《数字信号处理》期中考试试卷(2012年)参考答案

合集下载

数字信号处理期中测试题

数字信号处理期中测试题

数字信号处理期中测试题一. 填空题(每小题2分)1.判断一个系统是线性系统的条件是____________________________ 。

2.数字信号处理的特点是______________,______________,____________________________和_____________。

3.求Z 反变换的方法通常有三种:______________, ______________, _____________。

4.用DFT 进行谱分析可能引起分析误差的三种现象是______________,______________,______________。

5.1211--=z x(z),收敛域为______________,对应的左序列为______________;收敛域为______________, 对应的右序列为______________。

6.系统的零、极点分布可以分析系统的频率特性,极点位置主要影响频响的______________, 极点位置主要影响频响的_____________。

7.序列)(n x 的付里叶变换存在的条件是)(Z X 的收敛域应包含 。

8.)05.0sin(3)(1n n x π=的周期为_________,)6.0cos(5)(2n n x =的周期为_________,)12.0sin(3)05.0sin(2)(3n n n x ππ+=的周期为_________。

9.DFT 的共轭对称性质是______________ 。

10.已知)(n x 的傅里叶变换为⎪⎩⎪⎨⎧≤≤<=πωωωωω00,0,1)(j e X ,则=)(n x ______。

二.简答题(第1题12分,其它题每题9分)1. 设)(n x 和)(n y 分别表示一个系统的输入和输出,试确定下列系统是否为:(1)稳定系统;(2)因果系统;(3)线性系统。

(a));()(2n ax n y = (b);3)()(+=n x n y (c)).()(0n n x n y -=2.简述DFT的定义,DFT与Z变换(ZT),傅里叶变换(FT)的关系及DFT的物理意义。

数字信号处理试卷及答案

数字信号处理试卷及答案

数字信号处理试卷及答案1一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。

2.线性时不变系统的性质有 律、 律、 律。

3.对4()()x n R n =的Z 变换为 ,其收敛域为 。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。

5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。

6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。

7.因果序列x(n),在Z →∞时,X(Z)= 。

二、单项选择题(每题2分, 共20分) 1.δ(n)的Z变换是( )A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n ) 4.下面描述中最适合离散傅立叶变换DFT的是( ) A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪一个系统是因果系统( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( )A. 实轴B.原点C.单位圆D.虚轴 8.已知序列Z变换的收敛域为|z |>2,则该序列为( )A.有限长序列 B.无限长序列 C.反因果序列 D.因果序列9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是 ( ) A.N≥M B.N≤M C.N≤2M D.N≥2M10.设因果稳定的LTI 系统的单位抽样响应h(n),在n<0时,h(n)= ( )A.0 B .∞ C. -∞ D.1 三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。

数字信号处理_期中考试题及答案完美破解版

数字信号处理_期中考试题及答案完美破解版

期中考试题一. 判断题。

( R )1、当x(t)为实信号时,其频谱与翻转频谱互为共轭。

( R )2、若信号x(t)的频谱为X(f),则延迟信号x(t-5)的振幅谱将不发生变化。

(W )3、若信号x(t)的频谱为X(f),则X(t)的频谱为x(f)。

( R )4、若信号x(t)的频谱为X(f),则x(t)cos(2πf0t)的频谱为(1/2)[X(f-f0)+X(f +f0)]。

( R )5、若信号x(t)的频谱为X(f),则x(-t)的频谱为X(-f)。

( W )6、信号x(n)=cos(n/7-π/3)为一周期信号。

二. 计算证明题。

1、 在[-2,2]上有一方波0,21,()2,11,0,1 2.t x t t t -≤<-⎧⎪=-≤≤⎨⎪<<⎩求它的傅氏级数。

(p11) 解:002212421000000,21,()2,11,0,1 2.4,1/411()20,1;2sin sin 220,;2lim 1,2sin sin 22.2i nti nf t n n n n n n t x t t t T f c x t e dt e dtT n c nnf n c nf n c nnf c nf n ππππππππππ-++---→-≤<-⎧⎪=-≤≤⎨⎪<<⎩======≠===∴==⎰⎰2、 求方波2,||4,()0,|| 4.t x t t <⎧=⎨>⎩的频谱。

(p14) 解:42242,||4,()0,|| 4.2sin 8()2.i ft i ftf t x t t f X x t e dt e dt f ππππ+∞+---∞-<⎧=⎨>⎩===⎰⎰3、 求信号sin ()tx t t ππ=的频谱。

(p20)解:1,||,sin 2()()0,||.sin 1/2,()()()1,||1/2,sin ()()0,||1/2.t f x t X f t f f X f f X t x f t t x t X f t t δπδδππδπππ<⎧=⇔=⎨>⎩∧==-⇔<⎧=⇔=⎨>⎩4、写出离散信号()2(3)3(3)(1)x n n n n δδδ=-+++-的数学表达式。

(完整word版)数字信号处理试卷及答案_程培青(第三版),推荐文档

(完整word版)数字信号处理试卷及答案_程培青(第三版),推荐文档

河南工业大学数字信号处理 试卷考试方式:闭卷复查总分 总复查人一、填空题:(本大题共10小题,每空2分,共28分)请在每个空格中填上正确答案。

错填、不填均无分。

1、一线性时不变系统,输入为 x (n )时,输出为y (n ) ;则输入为2x (n )时,输出为;输入为x (n-3)时,输出为 。

2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率f 与信号最高频率fs 关系为: 。

3、已知一个长度为N 的序列x(n),它的傅立叶变换为X (e jw ),它的N 点离散傅立叶变换X (K )是关于X (e jw )的 点等间隔 。

4、有限长序列x(n)的8点DFT 为X (K ),则X (K )= 。

5、无限长单位冲激响应(IIR )滤波器的结构上有反馈,因此是_ _____型的。

6、若正弦序列x(n)=sin(30n π/120)是周期的,则周期是N= 。

7、已知因果序列x(n)的Z 变换为X(z)=eZ -1,则x(0)=__________。

8、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,___ ___和__ _ ___四种。

9、DFT 与DFS 有密切关系,因为有限长序列可以看成周期序列的__________,而周期序列可以看成有限长序列的__________。

10、对长度为N 的序列x(n)圆周移位m 位得到的序列用x m (n)表示,其数学表达式为x m (n)=__________。

《数字信号处理》试卷A 第1页 ( 共 6 页 )二、选择填空题(本大题共6小题,每题2分,共12分)1、δ(n)的z 变换是 。

A. 1B.δ(w)C. 2πδ(w)D. 2π2、序列x 1(n)的长度为4,序列x 2(n)的长度为3,则它们线性卷积的长度是 , 5点圆周卷积的长度是 。

A. 5, 5B. 6, 5C. 6, 6D. 7, 53、在N=32的时间抽取法FFT 运算流图中,从x(n)到X(k)需 级蝶形运算 过程。

数字信号处理期中测试答案

数字信号处理期中测试答案

1.线性时不变系统的单位脉冲响应用h(n)表示,输入x(n)是以N 为周期的周期序列,试证明输出y(n)亦是以N 为周期的周期序列。

证明:()()()()()()()()()()m m y n h m x n m x n N x n kN m x n m y n h m x n kN m y n kN ∞=-∞∞=-∞=-+-=-=+-=+∑∑以为周期,所以所以y(n)亦是以N 为周期的周期序列。

2.已知()()()()13122x n n n n δδδ=+-+-,()()()23x n u n u n =--,试求信号x(n),它满足()()()12*x n x n x n =。

解:()()()()233x n u n u n R n =--=()()()()()()()()()()123333*3122*3122x n x n x n n n n R n R n R n R n δδδ==+-+-⎡⎤⎣⎦=+-+-(){}1,4,6,5,2x n =3.时域离散线性时不变系统的系统函数H(z)为()()()1H z z a z b =--,a 和b 为常数。

(1)要求系统稳定,确定a 和b 的取值域。

(2)要求系统因果稳定,确定a 和b 的取值域。

解:(1)极点为a 和b ,系统稳定的条件是包含单位圆。

所以,1,1a b ≠≠即可使系统稳定。

(2)因果稳定,要求极点全在单位圆内,所以01,01a b ≤<≤<。

4.已知(){}(){}1,2,2,1,3,2,1,1x n h n ==-,计算两序列5点循环卷积。

解:10122342101229221011912210160122102⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦5. 已知一个有限长序列)5(2)()(-+=n n n x δδ 。

(1) 求它的10点离散傅里叶变换)(k X 。

数字信号处理期中大作业题

数字信号处理期中大作业题

《数字信号处理》期中作业一、填空题1. 若线性时不变系统是有因果性,则该系统的单位取样响应序列h(n)应满足的充分必要条件是 。

2. 若y(n)=T[x(n)],则时不变系统应该满足的条件是: 。

3. 已知,的反变换 。

4. FFT 的基本运算单元称为 运算。

5. ,变换区间,则 。

6. ,,是和的8点循环卷积,则 。

7. 设代表x (n )的付里叶变换,则x (-n )的付里叶变换为:________。

8. 设h (n )和x (n )都是有限长序列,长度分别是N 和M ,只有当h (n )和x (n )循环卷积长度L 满足___________时,其循环卷积等于线性卷积。

9. 假设时域采样频率为32kHz ,现对输入序列的32个点进行DFT 运算。

此时,DFT 输出的各点频率间隔为______Hz 。

二、选择题1. 以下序列中 的周期为5。

A. B. C. D.2. 在对连续信号均匀采样时,要从离散采样值不失真恢复原信号,则采样周期T s 与信号最高截止频率f h 应满足关系( )。

A.T s >2/f hB.T s >1/f hC.T s <1/f hD.T s <1/(2f h )3. FIR 系统的系统函数的特点是 。

A.只有极点,没有零点B.只有零点,没有极点C.没有零、极点D.既有零点,也有极点4. 有限长序列,则 。

A. B.C. D. 5. 设两有限长序列的长度分别是M 与N ,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取( )。

A .M+N B. M+N-1 πωππωω≤<<⎩⎨⎧=2202)(j e X )(ωj e X =)(n X )3()(-=n n x δ8=N =)(k X {}21121121)(01,,,,,,,)(==n n x {}02310)(02,,,,)(==n n x )(3n x )(1n x )(2n x =)2(3x )(ωj e X )853cos()(π+=n n x )853sin()(π+=n n x )852()(π+=n j e n x )852()(ππ+=n j e n x )(Z H 10)()()(-≤≤+=N n n x n x n x op ep =-*)(n N x )()(n x n x op ep +)()(n N x n x op ep -+)()(n x n x op ep -)()(n N x n x op ep --C. M+N+1D. 2(M+N)三、计算题设序列x(n)的傅氏变换为()j X e ω,试求下列序列的傅立叶变换。

鲁东大学2012级数字信号处理试题A及答案

鲁东大学2012级数字信号处理试题A及答案

2012级数字信号处理A卷标准答案
一、 填空题:本题共10小题,每空1分,满分15分 1、0.5<|z|<2,否 2、119 128 3、5120 10240 4、高通、带阻 5、h(n)为实序列 6、14 7、, 8、过渡带增加抽样点 或 过渡带优化设计
9、5 增加记录长度 10、 二、判断题:本题共5小题,每小题2分,满分10分。
有等波纹特性。( )
4、线性相位系统对各个频率分量的延迟是相同的。 () 5、具有递归结构特点的滤波器一定是IIR滤波器。 ()
三、综合题:本题共5小题,每小题各15分,满分75 分。
得 评卷 分人
1、(1)画出按时间抽取的N=8点基2 FFT的信号流图(输入倒位序, 输出自然序)
(2)写出利用N点FFT算法计算N点IFFT的实现的方法。
则系统的相位函数 。
8、在利用频率抽样法设计FIR低通滤波器时,增加阻带衰减有效的
方法是

使不连续点变成缓慢过渡。
9、用DFT分析某连续频谱,若记录长度为0.2s,则频率分辨力一的途径是

10、用双线性变换法设计数字滤波器时,要对数字频率进行预畸。设
采样间隔为T,则模拟角频率与数字频率之间的映射关系为
2FFT实现快速线性卷积,则FFT的点数至少

点。
3、对于1024点的按频率抽取的基2-FFT算法,共需要作

复数乘、
次复数加运算。
4、第二类FIR滤波器的幅度函数对为奇对称,故不能设计
滤波器。
5、FIR滤波器具有线性相位时,应满足的两个充要条件是:


6、序列的周期等于__________。
7、FIR系统函数为,其频率响应,

数字信号处理期中试卷答案

数字信号处理期中试卷答案

上海师范大学天华学院试卷参考答案(期中试卷)2011--2012 学年第二学期考试科目:数字信号处理一、填空题(每空2分,共30 分)1.时域离散系统处理的对象是时域离散信号,简称序列。

2.利用单位脉冲序列p(t)从连续时间信号x(t)中抽取一系列的离散样值的过程称为采样。

3.某序列可表示为:,则该序列类型为有限长序列/矩形序列,序列的长度为 3 。

4.如果序列的长度为M,对其进行N点频域采样,可以无失真恢复的条件是。

5.已知序列已知其傅立叶变换为,则= 7 。

(注:-1+3+5=7)6.对长度为4的序列进行4点DFT和FFT运算,直接计算DFT需要运算量为:复数乘法次数16 ,复数加法次数 12;而利用FFT计算,运算量为:复数乘法次数 4 ,复数加法次数8 。

(注:N=4,M=2参考教材P114页)7.已知,序列x(n)={1,2,3},则{0,0,1,2,3}/。

(注:解法1---利用性质;解法2---循环卷积法新序列的长度为3+3-1=5,可用{1,2,3,0,0,}和{0,0,1,0,0}构造循环矩形求得。

解法3---直接按卷积定义式求解/列表法也可。

)8.设序列的长度为8,长度为10,则两序列进行线性卷积运算得到的序列长度为 17 ,两序列进行12点循环卷积运算得到的序列长度为 12 。

9.序列x(n)={1,2,3,4,5},其8点DFT变换时若采用时域抽取法基2FFT算法进行计算,其对应蝶变换流程图的输入序列可表示为:{1,5,3,0,2,0,4,0}。

(注:对应n=0,4,2,6,1,5,3,7的序列值)二、判断题(请在下面括号中打√或打×,每小题2分,共10分)(√)1.任何一个序列都可以由的移位加权和来构造。

(×)2.如果一离散函数x(n)(其中n=0,1,2,…)是一个离散的周期函数,那么其频谱一定是一个连续的周期函数。

(注:连续---非周期,离散---周期)(√)3.FFT的基本运算是蝶形运算。

数字信号处理考试试题及答案

数字信号处理考试试题及答案

数字信号处理试题及答案一、填空题(30分,每空1分)1、对模拟信号(一维信号,是时间的函数)进行采样后,就是离散时间信号,再进行幅度量化后就是数字信号。

2、已知线性时不变系统的单位脉冲响应为,则系统具有因果性要求,系统稳定要求。

3、若有限长序列x(n)的长度为N,h(n)的长度为M,则其卷积和的长度L为 N+M-1。

4、傅里叶变换的几种形式:连续时间、连续频率—傅里叶变换;连续时间离散频率-傅里叶级数;离散时间、连续频率—序列的傅里叶变换;散时间、离散频率-离散傅里叶变换5、序列的N点DFT是的Z变换在单位圆上的N点等间隔采样。

6、若序列的Fourier变换存在且连续,且是其z变换在单位圆上的值,则序列x(n)一定绝对可和。

7、用来计算N=16点DFT,直接计算需要__256___次复乘法,采用基2FFT算法,需要__32__ 次复乘法。

8、线性相位FIR数字滤波器的单位脉冲响应应满足条件。

9.IIR数字滤波器的基本结构中,直接型运算累积误差较大;级联型运算累积误差较小;并联型运算误差最小且运算速度最高。

10.数字滤波器按功能分包括低通、高通、带通、带阻滤波器.11.若滤波器通带内群延迟响应 = 常数,则为线性相位滤波器.12.的周期为 1413.求z反变换通常有围线积分法(留数法)、部分分式法、长除法等。

14.用模拟滤波器设计IIR数字滤波器的方法包括:冲激响应不变法、阶跃响应不变法、双线性变换法。

15.任一因果稳定系统都可以表示成全通系统和最小相位系统的级联。

二、选择题(20分,每空2分)1. 对于x(n)= u(n)的Z变换,( B )。

A。

零点为z=,极点为z=0 B。

零点为z=0,极点为z=C. 零点为z=,极点为z=1 D。

零点为z=,极点为z=22.,,用DFT计算二者的线性卷积,为使计算量尽可能的少,应使DFT的长度N满足( B )A. B。

C。

D。

3。

设系统的单位抽样响应为h(n)=δ(n)+2δ(n-1)+5δ(n-2),其频率响应为( B ).A。

(完整word版)西南交通大学2012第1学期数字信号处理期中试题含答案(word文档良心出品)

(完整word版)西南交通大学2012第1学期数字信号处理期中试题含答案(word文档良心出品)

西南交通大学2012-2013学年第( 1 )学期期中考试试卷课程代码 3130100 课程名称 《数字信号处理A 》 考试时间 120分钟阅卷教师签字:一、选择题:(20分)本题共10个小题,每题回答正确得2分,否则得零分。

每小题所给答案中只有一个是正确的。

1.如题图所示的滤波器幅频特性曲线,可以确定该滤波器类型为( C )A.低通滤波器B.高通滤波器C.带通滤波器D.带阻滤波器2. 对5点有限长序列[1 3 0 5 2]进行向右1点圆周移位后得到序列( B ) A.[1 3 0 5 2] B.[2 1 3 0 5] C.[3 0 5 2 1] D.[3 0 5 2 0]3.已知某序列Z 变换的收敛域为5>|z|>3,则该序列为( D )A.有限长序列B.右边序列C.左边序列D.双边序列 4.离散序列x(n)为实、偶序列,则其频域序列X(k)为:( A )。

A .实、偶序列 B. 虚、偶序列 C .实、奇序列 D. 虚、奇序列 5. 用窗函数法设计FIR 低通滤波器,当窗函数类型确定后,取窗的长度越长,滤波器的过渡带越 ( A )A. 窄B. 宽C. 不变D. 无法确定6. 当用循环卷积计算两个有限长序列的线性卷积时,若两个序列的长度分别是N 和M ,则循环卷积等于线性卷积的条件是:循环卷积长度( A )。

A.L≥N+M -1 B.L<N+M-1 C.L=N D.L=M7 序列3π()cos 5x n n ⎛⎫= ⎪⎝⎭的周期为( C )A. 3B. 5C. 10D. ∞8. 在基2 DIT —FFT 运算时,需要对输入序列进行倒序,若进行计算的序列点数N=16,倒序前信号点序号为8,则倒序后该信号点的序号为( C )。

班 级 学 号 姓 名密封装订线 密封装订线 密封装订线A. 8B. 16C. 1D. 49. 已知序列()()x n n δ=,其N 点的DFT 记为X(k),则X(0)=( B )A .N-1B .1C . 0D . N 10. 关于双线性变换法设计IIR 滤波器正确的说法是( D ) A .双线性变换是一种线性变换 B .不能用于设计高通和带阻滤波器C .双线性变换法将线性相位的模拟滤波器映射为一个线性相位的数字滤波器D .需要一个频率非线性预畸变 二、(10分)判断题(对以下各题的说法,认为对的在括号内填“〇”,认为错的在括号内填 “╳”;每小题2分,共10分)1.(〇)用基2时间抽取FFT 计算1024点DFT 的计算量不到直接计算量的二百分之一。

(完整版)数字信号处理试卷及答案_程培青(第三版),推荐文档

(完整版)数字信号处理试卷及答案_程培青(第三版),推荐文档

《数字信号处理》试卷 A 第 6 页 ( 共 6 页 )
数字信号处理基础 试卷答案及评分标准
一、 填空题:(共 28 分,每空 2 分)
7
建议收藏下载本文,以便随时学习! (1)2y(n),y(n-3) (2)f≥2fs (3)N,抽样 (4) X (k) xnWNnk n0
(5)递归型
(6)8
Z-1 0.5 -1.4
Z-1 -0.8 1
Z-1
Z-1
-0.8
1
3、
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十多个OK地方价格
复加所需时间T1 0.5106 N N 1 0.5106 512 511 0.130816s
所以T T1 T2 1.441536s
2、用 FFT 计算
复乘所需时间
T1
5 106
N 2
log2
N
5 106
512 2
log2
512
0.01152s
复加所需时间T2 0.5106 N log2 N 0.5106 512 log2 512 0.002304s
3、请画出 8 点的按频率抽取的(DIF)基-2 FFT 流图,要求输入自然数顺序,输出倒 位序。
2、用级联型结构实现以下系统函数,试问一共能构成几种级联型网络,并画出结构 图。
4Z 1Z 2 1.4Z 1 H (z) Z 0.5Z 2 0.9Z 0.8
专业班级:
学院名称
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天我分页符ZNBX吃噶十多个OK地方价格

A. 1
B.δ(w)
C. 2πδ(w)

数字信号处理的技术考试试卷(附答案)

数字信号处理的技术考试试卷(附答案)

数字信号处理的技术考试试卷(附答案)数字信号处理的技术考试试卷(附答案)选择题(10分)1. 数字信号处理是指将连续时间信号转换为离散时间信号,并利用数字计算机进行处理。

这种描述表明数字信号处理主要涉及哪两个领域?- [ ] A. 数学和物理- [ ] B. 物理和电子工程- [x] C. 信号处理和计算机科学- [ ] D. 电子工程和计算机科学2. 数字滤波是数字信号处理的重要内容,其主要作用是:- [ ] A. 改变信号的频率- [x] B. 改变信号的幅度响应- [ ] C. 改变信号的采样率- [ ] D. 改变信号的量化级别3. 在离散时间信号处理中,离散傅里叶变换(Discrete Fourier Transform, DFT)和快速傅里叶变换(Fast Fourier Transform, FFT)有何区别?- [ ] A. DFT和FFT是完全相同的概念- [x] B. DFT是FFT的一种特殊实现- [ ] C. FFT是DFT的一种特殊实现- [ ] D. DFT和FFT无法比较4. 信号的采样率决定了信号的带宽,下面哪个说法是正确的?- [ ] A. 采样率越高,信号带宽越小- [ ] B. 采样率越低,信号带宽越小- [x] C. 采样率越高,信号带宽越大- [ ] D. 采样率与信号带宽无关5. 数字信号处理常用的滤波器包括:- [x] A. 低通滤波器- [x] B. 高通滤波器- [x] C. 带通滤波器- [x] D. 带阻滤波器简答题(20分)1. 简述离散傅里叶变换(DFT)的定义和计算公式。

2. 什么是信号的量化?请说明量化的过程。

3. 简述数字信号处理的应用领域。

4. 请解释什么是数字滤波器的频率响应。

5. 快速傅里叶变换(FFT)和傅里叶级数的关系是什么?编程题(70分)请使用Python语言完成以下程序编写题。

1. 编写一个函数`calculate_average`,输入一个由整数组成的列表作为参数,函数应返回列表中所有整数的平均值。

(完整)数字信号处理试卷及答案,推荐文档

(完整)数字信号处理试卷及答案,推荐文档

数字信号处理试卷及答案1一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。

2.线性时不变系统的性质有 律、 律、 律。

3.对4()()x n R n =的Z 变换为 ,其收敛域为 。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。

5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。

6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。

7.因果序列x(n),在Z →∞时,X(Z)= 。

二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π 2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( )A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为A.有限长序列B.无限长序列C.反因果序列D.因果序列 9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是 A.N≥M B.N≤M C.N≤2M D.N≥2M 10.设因果稳定的LTI 系统的单位抽样响应h(n),在n<0时,h(n)= ( )A.0 B .∞ C. -∞ D.1 三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。

(完整word版)数字信号处理试卷及参考答案(2)

(完整word版)数字信号处理试卷及参考答案(2)

《数字信号处理》课程期末考试试卷(A )一、填空题(本题满分30分,共含4道小题,每空2分)1. 两个有限长序列x 1(n),0≤n ≤33和x 2(n),0≤n ≤36,做线性卷积后结果的长度是,若对这两个序列做64点圆周卷积,则圆周卷积结果中n=至为线性卷积结果。

2. DFT 是利用nkN W 的、和三个固有特性来实现FFT 快速运算的。

3. IIR 数字滤波器设计指标一般由、、和等四项组成。

4. FIR 数字滤波器有和两种设计方法,其结构有、和等多种结构。

一、判断题(本题满分16分,共含8道小题,每小题2分,正确打√,错误打×) 1. 相同的Z 变换表达式一定对应相同的时间序列。

()2. Chirp-Z 变换的频率采样点数M 可以不等于时域采样点数N 。

()3. 按频率抽取基2 FFT 首先将序列x(n)分成奇数序列和偶数序列。

()4. 冲激响应不变法不适于设计数字带阻滤波器。

()5. 双线性变换法的模拟角频率Ω与数字角频率ω成线性关系。

()6. 巴特沃思滤波器的幅度特性必在一个频带中(通带或阻带)具有等波纹特性。

()7. 只有FIR 滤波器才能做到线性相位,对于IIR 滤波器做不到线性相位。

()8. 在只要求相同的幅频特性时,用IIR 滤波器实现其阶数一定低于FIR 阶数。

()二、 综合题(本题满分18分,每小问6分)若x (n)= {3,2,1,2,1,2 },0≤n≤5, 1) 求序列x(n)的6点DFT ,X (k)=?2) 若)()]([)(26k X W n g DFT k G k==,试确定6点序列g(n)=?3) 若y(n) =x(n)⑨x(n),求y(n)=?三、 IIR 滤波器设计(本题满分20分,每小问5分)设计一个数字低通滤波器,要求3dB 的截止频率f c =1/π Hz ,抽样频率f s =2 Hz 。

1. 导出归一化的二阶巴特沃思低通滤波器的系统函数H an (s)。

哈工大数字信号处理试题2012-B含答案

哈工大数字信号处理试题2012-B含答案
A.按频率抽取
k WN
B.按时间抽取 D.两者都不是
1
C.两者都是
6
如图所示的系统,则系统的频率响应呈(
x(n) -0.85 z-1 -1 y(n)
B
) 。
B.高通特性 D.全通特性
A.低通特性 C.带通特性
7
已知某 FIR 滤波器单位抽样响应 h( n) 的长度为 ( M 1) , 则在下列不同特
A 巴 椭圆
二、填空题(每题 2 分,共 10 分)
得分
2 1、 x(n) cos(0 n) 中仅包含频率为 0 的信号, y (n) x (n n0 ) 中包含的频率
第 2 页 (共 8 页)

2 0

2 、 X [ k ], 0 k 7 是 序 列 x[n] { - 5, 7, - 2, 3, 6, -1, 3, 1} 的 8 点 DFT 。 则
取等号计算,则有:
(1) :1 [400tg ( / 80) / c ]2 N 100.3 ,
得: N
(2) :1 [(400tg ( / 4) / c ]2 N 104
1 log[(10 4 1) /(10 0.3 1)] 1.42 2 log[1 / tg ( / 80)]
哈尔滨工业大学(威海)2012/ 2013 学年 秋 季学期
数字信号处理
考试形式(开、闭卷) : 闭卷 题 号 分 数
试题卷(B)
答题时间:105 分钟) 本卷面成绩占课程成绩 70 % 卷 面 平 时 成 绩 课 程 总 成 绩







八 总 分
一、选择题 (每题 2 分,共 20 分)

数字信号处理试题及答案

数字信号处理试题及答案

数字信号处理试题及答案一、选择题(每题2分,共20分)1. 数字信号处理中,离散时间信号的数学表示通常采用______。

A. 连续时间函数B. 离散时间序列C. 连续时间序列D. 离散时间函数答案:B2. 在数字信号处理中,采样定理是由谁提出的?A. 傅里叶B. 拉普拉斯C. 香农D. 牛顿答案:C3. 下列哪一项不是数字滤波器的类型?A. 低通滤波器B. 高通滤波器C. 带通滤波器D. 线性滤波器答案:D4. 数字信号处理中,傅里叶变换的离散形式称为______。

A. 傅里叶级数B. 傅里叶变换C. 离散傅里叶变换(DFT)D. 快速傅里叶变换(FFT)答案:C5. 在数字信号处理中,频域分析通常使用______。

A. 时域信号B. 频域信号C. 频谱D. 波形答案:C二、填空题(每题2分,共20分)1. 数字信号处理中,对连续信号进行采样后得到的信号称为______。

答案:离散时间信号2. 离散时间信号的傅里叶变换是______的推广。

答案:连续时间信号的傅里叶变换3. 数字滤波器的系数决定了滤波器的______特性。

答案:频率响应4. 在数字信号处理中,信号的采样频率必须大于信号最高频率的______倍。

答案:25. 快速傅里叶变换(FFT)是一种高效的算法,用于计算______。

答案:离散傅里叶变换(DFT)三、简答题(每题10分,共30分)1. 简述数字信号处理与模拟信号处理的主要区别。

答案:数字信号处理涉及离散时间信号,而模拟信号处理涉及连续时间信号。

数字信号处理使用数字计算机进行信号处理,模拟信号处理则使用模拟电路。

2. 解释什么是采样定理,并说明其重要性。

答案:采样定理指出,为了能够无失真地从其样本重构一个带限信号,采样频率必须大于信号最高频率的两倍。

这一定理的重要性在于它为信号的数字化提供了理论基础。

3. 描述离散傅里叶变换(DFT)与快速傅里叶变换(FFT)之间的关系。

答案:离散傅里叶变换是将时域信号转换到频域的数学工具,而快速傅里叶变换是一种高效计算DFT的算法。

2012数字信号处理完整试题库

2012数字信号处理完整试题库

第一套一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。

1.若一模拟信号为带限,且对其抽样满足奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。

A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器 2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( ) A.y(n)=x 3(n)B.y(n)=x(n)x(n+2)C.y(n)=x(n)+2D.y(n)=x(n 2)3..设两有限长序列的长度分别是M 与N ,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取( )。

A .M+NB.M+N-1C.M+N+1D.2(M+N)4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是( )。

A.N ≥MB.N ≤MC.N ≤2MD.N ≥2M 5.直接计算N 点DFT 所需的复数乘法次数与( )成正比。

A.N B.N 2 C.N 3 D.Nlog 2N6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。

A.直接型 B.级联型 C.并联型 D.频率抽样型7.第二种类型线性FIR 滤波器的幅度响应H(w)特点( ): A 关于0=w、π、π2偶对称B 关于0=w 、π、π2奇对称C 关于0=w 、π2偶对称 关于=w π奇对称D 关于0=w 、π2奇对称 关于=w π偶对称 8.适合带阻滤波器设计的是: ( ) A )n N (h )n (h ---=1 N 为偶数 B )n N (h )n (h ---=1 N 为奇数 C )n N (h )n (h --=1 N 为偶数 D )n N (h )n (h --=1 N 为奇数9.以下对双线性变换的描述中不正确的是( )。

A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s 平面的左半平面单值映射到z 平面的单位圆内D.以上说法都不对10.关于窗函数设计法中错误的是:A 窗函数的截取长度增加,则主瓣宽度减小;B 窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关;C 为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加;D 窗函数法不能用于设计高通滤波器; 二、填空题(每空2分,共20分)1. 用DFT 近似分析连续信号频谱时, _________效应是指DFT 只能计算一些离散点上的频谱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子科技大学
第一页(共4页)
2011–2012学年第二学期期中考试试卷(参考答案)
开课学院: 物理与电子信息学院 课程名称: 数字信号处理 考试形式:开卷,所需时间90分钟
注意事项:1、教师出题时请勿超出边界虚线;
2、学生答题前将密封线外的内容填写清楚,答题不得超出密封线;
3、答题请用蓝、黑钢笔或圆珠笔。

一、填空(共20分,每空2分)
1. 采样频率f s 对应于模拟角频率Ω= 2πf s ,对应于数字角频率ω= 2π 。

2. 如果8点序列x(n)的 16点DFT 为X 16(k)={X(0),X(1),X(2),……X(15)},则其8点DFT 为X 8(k)= {X(0), X(2), X(4), X(6), X(8), X(10), X(12), X(14)} 。

3. 对模拟信号进行数字信号处理,在A/D 转换器前信号要经过前置低通,该低通滤波器的作用是__防混叠滤波__;在D/A 转换器后信号要经过后置低通,该低通滤波器的作用是 防镜像滤波 。

4. 已知序列x (n )= a n u (n )的Z 变换收敛域为|Z|>|a |,序列y (n )= a n u (n -M)的Z 变换的收敛域为|Z|>|a |,则序列x(n)-y(n)的Z 变换的收敛域为 |Z|>0 。

5. 当单位脉冲响应分别为h 1(n )和h 2(n )的两个线性时不变离散时间系统级联(串联)时,其级联系统的单位脉冲响应为 h 1(n )*h 2(n ) ,系统函数为 H 1(z )H 2(z ) 。

6. 凡是因果系统,系统的极点只能在单位圆内。

(对或错)( 错 )
7. 若某序列的傅立叶变换(DTFT )存在,则其离散傅立叶变换(DFT )也
存在。

(对或错)( 对 )
二、计算题(共20分,每题10分)
1. 计算周期序列x[n]=cos(πn/M)的自相关序列R xx ,其中M 为正整数,并确定R xx 的周期。

解:
1*1
111
21
()()()
21cos()cos()21cos(
)cos()cos()sin()sin()211cos()cos ()sin()cos()sin()22111cos()222M xx n M M n M M n M
M M n M n M R m x n x n m M
n n m
M M M
n n m n m M
M M M M M m n m n n M M M M M M M m M M π
ππππππππππππ-=--=--=---=-=-=
--=⎡⎤=+⎢⎥⎣⎦
=+=+∑
∑∑
∑∑112112cos()sin()sin()221cos()2M M n M n M n m n M M M M m M
ππππ--=-=-⎡⎤+⎢⎥⎣⎦=∑∑
R xx 的周期为N=2M 。

2. 已知序列x (n ) =|n -3| u (n ),试求其Z 变换。

解:x (n ) =|n -3| u (n )=3δ(n)+ 2δu(n-1)+ δ(n-3) +(n-3)u(n-3)
2{()}(),||11(1)
d z z Z nu n z
z dz z z =-=>-- 1232
(){()}{3()2(1)(2)(3)(3)}
32,||1
(1)X z Z x n Z n n n n u n z
z z z z z δδδ---==+-+-+--=+++>-
三、问答题(共20分,每题10分)
下列各系统中,x(n)表示激励,y(n)表示系统响应,问
1. ()()n
m y n x m =-∞
=
∑是否为线性系统,时不变系统?为什么?
解:设11
()()n m y n x m =-∞=
∑,2
2
()()n
m y n x m =-∞
=∑
则31
2
1
2
1
2
()[()()]()()()()n
n
n
m m m y n ax m bx m a x m b x m ay n by n =-∞
=-∞
=-∞
=
+=+=+∑∑∑
第二页(共4页)
故()()n m y n x m =-∞
=
∑是线性系统。

由于41
1
1
()()()()n
n k
m l y n x m k x l y n k -=-∞
=-∞
=
-==-∑∑
故()()n
m y n x m =-∞
=
∑是时不变系统。

第三页(共4页)
2. y (n )=x (n -n 0)是否为稳定系统、因果系统? 为什么?
解: 若|x (n )|<B ,则有|y (n )|=|x (n -n 0)|<B ;
故y (n )=x (n -n 0)是稳定系统。

当n 0≥0时,y (n )=x (n -n 0)与将来的输入x (n )无关,故y (n )=x (n -n 0)是因果系统;
当n 0<0时,y (n )=x (n -n 0)与将来的输入x (n )有关,故y (n )=x (n -n 0)是非因果系统。

四、(20分) x (n )是长度为N 的有限长序列,其N 点的DFT 为X (k )。

如果 x e (n )=[x (n )+x *(N -n )]/2,x o (n )=[x (n )-x *(N -n )]/2。

证明:DFT{ x e (n )}=Re{X(k)},DFT{ x o (n )}=j Im{X(k)}。

证:
1
*
*0**
11()00*{()}()()()()
N nk
N
n N N nk N n k N N
n n DFT x N n x N n W x N n W x N n W X k -=----==-=-⎡⎤⎡⎤=-=-⎢⎥⎢⎥⎣⎦⎣⎦=∑∑∑
*
**()()
{()}{
}
2
[{()}{()}]2[()()]2Re{()}
e x n x N n DFT x n DFT DFT x n DFT x N n X k X k X k +-==+-=+= ***()()
{()}{}
2
[{()}{()}]2[()()]2Im{()}
o x n x N n DFT x n DFT DFT x n DFT x N n X k X k j X k --==--=-=
五、(20分)画出N=16点的按频率抽取的FFT 分解流程图,要求: 1. 按照N=2×8分解,注明输入、输出序列及每一级的W 因子; 2. 指出比直接计算DFT 节约了多少次乘法运算。

解:1、信号流图如下所示
2、直接计算时的乘法次数为16*16=256次,现按N=2×8 分解则两
个8点DFT 的乘法次数为2 *8*8=128,然后由两个8点DFT 的结果导出16点DFT 的结果需要8个蝶形结,每个蝶形结含一次复数乘法。

所以共有8 次乘法运算,故总共含乘法次数为128+8=136 次,因此减少的乘法次数为120 次。

16x x x x x x x x x x x x x x x x X (0) X (2) X (4) X (6)
X (8) X (10) X (12) X (14)
X (1) X (3) X (5)
X (7) X (9) X (11) X (13) X (15)
第四页(共4页)
-1 -1 -1 -1 -1
-1 -1
-1
-1
-1 -1 -1 -1
-1 -1 -1 -1
-1 -1
-1 -1
-1 -1
-1 -1
-1
-1
-1
-1
-1
-1
-1
716
W
616
W
516W
416
W
3
16
W
216
W
116W
016
W
616W
416W 216
W 016
W 616W
416W 216
W 016
W 416
W
016
W 416
W
016
W 416
W
016
W 416
W
016
W x (0) x (1) x (2) x (3) x (4) x (5) x (6) x (7) x (8) x (9) x (10) x (11) x (12) x (13) x (14) x (15) X (0) X (2) X (4)
X (6) X (8)
X (10) X (12)
X (14) X (1)
X (3) X (5)
X (7) X (9)
X (11) X (13)
X (15)。

相关文档
最新文档