《教学分析》-比表面积及孔径分析简介
比表面积及孔径分析简介
Ⅱ型和Ⅲ型等温线的特点
B
II型等温线一般由非孔或大孔固体产生。B点通常被作为单层吸附容 量结束的标志。 III型等温线以向相对压力轴凸出为特征。这种等温线在非孔或大孔 固体上发生弱的气-固相互作用时出现,而且不常见。
Ⅳ型等温线的特点
IV型等温线由介孔固体产生。典型特征是等温线的吸附曲线与脱附曲
描述吸附现象比较重要的数学方程有:
单分子层吸附理论•Langmuir方程(Ⅰ型等温线) 多分子层吸附理论•BET方程(Ⅱ型和Ⅲ型等温线) 毛细孔凝聚理论•Kelvin方程(Ⅳ和Ⅴ型等温线) 微孔填充理论•DR方程(Ⅰ型等温线) Ⅵ类等温线
单分子层吸附等温方程 ——朗格谬尔(Langmuir)等温方程 Irving Langmuir (1881-1957)
1.5 孔径的分类 (IUPAC Standard)
IUPAC 定义的孔大小分为: 微孔(micropore) < 2nm 中孔(mesopore) 2~50nm 大孔(macropore) > 50nm
微孔
中孔(介孔)
大孔
比表面积和孔径的定义 吸附理论 比表面积的计算 孔容和孔径分析计算
2.1 吸附现象:
比表面积及孔 径分 析 简 介
培训人: 张 曼 培训日期:2017-04-26
比表面积和孔径的定义 吸附理论 比表面积的计算 孔容和孔径分析计算
1.1 比表面积的定义
比表面积S(specific surface area):单位质量的粉体所具有的表面积总 和。分外表面积、内表面积两类。
公式:S=A/W
吸附平衡(adsorption equilibrium):吸附速率与脱附速率相等时,
表面上吸附的气体量维持不变。
比表面积与孔径之间的关联探析
比表面积与孔径之间的关联探析标题:比表面积与孔径之间的关联探析导言:比表面积和孔径是物理和化学领域中常用的两个概念。
比表面积指的是物体单位质量或单位体积的外表面积,而孔径则是指物体中的微小孔隙或通道的尺寸大小。
在本文中,我们将探讨比表面积与孔径之间的关联,并分析其在科学研究和实际应用中的重要性。
文章主体:一、比表面积的定义和计算方法- 比表面积的概念与用途- 表面积计算的常见方法- 几何方法- 物理方法- 化学方法二、孔径的定义和分类- 孔径的概念与用途- 孔径的分类- 宏观孔径- 中观孔径- 微观孔径- 纳米孔径三、比表面积与孔径的关联性 - 表面积与孔径的直接关系 - 孔径对比表面积的影响 - 比表面积对孔径的影响 - 表面积与孔径的间接关系 - 物质类型对关联性的影响 - 孔隙结构对关联性的影响四、比表面积与孔径的应用领域 - 材料科学与工程- 吸附材料设计- 催化剂制备与评估- 燃料电池与电化学- 土壤科学与农业- 土壤环境保护与修复- 植物营养和生长机制- 化学与生物科学- 药物传输和释放- 细胞和组织工程- 生物分子交互作用总结与回顾:比表面积与孔径之间存在紧密的关联性。
它们在许多科学领域和应用中都起着重要的作用。
比表面积的大小影响着物质的吸附、反应和传输性质,而孔径的尺寸则决定了物质与环境之间的相互作用方式。
深入理解比表面积与孔径之间的关系有助于我们更好地设计材料和优化工艺,在能源、环境和生物领域中取得更高水平的科研成果。
观点与理解:在我看来,比表面积与孔径的关联是非常有意义的。
比表面积是一个描述物质外部面积的重要参数,而孔径则是描述物质内部结构的关键特征。
通过研究它们之间的关联,我们可以更好地理解材料的结构性质和性能变化机制。
这对于优化材料设计,提高材料性能以及解决能源和环境等问题都具有重要意义。
结论:比表面积与孔径之间存在紧密的关联,通过研究它们之间的关系可以深入了解材料的结构和性能。
第5章-比表面积和孔结构分析技术概要
表面积测定
固体表面的吸附作用
吸附是一种物质的原子或分子附着在另一种物质 表面的现象。
固体表面由于表面层的分子所的受力是不对称、 不饱和的,因而产生剩余力场,这些不平衡力场对 周围介质(气体或液体)具有吸引作用,所以固体 表面能够吸附那些能够降低其表面自由焓的物质。
物理吸附和化学吸附
汞压力测孔对试样要求和处理
1. 取样:对于水泥,必须是净浆。取样不用打击方 法,以免产生二次裂缝;
2. 试样处理:对于水泥水化试样,用丙酮终止水化, 105oC干燥。
3. 测试试样尺寸:<5mm
汞压力测孔数据处理
Pr P1 r1 .
V DV V1 DV1
Pn rn Vn DVn
汞压力测孔数据处理
度无关; (3) 吸附是定域化的,即被吸附的分子间无作
用力; (4) 吸附平衡是一种动态平衡。
Langmuir吸附等温式
p 1 p G Gb G
多分子吸附的BET程
Brunauer, Emmett和Teller在单分子层吸附理论的 基础上提出多分子层吸附理论,并推导出BET等温 吸附方程。
分子层吸附理论的基本假设:
吸附量
在吸附平衡的条件下,吸附量 G 通常是一 单位质量的固体吸附质所吸附的气体物质的量 表示,或是以单位质量固体吸附剂所吸附的气 体物质在STP下的体积表示:
G n 或 G V(STP〕
m
m
Langmuir吸附等温式
单分子层吸附假设: (1) 吸附是单分子层的; (2) 固体表面是均匀的,即吸附热与表面覆盖
孔径与蒸汽压的关系
r = rk+ t
ln pN2 =- 2 vm cosq
BET比表面积和孔径解析
根据直线旳斜率和截距,可求出形成单分子层旳吸 附量Vm=1/(斜率+截距)和常数C=斜率/截距+1.
BET吸附等温方程(1-12)――――单层饱和吸附量
vm:
1 vm = 斜率+截距
(1-13)
Am就设是每该一吸种附吸分附子分在子吸旳附平剂均表截面面上积占为据A旳m(n表m面2) 积,:此
Vm Sg = Am ×NA ×
比表面积和孔径计算
BET BJH
•吸附现象:
吸附作用指旳是一种物质旳原子或分子附着在另一种物 质表面上旳过程-----物质在界面上变浓旳过程。界面上旳 分子与相里面旳分子所受旳作用力不同而引起旳。
*气-固接触面来说,因为固体表面分子受力不均衡,就产生一种剩余 力场,这么就对气体分子产生吸附作用。 *吸附旳分子仍是在不断运动旳(例如振动)。 *气体分子能克服固体表面旳引力,会离开表面造成脱附。 *吸附与脱附之间能够建立动态平衡.
一般用比压(相对压力)p/p0表达压力,p 为气体旳真实压力,p0为气体在测量温度
下旳饱和蒸汽压.
Brunauer分类旳五种等温线类型
Ⅰ、Ⅱ、Ⅳ型曲线是凸形 Ⅲ、Ⅴ型是凹形
Ⅰ型等温线相当于朗格谬尔单层可逆吸附过程。 Ⅱ型等温线相当于发生在非孔或大孔固体上自由旳单一 多层可逆吸附过程,位于p/p0旳B点,是等温线旳第一种 陡峭部,它表达单分子层饱和吸附量。 Ⅲ型等温线不出现B点,表达吸附剂与吸附质之间旳作用 很弱.
*试验成果表白,多数催化剂旳吸附试验数据按BET作图时
旳直线范围一般是在p/p0之间。 *C常数与吸附质和表面之间作用力场旳强弱有关。给定不同 旳C值,并以v/vm对p/p0作图,就得到下图旳一组曲线。
常数c作参数,以吸附重量或 吸附体积(W/Wm或V/Vm) 对x=P/P0作图。 a)c﹥2 , II型吸附等温线; b)c﹤2, III型吸附等温线 BET公式合用比压范围: 0.05≤x≤0.35
比表面积、孔径分布及孔隙度测定理论方法介绍
比表面积、孔径分布及孔隙度测定理论方法介绍气体吸附(氮气吸附法)比表面积测定比表面积分析测试方法有多种,其中气体吸附法因其测试原理的科学性,测试过程的可靠性,测试结果的一致性,在国内外各行各业中被广泛采用,并逐渐取代了其它比表面积测试方法,成为公认的最权威测试方法。
许多国际标准组织都已将气体吸附法列为比表面积测试标准,如美国ASTM的D3037,国际ISO标准组织的ISO-9277。
我国比表面积测试有许多行业标准,其中最具代表性的是国标GB/T19587-2004《气体吸附BET法测定固体物质比表面积》。
气体吸附法测定比表面积原理,是依据气体在固体表面的吸附特性,在一定的压力下,被测样品颗粒(吸附剂)表面在超低温下对气体分子(吸附质)具有可逆物理吸附作用,并对应一定压力存在确定的平衡吸附量。
通过测定出该平衡吸附量,利用理论模型来等效求出被测样品的比表面积。
由于实际颗粒外表面的不规则性,严格来讲,该方法测定的是吸附质分子所能到达的颗粒外表面和内部通孔总表面积之和,如图所示意位置。
氮气因其易获得性和良好的可逆吸附特性,成为最常用的吸附质。
通过这种方法测定的比表面积我们称之为“等效”比表面积,所谓“等效”的概念是指:样品的比表面积是通过其表面密排包覆(吸附)的氮气分子数量和分子最大横截面积来表征。
实际测定出氮气分子在样品表面平衡饱和吸附量(V),通过不同理论模型计算出单层饱和吸附量(Vm),进而得出分子个数,采用表面密排六方模型计算出氮气分子等效最大横截面积(Am),即可求出被测样品的比表面积。
计算公式如下:sg:被测样品比表面积(m2/g)Vm:标准状态下氮气分子单层饱和吸附量(ml)Am:氮分子等效最大横截面积(密排六方理论值Am=0.162nm2)W:被测样品质量(g)N:阿佛加德罗常数(6.02x1023)代入上述数据,得到氮吸附法计算比表面积的基本公式:由上式可看出,准确测定样品表面单层饱和吸附量Vm是比表面积测定的关键。
《比表面和孔径分布》PPT课件
每个颗粒所含孔体积的理论值为 sxnp r 2l
每个颗粒的孔体积的实验值为 Vp pVg
所以 sxnp r=2l Vp pVg
可以得到 r 2 Vg
Sg
平均孔半径与孔容成正比,与比表面成反比。
2021/4/23
15
2、平均孔长度
一个孔隙率为的催化剂颗粒,由于其孔的分布均匀,所以在颗
粒的单位外表面上,孔口占的面积数值为。一个孔口的面积为
Δt3 Δt2 Δt1
rp2
rk2
t4
rp3
rk3
Δt3
t4
t2
Δt2
t3
Δt3
当压力由P2/P0降至P3/P0时,测 得的脱附体积为ΔV2
VP2
(rK2
r2 P2
t2 )2
(V2
Vt2 )
R2 (V2
Vt2 )
Vt2 t2 Ac1
VP2 R2V2 R2t2 Ac1
n1
VPn
Rn Vn
Rntn
Relative pressure / P/P 0
实验结果表明,多数催化剂的吸附实验数据用BET作图时的直线范围一般 是在P/P0 0.05-0.35
2021/4/23
9
C值对BET方程的影响
P
1 C 1 P
V ( P0 P ) CVm CVm P0
C y/x a1/d1exp(q 1/RT) a i /d i exp(q/RT)
rs -单位表面上的反应速率 Sg-催化剂的比表面积 f-催化剂内表面利用率
硅酸铝表面积与二甲基丁烷 转化率的影响
固体催化剂的比表面积包括内表面和外表面。
固体催化剂的比表面积和孔结构是表征其催化性能的重要参数,二者 都可以由物理吸附来测定。
比表面及孔径分析原理和仪器介绍比表面积介绍比表面积定义为
比表面及孔径分析原理和仪器介绍一、比表面积介绍比表面积定义为单位质量物质的总表面积,国际单位是(m2/g),主要是用来表征粉体材料颗粒外表面大小的物理性能参数。
实践和研究表明,比表面积大小与材料其它的许多性能密切相关,如吸附性能、催化性能、表面活性、储能容量及稳定性等,因此测定粉体材料比表面积大小具有非常重要的应用和研究价值。
材料比表面积的大小主要取决于颗粒粒度,粒度越小比表面积越大;同时颗粒的表面结构特征及形貌特性对比表面积大小有着显著的影响,因此通过对比表面积大小的测定,可以对颗粒以上特性进行参考分析。
研究表明,纳米材料的许多奇异特性与其颗粒变小比表面积急剧增大密切相关,随着近年来纳米技术的不断进步,比表面积性能测定越来越普及,已经被列入许多的国际和国内测试标准中。
二、气体吸附法比表面积测试方法有多种,其中气体吸附法因其测试原理的科学性,测试过程的可靠性,测试结果的一致性,在国内外各行各业中被广泛采用,并逐渐取代了其它测试方法,成为公认的最权威测试方法。
许多国际标准组织都已将气体吸附法列为比表面积测试标准,如美国ASTM的D3037,国际ISO标准组织的ISO-9277。
我国比表面积测试有许多行业标准,其中最具代表性的是国标GB/T19587-2004 《气体吸附BET法测定固体物质比表面积》。
气体吸附法测定比表面积原理,是依据气体在固体表面的吸附特性,在一定的压力下,被测样品颗粒(吸附剂)表面在超低温下对气体分子(吸附质)具有可逆物理吸附作用,并对应一定压力存在确定的平衡吸附量。
通过测定出该平衡吸附量,利用理论模型来等效求出被测样品的比表面积。
由于实际颗粒外表面的不规则性,严格来讲,该方法测定的是吸附质分子所能到达的颗粒外表面和内部通孔总表面积之和。
氮气因其易获得性和良好的可逆吸附特性,成为最常用的吸附质。
通过这种方法测定的比表面积我们称之为“等效”比表面积,所谓“等效”的概念是指:样品的表面积是通过其表面密排包覆(吸附)的氮气分子数量和分子最大横截面积来表征。
全自动比表面积和孔隙分析仪详解
应用
药品(Pharmaceuticals)— 比表面和孔隙度对于药物的净化、加 工、混合、压片和包装起主要作用。药品有效期和溶解速率也依赖于 材料的比表面和孔隙度。
陶瓷(Ceramics)— 比表面和孔隙度帮助确定陶瓷的固化和烧结过程 ,确保压坯强度,得到期望的强度、质地、表观和密度的最终产品。
活性炭(Activated Carbons)— 在汽车油气回收、油漆的溶剂回收 和污水污染控制方面,活性炭的孔隙度和比表面必须控制在很窄的范 围内
碳黑(Carbon Black)— 碳黑生产者发现碳黑的比表面影响轮胎的磨 损寿命、摩擦等性能,特定使用的轮胎或者不同车型的轮胎需要不同 材料的比表面
催化剂(atalysts)— 活性的比表面和孔结构极大地影响生产效率 ,限制孔径允许特定的分子进入和离开。化学吸附测试对于催化剂的 选择、催化作用的测试和使用寿命的确定等具有指导作用。
物理吸附和化学吸附的比较
气体吸附过程的静态描述
1.样品的预处理: 在进行气体吸附实验之前,固体表面必须
清除污染物,如水和油。表面清洁(脱气) 过程,大多数情况下是将固体样品置于一 玻璃样品管中,然后在真空下加热。 显示 了预处理后的固体颗粒表面,其含有裂纹 和不同尺寸和形状的孔。
气体吸附过程的静态描述
2.样品的单分子层或多层吸附: 使清洁后的样品处于恒温状态。然后,使
少量的气体(吸附质)逐步进入被抽真空 的样品管。进入样品管的吸附质分子很快 便到达固体样品(即吸附剂)上每一个孔 的表面,即被吸附。
气体吸附过程的静态描述
物理吸附是最普通的一种吸附类型,被吸 附的分子可以相对自由地在样品表面移动。 随着越来越多的气体分子被导入体系,吸 附质会在整个吸附剂表面形成一个薄层。 根据Langmuir 和BET 理论,假设被吸附分子 为单分子层,我们可以估算出覆盖整个吸 附剂表面所需的分子数Nm(见图2)。被吸 附分子数Nm 与吸附质分子的横截面积的乘 积即为样品的表面积。
(最新整理)比表面积和孔结构测定简介
吸附量ν
相对压力p/p0
2021/7/26
16
Ⅳ型等温线是一种特殊类型的等温线,反应的是固体 均匀表面上谐式多层吸附的结果。(有毛细凝聚现象 发生) Ⅴ型等温线很少遇到,而且难以解释,虽然反映了吸 附质与吸附剂之间作用微弱的Ⅲ型等温线特点,但在 高压区又表现出有孔充填(毛细凝聚现象)。
2021/7/26
(1-1) (1-2) (1-3) (1-4)
2021/7/26
13
吸附现象及其描述
吸附等温线形式
*假设温度控制在气体临界温度下,
α=f ( p/p0)
(1-5)
式中p0--吸附质饱和蒸汽压
*气体吸附量普遍采用的是以换算到标准状态(STP)时的 气体体积容量(cm3或ml)表示,于是方程(1-5)改写为 :
19
单分子层吸附等温方程
模型的基本假定: ——朗格谬尔(Langmuir)等温方程
吸附表面在能量上是均匀的,即各吸附位具有相同的能量;
被吸附分子间的作用力可略去不计;
属单层吸附,且每个吸附位吸附一个质点;
吸附是可逆的。
用θ表示覆盖度,即吸附剂表面被气体分子覆盖的分数, 未被覆盖分数应为(1-θ),则
吸附量表示方法
*在一定条件下,单位重量的固体吸附剂所吸附的吸附质的量或体积(一般 换算成标准状态STP)
吸附现象描述
在测定吸附量过程中发现,吸附剂吸附一种气体吸附质时,其吸附量(α)
α=f (T, p) T=常数 α=f ( p)称吸附等温线 p =常数 α=f (T)称吸附等压线 α=常数 p =f (T)称吸附等量线
质分割得越小,分散度越高,比表面也越大。
2021/7/26
11
把比边长表为面1(cms的pe立c方ific体s逐ur渐fac分e割ar成ea小)立与方分体散的情度况:
比表面积、孔径分布及孔隙度测定理论方法介绍
气体吸附(氮气吸附法)比表面积测定比表面积分析测试方法有多种,其中气体吸附法因其测试原理的科学性,测试过程的可靠性,测试结果的一致性,在国内外各行各业中被广泛采用,并逐渐取代了其它比表面积测试方法,成为公认的最权威测试方法。
许多国际标准组织都已将气体吸附法列为比表面积测试标准,如美国ASTM的D3037,国际ISO标准组织的ISO-9277。
我国比表面积测试有许多行业标准,其中最具代表性的是国标GB/T19587-2004《气体吸附BET法测定固体物质比表面积》。
气体吸附法测定比表面积原理,是依据气体在固体表面的吸附特性,在一定的压力下,被测样品颗粒(吸附剂)表面在超低温下对气体分子(吸附质)具有可逆物理吸附作用,并对应一定压力存在确定的平衡吸附量。
通过测定出该平衡吸附量,利用理论模型来等效求出被测样品的比表面积。
由于实际颗粒外表面的不规则性,严格来讲,该方法测定的是吸附质分子所能到达的颗粒外表面和内部通孔总表面积之和,如图所示意位置。
氮气因其易获得性和良好的可逆吸附特性,成为最常用的吸附质。
通过这种方法测定的比表面积我们称之为“等效”比表面积,所谓“等效”的概念是指:样品的比表面积是通过其表面密排包覆(吸附)的氮气分子数量和分子最大横截面积来表征。
实际测定出氮气分子在样品表面平衡饱和吸附量(V),通过不同理论模型计算出单层饱和吸附量(Vm),进而得出分子个数,采用表面密排六方模型计算出氮气分子等效最大横截面积(Am),即可求出被测样品的比表面积。
计算公式如下:sg:被测样品比表面积(m2/g)Vm:标准状态下氮气分子单层饱和吸附量(ml)Am:氮分子等效最大横截面积(密排六方理论值Am=0.162nm2)W:被测样品质量(g)N:阿佛加德罗常数(6.02x1023)代入上述数据,得到氮吸附法计算比表面积的基本公式:由上式可看出,准确测定样品表面单层饱和吸附量Vm是比表面积测定的关键。
测试方法分类比表面积测试方法有两种分类标准。
多孔高分子材料孔径及比表面积分析
多孔高分子材料孔径及比表面积分析
多孔高分子材料的孔径和比表面积是评估其吸附性能、透气性能等重要指标之一。
孔径大小决定了材料对不同分子的吸附能力,比表面积则反映了物质与外部环境接触的面积。
在进行孔径分析时常用的方法有气体吸附法、渗透法、电镜观察等。
其中,气体吸附法常用的技术包括比表面积测量法(如BET法)和孔径分布测量法(如BJH法)。
通过测量吸附等温线,并根据吸附-解吸数据分析,可以得到材料的比表面积和孔径分布信息。
多孔高分子材料的比表面积通常会受到孔洞形状、孔径分布的影响。
一般来说,孔径越小,比表面积越大,因为小孔对分子的吸附更加有效。
但孔径过小也会导致传质困难。
比表面积的大小与多孔高分子材料的吸附性能、透气性能等密切相关。
需要注意的是,具体的孔径和比表面积分析结果会受到材料制备工艺、原料性质等因素的影响,因此实际应用中需根据具体需求选择合适的分析方法和评估标准。
BET比表面积和孔径解析
Brunauer分类的五种等温线类型
Ⅰ、Ⅱ、Ⅳ型曲线是凸形
Ⅲ、Ⅴ型是凹形
Ⅰ型等温线相当于朗格谬尔单层可逆吸附过程。
Ⅱ型等温线相当于发生在非孔或大孔固体上自由的单一 多层可逆吸附过程,位于p/p0=0.05-0.10的B点,是等温线
的第一个陡峭部,它表示单分子层饱和吸附量。
Ⅲ型等温线不出现B点,表示吸附剂与吸附质之间的作用 很弱.
斜率+截距
设每一个吸附分子的平均截面积为Am(nm2) ,此 Am就是该吸附分子在吸附剂表面上占据的表面积: (1-14) Vm -18 2
Sg = Am ×NA × ×10 22414 m /g
式中 NA——阿伏伽德罗常数(6.02x1023)。
*埃米特和布郎诺尔曾经提出77K(-195℃)时液态六方密堆 积的氮分子横截面积取0.162nm2,将它代入式(1-14)后, 简化得到BET氮吸附法比表面积的常见公式: (1-15) 2
(1-12) 式中 p0――吸附温度下吸附质的饱和蒸汽压; vm——单分子层饱和吸附量;
C——BET方程C常数,其值为exp{(E1-E2)/RT},
E1为第一吸附层的吸附热。 由式(1-12)可见,当物理吸附的实验数据按 p/v (p0-p) 与 p/p0 作图时应得到一条直线。直线的斜率m = (C-1) /(vmC),在
吸附剂:具有吸附能力的固体物质. 吸附质:被吸附剂所吸附的物质,(如氮气).
通常采用氮气,氩气或氧气为吸附质进行多孔物的比 表面,孔体积,孔径的大小和分布的测定.也可通过完 整的吸附脱附曲线计算出介孔部分和微孔部分的体 积和表面积等.
吸附平衡等温线:以压力为横坐标,恒温条件下吸附质在
吸附剂上的吸附量为纵坐标的曲线. 通常用比压(相对压力)p/p0表示压力,p 仅由毛细管凝聚所引起。
比表面积和孔结构分析技术
电池和超级电容器
在电池和超级电容器中,电极材 料的比表面积和孔结构对电化学
性能有重要影响。
比表面积越大,电极材料与电解 液接触的表面积越大,反应活性 越高。孔结构则影响电解液的渗
透和离子的传输。
通过比表面积和孔结构分析技术, 可以优化电极材料的制备工艺, 提高电池和超级电容器的能量密 度、充放电性能和循环寿命。
比表面积和孔结构分析技 术
• 引言 • 比表面积分析技术 • 孔结构分析技术 • 比表面积和孔结构在材料科学中的应
用 • 结论
01
引言
目的和背景
目的
比表面积和孔结构分析技术是材料科学和工程领域中重要的研究手段,用于评 估材料的表面特性和孔隙结构,进而了解材料的物理、化学和机械性能。
背景
随着科技的发展,对材料性能的要求越来越高,材料的比表面积和孔结构对性 能的影响越来越受到关注。因此,发展高效的比表面积和孔结构分析技术对于 材料研究和应用具有重要意义。
THANKS
感谢观看
比表面积和孔结构的重要性
比表面积
材料的比表面积是指单位质量或单位 体积的表面积,它决定了材料与气体 的接触面积,影响材料的吸附、反应 和催化性能。
孔结构
重要性
通过对比表面积和孔结构的分析,可 以深入了解材料的表面性质和内部结 构,为优化材料性能、开发新材料提 供重要依据。
材料的孔结构包括孔径、孔容、孔分 布等参数,这些参数直接影响材料的 储气、吸水、吸油、过滤等性能。
Langmuir方法
01
Langmuir方法是另一种测量固体物质比表面积的方法。
02
比表面积和孔结构测定简介
式中 NA——阿伏伽德罗常数(6.02x1023)。
1.2.1 BET法
*埃米特和布郎诺尔曾经提出77K(-195℃)时液态六方密堆 积的氮分子横截面积取0.162nm2,将它代入式(1-14)后, 简化得到BET氮吸附法比表面积的常见公式:
(1-11)
式(1-10)与式(1-11)都称为朗格谬尔吸附等温式,他们在用v对p作图时的形状
与Ⅰ型吸附等温线相同。实际上,分子筛或只含微孔的活性炭吸附蒸汽时的吸附 等温线就是Ⅰ型的,因此Ⅰ型又称为朗格谬尔吸附等温线。 式(1-11)在用p/v对p作图时是一条直线,其斜率为1/vm,截距为1/(vmK),由此 可以求出单分子层饱和吸附量vm。
*假设温度控制在气体临界温度下,
α=f ( p/p0)
式中p0--吸附质饱和蒸汽压
(1-5)
*气体吸附量普遍采用的是以换算到标准状态(STP)时的
气体体积容量(cm3或ml)表示,于是方程(1-5)改写为:
v= f ( p/p0)
(1-6)
Brunauer分类的五种等温线类型
Ⅰ、Ⅱ、Ⅳ型曲线是凸形
1.1 物理吸附理论简单介绍 1.2 表面积计算 1.3 孔结构分析
1.1 物理吸附理论简单介绍
1.1.1 吸附现象及其描述
•吸附现象:
吸附作用指的是一种物质的原子或分子附着在另一种物 质表面上的过程-----物质在界面上变浓的过程。界面上的 分子与相里面的分子所受的作用力不同而引起的。
*气-固接触面来说,由于固体表面分子受力不法 其它方法
1.2 表面积计算
1.2.1 BET法
BET吸附等温方程(1-12)――――单层饱和吸附量 vm : 1 (1-13) vm =
比表面积及孔径分析简介
在环境科学中的应用
空气净化材料
通过比表面积及孔径分析,了解 空气净化材料的表面性质和孔结 构,有助于优化空气净化材料的
性能和寿命。
水处理吸附剂
比表面积及孔径分析可以提供水 处理吸附剂的表面特性和孔结构 信息,有助于优化吸附剂的制备
方法和性能。
土壤修复材料
通过比表面积及孔径分析,了解 土壤修复材料的表面性质和孔结 构,有助于提高土壤修复的效果
在材料科学中的应用
催化剂研究
通过比表面积及孔径分析,了解 催化剂的表面性质和孔结构,从 而优化催化剂的制备方法和性能。
ቤተ መጻሕፍቲ ባይዱ
纳米材料表征
比表面积及孔径分析可以提供纳米 材料的表面特性和孔结构信息,有 助于研究纳米材料的物理和化学性 质。
复合材料界面研究
通过比表面积及孔径分析,了解复 合材料界面层的结构和性质,有助 于优化复合材料的性能。
和持久性。
05
实验操作流程及注意事项
实验操作流程
样品装填
将样品填充到比表面积及孔径 分析仪的测量腔内。
开始测量
启动仪器,进行吸附-脱附等 温线测量。
样品准备
选择合适的样品,进行研磨、 干燥等预处理。
实验设置
根据样品特性,设置仪器参数, 如吸附气体、温度、压力等。
数据处理
收集实验数据,进行数据分析, 计算比表面积、孔径分布等参 数。
在能源领域的应用
燃料电池
比表面积及孔径分析可用于研究燃料 电池电极材料的表面性质和孔结构, 以提高燃料电池的效率和稳定性。
储氢材料
太阳能电池
比表面积及孔径分析可以提供太阳能 电池材料的表面性质和孔结构信息, 有助于提高太阳能电池的光电转换效 率和长期稳定性。
比表面积及孔径分析简介ppt课件
18
2.4 吸附平衡等温线:
由国际纯粹与应用化学联合会(IUPAC)提出的物理吸附等温线分类
19
Ⅰ型等温线的特点
在低相对压力区域,气体吸附量有一个快速增长。这归因于微孔填充。 随后的水平或近水平平台表明,微孔已经充满,没有或几乎没有进一步的吸
附发生。 达到饱和压力时,可能出现吸附质凝聚。 外表面相对较小的微孔固体,如活性炭、分子筛沸石和某些多孔氧化物,表
12
2.2 吸附的相关概念
吸附剂(adsorbent):具有吸附能力的固体物质. 吸附质(adsorptive):被吸附剂所吸附的物质,(如氮气). 吸附过程(adsorption):固体表面上的气体浓度由于吸附而增加的过程。 脱附过程(desorption):气体在固体表面上的浓度减少的过程。
13
筒形孔
裂隙孔
锥形孔
球形孔(墨水瓶孔)
空隙或裂缝
氧化物接近于筒形孔,活性炭则是典型的裂隙孔,而墨水瓶孔多存在于沸 石分子筛中。
9
1.5 孔径的分类 (IUPAC Standard)
IUPAC 定义的孔大小分为: 微孔(micropore) < 2nm 中孔(mesopore) 2~50nm 大孔(macropore) > 50nm
吸附现象描述
在测定吸附量过程中发现,吸附剂吸附一种气体吸附质时,其吸附量(α)
α=f (T, p) T=常数 α=f ( p)称吸附等温线 p =常数 α=f (T)称吸附等压线 α=常数 p =f (T)称吸附等量线
(1-1) (1-2) (1-3) (1-4)
17
吸附等温线形式
假设温度控制在气体临界温度下,
比表面积及孔 径分 析 简 介
比表面积及孔径分析简介
粉粒等;
有孔和多孔物料具有外表面积和内表面积,如石棉纤维、岩(矿)
棉、硅藻土等。
不同固体物质比表面积差别很大, 通常用作吸附剂、脱水剂和催化
剂的固体物质比表面积较大。
比如氧化铝比表面通常在100-400㎡/g,分子筛300-2000㎡/g, 活
性碳可达1000㎡/g以上。
精品文档
2
把边长为1cm的立方体逐渐分割成小立方体的情况:
精品文档
12
吸附平衡(adsorption equilibrium):吸附速率与脱附速率相等时,
表面上吸附的气体量维持不变。
吸附量(amount adsorbate):给定压力P下的吸附气体摩尔数。 单层吸附量(monolayer amount):在吸附剂表面形成单分子层的吸附质
摩尔数
单层吸附容量(monolayer capacity):单层吸附量的等效标准状态气
储能型电池 储能材料的比表面积影响电池的性能
白炭黑 比表面积衡量炭黑补强剂性能的好坏
精品文档
4
1.2 孔的定义
---- ISO15901
固体表面由于多种原因总是凹凸不平的,凹坑深度大于凹 坑直径就成为孔。 不同的孔(微孔、介孔和大孔)可视作固体内的孔、通道或空腔, 或者是形成床层、压制体以及团聚体的固体颗粒间的空间(如裂 缝或空隙)。
σ: 每个氮分子的横截面积(0.162 nm2)关键是求出Vm
W: 样品的重量(g)
精品文档
29
3.2 吸附等温方程
吸附现象的描述除了用等温线表示之外,还可以用数学方 程来描述。
描述吸附现象比较重要的数学方程有:
➢ 单分子层吸附理论•Langmuir方程(Ⅰ型等温线) ➢ 多分子层吸附理论•BET方程(Ⅱ型和Ⅲ型等温线) ➢ 毛细孔凝聚理论•Kelvin方程(Ⅳ和Ⅴ型等温线) ➢ 微孔填充理论•DR方程(Ⅰ型等温线) ➢ Ⅵ类等温线
比表面孔径分析(共61张PPT)
精品文档
多分子层吸附(xīfù)等温方程
——BET吸附等温式
单分子层吸附等温方程无法描述除Ⅰ型等温线以外的其他等温线 。为了解决这个困难,布朗诺尔(Brunauer)、埃米特(Emmett) 和泰勒(Teller)提出了多分子层吸附模型,并且建立了相应的 吸附等温方程,通常称为BET等温方程。
的分子所受的作用力不同而引起的。
*气-固接触面来说,由于固体表面分子受力不均衡,就产生一个剩余力场, 这样就对气体分子产生吸附作用。
*吸附的分子仍是在不断运动的(例如振动)。
*气体分子能克服固体表面的引力,会离开(lí kāi)表面造成脱附。 *吸附与脱附之间可以建立动态平衡.
精品文档
吸附剂:具有吸附能力的固体物质.
*假设温度控制在气体临界温度下,
α=f ( p/p0)
(1-5)
式中p0--吸附质饱和蒸汽压
*气体吸附量普遍采用的是以换算(huàn suàn)到标准状态(STP) 时的气体体积容量(cm3或ml)表示,于是方程(1-5)改写为:
v= f ( p/p0)
(1-6)
精品文档
Brunauer分类(fēn lèi)的五种等温线类型
吸附时有孔壁的多分子层吸附和在孔中凝聚两种因素产生, 而脱附仅由毛细管凝聚所引起。 这就是说,吸附时首先(shǒuxiān)发生多分子层吸附,只有当孔壁 上的吸附层达到足够厚度时才能发生凝聚现象;而在与吸附相
同的p/p0比压下脱附时,仅发生在毛细管中的液面上的蒸汽,却不能
使p/p0下吸附的分子脱附,要使其脱附,就需要更小的p/p0 , 故出现脱附的滞后现象,实际就是相同p/p0下吸附的不可逆性造成的。
精品文档
1.2.1 BET法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
边长l/m
1×10-2 1×10-3 1×10-5 1×10-7 1×10-9
立方体数
1 103 109 1015 1021
比表面S/(m2/g)
6 ×102 6 ×103 6 ×105 6 ×107 6 ×109
从表上可以看出,当将边长为10-2m的立方体分割成10-9m的小立方体时, 比表面增长了1000万倍。
2.2 吸附的相关概念
吸附剂(adsorbent):具有吸附能力的固体物质. 吸附质(adsorptive):被吸附剂所吸附的物质,(如氮气). 吸附过程(adsorption):固体表面上的气体浓度由于吸附而增加的过程。 脱附过程(desorption):气体在固体表面上的浓度减少的过程。
吸附平衡(adsorption equilibrium):吸附速率与脱附速率相等时,
表面上吸附的气体量维持不变。
吸附量(amount adsormount):在吸附剂表面形成单分子层的吸附质
摩尔数
单层吸附容量(monolayer capacity):单层吸附量的等效标准状态气
体体积
平衡吸附压力(equilibrium adsorption pressure):吸附物质与吸附质的
有孔和多孔物料具有外表面积和内表面积,如石棉纤维、岩(矿) 棉、硅藻土等。
不同固体物质比表面积差别很大, 通常用作吸附剂、脱水剂和催化 剂的固体物质比表面积较大。 比如氧化铝比表面通常在100-400㎡/g,分子筛300-2000㎡/g, 活 性碳可达1000㎡/g以上。
把边长为1cm的立方体逐渐分割成小立方体的情况:
可见达到nm级的超细微粒具有巨大的比表面积,因而具有许多独特的表 面效应,成为新材料和多相催化方面的研究热点。
比表面积测定在行业中的应用
化工行业 建筑行业 电池行业 橡胶行业
催化剂 比表面积和孔径是衡量催化剂性能好坏的 重要指标
水泥 水泥的粘结性能(水化速率、早期强度等) 与比表面积密切相关
平衡压力。
相对压力(relative pressure):平衡压力P与饱和蒸气压P0的比值。 吸附等温线(adsorption isotherm):恒定温度下,气体吸附量与气体平
衡压力之间的关系曲线。
2.3 化学吸附和物理吸附
化学吸附:被吸附的气体分子与固体之间以化学键结合,并对它们的性质 有一定影响的强吸附。
物理吸附:被吸附的气体分子与固体之间以较弱的范德华力结合,而不影响 它们各自特性的吸附。
气体吸附过程的静态描述
吸附量表示方法
在一定条件下,用单位重量的固体吸附剂所吸附的吸附质的体积或物质的 量来表示。 (一般换算成标准状态STP)
吸附现象描述
在测定吸附量过程中发现,吸附剂吸附一种气体吸附质时,其吸附量(α)
筒形孔
裂隙孔
锥形孔
球形孔(墨水瓶孔)
空隙或裂缝
氧化物接近于筒形孔,活性炭则是典型的裂隙孔,而墨水瓶孔多存在于沸 石分子筛中。
1.5 孔径的分类 (IUPAC Standard)
IUPAC 定义的孔大小分为: 微孔(micropore) < 2nm 中孔(mesopore) 2~50nm 大孔(macropore) > 50nm
储能型电池 储能材料的比表面积影响电池的性能
白炭黑 比表面积衡量炭黑补强剂性能的好坏
1.2 孔的定义
---- ISO15901
固体表面由于多种原因总是凹凸不平的,凹坑深度大于凹 坑直径就成为孔。 不同的孔(微孔、介孔和大孔)可视作固体内的孔、通道或空腔, 或者是形成床层、压制体以及团聚体的固体颗粒间的空间(如裂 缝或空隙)。
α=f (T, p) T=常数 α=f ( p)称吸附等温线 p =常数 α=f (T)称吸附等压线 α=常数 p =f (T)称吸附等量线
(1-1) (1-2) (1-3) (1-4)
吸附等温线形式
假设温度控制在气体临界温度下,
α=f ( p/p0)
(1-5)
式中p0--吸附质饱和蒸汽压
气体吸附量普遍采用的是以换算到标准状态(STP)时的气体体积容 量(cm3或ml)表示,于是方程(1-5)改写为:
Ⅰ型等温线的特点
在低相对压力区域,气体吸附量有一个快速增长。这归因于微孔填充。 随后的水平或近水平平台表明,微孔已经充满,没有或几乎没有进一步的吸
附发生。 达到饱和压力时,可能出现吸附质凝聚。 外表面相对较小的微孔固体,如活性炭、分子筛沸石和某些多孔氧化物,表
现出这种等温线。
微孔
中孔(介孔)
大孔
目录
比表面积和孔径的定义 吸附理论 比表面积的计算 孔容和孔径分析计算
2.1 吸附现象:
吸附作用指的是一种物质的原子或分子附着在另一种物质表面上的 过程-----物质在界面上变浓的过程。界面上的分子与相里面的分子所 受的作用力不同而引起的。
气-固接触面来说,由于固体表面分子受力不均衡,就产生一个剩余力场, 这样就对气体分子产生吸附作用。
培训人: 张 曼 培训日期:2017-04-26
目录
比表面积和孔径的定义 吸附理论 比表面积的计算 孔容和孔径分析计算
1.1 比表面积的定义
比表面积S(specific surface area):单位质量的粉体所具有的表面积总 和。分外表面积、内表面积两类。
公式:S=A/W
国标单位:㎡/g
理想的非孔性物料只具有外表面积,如硅酸盐水泥、一些粘土矿物 粉粒等;
v= f ( p/p0)
(1-6)
吸附等温线是以压力为横坐标,恒温条件下吸附质在吸附剂上的 吸附量为纵坐标的曲线.通常用比压(相对压力)p/p0表示压力,p 为气体的真实压力,p0为气体在测量温度下的饱和蒸汽压.
2.4 吸附平衡等温线:
由国际纯粹与应用化学联合会(IUPAC)提出的物理吸附等温线分类
分子能从外部进入的孔叫做开孔(open pore),分子不能从 外部进入的孔叫做闭孔 (closed pore)
1.3 孔的类型(示意图)
交联孔(开孔)
闭孔
通孔(开孔)
盲孔(开孔)
一些多孔材料的孔结构照片
1.4 孔形的分类
真实的孔道是不规则的,为了计算方便,我们都把它假设成规则的孔道,包括: