化工原理课程设计简易步骤
化工原理课程设计

化工原理课程设计题目:姓名:班级:学号:指导老师:设计时间:序言化工原理课程设计是综合运用《化工原理》课程和有关先修课程(《物理化学》,《化工制图》等)所学知识,完成一个单元设备设计为主的一次性实践教学,是理论联系实际的桥梁,在整个教学中起着培养学生能力的重要作用。
通过课程设计,要求更加熟悉工程设计的基本内容,掌握化工单元操作设计的主要程序及方法,锻炼和提高学生综合运用理论知识和技能的能力,问题分析能力,思考问题能力,计算能力等。
精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工,炼油,石油化工等工业中得到广泛应用。
精馏过程在能量剂驱动下(有时加质量剂),使气液两相多次直接接触和分离,利用液相混合物中各组分的挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。
根据生产上的不同要求,精馏操作可以是连续的或间歇的,有些特殊的物系还可采用衡沸精馏或萃取精馏等特殊方法进行分离。
本设计的题目是苯-甲苯连续精馏筛板塔的设计,即需设计一个精馏塔用来分离易挥发的苯和不易挥发的甲苯,采用连续操作方式,需设计一板式塔将其分离。
目录一、化工原理课程设计任书 (3)二、设计计算 (3)1.设计方案的确定 (3)2.精馏塔的物料衡算 (3)3.塔板数的确定 (4)4.精馏塔的工艺条件及有关物性数据的计算 (8)5.精馏塔的塔体工艺尺寸计算 (10)6.塔板主要工艺尺寸的计算 (11)7.筛板的流体力学验算 (13)8.塔板负荷性能图 (15)9.接管尺寸确定 (30)二、个人总结 (32)三、参考书目 (33)(一)化工原理课程设计任务书板式精馏塔设计任务书一、设计题目:设计分离苯―甲苯连续精馏筛板塔二、设计任务及操作条件1、设计任务:物料处理量: 7万吨/年进料组成: 37%苯,苯-甲苯常温混合溶液(质量分率,下同)分离要求:塔顶产品组成苯≥95%塔底产品组成苯≤6%2、操作条件平均操作压力: kPa平均操作温度:94℃回流比:自选单板压降: <= kPa工时:年开工时数7200小时化工原理课程设计三、设计方法和步骤:1、设计方案简介根据设计任务书所提供的条件和要求,通过对现有资料的分析对比,选定适宜的流程方案和设备类型,初步确定工艺流程。
化工原理课程设计书

化工原理课程设计书一、教学目标本课程的教学目标是使学生掌握化工原理的基本概念、基本理论和基本方法,培养学生运用化工原理解决实际问题的能力。
具体目标如下:1.知识目标:(1)了解化工原理的基本概念和基本原理。
(2)掌握化工过程的基本计算方法和基本操作技能。
(3)熟悉化工设备的设计和操作原理。
2.技能目标:(1)能够运用化工原理解决实际问题。
(2)具备化工设备操作和维护的能力。
(3)能够进行简单的化工过程设计和优化。
3.情感态度价值观目标:(1)培养学生对化工行业的兴趣和热情。
(2)增强学生对化工安全意识和环保意识的认知。
二、教学内容本课程的教学内容主要包括以下几个部分:1.化工原理基本概念和基本原理:包括化工过程的基本类型、化工过程的平衡与速率、化工热力学、化工动力学等。
2.化工过程计算:包括流体力学、传质、传热等基本计算方法。
3.化工设备设计与操作:包括反应器设计、蒸馏塔设计、膜分离装置设计等。
4.化工过程设计与优化:包括工艺流程设计、设备选型、操作条件优化等。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行教学,包括:1.讲授法:通过教师的讲解,使学生掌握化工原理的基本概念、基本理论和基本方法。
2.案例分析法:通过分析实际案例,使学生了解化工原理在实际工程中的应用。
3.实验法:通过实验操作,使学生掌握化工设备的操作方法和实验技能。
4.讨论法:通过分组讨论,培养学生运用化工原理解决实际问题的能力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将准备以下教学资源:1.教材:《化工原理》。
2.参考书:相关化工原理的教材和学术著作。
3.多媒体资料:化工原理教学课件、视频资料等。
4.实验设备:流体力学、传质、传热等实验装置。
五、教学评估为了全面、客观地评估学生的学习成果,本课程将采用多种评估方式相结合的方法。
评估方式包括:1.平时表现:通过课堂参与、提问、小组讨论等环节,评估学生的学习态度和课堂表现。
化工原理操作课程设计

化工原理操作课程设计一、课程目标知识目标:1. 让学生掌握化工原理中基本操作原理,如流体流动、热量传递和质量传递等;2. 使学生了解化工设备的基本构造、性能及操作方法;3. 帮助学生理解化工过程中常见的单元操作及其在实际工程中的应用。
技能目标:1. 培养学生运用化工原理解决实际问题的能力,能进行简单的工艺计算;2. 提高学生动手操作能力,能正确使用化工设备进行实验操作;3. 培养学生团队协作能力,能在小组讨论中发表见解,共同完成实验任务。
情感态度价值观目标:1. 激发学生对化工原理学科的兴趣,培养其探索精神和创新意识;2. 培养学生严谨、细致的科学态度,使其注重实验安全,遵循实验规程;3. 引导学生关注化工行业的发展,认识到化工技术在实际生活中的应用,培养其社会责任感。
本课程针对高年级学生,结合课程性质、学生特点和教学要求,将目标分解为具体的学习成果。
在后续的教学设计和评估中,注重理论知识与实践操作的紧密结合,以提高学生的综合素质和工程实践能力。
二、教学内容本课程教学内容主要包括以下几部分:1. 化工原理基本概念:流体流动、热量传递、质量传递等基本原理的学习,涉及教材第一章内容。
2. 化工设备与工艺:介绍常见化工设备构造、性能及操作方法,包括泵、压缩机、换热器等,涉及教材第二章内容。
3. 单元操作:学习精馏、吸收、萃取、干燥等典型化工单元操作,分析各操作在实际工程中的应用,涉及教材第三章至第六章内容。
4. 化工工艺计算:培养学生运用化工原理解决实际问题的能力,进行简单的工艺计算,涉及教材第七章内容。
5. 实验操作:组织学生进行化工原理实验,锻炼动手操作能力,涉及教材实验部分内容。
教学内容安排和进度如下:1. 第1-4周:学习化工原理基本概念;2. 第5-8周:了解化工设备与工艺;3. 第9-12周:研究单元操作;4. 第13-16周:进行化工工艺计算;5. 第17-20周:实验操作及总结。
教学内容注重科学性和系统性,结合教材章节,确保学生能够循序渐进地掌握化工原理及操作知识。
化工原理课程设计

化工原理课程设计一、教学目标本节课的教学目标是使学生掌握化工原理的基本概念、基本理论和基本方法,包括流体的物理性质、流体力学基本方程、流动和压力降、气液平衡、传质过程等,培养学生分析和解决化工问题的能力。
1.掌握流体的密度、粘度、热导率等物理性质。
2.理解流体力学的基本方程,包括连续方程、动量方程和能量方程。
3.掌握流体流动和压力降的基本理论,包括层流和湍流、管道流动和开放流动等。
4.理解气液平衡的基本原理,包括相图、相律和相变换等。
5.掌握传质过程的基本方法,包括扩散、对流传质和膜传质等。
6.能够运用流体力学基本方程分析流体流动问题。
7.能够计算流体流动和压力降的基本参数,如流速、压力降等。
8.能够分析气液平衡问题,确定相态和相组成。
9.能够运用传质过程的基本方法分析和解决化工问题。
情感态度价值观目标:1.培养学生对化工原理学科的兴趣和热情。
2.培养学生严谨的科学态度和良好的职业道德。
3.培养学生团队协作和自主学习的意识。
二、教学内容本节课的教学内容主要包括流体的物理性质、流体力学基本方程、流动和压力降、气液平衡、传质过程等。
1.流体的物理性质:包括密度、粘度、热导率等,通过实例讲解其测量方法和应用。
2.流体力学基本方程:讲解连续方程、动量方程和能量方程,并通过实例分析其应用。
3.流动和压力降:讲解层流和湍流的特性,分析管道流动和开放流动的压力降计算方法。
4.气液平衡:讲解相图、相律和相变换的基本原理,并通过实例分析气液平衡问题。
5.传质过程:讲解扩散、对流传质和膜传质的基本方法,并通过实例分析传质问题的解决方法。
三、教学方法本节课采用多种教学方法,包括讲授法、讨论法、案例分析法和实验法等。
1.讲授法:用于讲解流体的物理性质、流体力学基本方程、流动和压力降、气液平衡、传质过程等基本概念和理论。
2.讨论法:通过小组讨论,引导学生主动思考和分析化工问题,提高学生的分析和解决问题的能力。
3.案例分析法:通过分析实际化工案例,使学生更好地理解和应用化工原理,培养学生的实际操作能力。
化工原理课程设计第三版课程设计

化工原理课程设计第三版课程设计1. 概述本次课程设计旨在通过实际操作和分析,让学生深入了解化工原理的核心概念和应用技能。
在设计中,学生们将探索化工分离过程的原理、工艺流程设计以及设备的选择和优化等方面的知识。
2. 实验目的本课程设计旨在培养学生以下方面的能力:1.理解化工分离过程的基本原理和特点;2.掌握工艺流程设计和设备选择与优化的方法;3.培养实际操作和分析的能力,并通过设计和分析来掌握化工原理的应用技能。
3. 实验设备•微型蒸馏装置•真空干燥器•震荡器•多层螺旋板塔•分离漏斗•等温滴定计•气相色谱分析仪4. 实验内容4.1 实验1:蒸馏分离乙醇和水4.1.1 实验目的通过蒸馏操作分离出乙醇和水,并对蒸馏过程进行分析和优化,掌握蒸馏分离的基本原理和操作技能。
4.1.2 实验步骤1.分别称取50mL乙醇和水混合溶液,加入微型蒸馏装置中;2.开启蒸馏设备,调整冷却水温度和采样速率;3.收集蒸馏出的乙醇和水,分别测定其含量和纯度,记录数据;4.对蒸馏过程进行分析和优化,根据实验数据推算出最优的蒸馏条件。
4.1.3 实验结果在此处列出实验数据及分析结果。
4.2 实验2:干燥和筛分分离颗粒4.2.1 实验目的通过干燥和筛分操作分离出颗粒,并对操作过程进行分析和优化,掌握干燥和筛分的基本原理和操作技能。
4.2.2 实验步骤1.将颗粒放入真空干燥器内,开启干燥器并设定温度和干燥时间;2.在震荡器内加入干燥后的颗粒,进行筛分操作;3.对干燥和筛分过程进行分析和优化,根据实验数据推算出最优的操作条件。
4.2.3 实验结果在此处列出实验数据及分析结果。
4.3 实验3:多层螺旋板塔分离气体混合物4.3.1 实验目的通过在多层螺旋板塔内对气体混合物进行分离操作,分析其分离机理和选择最优的工艺条件。
4.3.2 实验步骤1.将混合气体通过多层螺旋板塔,进行分离处理;2.对分离后的气体进行收集和测量,记录数据;3.对分离过程进行分析和优化,选择最优的工艺条件。
化工原理知识课程设计

化工原理知识课程设计一、课程目标知识目标:1. 让学生掌握化工原理的基本概念,如流体力学、热力学、传质和反应工程等;2. 引导学生了解化工过程中常见单元操作及其原理,如蒸馏、吸收、萃取等;3. 帮助学生理解化学工程在国民经济发展中的作用,培养他们对化工行业的兴趣。
技能目标:1. 培养学生运用化工原理分析和解决实际问题的能力;2. 提高学生运用数学和物理知识解决化工过程中相关问题的能力;3. 培养学生查阅化工文献、资料,了解化工行业发展趋势的能力。
情感态度价值观目标:1. 培养学生热爱化工专业,树立为化工事业贡献力量的信念;2. 增强学生的环保意识,让他们认识到化学工程在环境保护中的责任和使命;3. 培养学生的团队协作精神,提高他们在实际工作中的沟通与协作能力。
课程性质:本课程为专业基础课,旨在为学生奠定扎实的化工原理知识基础,为后续专业课程学习打下坚实基础。
学生特点:学生处于高中阶段,具有一定的数学、物理和化学基础,思维活跃,求知欲强。
教学要求:结合学生特点,注重理论与实践相结合,提高学生运用知识解决实际问题的能力。
在教学过程中,关注学生的情感态度价值观培养,激发他们的学习兴趣和责任感。
通过具体的学习成果分解,使教学设计和评估更具针对性。
二、教学内容1. 流体力学基础:流体静力学、流体动力学、流体阻力、流体输送设备原理及计算;2. 热力学基础:热力学第一定律、热力学第二定律、热力学循环、热量传递方式及设备;3. 传质过程:质量传递原理、分子扩散、对流传质、传质设备及应用;4. 反应工程基础:化学反应动力学、反应器设计、反应条件优化;5. 单元操作:蒸馏、吸收、萃取、吸附、离子交换等操作原理及设备;6. 化工工艺:典型化工工艺流程分析、工艺参数优化、设备选型及操作;7. 化工设备:常见化工设备结构、原理、材料及强度计算;8. 化工安全与环保:化工生产过程中的安全措施、环境保护及三废处理。
教学内容安排和进度:第一周:流体力学基础;第二周:热力学基础;第三周:传质过程;第四周:反应工程基础;第五周:单元操作(蒸馏、吸收);第六周:单元操作(萃取、吸附);第七周:化工工艺;第八周:化工设备;第九周:化工安全与环保。
化工原理课程设计

化工原理课程设计化工原理课程设计500字化工原理课程设计旨在通过实际案例和综合实验,帮助学生学习和掌握化工原理的基本概念和操作技能。
下面是一个典型的化工原理课程设计。
1. 实验名称:离心分离实验实验目的:掌握离心分离的基本原理和操作技能。
实验器材:离心机、试管、离心管、溶液样品。
实验步骤:1)准备样品溶液并放入试管中。
2)将试管放入离心管中,装入离心机内。
3)设定离心机的转速和离心时间。
4)启动离心机,等待离心结束。
5)取出离心管,观察离心效果并记录实验结果。
实验结果:观察到溶液中的固体颗粒被离心力推向试管底部,分离出清澈的液相。
实验原理:离心分离利用离心力的作用,分离混合物中的固液两相。
较不容易分离的混合物可以通过调整离心转速和时间,增加离心力的强度和作用时间,达到分离的目的。
2. 实验名称:蒸馏实验实验目的:熟悉蒸馏的原理和操作方法,掌握蒸馏工艺的应用。
实验器材:蒸馏设备、蒸馏瓶、温度计、冷凝器、反应溶液。
实验步骤:1)将反应溶液倒入蒸馏瓶中。
2)安装冷凝器,并连接水源以保持冷凝器的冷却。
3)开始加热蒸馏瓶,控制温度在反应物的沸点温度范围内。
4)观察冷凝器中的液体产物,并分离收集产物。
实验结果:观察到反应溶液在加热过程中发生沸腾,产生气体产物,并在冷凝器中冷却、凝结成液体产物。
实验原理:蒸馏是利用物质沸点的差异,通过加热和冷却,将液体混合物分离成不同组分的过程。
通过以上两个典型的实验,学生可以了解和掌握离心分离和蒸馏两种常见的化工分离方法。
同时,通过实验过程中观察、记录和分析实验结果,培养学生的观察力和实验分析能力。
除此之外,还可以在实验设计中加入安全注意事项,提醒学生在实验过程中注意安全防护和化学危险品的处理等方面的知识点。
这样的课程设计能够使学生在实践中学习,提高他们的综合实验能力和创新意识。
化工原理课程设计

化工原理课程设计一、教学目标本节课的教学目标是让学生掌握化工原理的基本概念和基本原理,了解化工过程的基本单元操作,包括流体流动、传质、传热等,培养学生分析和解决化工问题的能力。
具体来说,知识目标包括:1.掌握流体流动的基本原理和计算方法;2.了解传质和传热的基本原理和计算方法;3.掌握化工过程的基本单元操作和流程。
技能目标包括:1.能够运用流体流动、传质、传热的基本原理分析和解决实际问题;2.能够运用化工原理的基本单元操作设计和优化化工过程。
情感态度价值观目标包括:1.培养学生的科学精神和创新意识,使其能够积极面对和解决化工过程中的问题;2.培养学生的团队合作意识和责任感,使其能够有效地参与和完成化工项目。
二、教学内容本节课的教学内容主要包括化工原理的基本概念、基本原理和基本单元操作。
具体来说,教学大纲如下:1.流体流动:流体的性质、流动的类型和计算方法;2.传质:传质的类型和计算方法、传质的设备;3.传热:传热的基本原理和计算方法、传热的设备;4.化工过程的基本单元操作:反应器、分离器、输送设备等。
三、教学方法为了激发学生的学习兴趣和主动性,本节课将采用多种教学方法,包括讲授法、讨论法、案例分析法、实验法等。
具体来说:1.讲授法:通过教师的讲解,让学生掌握化工原理的基本概念和基本原理;2.讨论法:通过小组讨论,让学生深入理解和掌握化工原理的知识;3.案例分析法:通过分析实际案例,让学生了解化工过程的基本单元操作和流程;4.实验法:通过实验操作,让学生亲自体验和验证化工原理的知识。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:1.教材:化工原理教材,用于提供基础知识和理论框架;2.参考书:化工原理相关参考书,用于提供更多的知识和案例;3.多媒体资料:化工原理相关的视频、图片等资料,用于辅助讲解和展示;4.实验设备:化工原理实验设备,用于进行实验操作和验证。
化工原理课程教学内容设计

化工原理课程教学内容设计一、课程简介化工原理是化学工程专业的基础课程之一,旨在培养学生对化学工程领域中的基本原理和理论进行掌握和应用的能力。
本课程内容设计旨在帮助学生全面了解化工原理的基本概念、原理和应用,并培养学生的分析问题和解决问题的能力。
二、教学目标1. 掌握化工原理中的基础概念和本质;2. 理解化工原理与化学工程实际应用的关系;3. 培养学生的问题分析与解决能力;4. 培养学生的团队合作和沟通能力。
三、教学内容及安排1. 化工原理的基本概念(2周)1.1 化学工程与化工原理的关系1.2 化工原理的发展历程1.3 化工原理中的重要概念和术语2. 物质的组成与结构(3周)2.1 原子和元素2.2 分子和化学键2.3 物质的组成与性质2.4 化学平衡与反应动力学3. 基本热力学(4周)3.1 能量和热力学基本概念3.2 热力学定律与计算3.3 化学反应热力学3.4 理想气体混合物的热力学计算4. 流体力学基础(3周)4.1 流体的性质和流动方式4.2 流体静力学4.3 流体动力学4.4 流体力学方程和应用5. 物质传输基础(4周)5.1 质量传输基础5.2 热传输基础5.3 动量传输基础5.4 物质传输方程和应用6. 反应工程基础(4周)6.1 化学反应工程基本概念6.2 反应动力学与反应速率方程6.3 反应器的基本类型和性能6.4 反应器的设计和应用四、教学方法1. 理论讲授:通过教师的讲授,向学生传授化工原理的基本概念和理论知识。
讲授过程中,可采用多媒体辅助教学,例如使用投影仪展示示意图、计算公式等。
2. 实验教学:在教学过程中,适当安排化学工程实验、模拟实验等,通过实际操作和实验数据分析,帮助学生深入理解化工原理的实际应用。
3. 讨论研究:引导学生参与课堂讨论,组织小组讨论,提出问题和解决问题的思路。
通过学生的交流和思考,培养学生的问题分析和解决问题的能力。
4. 课程设计项目:每学期结合具体实例,布置一到两个课程设计项目。
大二化工原理课程设计

大二化工原理课程设计一、课程目标知识目标:1. 理解并掌握化工原理中流体流动与输送、热量传递和质量传递的基本理论知识;2. 掌握化工过程中常见单元操作的工作原理及计算方法;3. 了解化工流程的模拟与优化方法。
技能目标:1. 能够运用所学原理解决实际化工过程中的问题,进行简单的工艺计算和设备设计;2. 能够运用化工流程模拟软件进行简单流程的模拟与优化;3. 培养学生的实验操作能力,能够独立完成化工原理实验。
情感态度价值观目标:1. 培养学生对化工原理学科的兴趣,激发学生的求知欲和探索精神;2. 培养学生的团队协作意识,提高沟通与交流能力;3. 增强学生的环保意识,使其认识到化学工程在环境保护和可持续发展中的重要作用。
课程性质:本课程为化工原理专业核心课程,旨在培养学生掌握化工过程的基本理论、计算方法和实验技能。
学生特点:大二学生已具备一定的化学基础和工程观念,具有较强的逻辑思维能力和动手能力。
教学要求:结合课程性质和学生特点,注重理论与实践相结合,提高学生的工程素养,培养具有创新精神和实践能力的高素质化工人才。
通过本课程的学习,使学生能够将所学知识应用于实际工作中,为后续专业课程打下坚实基础。
二、教学内容本课程教学内容主要包括以下几部分:1. 流体流动与输送:涵盖流体静力学、流体动力学、流体阻力与能量损失、泵与风机等单元操作,对应教材第2章至第4章。
2. 热量传递:包括导热、对流换热、辐射换热等内容,对应教材第5章至第7章。
3. 质量传递:主要讲解分子扩散、对流传质、反应工程等基本原理,对应教材第8章至第10章。
4. 化工单元操作:涉及过滤、沉降、吸收、蒸馏、萃取等操作,对应教材第11章至第15章。
5. 化工流程模拟与优化:介绍流程模拟软件及其在化工过程优化中的应用,对应教材第16章。
教学内容安排与进度如下:第1-4周:流体流动与输送基本理论及计算;第5-8周:热量传递基本理论及计算;第9-12周:质量传递基本理论及计算;第13-16周:化工单元操作原理及计算;第17-18周:化工流程模拟与优化。
化工原理课程设计说明书模板

化工原理课程设计说明书模板化工原理课程设计说明书模板一、设计目的与意义本次化工原理课程设计旨在通过实践操作,加深学生对于化工原理的理解与应用,培养学生的动手能力以及解决实际问题的能力。
通过本次设计,学生将能够熟悉常见的化工流程图、能够进行物质平衡计算,并能够运用化工原理解决实际问题。
二、设计内容与要求1.设计名称:某化工厂生产甲醇的流程设计。
2.设计要求:根据给定的原料、产物及反应条件,确定该化工厂甲醇生产的最佳流程,并进行流程图绘制、物质平衡计算及能量平衡计算。
三、设计步骤1.确定反应方程式:根据给定的原料及产物,确定甲醇的生产反应方程式。
2.绘制流程图:根据甲醇生产的反应方程式,绘制甲醇生产过程的流程图,并标注每个单元操作的名称、输入输出物流等。
3.进行物质平衡计算:根据给定的原料及产物的摩尔数或质量数,以及反应方程式,进行物质平衡计算,并验证总摩尔数或质量数是否平衡。
4.进行能量平衡计算:根据每个单元操作的能量输入输出情况,以及反应热等热力学参数,进行能量平衡计算,并验证能量是否平衡。
5.进行流程改进:根据物质平衡和能量平衡的结果,对流程进行改进,并分析改进后的流程对产品质量和产量的影响。
四、设计要点1.反应方程式的确定:需要根据甲醇的生产原料及产物,确定合适的反应方程式,并考虑到反应的热力学条件,如反应热、反应速度等。
2.流程图的绘制:应该清晰明了,标注每个单元操作的名称、输入输出物流及流程中存在的能量交换。
3.物质平衡计算:在计算过程中,需要准确、细致地考虑每个单元操作中输入物流和输出物流的变化情况,确保物质平衡的准确性。
4.能量平衡计算:要考虑到每个单元操作中的能量输入输出情况,以及反应热等热力学参数的影响,确保能量平衡的准确性。
5.流程改进分析:需要根据物质平衡和能量平衡的结果,对流程进行改进,并分析改进后的流程对产品质量和产量的影响,提出相应的优化建议。
五、设计结果与总结通过本次化工原理课程设计,可以得到甲醇生产的最佳流程,并得到相应的物质平衡计算和能量平衡计算结果。
《化工原理》课程设计

ET精 60~70% ET提 50~60%
化工原理课程设计
实际塔板数及实际加料板位置的确定
实际塔板数 :
(不包括再沸器)
实际精馏段板数 :
实际加料板位置在NRP + 1板。
化工原理课程设计
化工原理课程设计
全塔热量衡算
计算塔顶冷凝器及塔底再沸器的热负荷,确定 所需冷却水量及加热蒸汽用量
取冷却水升温10℃。 选取加热蒸气压力(如5at或10at),得蒸气 温度,进而计算出所需蒸汽量。
化工原理课程设计
最少理论板数的确定
二、多元混合物系:
(不包括再沸器)
化工原理课程设计
适宜回流比的确定
一、作N—R/Rmin图 二、作N(R+1)—R/Rmin图 三、选取经验数据
化工原理课程设计
简捷法求N : 1.理想溶液(例如:烃类混合物):
(N及Nmin不包括再沸器) 2.非理想溶液(如:乙醇—水) :
化工原理课程设计
冷凝器、冷却器
(1)冷凝器 设:K = 465W/(m2℃)
取裕度:10%~20% ——> A,初选换热器
化工原理课程设计
冷凝器、冷却器
(1)冷凝器 校核计算: a) 管程对流传热系数
化工原理课程设计
冷凝器、冷却器
b) 壳程对流传热系数
计算管内、外壁温:
——管内流体平均温度。
λ = 45.3W/(m℃) Am ——对数平均值。
显示
3.应交材料
4.纪律
化工原理课程设计
设计任务
(1)乙醇—水物系 (2)苯—甲苯物系 (3)苯—甲苯—乙苯 (4)戊烷—己烷—庚烷物系 (5)苯—甲苯—乙苯—二甲苯物系 (6)戊烷—己烷—庚烷—辛烷物系 (7)裂解汽油
化工原理课程设计

化工原理课程设计一、背景化工原理是化学工程领域中的基础学科之一,是化学工程师必须掌握的科目。
本课程设计旨在巩固和深化学生对化工原理相关理论知识的理解,同时培养学生分析和解决实际问题的能力。
二、设计内容1. 课程设计主题本课程设计的主题是“设计一座化工厂”。
学生需设计一个化工流程,包括原料和中间产物的处理、反应器的选择、反应条件的调整等方面,并进行流程图、平衡方程和能量平衡计算。
2. 设计流程•第一步:确定设计要求和条件学生需按照实际工业生产中的要求和条件,确定设计的物料、产量、品质等关键参数。
•第二步:选择反应方案根据要求和条件,学生需选择相应的反应方案,并确定反应器类型和大小。
•第三步:制定工艺流程学生需制定处理原料和中间产物的工艺流程,并考虑各处理步骤的顺序和影响。
•第四步:进行物料平衡和能量平衡计算根据工艺流程和反应方案,进行物料平衡和能量平衡计算。
学生需考虑原料和中间产物的用量,反应产物的生成和转化,以及反应过程中放热或吸热的情况。
•第五步:绘制流程图和平衡方程根据计算结果,学生需绘制流程图和平衡方程,并进行统一的单位换算。
•第六步:进行方案评估和改进根据计算结果和实际情况,学生需对方案进行评估和改进,并提出可行的解决方案。
3. 设计要求和评分标准•设计要求:根据指定的原料和条件,设计化工流程,并进行物料平衡和能量平衡计算,绘制流程图和平衡方程。
要求数据准确,计算正确,创新性强,表达清晰。
•评分标准:–设计思路和方案(30%)–物料平衡和能量平衡计算(30%)–流程图和平衡方程(20%)–书面报告(20%)三、学习目标与作用1. 学习目标通过本课程设计,学生具备以下能力:•掌握化工流程设计的基本方法和技巧;•熟练掌握物料平衡和能量平衡计算方法;•熟悉各种反应器的特点和应用;•具有较强的思考和解决问题的能力。
2. 学习作用本课程设计的实践意义非常重要,它对培养化学工程师的实际操作能力和实际应用能力都具有非常重要的作用。
化工原理课程设计说明书

化工原理课程设计说明书一、设计背景化工原理课程是化学工程与技术专业中的重要基础课程之一,通过该课程的学习可以使学生掌握化工原理的基本理论和实践操作技能,为以后的专业学习和工作打下基础。
本次课程设计旨在通过实际的工程设计案例,培养学生综合应用化工原理知识的能力。
二、设计目标本次课程设计主要目标如下:1.运用化工原理知识解决实际问题的能力;2.学习并掌握化工原理实验操作的基本技能;3.培养学生的团队合作意识和沟通能力;4.提高学生的设计和创新能力。
三、设计内容本次课程设计选择了一个实际的化工工程案例:酸洗工艺设计。
设计包括以下几个主要步骤:1.工艺流程设计根据所提供的原料性质和产品要求,设计酸洗工艺的流程。
其中包括酸洗槽的选择和设计,溶液的配制,以及酸洗操作的步骤。
2.设备选型和设计根据工艺流程的要求,选择合适的设备,并进行设计。
包括酸洗槽、泵、管道、阀门等设备的选型和规格确定,以及设备的布局设计。
3.物料平衡和能量平衡计算对酸洗过程中的物料流量和能量进行平衡计算,以确定各个过程参数的设定值。
4.安全考虑和环境影响评价对酸洗过程中的安全风险进行评估,并设计相应的安全措施。
同时评价酸洗过程对环境的影响,并提出相应的环保措施。
5.实验操作根据设计方案,进行实际的酸洗实验操作。
包括酸洗槽的装置和调试,溶液的配制和使用,以及操作步骤的确定和实施。
四、设计要求本次课程设计的要求如下:1.结合化工原理知识,设计出合理完善的酸洗工艺流程和设备布局;2.进行物料和能量平衡计算,确定各个过程参数的设定值;3.充分考虑安全和环境因素,设计合理的安全措施和环保措施;4.执行实验操作,完成酸洗工艺的实验验证,并记录实验结果;5.编写完整的课程设计报告,包括设计思路、计算过程、实验操作和结果分析。
五、设计评价指标本次课程设计将根据以下几个方面进行评价:1.设计方案的创新性和合理性;2.物料和能量平衡计算的准确性和完备性;3.设计的安全措施和环保措施的科学性和实用性;4.实验操作的规范性和结果的准确性;5.课程设计报告的内容完整性和逻辑性。
化工原理课程设计范本

化工原理课程设计范本一、教学目标本节课的教学目标是让学生掌握化工原理的基本概念、原理和应用,能够运用化工原理解决实际问题。
具体分为以下三个部分:1.知识目标:(1)了解化工原理的基本概念和原理;(2)掌握化工过程的基本计算和方法;(3)了解化工原理在工业中的应用。
2.技能目标:(1)能够运用化工原理进行简单的工艺计算;(2)能够分析化工过程中存在的问题,并提出解决方案;(3)能够运用化工原理的知识,进行实验设计和操作。
3.情感态度价值观目标:(1)培养学生对化工原理学科的兴趣和热情;(2)培养学生运用知识解决实际问题的能力;(3)培养学生的创新意识和团队合作精神。
二、教学内容本节课的教学内容主要包括以下三个方面:1.化工原理的基本概念和原理:包括流体流动、传热、传质、反应工程等基本内容;2.化工过程的基本计算和方法:包括流体流动阻力、传热面积、反应速率等基本计算;3.化工原理在工业中的应用:包括化工工艺流程设计、设备选型、操作优化等实际应用。
三、教学方法为了达到本节课的教学目标,我们将采用以下教学方法:1.讲授法:用于讲解化工原理的基本概念、原理和计算方法;2.案例分析法:通过分析实际案例,让学生了解化工原理在工业中的应用;3.实验法:让学生亲自动手进行实验,加深对化工原理的理解和掌握。
四、教学资源为了支持本节课的教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:为学生提供化工原理的基本知识和理论;2.参考书:为学生提供化工原理的深入理解和拓展知识;3.多媒体资料:通过视频、图片等形式,为学生提供直观的学习材料;4.实验设备:为学生提供动手实践的机会,加深对化工原理的理解和掌握。
五、教学评估本节课的教学评估将采用多元化评价方式,全面客观地评价学生的学习成果。
评估方式包括:1.平时表现:通过观察学生在课堂上的参与程度、提问回答、小组讨论等表现,评价学生的学习态度和积极性;2.作业:布置与本节课内容相关的作业,评估学生对知识的理解和运用能力;3.考试成绩:通过期末考试或期中考试,评估学生对化工原理知识的掌握程度;4.实验报告:评估学生在实验过程中的操作技能、数据处理和分析能力;5.小组项目:评估学生在团队合作中的沟通协作、问题解决和创新能力。
化工原理教学课程设计

化工原理教学课程设计一、引言化工原理是化工专业的基础课程之一,对学生的基础知识和技能的培养起着重要作用。
本文旨在设计一门全面且高效的化工原理教学课程,通过理论教学、实验教学、案例分析等方法,帮助学生掌握化工原理的理论知识和实际应用能力,提高学生的学习兴趣和学习效果。
二、教学目标1. 理论学习目标:通过本课程的学习,学生应具备扎实的化工原理基础知识,包括化学反应动力学、质量传递、能量传递、流体力学等方面的知识。
2. 实践学习目标:学生应能够熟练操作化工实验仪器设备,掌握常用实验操作技能,并能够分析和解决实践中的问题。
3. 应用目标:学生应能够将所学的化工原理知识应用于实际工程中,理解化工过程中的原理和规律,具备一定的工程设计和问题解决能力。
三、教学内容和教学方法1. 理论教学内容:(1) 化学反应动力学:化学反应速率和化学平衡,反应动力学和反应速率常数,反应速率和温度的关系等。
(2) 质量传递:质量传递的基本概念,质量传递过程的速度控制因素,质量传递的传递机制等。
(3) 能量传递:热力学基本概念和热力学定律,热传导的基本理论,传热方式与传热设备等。
(4) 流体力学:流体的基本性质,流体流动的基本方程和物理规律,流体传动设备等。
2. 实验教学内容:(1) 基础实验:采用常规实验装置,进行化工原理相关的实验,如酸碱中和反应速率的测定,质量传递过程的实验,热传导实验等。
(2) 设计和创新实验:通过设计实验方案,解决实际问题,培养学生的创新能力和实践能力。
3. 教学方法:(1) 理论部分:采用讲授和互动式教学相结合的方式,引导学生主动学习,理解化工原理的基本概念和原理。
(2) 实验部分:注重实践操作,引导学生进行实验操作和数据处理,培养学生的动手能力和实验思维能力。
(3) 案例分析:通过真实的案例分析,帮助学生将理论知识应用于实际工程问题的解决,并培养学生的问题分析和解决能力。
四、教学评估和成绩评定1. 理论部分评估:通过平时作业、课堂互动和小测验等形式进行评估,占总评成绩的30%。
课程设计化工原理

课程设计化工原理一、教学目标通过本章的学习,学生将掌握化工原理的基本概念、原理和计算方法,包括流体的性质、流体流动和压力、热量传递等方面的内容。
学生能够运用化工原理解决实际工程问题,提高工程实践能力。
在技能方面,学生将能够运用数学知识和计算方法进行流体流动和热量传递的计算。
在情感态度价值观方面,学生将培养对化工行业的兴趣和责任感,认识到化工原理在现代工业中的重要性。
二、教学内容本章的教学内容主要包括流体的性质、流体流动和压力、热量传递等方面的知识。
首先,学生将学习流体的基本性质,包括密度、粘度和表面张力等。
然后,学生将学习流体的流动和压力的计算方法,包括流速、流量和压强等参数的计算。
最后,学生将学习热量传递的原理和计算方法,包括导热、对流和辐射等热传递方式。
三、教学方法为了激发学生的学习兴趣和主动性,本章将采用多种教学方法。
首先,将采用讲授法,系统地讲解流体的性质、流体流动和压力、热量传递等方面的知识。
其次,将采用案例分析法,通过分析实际工程案例,使学生能够将理论知识应用于实际问题的解决中。
此外,还将学生进行实验,通过实验操作和观察,加深学生对理论知识的理解和记忆。
四、教学资源为了支持教学内容和教学方法的实施,将选择和准备适当的教学资源。
教材将作为主要的教学资源,用于引导学生学习流体的性质、流体流动和压力、热量传递等方面的知识。
参考书将提供更多的案例和实际应用,以丰富学生的学习体验。
多媒体资料将用于展示流体流动和热量传递的动画和图像,帮助学生更好地理解理论知识。
实验设备将用于进行流体流动和热量传递的实验,使学生能够通过实践操作加深对知识的理解和记忆。
五、教学评估本章的教学评估将采用多元化的评估方式,以全面、客观地评价学生的学习成果。
评估将包括平时表现、作业、考试等方面。
平时表现将根据学生在课堂上的参与度、提问和回答问题的情况进行评估。
作业将包括练习题和案例分析,以巩固学生对流体性质、流体流动和压力、热量传递等方面的知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《化工原理》课程设计说明书设计题目学生姓名指导老师学院专业班级完成时间目录1.设计任务书……………………………………………()2.设计方案的确定与工艺流程的说明…………………()3.精馏塔的物料衡算……………………………………()4.塔板数的确定………………………………………()5.精馏段操作工艺条件及相关物性数据的计算………()6.精馏段的汽液负荷计算………………………………()7.精馏段塔体主要工艺尺寸的计算…………………()8.精馏段塔板主要工艺尺寸的计算…………………………()9.精馏段塔高的计算…………………………………()10.精馏段塔板的流体力学验算…………………………()11.精馏段塔板的汽液负荷性能图………………………()12.精馏段计算结果汇总………………………………()13.设计评述……………………………………………()14.参考文献………………………………………………()15.附件……………………………………………………()附件1:附图1精馏工艺流程图………………………()附件2:附图2降液管参数图……………………………()附件3:附图3塔板布孔图………………………………()板式塔设计简易步骤一、 设计方案的确定及工艺流程的说明对塔型板型、工艺流程、加料状态、塔顶蒸汽冷凝方式、塔釜加热方式等进行说明,并 绘制工艺流程图。
(图可附在后面)二、 精馏塔物料衡算:见教材P270计算出F 、D 、W ,单位:kmol/h三、 塔板数的确定1. 汽液相平衡数据:查资料或计算确定相平衡数据,并绘制t-x-y 图。
2. 确定回流比:先求出最小回流比:P 266。
再确定适宜回流比:P 268。
3. 确定理论板数逐板法或梯级图解法(塔顶采用全凝器)计算理论板层数,并确定加料板位置:P 257-258。
(逐板法需先计算相对挥发度)确定精馏段理论板数N 1、提馏段理论板数N 24. 确定实际板数:估算塔板效率:P 285。
(①需知全塔平均温度,可由 t-x-y 图确定塔顶、塔底温度,或通过试差确定塔顶、塔底温度,再取算术平均值。
②需知相对挥发度,可由安托因方程求平均温度下的饱和蒸汽压,再按理想溶液计算。
)由塔板效率计算精馏段、提馏段的实际板层数N 1’,N 2’:P 284式6-67。
四、 精馏段操作工艺条件及相关物性数据的计算1. 操作压力m p :取2F D m p p p += 2. 精馏段平均温度m t :查t-x-y 图确定塔顶、进料板温度,再取平均值。
或由泡点方程试差法确定塔顶、进料板温度。
3. 平均摩尔质量M Vm 、M Lm :由P 8式0-27分别计算塔顶、进料板处的摩尔质量,再分别取两处的算术平均值。
汽相的摩尔分率查t-x-y 图。
4. 平均密度Vm ρ、Lm ρ: Lm ρ:用P 13式1-7分别计算塔顶、进料板处液相密度,再取算术平均值。
mVm m Vm T R M p ⋅⋅=ρ 5. 液体表面张力m σ:由B B A A m x x σσσ+=分别计算塔顶mD σ与进料板mF σ,再取平均值。
6. 液体粘度m μ:与表面张力的计算类似。
五、 精馏段汽液负荷(Vs 、Ls )计算V=(R+1)D L=RDVmVm s VM V ρ3600= Lm Lm s LM L ρ3600= 同时计算V h 、L h 。
冷凝器的热负荷:(本设计不要求计算)六、 精馏段主要工艺结构尺寸的计算(一)板间距H T 的初估。
板间距初估是为了估算塔径,在P 286表6-8初选。
(二)塔径的初估与圆整 P 2861. 液泛速度。
2. 塔径:计算,并圆整,再按P 286表6-5,检验塔径是否合适。
3. 实际操作气速。
七、 塔板工艺尺寸的计算(一)溢流装置:说明采用何种形式的溢流堰、降液管、受液盘。
(以下为选择依据:)1.降液管:降液管有圆形与弓形两类。
通常,圆形降液管只用于小直径塔,而弓形降液管由部分塔壁和一块夹板围成,它能充分利用塔内空间,普遍用于直径较大、负荷较大的塔板。
2.溢流方式: 溢流方式与降液管的布置有关。
常用的降液管布置方式有U 型流、单溢流、双溢流及阶梯式双溢流等。
常选择的为单流型和双流型P281。
可依下表进行选择。
3.溢流堰的形式:有平直形和齿形两种。
一般选择平型。
4)受液盘: 受液盘有平受液盘和凹形受液盘两种形式,如下图所示。
(a) 平受液盘 (b)凹受液盘平受液盘一般需在塔板上设置进口堰,以保证降液管的液封,并使液体在板上分布均匀。
但设置进口堰既占用板面,又易使沉淀物淤积此处造成阻塞,因此可不设进口堰。
采用凹形受液盘不需设置进口堰。
凹形受液盘既可在低液量时能形成良好的液封,又有改变液体流向的缓冲作用,并便于液体从侧线的抽出。
对于φ600mm 以上的塔,多采用凹形受液盘。
凹形受液盘的深度一般在50 mm 以上,有侧线采出时宜取深些。
凹形受液盘不适于易聚合及有悬浮固体的情况,因易造成死角而堵塞。
3.溢流装置的设计计算1)堰长l w :参见P 281 堰长l W 应由液体负荷及溢流型式而定。
对于常用的弓形降液管:l W = (0.6~0.8)D D 为塔径,m 。
双流型塔板,两侧堰长取为塔径的0.5~0.7倍。
并保证堰上溢流强度()h m /m 130~100/3⋅<w h l L ,满足筛板塔的堰上溢流强度要求。
2)堰上液层高度h ow : 太小,堰上的液体均布差,太大则塔板压强增大,物沫夹带增加。
对于平直堰,堰上液层高度h ow 可用弗朗西斯(Francis )经验公式求算:Ls ——塔内液体流量,m 3/h ;lw ——堰长,m ;E ——液流收缩系数。
液流收缩系数E ,可由液流收缩系数计算图查取。
一般情况下可取E=1,所引起的误差对计算结果影响不大。
平直堰,一般h ow >0.006m ,若低于此值,改用齿形堰。
H ow 也不宜超过0.06~0.07m ,否则改用双溢流型塔板。
3)出口堰高h w :堰高h w 需根据工艺条件与操作要求确定。
设计时,一般应保持塔板上清液层高度在50~100mm 。
计算公式: ow L W h h h -=式中:h L ——板上液层高度,在50~100mm 内取值,m ;h ow ——堰上液层高度,m 。
堰高一般在0.03~0.05m 范围内,对于减压塔的h w 值应较低,以降低塔板的压降。
堰高还要考虑降液管底端的液封,一般应使堰高在降液管底端0.006m 以上,大塔径相应增大此值。
若堰高不能满足液封要求时,可设进口堰。
在求出h ow 后,检验堰高是否在下式范围:4)弓形降液管宽度W d 与截面积A f : 可根据Dl W 查由下图查得。
( 图中A T 为塔横截面积。
) 按P 306 式6-65验算停留时间。
即若不能满足上式要求,应调整降液管尺寸或板间距,直至满足要求为止。
5)降液管底隙高度h 0 :降液管底隙高度h 0应低于出口堰高度h w ,才能保证降液管底端有良好的液封,一般取为:)012.0~006.0(-=W O h h ,m降液管底隙高度一般也不宜小于20~25mm ,否则易于堵塞,或因安装偏差而使液流不畅,造成液泛。
在设计中,塔径较小时可取h 0为25~30mm ,塔径较大时可取h 0为40mm 左右,最大可达150mm 。
降液管底隙高度h式中:L S ——塔内液体流量,m 3/s ;u 0′——液体通过降液管底隙的流速,m/s ;一般可取u 0′=0.07~0.25m/s 。
(二) 塔板布置1.边缘区宽度c W 与安定区宽度s W塔板通常分为四个区:即边缘区、安定区、溢流区、开孔区。
确定边缘区宽度c W :在靠近塔壁的一圈边缘区域供支持塔板的边梁之用,称为无效区,也称边缘区。
其宽度W c 视塔板的支承需要而定,小塔一般为30~76 mm ,大塔一般为50~75 mm 。
为防止液体经无效区流过而产生短路现象,可在塔板上沿塔壁设置挡板。
确定安定区宽度s W :开孔区与溢流区之间的不开孔区域称为安定区,也称为破沫区。
溢流堰前的安定区宽度为W s ,其作用是在液体进入降液管之前有一段不鼓泡的安定地带,以免液体大量夹带气泡进入降液管;安定区的宽度可按下述范围选取,即:溢流堰前的安定区宽度 W s =70~100 mm 。
对小直径的塔(D <l m),因塔板面积小,安定区要相应减小。
溢流区为降液管及受液盘所占的区域,其中降液管所占面积以A f 表示,受液盘所占面积以A ′f 表示。
2.计算开孔区面积:对单溢流型塔板,开孔区面积可用下式计算,即式中 ,m ;,m ; 为以角度表示的反正弦函数。
对双流型塔板,请查资料。
3. 开孔数及筛孔排列 (浮阀塔板):①阀孔直径: 阀孔直径由所选浮阀的型号决定,如常用的F1型浮阀的阀孔直径为39mm 。
②阀孔数:阀孔数n 取决于操作时的阀孔气速u 0,而u 0由阀孔动能因数F 0决定。
式中u o ——孔速,m/s; ρV ——气相密度,kg/m 3; F 0——阀孔的动能因子,一般取8~11(苯-甲苯体系取9-13),对于不同的工艺条件,也可适当调整。
阀孔数n 的计算:式中 n ——阀孔数;V ——气相流量,m 3 /s ;d 0——阀孔孔径,m 。
由所选浮阀的型号决定。
③阀孔的排列:阀孔的排列方式有正三角形排列和等腰三角形排列。
正三角形排列又有顺排和叉排两种方式(见下图)。
采用叉排时,相邻两阀吹出的气流搅动液层的作用比顺排明显,而且相邻两阀容易被吹开,液面梯度较小,鼓泡均匀,所以采用叉排更好。
在整块式塔板中,阀孔一般按正三角形排列,其孔心距t 有75mm ,100mm ,125mm ,150mm 等几种。
在分块式塔板中,阀孔也可按等腰三角形排列,三角形的底边t ′固定为75mm ,三角形高h (即排间距)有65mm ,70mm ,80mm ,90mm ,l00mm ,110mm 几种,必要时还可以调整。
按等腰三角形排列时: 按正三角形排列时:式中 h ——等腰三角形的高,m ; A a ——开孔鼓泡区面积,m 2;t ′——等腰三角形的底边长,m ,一般取为0.075m ;A 0——阀孔总面积,; t ——正三角形的孔心距,m 。
估算后要根据实际排间距核算实际阀孔数。
根据实际阀孔数校核孔速及阀孔动能因数。
和塔板开孔率。
塔板上阀孔的开孔率指阀孔面积与塔截面之比。
即TA A 0=φ 。
一般开孔率大,塔板压降低,雾沫夹带量少,但操作弹性小,漏液量大,板效率低,最好为6%-9%。
八、 精馏段塔高(精馏段):()T H N Z 1'11-=九、 精馏段塔板的流体力学验算1. 塔板压降:塔板压降计算式为::g h p L p p ρ=∆,即要验算:g h p L p p ρ=∆是否小于设计规定的0.7kPa 。