AB=4,AP=OA-OP=2,∴,∴,∴.【解析】(1)连接OB,由AB=AC得∠ABC=∠ACB,由OP=OB得∠OPB=∠OBP,由OA⊥l 得∠OAC=9 °,则∠ACB+∠APC=9 °,而∠APC=∠OPB=∠OBP,所以∠OBP+∠ABC=9 °,即∠OBA=9 °,于是根据切线的判定定理得到直线AB是⊙O的切线;(2)根据勾股定理求得AB=4,PC=2,过O作OD⊥PB于D,则PD=DB,通过证得△ODP∽△CAP,得到,求得PD,即可求得PB.本题考查了切线的判定和性质,勾股定理的应用研究三角形相似的判定和性质,熟练掌握性质定理是解题的关键.25.【答案】(1)证明:∵G是△ABC重心,∴,又∵EF∥BC,∴,,则;(2)解:(1)中结论成立,理由如下:如图2,过点A作AN∥BC交EF的延长线于点N,FE、CB的延长线相交于点M,则△BME∽△ANE,△CMF∽△ANF,,,∴,又∵BM+CM=BM+CD+DM,而D是BC的中点,即BD=CD,∴BM+CM=BM+BD+DM=DM+DM=2DM,∴,又∵,∴,故结论成立;(3)解:(1)中结论不成立,理由如下:当F点与C点重合时,E为AB中点,BE=AE,点F在AC的延长线上时,BE>AE,∴> ,则> ,同理:当点E在AB的延长线上时,> ,∴结论不成立.【解析】(1)根据三角形重心定理和平行线分线段成比例解答即可;(2)过点A作AN∥BC交EF的延长线于点N,FE、CB的延长线相交于点M,得出△BME∽△ANE,△CMF∽△ANF,得出比例式解答即可;(3)分两种情况:当F点与C点重合时,E为AB中点,BE=AE;点F在AC 的延长线上时,BE>AE,得出,则,同理:当点E在AB 的延长线上时,,即可得出结论.此题是相似三角形综合题,考查了相似三角形的判定与性质、三角形重心定理、平行线分线段成比例定理等知识;本题综合性强,熟练掌握三角形的重心定理和平行线分线段成比例定理,证明三角形相似是解题的关键.26.【答案】解:(1)根据题意得:A(-2,0),B(6,0),在Rt△AOC中,∵∠,且OA=2,得CO=3,∴C(0,3),将C点坐标代入y=a(x+2)(x-6)得:,抛物线解析式为:;整理得:y=-故抛物线解析式为:得:y=-;(2)①由(1)知,抛物线的对称轴为:x=2,顶点M(2,4),设P点坐标为(2,m)(其中 ≤m≤ ),则PC2=22+(m-3)2,PQ2=m2+(n-2)2,CQ2=32+n2,∵PQ⊥PC,∴在Rt△PCQ中,由勾股定理得:PC2+PQ2=CQ2,即22+(m-3)2+m2+(n-2)2=32+n2,整理得:=( ≤m≤ ),∴当时,n取得最小值为;当m=4时,n取得最大值为4,所以,;②由①知:当n取最大值4时,m=4,∴P(2,4),Q(4,0),则,,CQ=5,设点P到线段CQ距离为h,由,得:,故点P到线段CQ距离为2;③由②可知:当n取最大值4时,Q(4,0),∴线段CQ的解析式为:,设线段CQ向上平移t个单位长度后的解析式为:,当线段CQ向上平移,使点Q恰好在抛物线上时,线段CQ与抛物线有两个交点,此时对应的点Q'的纵坐标为:,将Q'(4,3)代入得:t=3,当线段CQ继续向上平移,线段CQ与抛物线只有一个交点时,联解得:,化简得:x2-7x+4t=0,由△=49-16t=0,得 9,∴当线段CQ与抛物线有两个交点时,< 9.【解析】(1)由函数解析式,可以求出点A、B的坐标分别为(-2,0),(6,0),在Rt△OAC中由tan∠CAB=,可以求出点C的坐标为(0,3),进而可以求出抛物线的解析式;(2)①抛物线的对称轴为:x=2,顶点M(2,4),在Rt△PCQ中,由勾股定理得:PC2+PQ2=CQ2,把三角形三边长用点P,Q的坐标表达出来,整理得:,利用 ≤m≤ ,求出n的取值范围;②由,得:,求出点P 到线段CQ距离为2;③设线段CQ向上平移t个单位长度后的解析式为:,联立抛物线方程,可求出x2-7x+4t=0,由△=49-16t=0,得,∴当线段CQ与抛物线有两个交点时,主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,处理问题和解决问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乐山市2019年初中学业水平考试数 学一、选择题:本大题共10个小题,每小题3分,共30分. 1.3-的绝对值是 ()A 3()B 3-()C 31 ()D 31- 2.下列四个图形中,可以由图1通过平移得到的是()A ()B ()C ()D 3.小强同学从1-,0,1,2,3,4这六个数中任选一个数,满足不等式21<+x 的概率是 ()A 51 ()B 41 ()C 31 ()D 214.a -一定是()A 正数 ()B 负数 ()C 0 ()D 以上选项都不正确5.如图2,直线a ∥b ,点B 在a 上,且BC AB ⊥.若︒=∠351,那么2∠等于 ()A ︒45 ()B ︒50 ()C ︒55 ()D ︒606.不等式组⎪⎩⎪⎨⎧≥--+<-04152362x x x x 的解集在数轴上表示正确的是()A ()B()C ()D7.《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱。
问人数、物价各多少?”根据所学知识,计算出人数、物价分别是 ()A 1,11()B 7,53 ()C 7,61 ()D 6,508.把边长分别为1和2的两个正方形按图3的方式放置.则图中阴影部分的面积为 ()A 61()B 31()C 51 ()D 419. 如图4,在边长为3的菱形ABCD 中,︒=∠30B ,过点A 作BC AE ⊥于点E ,现将△ABE 沿直线AE 翻折至△AFE 的位置,AF 与CD 交于点G .则CG 等于 ()A 13-()B 1 ()C 21()D 2310.如图5,抛物线4412-=x y 与x 轴交于A 、B 两点,P 是以点C (0,3)为圆心,2为半径的圆上的动点,Q 是线段PA 的中点,连结OQ .则线段OQ 的最大值是()A 3 ()B 241()C 27()D 4第Ⅱ卷(非选择题 共120二、填空题:本大题共6个小题,每小题3分,共18分. 11.21-的相反数是 ▲ .12.某地某天早晨的气温是2-℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是 ▲C ︒.13.若293==nm.则=+nm 23 ▲ .14.如图6,在△ABC 中,︒=∠30B ,2=AC ,53cos =C . 则AB 边的长为 ▲ . 15.如图7,点P 是双曲线C :xy 4=(0>x )上的一点,过点P 作x 轴的垂线 交直线AB :221-=x y 于点Q ,连结OP ,OQ .当点P 在曲线C 上运动, 2图3图4C图6且点P 在Q 的上方时,△POQ 面积的最大值是 ▲ .16.如图1.8,在四边形ABCD 中,AD ∥BC ,︒=∠30B ,直线AB l ⊥.当直线l 沿射线BC方向,从点B 开始向右平移时,直线l 与四边形ABCD 的边分别相交于点E 、F .设直线l 向右平移的距离为x ,线段EF 的长为y ,且y 与x 的函数关系如图2.8所示,则四边形ABCD 的周长是 ▲ .27分.17.计算:()︒+--⎪⎭⎫ ⎝30sin 2201920π.18.如图9,点A 、B 在数轴上,它们对应的数分别为2-距离相等.求x 的值.19.如图10,线段AC 、BD 相交于点E ,DE AE = ,CE BE =.求证:C B ∠=∠.四、本大题共3个小题,每小题10分,共30分.20.化简:1112222+-÷-+-x xx x x x .21.如图11,已知过点)0,1(B 的直线1l 与直线2l :42+=x y 相交于点),1(a P -. (1)求直线1l 的解析式; (2)求四边形PAOC 的面积.BA 图9C图10图8.122.某校组织学生参加“安全知识竞赛”(满分为30分),测试结束后,张老师从七年级720名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图12所示.试根据统计图提供的信息,回答下列问题:(1)张老师抽取的这部分学生中,共有 ▲ 名男生, ▲ 名女生; (2)张老师抽取的这部分学生中,女生成绩....的众数是 ▲ ; (3)若将不低于27分的成绩定为优秀,请估计七年级720名学生中成绩为优秀的学生人数大约是多少. 五、本大题共2个小题,每小题10分,共20分. 23. 已知关于x 的一元二次方程04)4(2=++-k x k x . (1)求证:无论k 为任何实数,此方程总有两个实数根; (2)若方程的两个实数根为1x 、2x ,满足431121=+x x ,求k 的值; (3)若Rt △ABC 的斜边为5,另外两条边的长恰好是方程的两个根1x 、2x ,求∆Rt ABC 的内切圆半径.24.如图13,直线l 与⊙O 相离,l OA ⊥于点A ,与⊙O 相交于点P ,5=OA .C 是直线l 上一点,连结CP 并延长交⊙O 于另一点B ,且AC AB =. (1)求证:AB 是⊙O 的切线;(2)若⊙O 的半径为3,求线段BP 的长.l图13分数图12六、本大题共2个小题,第25题12分,第26题13分,共25分.25.在△ABC 中,已知D 是BC 边的中点,G 是△ABC 的重心,过G 点的直线分别交AB 、AC 于点E 、F .(1)如图1.14,当EF ∥BC 时,求证:1=+AFCFAE BE ; (2)如图2.14,当EF 和BC 不平行,且点E 、F 分别在线段AB 、AC 上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.(3)如图3.14,当点E 在AB 的延长线上或点F 在AC 的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.26. 如图15,已知抛物线)6)(2(-+=x x a y 与x 轴相交于C 点,且tan 23=∠CAB .设抛物线的顶点为M ,对称轴交x 轴于点N . (1)求抛物线的解析式;(2)P 为抛物线的对称轴上一点,)0,(n Q 为x 轴上一点,且PC PQ ⊥.①当点P 在线段MN (含端点)上运动时,求n 的变化范围; ②当n 取最大值时,求点P 到线段CQ 的距离;③当n 取最大值时,将线段..CQ 向上平移t 个单位长度,使得线段..CQ 与抛物线有两个交点,求t 的取值范围.图1.14图2.14乐山市2019年初中学业水平考试数学参考答案及评分意见一、选择题:本大题共10小题,每小题3分,共30分.1. )(A2. )(D3. )(C4.)(D5. )(C6. )(B7. )(B8. )(A9.)(A 10. )(C第Ⅱ卷(非选择题 共120分)二、填空题:本大题共6小题,每小题3分,共18分.11.21 12.3- 13.414.51615.316.3210+三、本大题共3小题,每小题9分,共27分. 17.解:原式21212⨯+-= ……………………………………6分 112+-= …………………………………8分 2=. ………………………………9分18.解:根据题意得:21=+x x,…………………………………4分 去分母,得)1(2+=x x ,去括号,得22+=x x ,……………………………………6分解得2-=x经检验,2-=x 是原方程的解.(没有检验不扣分)…………9分 19.证明:在AEB ∆和DEC ∆中,DE AE = ,CE BE =,DEC AEB ∠=∠ …………………3分AEB ∆∴≌DEC ∆, …………………………………7分故C B ∠=∠,得证. …………………………………9分四、本大题共3小题,每小题10分,共30分.20.解:原式)1)(1()1(2-+-=x x x ÷1)1(+-x x x , …………………4分)1()1(+-=x x ×)1(1-+x x x ,…………………………………7分x1=. …………………………………10分 21. 解:(1)上,:在直线点42),1(2+=-x y l a Pa =+-⨯∴4)1(2,即2=a ,…………………………………2分 则P 的坐标为)2,1(-,设直线1l 的解析式为:b kx y +=)0(≠k , 那么⎩⎨⎧=+-=+20b k b k ,解得:⎩⎨⎧=-=11b k .1l ∴的解析式为:1+-=x y .…………………………………5分(2) 直线1l 与y 轴相交于点C ,∴C 的坐标为)1,0(, …………………………………6分 又 直线2l 与x 轴相交于点A ,A ∴点的坐标为)0,2(-,则3=AB ,……………………7分 而BOC PAB PAOC S S S ∆∆-=四边形,∴P A O CS 四边形2511212321=⨯⨯-⨯⨯=.……………………10分22.解:(1)40 40 ………………………………………………………………4分 (2)27 ……………………………………………………2分(3)396804472080231227720=⨯=+++⨯(人) ……………………10分五、本大题共2小题,每小题10分,共20分. 23.(1)证明:0)4(16816)4(222≥-=+-=-+=∆k k k k k ,……………………2分图11∴无论k 为任何实数时,此方程总有两个实数根. ………………3分(2)由题意得:421+=+k x x ,k x x 421=⋅, ……………………4分 431121=+x x,432121=⋅+∴x x x x ,即4344=+k k , ……………………5分 解得:2=k ; ……………………6分(3)(3)解方程得:41=x ,k x =2, ………………7分根据题意得:22254=+k ,即3=k ,………………8分 设直角三角形ABC 的内切圆半径为r ,如图, 由切线长定理可得:5)4()3(=-+-r r ,∴直角三角形ABC 的内切圆半径r =12543=-+; ………………10分24. 证明:(1)如图,连结OB ,则OB OP =,∴CPA OPB OBP ∠=∠=∠, ……………………1分 AC AB =,ABC ACB ∠=∠∴,……………………2分 而l OA ⊥,即︒=∠90OAC , ︒=∠+∠∴90CPA ACB , 即︒=∠+∠90OBP ABP ,︒=∠∴90ABO , ……………………4分 AB OB ⊥∴,故AB 是⊙O 的切线; ……………………5分 (2)由(1)知:︒=∠90ABO , 而5=OA ,3==OP OB ,由勾股定理,得:4=AB , ……………………6分 过O 作PB OD ⊥于D ,则DB PD =,………………7分 在ODP ∆和CAP ∆中,CPA OPD ∠=∠ ,︒=∠=∠90CAP ODP ,ODP ∆∴∽CAP ∆, ……………………8分CPOPPA PD =∴,……………………10分 又4==AB AC ,2=-=OP OA AP ,5222=+=∴AP AC PC ,553=⋅=∴CP PA OP PD ,5562==∴PD BP . …………………10分 六、本大题共2小题,第25题12分,第26题13分,共25分25.解:(1) G 是△ABC 重心,∴21=AG DG , ……………………1分 又 EF ∥BC ,21==∴AG DG AE BE ,21==AG DG AF CF , ……………………2分4则12121=+=+AF CF AE BE . ……………………3分 (2)(1)中结论成立,理由如下: ……………………4分 如图,过点A 作AN ∥BC 交EF 的延长线于点N , FE 、CB 的延长线相交于点M ,则AN BM AE BE =,ANCMAF CF =, ……………………5分 ∴ANCM BM AN CM AN BM AF CF AE BE +=+=+, ……………………6分 又 DM CD BM CM BM ++=+, 而D 是BC 的中点,即CD BD =,∴DM DM DM DM BD BM CM BM 2=+=++=+,…………7分∴AN DMAF CF AE BE 2=+, 又 21==AG DG AN DM ,∴1212=⨯=+AF CF AE BE ,故结论成立; ……………………9分 (3)(1)中结论不成立,理由如下:……………………10分 当F 点与C 点重合时,E 为AB 中点,AE BE =, 点F 在AC 的延长线上时,AE BE >,1>∴AE BE ,则1>+AFCFAE BE , ……………………11分同理:当点E 在AB 的延长线上时,1>+AFCFAE BE ,∴结论不成立. ……………………12分 26.解:(1)根据题意得: )0,2(-A ,)0,6(B , 在AOC Rt ∆中, 23tan ==∠AO CO CAO ,且2=OA ,得3=CO , )3,0(C ∴,将C 点坐标代入)6)(2(-+=x x a y 得:41-=a ,故抛物线解析式为:)6)(2(41-+-=x x y ;(2)①由(1)知,抛物线的对称轴为:2=x ,顶点M ()4,2,设P 点坐标为)2(m ,(其中40≤≤m ),则222)3(2-+=m PC ,222)2(-+=n m PQ ,2223n CQ +=, PC PQ ⊥,∴在PCQ Rt ∆中,由勾股定理得:222CQ PQ PC =+,即2222223)2()3(2n n m m +=-++-+,整理得:)43(212+-=m m n 87)23(212+-=m (40≤≤m ), ∴当23=m 时,n 取得最小值为87;当4=m 时,n 取得最大值为4, 所以,487≤≤n ;②由①知:当n 取最大值4时,4=m ,∴ )4,2(P ,)0,4(Q , 则5=PC ,52=PQ ,5=CQ , 设点P 到线段CQ 距离为h , 由PQ PC h CQ S PCQ ⋅=⋅=∆2121, 得:2=⋅=CQPQPC h ,故点P 到线段CQ 距离为2;③由②可知:当n 取最大值4时,)0,4(Q , ∴线段CQ 的解析式为:343+-=x y , 设线段CQ 向上平移t 个单位长度后的解析式为:t x y ++-=343, 当线段CQ 向上平移,使点Q 恰好在抛物线上时,线段CQ 与抛物线有两个交点, 此时对应的点'Q 的纵坐标为:3)64)(24(41=-+-, 将)3,4('Q 代入t x y ++-=343得:3=t , 当线段CQ 继续向上平移,线段CQ 与抛物线只有一个交点时,联解⎪⎪⎩⎪⎪⎨⎧++-=-+-=t x y x x y 343)6)(2(41得:t x x x ++-=-+-343)6)(2(41,化简得: 0472=+-t x x ,由01649=-=∆t ,得1649=t ,∴当线段CQ 与抛物线有两个交点时,16493<≤t .。