第二章一元一次不等式与一元一次不等式组
八年级数学北师大版初二下册--第二单元 2.6《一元一次不等式组》课件
(3)若要使商店的进货成本在4 300元的限额内,且全 部销售完后所获利润不低于1 400元,请你列举出 商店所有进货方案,并求出最大利润是多少?
解:(1)设购进篮球m个,排球n个,
根据题意得
ìïïíïïî
x+3 y=1.4, 2x+5 y=2.5.
解得
ìïïíïïî
x=0.5, y=0.3.
答:每台大型收割机1 h收割小麦0.5公顷,每台小型收割
机1 h收割小麦0.3公顷.
(2)设大型m)台,
根据题意得
w=300×2m+200×2(10-m)=200m+4 000.
ìïïíïïî
8m+(5 20-m)³ 20-m ³ 2.
148,
解得16≤m≤18.
∵m取整数,
∴m可取16,17,18.
故有三种派车方案:
方案一:大型运输车16辆,小型运输车4辆;
方案二:大型运输车17辆,小型运输车3辆;
方案三:大型运输车18辆,小型运输车2辆.
应用 6 租车方案
8.【 中考•绵阳】江南农场收割小麦,已知1台大型 收割机和3台小型收割机1 h可以收割小麦1.4公顷, 2台大型收割机和5台小型收割机1 h可以收割小 麦2.5公顷. (1)每台大型收割机和每台小型收割机1 h收割小 麦各多少公顷?
解得35≤x≤37.5.
∵x为整数,∴x=35,36,37.
方案如下:
方案 一 二 三
A型口罩 35 36 37
B型口罩 15 14 13
设购买口罩需要y元, 则y=5x+7(50-x)=-2x+350,k=-2<0, ∴y随x增大而减小, ∴x=37时,y的值最小. 答:有3种购买方案,其中方案三最省钱.
最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组重点解析试题(含答案解析)
第二章一元一次不等式和一元一次不等式组重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围,在数轴上可表示为()A.B.C.D.2、如图,已知直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b≤kx-1的解集在数轴上表示正确的是()A .B .C .D .3、下列式子:①5<7;②2x >3;③y ≠0;④x ≥5;⑤2a +l ;⑥113x ->;⑦x =1.其中是不等式的有( )A .3个B .4个C .5个D .6个4、下列判断不正确的是( )A .若a b >,则33a b +>+B .若a b >,则33a b -<-C .若22a b >,则a b >D .若a b >,则22ac bc >5、已知关于x 的不等式组0521x a x -≥⎧⎨->⎩只有四个整数解,则实数a 的取值范围( ) A .﹣3≤a <﹣2 B .﹣3≤a ≤﹣2 C .﹣3<a ≤﹣2 D .﹣3<a <﹣26、一次函数y 1=kx +b 与y 2=mx +n 的部分自变量和对应函数值如表:则关于x 的不等式kx +b >mx +n 的解集是( )A .x >0B .x <0C .x <﹣1D .x >﹣17、如图,数轴上表示的解集是( )A .﹣3<x ≤2B .﹣3≤x <2C .x >﹣3D .x ≤28、设m 为整数,若方程组3131x y m x y m+=-⎧⎨-=+⎩的解x 、y 满足175x y +>-,则m 的最大值是( ) A .4 B .5 C .6 D .79、不等式组3x x a >⎧⎨>⎩的解是x >a ,则a 的取值范围是( ) A .a <3 B .a =3 C .a >3 D .a ≥310、已知a >b ,下列变形一定正确的是( )A .3a <3bB .4+a >4﹣bC .ac 2>bc 2D .3+2a >3+2b第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若方程组31323x y k x y k-=+⎧⎨+=-⎩的解满足2x ﹣3y >1,则k 的的取值范围为 ___. 2、已知关于x 的不等式组53120x a x -≥-⎧⎨-<⎩无解,则a 的取值范围是_____________. 3、根据“3x 与5的和是负数”可列出不等式 _________.4、如图所示,在天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g)的取值范围为_____________.5、若关于x 的不等式1x m +>的解集如图所示,则m 的值为_____.三、解答题(5小题,每小题10分,共计50分)1、解不等式组()24018202x x +≤⎧⎪⎨+->⎪⎩,并把解集在数轴上表示出来. 2、由于新能源汽车越来越受到消费者的青睐,某经销商决定分两次购进甲、乙两种型号的新能源汽车(两次购进同一种型号汽车的每辆的进价相同).第一次用270万元购进甲型号汽车30辆和乙型号汽车20辆;第二次用128万元购进甲型号汽车14辆和乙型号汽车10辆.(1)求甲、乙两种型号汽车每辆的进价;(2)经销商分别以每辆甲型号汽车8.8万元,每辆乙型号汽车4.2万元的价格销售后,根据销售情况,决定再次购进甲、乙两种型号的汽车共100辆,且乙型号汽车的数量不少于甲型号汽车数量的3倍,设再次购进甲型汽车a 辆,这100辆汽车的总销售利润为W 万元.①求W 关于a 的函数关系式;②若每辆汽车的售价和进价均不变,该如何购进这两种汽车,才能使销售利润最大?最大利润是多少?3、已知一次函数26y x =--.(1)画出函数图象.(2)不等式26x -->0的解集是_______;不等式26x --<0的解集是_______.(3)求出函数图象与坐标轴的两个交点之间的距离.4、有一批产品需要生产装箱,3台A型机器一天刚好可以生产6箱产品,而4台B型机器一天可以生产5箱还多20件产品.已知每台A型机器比每台B型机器一天多生产40件.(1)求每箱装多少件产品?(2)现需生产28箱产品,若用1台A型机器和2台B型机器生产,需几天完成?(3)若每台A型机器一天的租赁费用是240元,每台B型机器一天的租赁费用是170元,可供租赁的A型机器共3台,B型机器共4台.现要在3天内(含3天)完成28箱产品的生产,请直接写出租赁费用最省的方案(机器租赁不足一天按一天费用结算).5、已知关于x的一次函数y=(2k-3)x+k-1的图象与y轴的交点在x轴的上方,且y随x的增大而减小,求k的取值范围.-参考答案-一、单选题1、A【分析】根据天平的图片得到m的取值范围,在数轴上表示m的取值,问题得解.【详解】解:由图可知,12mm⎧⎨⎩><,∴m的取值范围在数轴上表示如图:.故选:A【点睛】本题考查了用数轴表示不等式的取值范围,理解题意,正确得到不等式组是解题关键.2、D【分析】由图像可知当x≤-1时,1x b kx+≤-,然后在数轴上表示出即可.【详解】直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,关于x的不等式1x b kx+≤-的解集满足直线y1=x+b图像与y2=kx-1图形的交点及其下所对应的自变量取值范围,由图像可知当x≤-1时,1x b kx+≤-,∴可在数轴上表示为:故选D.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.函数y1≤y2时x的范围是函数y1的图象在y2的图象下方时对应的自变量的范围,反之亦然.3、C【分析】主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断.【详解】解:①②③④⑥均为不等式共5个.故选:C【点睛】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:>、<、≤、≥、≠.4、D【分析】根据不等式得性质判断即可.【详解】A. 若a b >,则不等式两边同时加3,不等号不变,选项正确;B. 若a b >,则不等式两边同时乘-3,不等号改变,选项正确;C. 若22a b >,则不等式两边同时除2,不等号不变,选项正确;D. 若a b >,则不等式两边同时乘2c ,有可能2c =0,选项错误;故选:D .【点睛】本题考查不等式得性质,需要特别注意不等式两边同时乘(除)一个正数不等号不变,同时乘(除)一个负数不等号改变.5、C【分析】先求出不等式解组的解集为2a x ≤<,即可得到不等式组的4个整数解是:1、0、-1、-2,由此即可得到答案.【详解】解:0521x a x -≥⎧⎨->⎩①②解不等式①得x a ≥;解不等式②得2x <;∵不等式组有解,∴不等式组的解集是2a x ≤<,∴不等式组只有4个整数解,∴不等式组的4个整数解是:1、0、-1、-2,∴32a -<≤-故选C .【点睛】本题主要考查了解一元一次不等式组,根据不等式组的整数解情况求参数,解题的关键在于能够熟练掌握解不等式组的方法.6、D【分析】根据统计表确定两个函数的增减性以及函数的交点,然后根据增减性判断.【详解】解:根据表可得y 1=kx +b 中y 随x 的增大而增大;y 2=mx +n 中y 随x 的增大而减小,且两个函数的交点坐标是(﹣1,2).则当x >﹣1时,kx +b >mx +n .故选:D .【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,正确确定增减性以及交点坐标是关键.7、A【分析】根据求不等式组的解集的表示方法,可得答案.【详解】解:由图可得,x >﹣3且x ≤2∴在数轴上表示的解集是﹣3<x ≤2,故选A .【点睛】本题考查了在数轴上表示不等式组的解集,不等式组的解集在数轴上的表示方法是:大大取大,小小取小,大小小大中间找,小小大大无解.8、B【分析】先把m 当做常数,解一元二次方程,然后根据175x y +>-得到关于m 的不等式,由此求解即可 【详解】解:3131x y m x y m +=-⎧⎨-=+⎩①② 把①×3得:9333x y m +=-③,用③+①得:1042x m =-,解得25m x -=,把25mx-=代入①得6315my m-+=-,解得125my--=,∵175x y+>-,∴21217555m m---+>-,即131755m->-,解得6m<,∵m为整数,∴m的最大值为5,故选B.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.9、D【分析】根据不等式组的解集为x>a,结合每个不等式的解集,即可得出a的取值范围.【详解】解:∵不等式组3xx a>⎧⎨>⎩的解是x>a,∴3a≥,故选:D.【点睛】本题考查了求不等式组的解集的方法,熟记口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解本题的关键.10、D【分析】根据不等式的基本性质逐项排查即可.【详解】解:A .在不等式的两边同时乘或除以同一个正数,不等号的方向不发生改变,这里应该是3a >3b ,故A 不正确,不符合题意;B .无法证明,故B 选项不正确,不符合题意;C .当c =0时,不等式不成立,故C 选项不正确,不符合题意;D .不等式的两边同时乘2再在不等式的两边同时3,不等式,成立,故D 选项正确,符合题意. 故选:D .【点睛】本题主要考查了不等式的性质,1.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变; 2.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;3.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变.二、填空题1、34k >## 【分析】将①-②即可得2342x y k -=-,结合题意即可求得k 的范围.【详解】31323x y k x y k -=+⎧⎨+=-⎩①② ①-②得,2342x y k -=-2x ﹣3y >1421k ∴->解得34k > 故答案为:34k >【点睛】本题考查了解二元一次方程组,一元一次不等式,利用加减消元法得出方程组的解是解题关键. 2、4a ≥【分析】先把a 当作已知条件求出各不等式的解集,再根据不等式组无解求出a 的取值范围即可.【详解】解:53120x a x -≥-⎧⎨-<⎩①② 由①得:2x ≤ 由②得:2a x > 不等式组无解 ∴22a ≥ 4a ≥故答案为4a ≥.【点睛】本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找.3、350x +<【分析】3x 与5的和为35x +,和是负数即和小于0,列出不等式即可得出答案.【详解】3x 与5的和是负数表示为350x +<.故答案为:350x +<.【点睛】本题考查列不等式,根据题目信息确定不等式是解题的关键.4、1<m <2【分析】根据左右两个天平的倾斜得出不等式即可;【详解】由第一幅图得m >1,由第二幅图得m <2,故1<m <2;故答案是:1<m <2.【点睛】本题主要考查了一元一次不等式的解集,准确分析计算是解题的关键.5、3【分析】由数轴可以得到不等式的解集是x >﹣2,根据已知的不等式可以用关于m 的式子表示出不等式的解集.就可以得到一个关于m 的方程,可以解方程求得.【详解】解:解不等式x +m >1得1x m >-由数轴可得,x >﹣2,则12m -=-解得,m =3.故答案为:3.【点睛】本题主要考查了解一元一次不等式,数轴上表示不等式的解集,解一元一次方程,注意数轴上的空心表示不包括﹣2,即x >﹣2.并且本题是不等式与方程相结合的综合题.三、解答题1、42x -<≤-,作图见解析【分析】结合题意,根据一元一次不等式组的性质,求解得不等式组公共解,结合数轴的性质作图,即可得到答案.【详解】 解:()24018202x x +≤⎧⎪⎨+->⎪⎩ 解不等式240x +≤,得2x -≤ 不等式()18202x +->, 去括号,得:840x +->移项、合并同类项,得:4x >-∴不等式组的解为:42x -<≤-数轴如下:.【点睛】本题考查了数轴、一元一次不等式组的知识;解题的关键是熟练掌握一元一次不等式组的性质,从而完成求解.2、(1)甲、乙两种型号汽车每辆的进价分别为7万元、3万元(2)①W 关于a 的函数关系式为W =0.6a +120(0≤a ≤25);②甲型汽车25辆,乙型汽车75辆,最大利润是135万元【分析】(1)设甲种型号汽车的进价为a 元、乙种型号汽车的进价为b 元,根据题意,可以得到相应的二元一次方程组,然后即可得到甲、乙两种型号汽车每辆的进价;(2)①根据总利润=甲型汽车的利润+乙型汽车的利润可以得到利润与购买甲种型号汽车数量的函数关系;②根据乙型号汽车的数量不少于甲型号汽车数量的3倍,可以得到购买甲种型号汽车数量的取值范围,然后根据一次函数的性质,即可得到最大利润和此时的购买方案.(1)(1)设甲种型号汽车的进价为a 元、乙种型号汽车的进价为b 元,30202701410128a b a b +=⎧⎨+=⎩, 解得:73a b =⎧⎨=⎩, 即甲、乙两种型号汽车每辆的进价分别为7万元、3万元;(2)(2)①由题意得:购进乙型号的汽车(100﹣a )辆,W =(8.8﹣7)a +(4.2﹣3)×(100﹣a )=0.6a +120,乙型号汽车的数量不少于甲型号汽车数量的3倍,∴100﹣a ≥3a ,且a ≥0,解得,0≤a ≤25,∴W 关于a 的函数关系式为W =0.6a +120(0≤a ≤25);②W=0.6a+120,∵0.6>0,∴W随着a的增大而增大,∵0≤a≤25,∴当a=25时,W取得最大值,此时W=0.6×25+120=135(万元),100﹣25=75(辆),答:获利最大的购买方案是购进甲型汽车25辆,乙型汽车75辆,最大利润是135万元.【点睛】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,列出相应的二元一次方程组,利用一次函数的性质和不等式的性质解答.3、(1)见解析;(2)x<-3;x>-3;(3)BC=【分析】(1)分别将x=0、y=0代入一次函数y=-2x-6,求出与之相对应的y、x值,由此即可得出点A、B的坐标,连点成线即可画出函数图象;(2)根据一次函数图象与x轴的上下位置关系,即可得出不等式的解集;(3)由点A、B的坐标即可得出OA、OB的长度,再根据勾股定理即可得出结论.(或者直接用两点间的距离公式也可求出结论)【详解】(1)当x=0时,y=-2x-6=-6,∴一次函数y=-2x-6与y轴交点C的坐标为(0,-6);当y=-2x-6=0时,解得:x=-3,∴一次函数y=-2x-6与x轴交点B的坐标为(-3,0).描点连线画出函数图象,如图所示.(2)观察图象可知:当x<-3时,一次函数y=-2x-6的图象在x轴上方;当x>-3时,一次函数y=-2x-6的图象在x轴下方.∴不等式-2x-6>0的解集是x<-3;不等式-2x-6<0的解集是x>-3.故答案是:x<-3,x>-3;(3)∵B(-3,0),C(0,-6),∴OB=3,OC=6,∴BC=【点睛】本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度.4、(1)60件;(2)6天;(3)A型机器前2天租3台,第3天租2台;B型机器每天租3台【分析】(1)设每箱装x件产品,根据“每台A型机器比每台B型机器一天多生产40件”列出方程求解即可;(2)根据第(1)问的答案可求得每台A 型机器每天生产120件,每台B 型机器每天生产80件,根据工作时间=工作总量÷工作效率即可求得答案;(3)先将原问题转化为“若3天共有9台次A 型机器,12台次B 型机器可用,求这3天完成28箱(1680件产品)所需的最省费用”,再设租A 型机器a 台次,则租B 型机器的台次数为16801203(21)802a a -=-台次,由此可求得a 的取值范围,进而可求得符合题意的a 的整数解,再分别求得对应的总费用,比较大小即可.【详解】解:(1)设每箱装x 件产品, 根据题意可得:65204034x x +-=, 解得:60x =,答:每箱装60件产品;(2)由(1)得:每台A 型机器每天生产666012033x ⨯==(件), 每台B 型机器每天生产520560208044x +⨯+==(件), ∴2860(120280)⨯÷+⨯1680280=÷ 6=(天),答:若用1台A 型机器和2台B 型机器生产,需6天完成;(3)根据题意可把问题转化为:若3天共有9台次A 型机器,12台次B 型机器可用,求这3天完成28箱(1680件产品)所需的最省费用.设租A 型机器a 台次,则租B 型机器的台数为16801203(21)802a a -=-台次, ∵共有12台次B 型机器可用, ∴321122a -≤,解得a ≥6,∵共有9台次A 型机器可用,∴a ≤9,∴6≤9≤9,又∵a 为整数,∴若a =9,则3217.52a -=,需选B 型机器8台次,此时费用共为240×9+170×8=3520(元);若a =8,则32192a -=,需选B 型机器9台次,此时费用共为240×8+170×9=3450(元);若a =7,则32110.52a -=,需选B 型机器11台次,此时费用共为240×7+170×11=3550(元);若a =6,则321122a -=,需选B 型机器12台次,此时费用共为240×6+170×12=3480(元);∵3450<3480<3520<3550,∴3天中选择共租A 型机器8台次,B 型机器9台次费用最省,如:A 型机器前两天租3台,第3天租2台,B 型机器每天租3台,此时的费用最省,最省总费用为3450元,答:共有4种方案可选择,分别为:3天中共租A 型机器9台次,B 型机器8台次;3天中共租A 型机器8台次,B 型机器9台次;3天中共租A 型机器7台次,B 型机器11台次;3天中共租A型机器6台次,B型机器12台次,其中3天中共租A型机器8台次,B型机器9台次(如A型机器前两天租3台,第3天租2台,B型机器每天租3台),此时的费用最省,最省总费用为3450元.【点睛】本题考查了一元一次方程的应用以及解一元一次不等式,解题的关键是:找准等量关系,正确列出一元一次方程以及根据各数量之间的关系,正确列出一元一次不等式.5、3 12k<<【分析】根据题意易得23010kk-<⎧⎨->⎩,然后求解即可.【详解】解:∵关于x的一次函数y=(2k-3)x+k-1的图象与y轴的交点在x轴的上方,且y随x的增大而减小,∴23010kk-<⎧⎨->⎩,解得:312k<<.【点睛】本题主要考查一次函数的图象与系数的关系,熟练掌握一次函数的图象与系数的关系是解题的关键.。
八年级数学下册 第二章 一元一次不等式(组)知识点归纳 (新版)北师大版.doc
第二章 一元一次不等式与一元一次不等式组1. 不等关系2. 不等式的基本性质3. 不等式的解集4.一元一次不等式5.一元一次不等式与一次函数6.一元一次不等式组 一.不等关系※1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式. ¤2. 要区别方程与不等式: 方程表示的是相等的关系;不等式表示的是不相等的关系. ※3. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0 非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0 二.不等式的基本性质※1. 掌握不等式的基本性质,并会灵活运用:(1) 不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:如果a>b,那么a+c>b+c, a-c>b-c.(2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即如果a>b,并且c>0,那么ac>bc,c b c a >. (3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:如果a>b,并且c<0,那么ac<bc,cb c a < ※2. 比较大小:(a 、b 分别表示两个实数或整式)一般地:如果a>b,那么a-b 是正数;反过来,如果a-b 是正数,那么a>b;如果a=b,那么a-b 等于0;反过来,如果a-b 等于0,那么a=b; 如果a<b,那么a-b 是负数;反过来,如果a-b 是正数,那么a<b; 即:a>b <===> a-b>0 a=b <===> a-b=0 a<b <===> a-b<0 (由此可见,要比较两个实数的大小,只要考察它们的差就可以了.三.不等式的解集※1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.※2.不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同. ¤3.不等式的解集在数轴上的表示:用数轴表示不等式的解集时,要确定边界和方向: ①边界:有等号的是实心圆圈,无等号的是空心圆圈; ②方向:大向右,小向左 四.一元一次不等式※1.只含有一个未知数,且含未知数的式子是整式,未知数的次数是1. 像这样的不等式叫做一元一次不等式.※2.解一元一次不等式的过程与解一元一次方程类似,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向. ※3.解一元一次不等式的步骤:①去分母; ②去括号; ③移项; ④合并同类项; ⑤系数化为1(不等号的改变问题)※4.一元一次不等式基本情形为ax>b(或ax<b)①当a>0时,解为abx >;②当a=0时,且b<0,则x 取一切实数; 当a=0时,且b ≥0,则无解;③当a<0时, 解为abx <;¤5.不等式应用的探索(利用不等式解决实际问题)列不等式解应用题基本步骤与列方程解应用题相类似,即:①审: 认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;②设: 设出适当的未知数;③列: 根据题中的不等关系,列出不等式;④解: 解出所列的不等式的解集;⑤答: 写出答案,并检验答案是否符合题意. 五. 一元一次不等式与一次函数 六. 一元一次不等式组※1.定义: 由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.※2.一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集.如果这些不等式的解集无公共部分,就说这个不等式组无解.几个不等式解集的公共部分,通常是利用数轴来确定. ※3.解一元一次不等式组的步骤:(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集. 两个一元一次不等式组的解集的四种情况(a 、b 为实数,且a<b)。
2-4-1一元一次不等式 课件 2022—2023学年北师大版数学八年级下册
开放训练,体现应用
例1 (教材第46页例1)解不等式3-x<2x+6,并把它的解集表示
在数轴上.
解:移项,得-x-2x<6-3.
合并同类项,得-3x<3.
两边都除以-3,得x>-1.
这个不等式的解集在数轴上表示如图所示:
开放训练,体现应用
例2
−2
(教材第47页例2)解不等式
2
≥7−,并把它的来自集表示在12−1
(1)3(x-1)<4(x- )-3;(2)
2
3
解:(1)去括号,得3x-3<4x-2-3.
移项,得3x-4x<3-2-3.
合并同类项,得-x<-2.
9+2
−
6
≤ 1.
解:(2)去分母,得2(2x-1)-(9x+
2)≤6.
去括号,得4x-2-9x-2≤6.
移项,得4x-9x≤6+2+2.
−1
,并把它的解集表示在数轴上.
6
解:去分母,得2(y+1)-3(y-1)≥y-1.
去括号,得2y+2-3y+3≥y-1.
移项,得2y-3y-y≥-2-3-1.
合并同类项,得-2y≥-6.
两边都除以-2,得y≤3.
这个不等式的解集在数轴上表示如图:
课堂检测,巩固新知
−2
3.求不等式
4
≤
+4
6
两边都除以-1,得x>2.
合并同类项,得-5x≤10.
这个不等式的解集在数轴上表示如图所示
两边都除以-5,得x≥-2.
:
这个不等式的解集在数轴上表示如图所示
:
开放训练,体现应用
4.已知关于x的方程2(x-2a)+2=x-a+1的解满足不等式x-5≥4a,
北师大版2019-2020八年级数学下册第二章 一元一次不等式与一元一次不等式组章末复习课件(共60张)
章末复习
解 解不等式组, 得xx≤≥b4,.5. 由题意知原不等式组有解, 所以原不等式 组的解集为4.5≤x≤b, 如图2-Z-2所示, 将x≥4.5表示在数轴上. 由整数解 有3个, 可知整数解为5, 6, 7.结合图形可知7≤b<8.
章末复习
链接1 [南宁中考]若m>n, 则下列不等式正确的是( ).
解析 ①分别求出两个不等式的解集;②求两个不等式解集的公共部分; ③在两个不等式解集的公共部分中确定整数解.
章末复习
解:解不等式 3x-1<x+5,得 x<3. 解不等式x-2 3<x-1,得 x>-1. ∴不等式组的解集为-1<x<3,它的整数解为 0,1,2.
章末复习
专题三 根据不等式(组)的解集确定字母的值(取值范围)
分析 由题意可得不等关系:购买乒乓球的花费+购买球拍的花≤200元, 由此可列不等式解决问题.
章末复习
解 设购买 x个球拍. 根据题意, 得1.5×20+22x≤200.
解这个不等式,
得x≤
8 711
. 因为x取整数,
所以x的最大值为7.
故孔明应该买7个球拍.
章末复习
相关题4 为加强中小学生安全和禁毒教育, 某校组织了“防溺水、 交通安全、禁毒”知识竞赛, 为奖励在竞赛中表现优异的班级, 学校准备从体育用品商场一次性购买若干个足球和篮球(每个足 球的价格相同, 每个篮球的价格相同). 已知购买1个足球和1个篮 球共需159元;1个足球的价格比1个篮球的价格的2倍少9元. (1)足球和篮球的单价各是多少? (2)根据学校实际情况, 需一次性购买足球和篮球共20个, 但要求 购买足球和篮球的总费用不超过1550元, 学校最多可以购买多少 个足球?
北师大版数学八年级下册第二章一元一次不等式与一元一次不等式组第6节一元一次不等式组课后练习
第二章一元一次不等式与一元一次不等式组第6节一元一次不等式组课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.若关于x的一元一次不等式组122x ax x->⎧⎨->-⎩无解,则a的取值范围是()A.1a≥B.1a>C.1a≤-D.1a<-2.若关于x的不等式组()212xa x⎧->⎨-<⎩的解集为x>a,则a的取值范围是() A.a<2B.a≤2C.a>2D.a≥23.已知关于x 的不等式组255332xxxt x+⎧->-⎪⎪⎨+⎪-<⎪⎩恰有5个整数解,则t的取值范围是()A.﹣6<t<112-B.1162t-≤<-C.1162t-<≤-D.1162t-≤<-4.把不等式组21123xx+>-⎧⎨+≤⎩的解集表示在数轴上,下列选项正确的是()A.B.C.D.5.若方程组3133x y kx y+=+⎧⎨+=⎩的解x,y满足01x y<+<,则k的取值范围是()A.10k-<<B.40k-<<C.08k<<D.4k>-6.如图所示为在数轴上表示的某不等式组的解集,则这个不等式组可能是()A.31215xx-≥⎧⎨->⎩B.31526xx->⎧⎨⎩C.35215xx+≥⎧⎨-<⎩D.322313x xxx<+⎧⎪+⎨--⎪⎩7.已知点M(1﹣2m,1﹣m)关于x轴的对称点在第四象限,则m的取值范围在数轴上表示正确的是()A.B .C.D.8.已知关于x的不等式组()()25513322xxxt x+⎧->⎪⎪⎨+⎪-<⎪⎩恰有5个整数解,则t的取值范围是()A.1992t<<B.1992t≤<C.1992t<≤D.1992t≤≤9.关于x的不等式组12xx m⎧≤-⎪⎨⎪>⎩的所有整数解的积为2,则m的取值范围为()A.m>-3B.m<-2C.m-3≤<-2D.m-3<≤-2 10.不等式组111324(1)2()xxx x a-⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a的取值范围是()A.65a-≤<-B.65a-<≤-C.65a-<<-D.65a-≤≤-评卷人得分二、填空题11.不等式组273(1)2342363x xxx+>+⎧⎪+⎨-≤⎪⎩的非负整数解有_____个.12.运行程序如图所示,从“输入实数x”到“结果是否>18”为一次程序操作,若输入x 后程序操作进行了两次停止,则x的取值范围是______.13.在平面直角坐标系中,已知点A(7-2m,5-m)在第二象限内,且m为整数,则点A的坐标为_________.14.不等式组2425x a x b +>⎧⎨-<⎩的解集是0<x <2,那么a+b 的值等于_____. 15.关于x 的不等式组,22213x b x b -≥⎧⎨-≤⎩无解,则常数b 的取值范围是__________ 16.关于x 的不等式组1234x m x +⎧⎨-≥-⎩有3个整数解,则m 的取值范围是_____. 17.同时满足332x x ->-和34x x +>的最大整数是_______. 18.若关于x 的不等式组1423x x x m+⎧-≥⎪⎨⎪>⎩的所有整数解的和是﹣9,则m 的取值范围是_____.19.已知x =3是方程2x a -—2=x—1的解,那么不等式(2—5a )x <13的解集是______.20.若数m 使关于x 的不等式组2122274x x x m -⎧≤-+⎪⎨⎪+>-⎩,有且仅有三个整数解,则m 的取值范围是______.评卷人得分 三、解答题 21.某校计划组织师生共310人参加一次野外研学活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多15个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了20人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.22.解下列不等式(组):(1)4123x x -<-(2)()543113125x x x x ⎧+<+⎪⎨--≥⎪⎩.23.涡阳苏果超市计划购进甲,乙两种商品共100件,这两种商品的进价、售价如表所示:进价(元/件)售价(元/件)甲种商品1015乙种商品2030设其中甲种商品购进x件,售完此两种商品总利润为y元.(1)写出y与x的函数关系式;(2)该商场计划最多投入1500元用于购进这两种商品共100 件,则至少要购进多少件甲种商品?若售完这些商品,商场可获得的最大利润是多少元?24.某汽车制造公司计划生产A、B两种新型汽车共40辆投放到市场销售.已知A型汽车每辆成本34万元,售价39万元;B型汽车每辆成本42万元,售价50万元.若该公司对此项计划的投资不低于1536万元,不高于1552万元.请解答下列问题:(1)该公司有哪几种生产方案?(2)该公司按照哪种方案生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少?(3)在(2)的情况下,公司决定拿出利润的2.5%全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出答案)25.如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的相伴方程.(1)在方程320x -=①,210x +=①,()315x x -+=-①中,写出是不等式组25312x x x x -+>-⎧⎨->-+⎩的相伴方程的序号 . (2)写出不等式组213133x x x -<⎧⎨+>-+⎩的一个相伴方程,使得它的根是整数: . (3)若方程1, 2x x ==都是关于x 的不等式组22x x m x m <-⎧⎨-≤⎩的相伴方程,求m 的取值范围.26.阅读下面的材料,回答问题:如果(x-2)(6+2x)>0,求x 的取值范围. 解:根据题意,得20620x x ->⎧⎨+>⎩或20620x x -<⎧⎨+<⎩,分别解这两个不等式组,得第一个不等式组的解集为x >2,第二个不等式组的解集为x <-3.故当x >2或x <-3时,(x-2)(6+2x)>0.(1)由(x-2)(6+2x)>0,得出不等式组20620x x ->⎧⎨+>⎩或20620x x -<⎧⎨+<⎩,体现了_____思想; (2)试利用上述方法,求不等式(x-3)(1-x)<0的解集.27.某超市准备购进A、B两种品牌台灯,其中A每盏进价比B进价贵30元,A售价120元,B售价80元.已知用1040元购进的A数量与用650元购进B的数量相同.(1)求A、B的进价;(2)超市打算购进A、B台灯共100盏,要求A、B的总利润不得少于3400元,不得多于3550元,问有多少种进货方案?(3)在(2)的条件下,该超市决定对A进行降价促销,A台灯每盏降价m(8<m<15)元,B不变,超市如何进货获利最大?参考答案:1.A【解析】【分析】先求出不等式组中的每个不等式的解集,然后根据不等式组无解即可得出答案.【详解】解:解不等式122x x ->-,得1x <,解不等式0x a ->,得x a >,①不等式组1220x x x a ->-⎧⎨->⎩无解, ①1a ≥.故选:A .【点睛】本题考查了一元一次不等式组的解法,属于常考题型,正确理解题意、熟练掌握解一元一次不等式组的方法是解题的关键.2.D【解析】【分析】先求出每一个不等式的解集,然后根据不等式组有解根据已知给的解集即可得出答案.【详解】 ()2120x a x ⎧->⎨-<⎩①②, 由①得2x >,由①得x a >,又不等式组的解集是x >a ,根据同大取大的求解集的原则,①2a >,当2a =时,也满足不等式的解集为2x >,①2a ≥,故选D.【点睛】本题考查了解一元一次不等式组,不等式组的解集,熟练掌握不等式组解集的确定方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.3.C【解析】【分析】本题首先求解不等式组的公共解集,继而按照整数解要求求解本题.【详解】①2553x x +->-, ①20x <;①32x t x +->, ①32x t >-;①不等式组的解集是:2032t x <<-.①不等式组恰有5个整数解,①这5个整数解只能为 15,16,17,18,19,故有143215t ≤-<,求解得:1162t -<≤-. 故选:C .【点睛】本题考查含参不等式组的求解,解题关键在于求解不等式时需将参数当做常量进行运算,其次注意运算仔细即可.4.B【解析】【分析】分别求出每一个不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则逐个判断即可.【详解】解:解不等式2x +1>-1,得:x >-1,解不等式x +2≤3,得:x ≤1,①不等式组的解集为:-1<x ≤1,故选:B .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.B【解析】【分析】理解清楚题意,运用二元一次方程组的知识,解出k 的取值范围.【详解】①0<x+y <1,观察方程组可知,上下两个方程相加可得:4x+4y=k+4,两边都除以4得,x+y=44k +, 所以44k +>0, 解得k >-4;44k +<1, 解得k <0.所以-4<k <0.故选B .【点睛】当给出两个未知数的和的取值范围时,应仔细观察找到题中所给式子与它们和的关系,进而求值.6.C【解析】【分析】数轴上表示的解集是2≤x <3,再根据不等式组的求法,先分别求出不等式组中每个不等式的解,即可得到不等式的解集,最后根据所求不等式组的解集是否与题干中的解集进行判断,即可得到答案.【详解】解:数轴上表示的解集是2≤x <3, A 、31215x x -≥⎧⎨->⎩①②,①解不等式①得:x≤2,解不等式①得:x>3,①不等式组无解,故本选项不符合题意;B、31526xx->⎧⎨⎩①②①解不等式①得:x>2,解不等式①得:x≤3,①不等式组的解集是2<x≤3,故本选项不符合题意;C、35 215 xx+≥⎧⎨-<⎩①②①解不等式①得:x≥2,解不等式①得:x<3,①不等式组的解集是2≤x<3,故本选项符合题意;D、322313x xxx<+⎧⎪⎨+--⎪⎩①②①解不等式①得:x<2,解不等式①得:x≥3,①不等式组无解,故本选项不符合题意;故选C.【点睛】本题考查数轴和求不等式组的解集,解题的关键是读懂数轴,掌握解不等式组的方法. 7.D【解析】【分析】直接利用关于x轴对称点的性质得出对应点坐标,进而利用第四象限内点的性质得出答案.【详解】解:①点M(1﹣2m,1﹣m)关于x轴的对称点在第四象限,①对称点坐标为:(1﹣2m,m﹣1),则1﹣2m>0,且m﹣1<0,解得:m<12,如图所示:.故选D .【点睛】本题考查了关于x 轴对称点的性质以及不等式的解法,正确得出m 的取值范围是解题的关键.8.C【解析】【分析】先求出不等式的解集,再根据x 有5个整数解确定含t 的式子的值的范围,特别要考虑清楚是否包含端点值,这点极易出错.再求出t 的范围即可.【详解】解:由(1)得x<-10,由(2)x>3-2t,,所以3-2t<x<-10, ①x 有5个整数解,即x=-11,-12,-13,-14,-15,①163215t -≤-<-①1992t <≤ 故答案为C .【点睛】本题考查根据含字母参数的不等式组的解集来求字母参数的取值范围,关键是通过解集确定含字母参数的式子的范围,特别要考虑清楚是否包含端点值,这点极易出错. 9.C【解析】【详解】分析:首先确定不等式组的解集,先利用含m 的式子表示,可表示出整数解,根据所有整数解的积为2就可以确定有哪些整数解,从而求出m 的范围.详解:原不等式组的解集为m <x ≤12-.整数解可能为-1,-2,-3…等又因为不等式组的所有整数解的积是2,而2=-1×(-2),由此可以得到-3≤m<-2.故选C.点睛:本题主要考查了一元一次不等式组的整数解,是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于m的不等式组,要借助数轴做出正确的取舍.10.B【解析】【分析】解不等式组,可得不等式组的解,根据不等式组有3个整数解,可得答案.【详解】解:不等式组11132412xxx x a-⎧--⎪⎨⎪-≤-⎩<()(),由13x-﹣12x<﹣1,解得:x>4,由4(x﹣1)≤2(x﹣a),解得:x≤2﹣a,故不等式组的解为:4<x≤2﹣a,由关于x的不等式组11132412xxx x a-⎧--⎪⎨⎪-≤-⎩<()()有3个整数解,得:7≤2﹣a<8,解得:﹣6<a≤﹣5.故选B.【点睛】本题考查了解一元一次不等式组,利用不等式的解得出关于a的不等式是解题的关键.11.4【解析】【分析】首先正确解不等式组,根据它的解集写出其非负整数解.【详解】解不等式2x+7>3(x+1),得:x<4,解不等式2342363xx+-≤,得:x≤8,则不等式组的解集为x<4,所以该不等式组的非负整数解为0、1、2、3这4个,故答案为4.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.148 3x<≤【解析】【分析】根据运行程序,第一次运算结果小于等于18,第二次运算结果大于18列出不等式组,然后求解即可.【详解】解:由题意得:36183(36)618xx-≤⎧⎨-->⎩①②,解不等式①,得:8x≤,解不等式①,得:143 x>,则x得取值范围是:148 3x<≤;故答案为148 3x<≤.【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.13.(-1,1)【解析】【详解】根据平面直角坐标系的象限特点,第二象限的点的符号为(-,+),所以可得720 50mm-⎧⎨-⎩<>,解不等式可得72<m <5,由于m 为整数,所以m=4,代入可得7-2m=-1,5-m=1,即A 点的坐标为(-1,1).故答案为(-1,1).14.1【解析】【详解】试题分析:先分别用a 、b 表示出各不等式的解集,然后根据题中已知的解集,进行比对,从而得出两个方程,解答即可求出a 、b .24{25x a x b >①<②+-, ①由①得,x >4-2a ;由①得,x <5+2b , ①此不等式组的解集为:4-2a <x <5+2b , ①不等式组24{25x a x b +-><的解是0<x <2, ①4-2a=0,5+2b =2, 解得a=2,b=-1,①a+b=1考点:解一元一次不等式组.15.b >-3【解析】【分析】先求出不等式的解集,再根据不等式无解可得出b 的取值范围.【详解】22213x b x b -≥⎧⎨-≤⎩①② 解不等式①得:22≥+x b解不等式①得:312+≤b x所以不等式组的解集为31222++≤≤b b x ①此不等式无解,①31222++>b b 解得:3b >-故答案为:3b >-.【点睛】本题考查不等式组无解问题,关键是掌握不等式组解集的口诀:同大取大,同小取小,大小小大取中间,大大小小找不到(无解).16.01m ≤<【解析】【分析】解不等式组的两个不等式,根据其整数解的个数得m 的取值范围可得.【详解】解:解不等式x+1≥m ,得:x≥m ﹣1,解不等式2﹣3x≥﹣4,得:x≤2,①不等式组有3个整数解,①110m ≤﹣<﹣,即01m ≤<,故答案为0<m≤1.【点睛】本题是对不等式知识的考查,熟练掌握不等式知识是解决本题的关键.17.2【解析】【分析】根据题意列出不等式组,求出x 的取值范围,再找出符合条件的x 的整数值即可.【详解】根据题意得33234x x x x -⎧>-⎪⎨⎪+>⎩ 解得:-2<x<3.同时满足x 3x 32->-和3x 4x +>的最大整数是2, 故答案为2【点睛】本题考查的是求不等式组解集的方法,即同大取较大,同小去较小,大小小大中间找,大大小小解不了的原则.18.-5≤m <-4.【解析】【分析】先求出不等式的解集,根据已知不等式组的整数解得和为-9即可得出答案.【详解】解:1423x x x m +⎧-≥⎪⎨⎪>⎩①②解不等式①得:x≤-2,①m <x≤-2又①不等式组的所有整数解得和为-9,①-4+(-3)+(-2)=-9①-5≤m <-4;故答案为-5≤m <-4.【点睛】本题主要考查了解一元一次不等式组,是一道较为抽象的题,利用数轴就能直观的理解题意,列出关于m 的不等式组,临界数-5的取舍是易错的地方,要借助数轴做出正确的取舍.19.x <19 【解析】【详解】先根据x=3是方程2x a --2=x-1的解,代入可求出a=-5,再把a 的值代入所求不等式(2—5a )x <13,由不等式的基本性质求出x 的取值范围x <19. 故答案为x <19.20.114m -<≤-【解析】【分析】先解不等式组,求出解集,再根据“有且仅有三个整数解的条件”确定m 的范围.【详解】解:解不等式组2122274x x x m-⎧≤-+⎪⎨⎪+>-⎩ 得:437m x +-< 由有且仅有三个整数解即:3,2,1.则:4017m +-< 解得:114m -<≤-【点睛】本题考查了一元一次不等式组,利用不等式的解得出关于m 的不等式组是解题关键. 21.(1)每辆小客车的乘客座位数是20个,大客车的乘客座位数是35个(2)3【解析】【分析】(1)根据“每辆大客车的乘客座位数-小客车乘客座位数=15;6辆大客车乘客+5辆小客车乘客=310”列出二元一次方程组解之即可.(2)根据题意,设租用a 辆小客车才能将所有参加活动的师生装载完成,利用“大客车乘客+小客车乘客≥310+20”解之即可.【详解】(1)设每辆小客车的乘客座位数是x 个,大客车的乘客座位数是y 个,根据题意,得1556310y x x y -=⎧⎨+=⎩解得2035x y =⎧⎨=⎩ 答:每辆小客车的乘客座位数是20个,大客车的乘客座位数是35个.(2)设租用a 辆小客车才能将所有参加活动的师生装载完成,则20a+35(11-a)≥310+20,解得a≤323,符合条件的a 的最大整数为3.答:租用小客车数量的最大值为3.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解决本题的关键是找到题目中蕴含的数量关系.22.(1)x<-1;(2)x≤-3.【解析】【分析】(1)由移项,合并,系数化为1,即可得到答案;(2)先分别求出每个不等式的解集,然后取解集的公共部分,即可得到不等式组的解集.【详解】解:(1)4123x x -<-,①4231x x -<-+,①22x <-,①1x <-;(2)()543113125x x x x ⎧+<+⎪⎨--≥⎪⎩①②, 解不等式①,得:12x <-; 解不等式①,得:3x ≤-;①不等式组的解集为:3x ≤-.【点睛】 本题考查了解一元一次不等式组,解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤.23.(1)y=-5x+1000(0≤x≤100),(2)至少要购进50件甲种商品,商场可获得的最大利润是750元.【解析】【分析】(1)根据题意建立函数模型,利用利润=一件的利润×数量即可解题,(2)根据最多投入1500元建立不等式,再根据一次函数的性质求出最值即可.【详解】解:(1)①购进甲,乙两种商品共100件,设其中甲种商品购进x 件,①乙种商品购进(100-x )件,①y=(15-10)x+(30-20)(100-x)=-5x+1000(0≤x≤100),(2)由题意得,10x+20(100-x)≤1500,解得:x≥50,①至少要购进50件甲种商品,①y=-5x+1000,k=-5<0,①y 随着x 的减小而增大,①当x=50时,y 最大=750,①若售完这些商品,商场可获得的最大利润是750元.【点睛】本题考查了一次函数的实际应用,不等式的实际应用,函数的性质,中等难度,运用销售问题的等量关系求出一次函数的解析式是解题关键.24.(1)共有三种方案,分别为①A 型号16辆时, B 型号24辆;①A 型号17辆时,B 型号23辆;①A 型号18辆时,B 型号22辆;(2)当16x =时,272W =最大万元;(3)甲钢板4吨,乙钢板8吨;甲钢板10吨,乙钢板3吨两种生产方案.【解析】【分析】(1)设A 型号的轿车为x 辆,可根据题意列出不等式组,根据问题的实际意义推出整数值;(2)根据“利润=售价-成本”列出一次函数的解析式,然后根据一次函数的性质解答即可; (3)根据(2)中方案求出利润,然后设生产甲钢板m 吨,乙钢板n 吨,列方程求解即可.【详解】(1)设生产A 型号x 辆,则B 型号(40-x )辆,得:1536≤34x +42(40-x )≤1552,解得1618x ≤≤,x 可以取值16,17,18,共有三种方案,分别为:A 型号16辆时,B 型号24辆,A 型号17辆时,B 型号23辆,A 型号18辆时,B 型号22辆.(2)设总利润W 万元,则W =()5840x x +-=3320x -+30k =-<∴w 随x 的增大而减小当16x =时,272W =最大万元;(3)272 2.5%=6.8⨯(万元),设生产甲钢板m 吨,乙钢板n 吨,①50006000 6.810000m n +=⨯,化简得:5668m n +=,①当m =4,n =8时,甲钢板4吨,乙钢板8吨;当m =10,n =3时,甲钢板10吨,乙钢板3吨.【点睛】本题主要考查了一次函数的应用,以及一元一次不等式组的应用,此题是典型的数学建模问题,要先将实际问题转化为不等式组解应用题.25.(1)①;(2)1x =;(3)01m ≤<.【解析】【分析】(1)先求出方程的解和不等式组的解集,再判断即可;(2)解不等式组求得其整数解,根据关联方程的定义写出一个解为1的方程即可; (3)先求出方程的解和不等式组的解集,即可得出答案.【详解】(1)由不等式组25312x x x x -+>-⎧⎨->-+⎩得,3 3.54x <<, 由320x -=,解得,x =23,故方程①320x -=不是不等式组的相伴方程, 由210x +=,解得,x =1-2,故方程①210x +=不是不等式组25312x x x x -+>-⎧⎨->-+⎩的相伴方程,由 ()315x x -+=-,解得 x =2,故方程①()315x x -+=- 是不等式25312x x x x -+>-⎧⎨->-+⎩的相伴方程,故答案为①;(2)由不等式组213133x x x -<⎧⎨+>-+⎩,解得,122x << ,则它的相伴方程的解是整数, 相伴方程x=1故答案为1x =;(3)解不等式组22x x m x m <-⎧⎨-≤⎩得2m x m <≤+ 方程12x x ==,都是不等式组的相伴方程 122m m ∴<<≤+01m ∴≤<【点睛】本题主要考查解一元一次方程和一元一次不等式组,熟练掌握解一元一次方程和一元一次不等式组的技能是解题的关键.26.(1)转化;(2)x >3或x <1【解析】【分析】(1)将一个二次不等式转化为不等式组的形式,该过程体现了转化的数学思想; (2)根据两式相乘,同号得正,异号得负,则转化为30301010x x x x ->-<⎧⎧⎨⎨-<->⎩⎩或 ,再分别解两个不等式组即可.【详解】解:(1)转化;(2)由(x -3)(1-x )<0,可得3010x x -⎧⎨-⎩>,<或3010.x x -⎧⎨-⎩<,> 分别解这两个不等式组,得x >3或x <1.所以不等式(x -3)(1-x )<0的解集是x >3或x <1.【点睛】本题目是一道新型材料题目,考察学生的知识的迁移能力,根据两数相乘,同号得正,异号得负,将二次不等式转化为两个不等式组,解这两个不等式组,即可.27.(1)A 进价80元,B 进价50元;(2)16种;(3)当8<m<10时,A40盏,B60盏,利润最大;当m=10时,A 品牌灯数量在40至55间,利润均为3000;当8<m<10时,A55盏,B45盏,利润最大.【解析】【详解】试题分析:(1)根据:“1040元购进的A 品牌台灯的数量=650元购进的B 品牌台灯数量”相等关系,列方程求解可得;(2)根据:“3400≤A 、B 品牌台灯的总利润≤3550”不等关系,列不等式组,可知数量范围,确定方案数;(3)利用:总利润=A 品牌台灯利润+B 品牌台灯利润,列出函数关系式,结合函数增减性,分类讨论即可.试题解析:(1)设A 品牌台灯进价为x 元/盏,则B 品牌台灯进价为(x-30)元/盏,根据题意得104065030x x -=, 解得x=80,经检验x=80是原分式方程的解.则A 品牌台灯进价为80元/盏,B 品牌台灯进价为x-30=80-30=50(元/盏),答:A 、B 两种品牌台灯的进价分别是80元/盏,50元/盏.(2)设超市购进A 品牌台灯a 盏,则购进B 品牌台灯有(100-a )盏,根据题意,有 ()()()()()()12080805010034001208080501003550a a a a ⎧-+--≥⎪⎨-+--≤⎪⎩解得,40≤a≤55.①a 为整数,①该超市有16种进货方案.(3)令超市销售台灯所获总利润记作w ,根据题意,有w=(120-m-80)a+(80-50)(100-a )=(10-m)a+3000①8‹m‹15①①当8<m<10时,即10-m<0,w随a的增大而减小,故当a=40时,所获总利润w最大,即A品牌台灯40盏、B品牌台灯60盏;①当m=10时,w=3000;故当A品牌台灯数量在40至55间,利润均为3000;①当10<m<15时,即10-m>0,w随a的增大而增大,故当a=55时,所获总利润w最大,即A品牌台灯55盏、B品牌台灯45盏.。
北师版八年级数学下册作业课件 第二章一元一次不等式与一元一次不等式组 第1课时 一元一次不等式的解法
第 1 课时 一元一次不等式的解法
1.不等式的两边都是
,只含有一个未
知数,并且整未式知数的最高次数是_______,像这
1
样的不等式,叫做一元一次不等式.
练习1:下列不等式中,属于一元一B 次不等式的是( )
A.4>1
B.3x-2<4
C. <2
∴-x+2>-1+2,即-x+2>1. ∴数轴上表示数-x+2的点在A点的右边. ∵-2x+3-(-x+2)=-x+1,x<1,∴-x+1>0, ∴-2x+3-(-x+2)>0,∴-2x+3>-x+2, ∴数轴上表示数-x+2的点在B点的左边. 综上所述,数轴上表示数-x+2的点应落在线段AB上.
16.已知一元一次不等式mx-3>2x+m.
A5..去在分解母,不得等5(式错2+误3x的)>一3(2步x-是的1)(过程中) ,开始B 出现
B.去括号,得10+5x>6x-3 C.移项,得5x-6x>-3-10 D.系数化为1,得x<13
6.若代数 +1的值不小于
-B 1的值,
则x的取值范围是( )
7.关于x的一元一次不等式ax-2>0的解集在 数轴上表示如图所示,则关于y的方程ay+2=0
B 的解为( )
A.y=-2 B.y=2 C.y=-1 D.y=1
8.一元一次不等式2x-7≤5-2x的正整数解是1,2,3.
1,2,3,
9.解下列一元一次不等式,并把它们的解集在
数轴上表示出来.
(1)(2018·桂林)
<x+1;
解:x<2,不等式的解集在数轴上表示如下:
(2)(2018·盐城)3x-1≥2(x-1).
(1)若它的解集是
,求m的取值范围;
(2)若它的解集是x> ,试问:这样的m是否存在?如果 存在,求出它的
北师大版八年级数学下册《一元一次不等式和一元一次不等式组——不等式的解集》教学PPT课件(4篇)
创设情境
为确保安全,引火线的长度应满足什么条件?
引火线长度
4cm
6cm
燃放者撤离到安全 区域外的时间
引火线燃烧完所用 时间
结论
大于 10÷4=2.5(s)
0.04÷0.02=2(s)
0.06÷0.02=3(s)
不安全
安全
学习目标
1.经历探索发现不等关系的过程,进一步体会模型思想. 2.探索并掌握不等式的基本性质,体会类比的思想方法. 3.会解一元一次不等式(组)并直观表示其解集,发展几何直观. 4.能够用一元一次不等式解决一些简单的实际问题. 5.体会不等式、函数、方程之间的联系.
A.X>2
B. X>4
C.X>-2
D. X>-4
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
4.如图所示的不等式的解集是___x_<__3_______.
5.在数轴上表示下列不等式的解集.
(1)X<-2.5;
(2) X>2.5;
(3) X≥3
-3 -2.5 -2 -1
0
0
1
2 2.5 3
A.
B.
C.
D.
4.关于x的不等式的解集在数轴上表示如图所示,则该不等式的解集 x≤2 .
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
不等式
数学知识
思想方法
不等式的 解
不等式 的解集
用数轴表示不 等式的解集
类比思 想
数形结合 思想
学习目标 情境导入 例题讲解
巩固提升 归纳总结 当堂检测 课后作业
不等式的解集 解不等式
第二章《一元一次不等式与一元一次不等式组》小结与复习-八年级数学下册课件(北师大版)
巩固练习 拓展提高
6. 某公司为了扩大经营,决定购进6台机器用于生产某种活塞,
甲
乙
现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生 价格(万元/台) 7
5
产活塞的数量如下表所示,经过预算,本次购买机器所耗资金不能
每台日产量(个) 100 60
超过34万元,则按该公司的要求可以有几种购买方案?
> 大于,高出 大于
小于或等于 号
≤
不大于, 小于或 不超过 等于
大于或等于 号
≥
不小于, 大于或
至少
等于
不等号
≠
不相等 不等于
Hale Waihona Puke 创设情境 引入新课比较不等式与等式的基本性质:
变形 两边都加上(或减去)同一个整式 两边都乘以(或除以)同一个正数 两边都乘以(或除以)同一个负数
等式 仍成立 仍成立 仍成立
解不等式的应用问题的步骤包括审、设、列、解、 找、答这几个环节,而在这些步骤中,最重要的是 利用题中的已知条件,列出不等式(组),然后通 过解出不等式(组)确定未知数的范围,利用未知 数的特征(如整数问题),依据条件,找出对应的 未知数的确定数值,以实现确定方案的解答.
巩固练习 拓展提高
7. 暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家 旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的 优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅 行社?
创设情境 引入新课
一元一次不等式与一次函数在决策型应用题中的应用
实际问题
写出两个函数表达式
画出图象
分析图象
八年级数学下册(新版北师大版)精品导学案【第二章_一元一次不等式和一元一次不等式组】
⼋年级数学下册(新版北师⼤版)精品导学案【第⼆章_⼀元⼀次不等式和⼀元⼀次不等式组】第⼆章⼀元⼀次不等式和⼀元⼀次不等式组第⼀节不等关系【学习⽬标】1.理解不等式的概念,感受⽣活中存在的不等关系。
2.能根据条件列出不等式,增强学⽣的符号感,发展其数学化的能⼒。
3.通过观察、分析、猜想、独⽴思考的过程感受不等式这个重要的过程,发展学⽣归纳、猜想能⼒。
【学习⽅法】⾃主探究与⼩组合作交流相结合.【学习重难点】重点:对不等式概念的理解。
难点:怎样建⽴量与量之间的不等关系。
【学习过程】模块⼀预习反馈⼀.学习准备1.⼀般地,⽤符号“<”(或“≤”),“>”(或“≥”)连成的式⼦叫做。
注意:⽤符号“≠”连接的式⼦也叫不等式。
2.列不等式:列不等式类似于列⽅程,列⽅程依据的是等量关系,列不等式依据的是不等关系,列不等式的关键是找不等关系。
⼤于⽤符号表⽰,⼩于⽤符号表⽰;不⼤于⽤符号表⽰,不⼩于⽤符号表⽰。
3.阅读教材:第⼀节不等关系⼆.教材精读4.例题:如图,⽤两根长度均为l cm的绳⼦,分别围成⼀个正⽅形和圆,(1)如果要使正⽅形的⾯积不⼤于25cm2,那么绳长l应满⾜怎样的关系式?(2)如果要使圆的⾯积不⼩于100 cm2,那么绳长l应满⾜怎样的关系式?(3)当l=8时,正⽅形和圆的⾯积哪个⼤?l=12呢?(4)你能得到什么猜想?改变l的取值再试⼀试?分析:正⽅形的⾯积等于边长的平⽅.圆的⾯积是πR2,其中R是圆的半径.两数⽐较有⼤于、等于、⼩于三种情况,“不⼤于”就是等于或⼩于. “不⼩于”就是⼤于或等于。
做⼀做:通过测量⼀棵树的树围(树⼲的周长),可以计算出它的树龄,通常规定以树⼲离地⾯1.5m的地⽅作为测量部位。
某树栽种时的树围为5㎝,以后树围每年增加约3㎝,这棵树⾄少⽣长多少年其树围才能超过2.4m?(只列关系式)归纳⼩结:⼀般地,⽤符号“〈”(或“≤”),“〉”(或“≥”)连接的式⼦叫做不等式。
实践练习:判断下列各式哪些是不等式,哪些既不是等式也不是不等式。
第二章 一元一次不等式与一元一次不等式组测试题(含答案)
第二章 一元一次不等式与一元一次不等式组一、选择题(本大题共7小题,每小题4分,共28分)1.在式子-3<0,x ≥2,x =a ,x 2-2x ,x ≠3,x +1>y 中,是不等式的有( )A .2个B .3个C .4个D .5个2.若a >b 成立,则下列不等式成立的是( )A .-a >-bB .-a +1>-b +1C .-(a -1)>-(b -1)D .a -1>b -1 3.下列说法正确的有( )①x =4是x -3>1的解;②不等式x -2<0的解有无数个;③x >5是不等式x +2>3的解集;④x =3是不等式x +2>1的解;⑤不等式x +2<5有无数个正整数解.A .1个B .2个C .3个D .4个4.不等式2x -1<1的解集在数轴上表示正确的是( )图15.不等式组⎩⎪⎨⎪⎧3x +1<4,12(x +3)-34<0的最大整数解是( ) A .0 B .-1 C .1 D .-26.直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的位置如图2所示,则关于x 的不等式k 1x +b <k 2x +c 的解集为( )图2A .x >1B .x <1C .x >-2D .x <-27.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,从第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有( )A .103块B .104块C .105块D .106块二、填空题(本大题共6小题,每小题4分,共24分)8.若a >b ,要使ac <bc ,则c ________0.9.已知3k -2x 2k -1>0是关于x 的一元一次不等式,那么k =________,此不等式的解集是________.10.把43个苹果分给若干个学生,除一名学生分得的苹果不足3个外,其余每人均分得6个苹果,求学生的人数.若设学生有x 人,则可以列出不等式组为____________________.11.一个两位数,十位上的数字比个位数上的数字小2.若这个两位数在40至60之间,那么这个两位数是________.12.如图3,已知函数y =kx +b 和y =12x -2的图象相交于点P ,则不等式组kx +b <12x -2<0的解是________.图313.已知关于x 的不等式组⎩⎪⎨⎪⎧x <2(x -3)+1,2x +13>x +a 有四个整数解,则a 的取值范围是________.三、解答题(本大题共5小题,共48分)14.(6分)解不等式2x -13-9x +26≤1,并把解集表示在数轴上.15.(8分)放学时,小刚问小东今天数学作业是哪几题,小东回答说:“不等式组⎩⎪⎨⎪⎧x -22+3≥x +1,1-3(x -1)<8-x的正整数解就是今天数学作业的题号.”聪明的你知道今天的数学作业是哪几题吗?16.(10分)若a ,b ,c 是△ABC 的三边长,且a ,b 满足关系式|a -3|+(b -4)2=0,c是不等式组⎩⎨⎧x -33>x -4,2x +3<6x +12的最大整数解,求△ABC 的周长.17.(12分)福德制衣厂现有24名服装工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子的数量相等,则应安排制作衬衫和裤子各多少人?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元.若该厂要求每天获得的利润不少于2100元,则至少需要安排多少名工人制作衬衫?18.(12分)在“美丽广西,清洁乡村”活动中,李家村村支书提出两种购买垃圾桶方案:方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元;方案2:买不分类垃圾桶,需要费用1000元,以后每月的垃圾处理费用500元.设方案1的购买费和每月垃圾处理费共为y1元,方案2的购买费和每月垃圾处理费共为y2元,交费时间为x个月.(1)直接写出y1,y2与x之间的函数关系式;(2)如图4,在同一平面直角坐标系内,画出函数y1,y2的图象;(3)在垃圾桶使用寿命相同的情况下,哪种方案更省钱?图4参考答案1.[答案] C2.[答案] D3.[解析] B ①解不等式x -3>1,得x >4,则x =4不是不等式x -3>1的解,错误;②解不等式x -2<0,得x <2,则不等式的解有无数个,正确;③解不等式x +2>3,得x >1,错误;④解不等式x +2>1,得x >-1,故x =3是不等式的解,正确;⑤解不等式x +2<5,得x <3,正整数解为1,2,错误.故其中正确的有2个.故选B .4.[答案] D5.[解析] D ⎩⎪⎨⎪⎧3x +1<4,①12(x +3)-34<0,②解不等式①,得x <1.解不等式②,得x <-32.所以不等式组的解集为x <-32,故不等式组的最大整数解为-2.故选D . 6.[解析] B 由图可得直线l 1与直线l 2在同一平面直角坐标系中的交点坐标是(1,-2),且当x <1时,直线l 1在直线l 2的下方,故不等式k 1x +b <k 2x +c 的解集为x <1.故选B .7.[解析] C 设这批电话手表有x 块.由题意,得550×60+(x -60)×500>55000,解得x >104.∴这批电话手表至少有105块.故选C .8.[答案] <[解析] 由不等式a >b 变形得ac <bc ,即不等式的两边都乘c 后,不等号的方向改变.由不等式的基本性质3,得c 是负数,所以c <0.9.[答案] 1 x <32[解析] ∵原式是关于x 的一元一次不等式,∴2k -1=1,解得k =1,∴原不等式为-2x +3>0,∴x <32. 10.[答案] ⎩⎪⎨⎪⎧43-6(x -1)<3,43-6(x -1)≥0 11.[答案] 46或57[解析] 设这个两位数的个位数字为x ,则十位数字为x -2.根据题意,得40<(x -2)×10+x <60,解得6011<x <8011.又因为x 为整数,所以x =6或7.所以对应十位数字为4,5,所以这个两位数是46或57.12.[答案] 2<x <413.[答案] -3≤a <-83[解析] ⎩⎪⎨⎪⎧x <2(x -3)+1,①2x +13>x +a ,②解不等式①,得x >5.解不等式②,得x <1-3a ,所以不等式组的解集为5<x <1-3a .由题设可知5<x <1-3a 中包含四个整数,这四个整数应为6,7,8,9,由此可知9<1-3a ≤10,解得-3≤a <-83.14.解:去分母,得2(2x -1)-(9x +2)≤6.去括号,得4x -2-9x -2≤6.移项,得4x -9x ≤6+2+2.合并同类项,得-5x ≤10.系数化为1,得x ≥-2.即不等式的解集为x ≥-2.把解集表示在数轴上,如图.15.解:⎩⎪⎨⎪⎧x -22+3≥x +1,①1-3(x -1)<8-x ,②解不等式①,得x ≤2.解不等式②,得x >-2.∴原不等式组的解集为-2<x ≤2.∵作业的题号为正整数,∴今天的数学作业是第1,2题.16.解:∵a ,b 满足关系式|a -3|+(b -4)2=0,∴a =3,b =4.解不等式x -33>x -4,得x <92.解不等式2x +3<6x +12,得x >52. 则该不等式组的解集为52<x <92, 其最大整数解为4,∴c =4.故△ABC 的周长=3+4+4=11.即△ABC 的周长为11.17.[解析] (1)抓住每人每天可制作衬衫3件或裤子5条,列一元一次方程求解;(2)由于制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,而要求每天获得利润不少于2100元,于是可以利用一元一次不等式求解.解:(1)设应安排x 名工人制作衬衫.根据题意,得3x =5(24-x ),解得x =15.所以24-x =24-15=9.答:应安排15名工人制作衬衫,9名工人制作裤子.(2)设应安排y 名工人制作衬衫.根据题意,得3×30y +5×16(24-y )≥2100,解得y ≥18.答:至少应安排18名工人制作衬衫.18.解:(1)对于方案1:买分类垃圾桶,需要费用3000元,以后每月的垃圾处理费用250元,交费时间为x 个月,则y 1与x 之间的函数关系式为y 1=250x +3000;同样,对于方案2可得y 2与x 之间的函数关系式为y 2=500x +1000.(2)对于y 1=250x +3000,当x =0时,y 1=3000;当x =4时,y 1=4000,过点(0,3000),(4,4000)画直线(第一象限内)就是函数y 1=250x +3000的图象.用同样的方法可以画出函数y 2=500x +1000的图象.(3)①由250x +3000<500x +1000,得x >8,所以当使用寿命大于8个月时,方案1更省钱;②由250x +3000=500x +1000,得x =8,所以当使用寿命等于8个月时,两种方案费用相同;③由250x +3000>500x +1000,得x <8,所以当使用寿命小于8个月时,方案2更省钱.。
一元一次不等式和一元一次不等式组讲义
一元一次不等式和一元一次不等式组知识点一:不等式1、 不等式的基本性质性质1:不等式的两边同时加上(或减去)同一个数或同一个整式,不等号方向不改变。
若a>b ,则a+c>b+c (a-c>b-c )。
性质2:不等式的两边同时乘以(或除以)同一个正数,不等号方向不变。
若a>b 且c>0,则ac>bc 。
性质3:不等式的两边同时乘以(或除以)同一个负数,不等号方向改变。
若a>b 且c<0,则ac<bc 。
2、同解不等式:如果几个不等式的解集相同,那么这几个不等式称为同解不等式。
知识点二:一元一次不等式1、定义:像276x x -<,39x ≤等只含有一个未知数,且含未知数的式子是整式,未知数的次数是1,系数不为0,这样的不等式叫做一元一次不等式。
2、一元一次不等式的标准形式: 0ax b +>(0a ≠)或0ax b +<(0a ≠)。
3、一元一次不等式组的解集确定:若a>b则(1)当⎩⎨⎧>>b x a x 时,则a x >,即“大大取大” (2)当⎩⎨⎧<<bx a x 时,则b x <,即“小小取小”(3)当⎩⎨⎧><b x a x 时,则a x b <<,即“大小小大取中间”(4)当⎩⎨⎧<>b x a x 时,则无解,即“大大小小取不了” 知识点三:一元一次不等式组由含有同一未知数的几个一元一次不等式组合在一起,叫做一元一次不等式组。
如:, 。
要点诠释: 在理解一元一次不等式组的定义时,应注意两点:(1)不等式组里不等式的个数并未规定,只要不是一个,两个、三个、四个等都行;(2)在同一不等式组中的未知数必须是同一个,不能在这个不等式中是这个未知数,而在另一个不等式中是另一个未知数。
知识点四:一元一次不等式组的解集组成一元一次不等式组的几个不等式的解集的公共部分叫做一元一次不等式组的解集.(1)求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被各个不等式解集的区域都覆盖的部分。
第二章一元一次不等式与一元一次不等式组 回顾与思考教案2021-2022学年北师大版八年级数学下册
基于标准的教学设计北师大版八年级(下册)第二章一元一次不等式与一元一次不等式组《回顾与思考》第二章一元一次不等式与一元一次不等式组回顾与思考一、课标描述(摘要)及其解读2011版新课程标准要求:1.结合具体问题,了解不等式的意义,探索不等式的基本性质.2.能解数字系数的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个元一次不等式组成的不等式组的解集.3.能根据具体问题中的数量关系,列出一元一次不等式,解决具体问题.课标对于“了解”的要求是:从具体实例中知道或举例说明对象的有关特征;根据对象的特征,从具体情境中辨认或者举例说明对象.课标对于“理解,会”的要求是:描述对象的特征和由来,阐述此对象与相关对象之间的区别和联系.课标对于“能”的要求是:在理解的基础之,把对象用于新的情境.课标对于“体会”的要求是:参与特定的数学活动,主动认识或验证对象的特征,获得一些经验.二、教材分析在小学数学教材中,已经呈现了一些关于不等关系的相关知识,学生知道生活大量存在着不等关系的量,了解“大于”、“小于”等符号的用法和意义,能比较两数的大小,并能用数学的语言表达;学生通过对本章内容的学习,掌握了不等式的性质、一元一次不等式(组)的解法,并通过解决一些简单的实际问题,体会不等式的模型思想及一元一次不等式、一次函数、一元一次方程之间的内在联系.三、学情分析学生的知识技能基础:学生通过对本章内容的学习,掌握了不等式的性质、一元一次不等式(组)的解法,并通过解决一些简单的实际问题,体会不等式的模型思想及一元一次不等式、一次函数、一元一次方程之间的内在联系.学生活动能力基础:经历探索、发现不等关系的过程学习解决一些简单的实际问题.四、学习目标学生通过整理本章学习的主要内容,建构本章知识联系图,体会知识之间的发展脉络与内在联系,增强应用数学知识研究和解决实际问题的能力. 本节课的具体学习目标是:1.通过梳理本章内容,进一步体会数形结合思想及类比的思想方法.2.通过基础过关题组的训练,进一步夯实基础,掌握不等式的基本性质,理解不等式(组)的解及解集的含义,会解简单的一元一次不等式(组),并能在数轴上表示其解集,并体会不等式函数、方程之间的联系.3.通过深度研讨环节,能够举一反三,灵活应用.4.通过实际应用,能够建立不等模型,能够用一元一次不等式解决一些简单的实际问题.五、学习重难点重点:梳理本章内容,掌握不等式的基本性质,理解不等式(组)的解及解集的含义,会解简单的一元一次不等式(组),并能在数轴上表示其解集,并体会不等式、函数、方程之间的联系.难点:进一步体会数形结合思想及类比的思想方法,能够建立不等模型,能够用一元一次不等式解决一些简单的实际问题.六、评价设计根据课标要求:评价的主要目的的为了全面了解学生数学学习的过程和结果,激励学生的学习和改进教师的教学. 所以,本节课的教学评价主要通过以下环节进行:1.通过小组讨论交流展示本章思维导图的过程,引领学生进行对话交流,在鼓励的基础上纠正偏差,并对其进行定性的评价;2.通过“基础过关”、“当堂检测”来检验教学效果,并在讲评中,肯定优点,指出不足;3.通过深度研讨环节,使学生能够在交流中,思想相互碰撞,思维得到提升;4.通过自我评价表和组长评价表,对本节课学习过程进行过程性评价;通过作业,反馈信息,再次对本节课做出评价,以便查缺补漏.七、学习过程依据“目标导引教学”的理念和“教、学、评一致性”的原则,具体流程如下:学习目标学习评价学习过程一、课前准备、交流复习目标1:通过梳理本章内容,进一步体会数形结合思想及类比的思想方法.1.通过小组分享,制作思考评价学生思路是否清楚,结构是否合理;2.通过提问,检测学生是否能快速的回答这些问题.1.学生通过课前准备,以小组为单位制作思维导图,并且分享制作思路,对本章内容进行梳理并且再一次画出本章的结构图.2.教师引导,总结本章的核心数学思想以及做题方法,并提出如下问题(1)不等式有哪些基本性质?它与等式的基本性质有什么异同?(2)接一元一次不等式与解一元一次方程有什么异同?(3)举例说明在数轴上如何表示一元一次不等式(组)的解集?(4)举例说明不等式、函数、方程之间的关系.设计意图学生通过对本章的知识进行整理,建构本章的知识体系. 通过画本章知识联系图培养学生归纳整理、对比分析的能力,学生可以互相进行比较、补充,养成交流与合作的习惯.二、基础过关、大展身手目标2:通过基础过关题组的训练,进一步夯实基础,掌握不等式的基通过独立完成、教师提问、自我评价的方式检测学生的基础过关题1.给出下面6个式子:①3>0;②x<-2;③4x+3y≠0;④x=3;⑤x-1;⑥x+2≤3. 其中不等式有()A.2个B.3个C.4个D.5个2.有下列四个命题:①若a>b,则a+1>b+1;②若a>b,则a-1>b-1;③若a>b,则-2a<-2b;本性质,理解不等式(组)的解及解集的含义,会解简单的一元次不等式(组),并能在数轴上表示其解集,并体会不等式、函数、方程之间的联系.组,进一步查漏补缺.④若a>b,则ma<mb. 其中正确的有()A.1个B.2个C.3个D.4个3.若x>y,且(a-3)x<(a-3)y,则a的值可能是()A.0B.3C.4D.5归纳总结:不等式的性质.4.下列不等式中,是一元一次不等式的有()①3x-7>0;②2x+y>3;③2x2-x>2x2-1;④x+1<7.A.1个B.2个C.3个D.4个5.解不等式113xx+-<.归纳总结:解一元一次不等式的步骤.6.解不等式组3(2)42113x xxx--≥-⎧⎪⎨+-<⎪⎩,并在数轴上表示不等式的解集.总结归纳:解一元一次不等式组的步骤以及在数轴上表示其解集.7.一次函数y=kx+b的图象如图所示,当y>0时,x的取值范围是()A.x<0B.x>0C.x<2D.x>28.若关于x的不等式mx-1>0(m≠0)的解集是x>1,则直线y=mx-1与x轴的交点坐标是 .9.如图,直线y=3x和y=kx+2相交于点P(a,3),则不等式3x>kx+2的解集为 .总结归纳:一次函数与一元一次不等式的关系.设计意图要建高楼大夏必须先打好基础,通过这个环节的设计,对于不等式的基本性质、元一次不等式的解法以及用数轴表示其解集起到了很好的检测目的,然后让学生先独自完成上述各小题的解答,然后教师提问,让学生自己来作评判,找出存在的问题. 对于做得比较好的同学,教师给予鼓励,使学生对本章知识内容有进一步的理解和掌握.三、深度研讨、再度提高目标3:通过深度研讨环节,能够举反三,灵活应用.通过独立思考、小组探讨、小组分享的方式评价学生对较复杂的一元一次不等式(组)——含参的不等式的问题解决.问题四:含参数的不等式相关问题.10.已知不等式组+21x m nx m+⎧⎨-<⎩>的解集为-1<x<3,求(m+n)2018的值.11.若不等式x-2≤m的正整数解只有3个,则m的取值围为 .12.已知不等式组2xx a⎧⎨<⎩>.(1)如果此不等式组无解,则a的取值范围;(2)如果此不等式组有解,则a的取值范围.数学思想:.设计意图通过小组讨论,学生自己总结做题方法,更利于学生理解和掌握一元一次不等式(组)的与应用,同时也培养和提高了学生的总结归纳能力和抽象思维能力.也再次感受到数形结合的数学思想.四、建构模型、实际应用目标4:通过实际应用,能够建立不等模型,能够用一元次不等式解决一些简单的实际问题.通过独立思考,同学分享评价学生是否能够从实际问题中建立不等模型,模型建立后,能否找到符合实13.小丽去文具店买铅笔和橡皮,铅笔每支0.5元,橡皮每块0.4元,小丽带了2元钱,可以买几支铅笔几块橡皮?14.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超过300元时,超出部分按原价的8折付款;在乙超市累计购买商品超过250元时,超出部分按原价的85际情况的解. 折付款,设一顾客预计购物x(x>300)元. (1)分别写出该顾客在甲、乙两家超市购物所付的费用y甲(元),y乙(元)与x之间的函数关系式;(2)该顾客到哪家超市购物更优惠?设计意图本环节通过实际问题的设置,进一步体会不等式是来源于生活,又服务于生活,能够用不等式解决实际问题,并进一步渗透数学建模的思想. 让学生感受到生活当中处处有数学,激发学生对学习数学的兴趣和愿望.五、归纳总结、反馈评价培养归纳能力,养成反思习惯.并检测目标1、2、3、4的学习效果.通过学生能否完整清晰地说出本节课学习的收获和困惑,了解学生理解知识和情感态度方面的情况.通过“当堂检测”,评价学生的知识技能达标情况.总结归纳说说本节课又学习到了哪些数学知识?体会到了哪些数学思想与方法?还有什么困惑吗?当堂检测:1.下列各式是一元一次不等式的是()A.2x-4>5y+1B.3>-5C.4x+1>0D.4y+3<1y2.若a>b,则下列式子正确的是()A. 1122a b< B.-5a>-5bC. a-3>b-3D.4-a>4-b3.已知关于x的不等式组x ax⎧⎨⎩>>b,其中a、b在数轴上对应点如图所示,则这个不等式组的解集为()A.x>bB.x>aC.b<x<aD.无解4.不等式3x+12≥0的所有正整数解的和为 .5.如图,直线y=ax+b经过A(-2,-5)、B(3,0)两点,那么,不等式ax+b<0的解集是.6.小聪用100元钱去购买笔记本和钢笔共15件,已知每本笔记本5元,每支钢笔7元,小聪最多能购买多少支钢笔?通过归纳和总结,让学生学会提炼和阐述自己的认知,养成善于反思的习惯. 并通过反馈检测样题,评价知识技能的达成度,确保课堂实效性.在学习指导书的最后附一份个人评价表,对本节课学习过程进行过程性评价.1.必做:完成课本61页复习题第2、4、7、9、12题(AB组全做)2.选做:完成课本63页复习题第13、15题(B组做)八、板书设计第二章一元一次不等式与一元一次不等式组知识结构多媒体核心思想:类比思想数形结合数学建模1.本节课的重点在让每个学生建构本章知识体系. 教师让学生充分思考、练习和交流,同时充分暴露出存在的问题,达到有效复习的目的.2.华罗庚教授说:读书要从薄到厚,又从厚到薄. 复习重在从厚到薄.每一章的复习要把全章的知识分成块,整理成知识网络,形成知识系统,并加以综合运用,其中采用思维导图、知识结构图、习题组等措施复习是有效的,本节课在这方面做了一些尝试.3.一般复习课的容量比较大,一方面要让充分学生思考和交流,积极发挥其主体作用;另方面教师作为组织者和引导者,要主次分明,把握好教学的节奏,提高课堂效率.4.复习课不仅仅是知识的小结及运用,而且更重要的是学习方法、能力和习惯的培养,关注学生的可持续发展,这一点对于学生的终身学习是有益的.。
第二章 一元一次不等式与一元一次不等式组复习 课件(共23张PPT)
不等式的两边都乘(或都除以)同一个正数,所得的
不等式仍成立;
a>b,且c>0 => ac>bc, a b
cc
不等式的两边都乘(或都除以)同一个负数,必须
改变不等号的方向,所得的不等式成立;
a>b,且c>0 => ac<bc, a < b
cc
【练习】
• -5 -4 -3 -2 -1 0 1 2 3 4 5 • -5 -4 -3 -2 -1 0 1 2 3 4 5
x<-2 x≥0 -3<x≤2
a≤x<b
不等式的传递性.
a b,b c a c 推出
不等式的两边都加上(或减去)同一个数,所得到 的不等式仍成立.
a>b => a+c>b+c , a-c>b-c;
-2 -1 0 1 2
× x 1
x 1 1<x< -1
-2 -1 0 1 2
无解
大大取大 小小取小
一大一小夹中间
1.若不等式组
x 2 x a
的解为
x<-2 ,则下列各式正确的是 ( D )
(A) a = -2
(B) a<-2
(C) a ≤ -2
(D) a≥-2
2. 若a x 3有解,则a的范围是 _a_<__3 3. 若a x 3无解,则a的范围是 _a_≥__3
解:设导火索长度为x米,则
3 x 100 0.015
解得 x≥0.5 答:导火索的长度至少取0.5米。
本利和=本金+利息 =本金+本金×利率×期数
某企业向银行贷款1000万元,一年后归还银行贷款的 本利和超过1040万元,问年利率在怎样的一个范围 内?
初中数学第二章一元一次不等式与一元一次不等式组复习
第二章一元一次不等式与一元一次不等式组一、知识结构脉络1、能使不等式成立的未知数的值,叫做不等式的解.2、不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集.3、求不等式解集的过程叫解不等式.4、由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组5、不等式组的解集:一元一次不等式组各个不等式的解集的公共部分。
6、等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、知识点梳理1、不等式的基本性质(如下表)2.运算性质(1)若a>b,c>d,则a 十c>b 十d(同向不等式相加)(2)若a>b,c<d,则a 一c>b 一d(异向不等式相减)(3)若a>b>0,c>d>0,ac>bd(4)若a>b>0,0<c<d,则db c a >(5)(5)若a>b>0,则ba 11<性质文字叙述数学语言(I)不等式的两边加(或减)同一个数或(式子),不等号的方向不变若a>b 则a 土c>b 土c (II)不等式的两边乘以(或除以)同一个正数,不等号的方向不变若a>b 且c>0则ac>bc 或c b c a >(III)不等式的两边乘以(或除以)同一个负数,不等号的方向改变若a>b 且c<0则ac<bc 或cb c a <(6)若a>b>0,n 为正整数,则nn b a >(7)(7)若a>b>0,n 为不小于2的整数则n n ba >3、解不等式的步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)未知数的系数化为1。
要注意把系数化为1时,如果不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;如果不等式的两边都乘以(或除以)同一个负数,不等号的方向要改变;解不等式要根据题目的要求和特点合理灵活地选择解题步骤。
第2章《一元一次不等式与一元一次不等式组》知识复习2021年八年级北师大版下册数学作业题(含答案)
2021年北师大版八年级数学作业题第2章《一元一次不等式与一元一次不等式组》知识复习一.选择题1.不等式x>5的解集在数轴上表示正确的是()A.B.C.D.2.已知a>b,c≠0,则下列关系一定成立的是()A.c+a>c+b B.C.c﹣a>c﹣b D.ac<bc3.在平面直角坐标系中,若点A(x+3,﹣4)在第四象限,则x的取值范围是()A.﹣3<x<6B.x<﹣3C.x>6D.3<x<64.如果不等式组有解,则m的范围()A.m<﹣1B.m>﹣1C.m≤﹣1D.m≥﹣15.不等式组的最小整数解为()A.2B.1C.﹣1D.﹣26.若不等式(m+2)x>m+2的解集为x<1,则m满足的条件是()A.m>0B.m>﹣2C.m<﹣2D.m<27.现用甲、乙两种运输汽车共10辆,将46吨抗旱物资一次性运往某地区,甲种运输车载重5吨,乙种运输车载重4吨,则甲种运输车至少应安排()A.7辆B.6辆C.5辆D.4辆8.某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过125分,他至少要答对多少道题?如果设小明答对x道题,根据题意可列不等式()A.10x﹣5(20﹣x)≥125B.10x+5(20﹣x)≤125C.10x+5(20﹣x)>125D.10x﹣5(20﹣x)>125二.填空题9.用不等式表示“x的5倍与2的差为负数”.10.若x<y,试比较大小2x﹣62y﹣6(用“>”、“<”、“=”填空).11.关于x的不等式x﹣1>的解集是.12.不等式4(x﹣1)<3x﹣2的正整数解为.13.已知关于x,y的二元一次方程组满足x﹣y>0,则a的取值范围是.14.在平面直角坐标系中,一次函数y=kx和y=﹣x+b的图象如图所示,则不等式kx>﹣x+b的解集为.15.陈老师购了一批笔记本,用于奖励期中考试成绩优异和进步快的同学,同学们想知道笔记本的本数,陈老师让他们猜.陈茜说:“至少13本.”江涵说:“至多11本.”江月说:“至多8本.”陈老师说:“你们三个人都说错了”.则这批笔记本有本.16.如图所示,一次函数y=ax+b与y=cx+d的图象如图所示,下列说法:①对于函数y=﹣ax+b来说,y随x的增大而增大;②函数y=ax+d不经过第四象限;③不等式ax﹣d ≥cx﹣b的解集是x≥4;④4(a﹣c)=d﹣b.其中正确的是.三.解答题17.解下列不等式或不等式组,并把解集在数轴上表示出来:(1)≥1﹣.(2).18.解不等式组,请按下列步骤完成解答:(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为.19.求不等式组的非负整数解.20.关于x,y的二元一次方程组的解满足不等式x+2y>5,求a的取值范围.21.若关于x,y的二元一次方程组.(1)当y=k时,求k的值;(2)若方程组的解x与y满足条件0≤x+y≤2,求整数k的值.22.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,其单价分别为24元,18元,学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,问甲种票最多买多少张.23.已知关于x,y的方程组.(1)求方程组的解(用含m的代数式表示);(2)若方程组的解同时满足x为非正数,y为负数,求m的取值范围;(3)在(2)的条件下化简|m﹣2|+|3﹣m|.24.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出在①的条件下网店哪种方案获利最多?是多少?参考答案一.选择题1.解:不等式x>5的解集在数轴上表示为:5右边的部分,不包括5,故选:A.2.解:A、在不等式a>b的两边同时加上c,不等式仍然成立,即a+c>b+c;故本选项正确;B、当c>0时,不等式a>b的两边同时除以正数c,则不等号的方向不发生改变,>,故本选项错误;C、在不等式a>b的两边同时乘以负数﹣1,则不等号的方向发生改变,即﹣a<﹣b;然后再在不等式的两边同时加上c,不等号的方向不变,即c﹣a<c﹣b,故本选项错误;D、当c>0时,不等式a>b的两边同时乘以正数c,则不等号的方向不发生改变,即ac>bc.故本选项错误;故选:A.3.解:∵点A(x+3,﹣4)在第四象限,∴,解得﹣3<x<6.故选:A.4.解:如图,∵不等式组有解,∴m>﹣1,故选:B.5.解:,解不等式①,得x>﹣解不等式②,得x≤4,所以不等式组的解集是﹣<x≤4,所以不等式组的最小整数解是﹣2,故选:D.6.解:∵不等式(m+2)x>m+2的解集是x<1,∴m+2<0,∴m<﹣2,故选:C.7.解:设甲种运输车安排x辆,乙种运输车安排(10﹣x)辆,根据题意得5x+4(10﹣x),解得:x≥6,∴甲种运输车至少安排6辆车,故选:B.8.解:由题意可得,10x﹣5(20﹣x)>125,故选:D.二.填空题9.解:x的5倍与2的差小于0,即:5x﹣2<0.故答案为:5x﹣2<0.10.解:∵x<y,∴2x<2y,∴2x﹣6<2y﹣6.故答案为:<.11.解:移项,得:x>1+,合并同类项,得:x>,系数化为1,得:x>,故答案为:x>.12.解:不等式4(x﹣1)<3x﹣2的解集为x<2,故不等式4(x﹣1)<3x﹣2的正整数解为1.故答案为1.13.解:,①﹣②,得x﹣y=3a﹣3,∵x﹣y>0,∴3a﹣3>0,解得a>1,故答案为:a>1.14.解:如图所示:∵一次函数y=kx和y=﹣x+b的图象交点为(1,2),∴关于x的一元一次不等式kx>﹣x+b的解集是:x>1.故答案为:x>1.15.解:设这批笔记本有x本,依题意得:,解得:11<x<13.又∵x为正整数,∴x=12.故答案为:12.16.解:由图象可得,a>0,则﹣a<0,对于函数y=﹣ax+b来说,y随x的增大而减小,故①错误;a>0,d>0,则函数y=ax+d经过第一、二、三象限,不经过第四象限,故②正确;由ax﹣d≥cx﹣b可得ax+b≥cx+d,故不等式ax﹣d≥cx﹣b的解集是x≥4,故③正确;4a+b=4c+d可以得到4(a﹣c)=d﹣b,故④正确;故答案为②③④.三.解答题17.解:(1)去分母,得:2(x+8)≥4﹣x,去括号,得:2x+16≥4﹣x,移项,得:2x+x≥4﹣16,合并同类项,得:3x≥﹣12,系数化为1,得:x≥﹣4,将不等式组的解集表示在数轴上如下:(2)解不等式2x﹣1<x+1,得:x<2,解不等式x+8<4x﹣1,得:x>3,所以不等式组无解,将不等式组的解集表示在数轴上如下:18.解:,(1)解不等式①,得x≥﹣1;(2)解不等式②,得x>3;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为x>3,故答案为x≥﹣1,x>3,x>3.19.解:解不等式2x﹣6≤0,得:x≤3,解不等式(x﹣4)+3>0,得:x>﹣2,则不等式组的解集为﹣2<x≤3,所以不等式组的非负整数解为0、1、2、3.20.解:,②﹣①得:x+2y=4a﹣3,∵x+2y>5,∴4a﹣3>5,解得a>2.故a的取值范围为a>2.21.解:(1),①×2﹣②,得:3x=6k,解得x=2k,将x=2k代入①,得:4k+y=3k﹣1,解得y=﹣k﹣1,∵y=k,∴﹣k﹣1=k,解得k=﹣;(2)①+②,得:3x+3y=3k﹣3,∴x+y=k﹣1,∵0≤x+y≤2,∴0≤k﹣1≤2,解得1≤k≤3,所以整数k的值为1、2、3.22.解:设购买甲种票x张,则购买乙种票(36﹣x)张,依题意得:24x+18(36﹣x)≤750,解得:x≤17.答:甲种票最多买17张.23.解:(1),由①+②,得2x=4m﹣8,解得x=2m﹣4,由①﹣②,得2y=﹣2m﹣4,解得y=﹣m﹣2,所以原方程组的解是;(2)∵x为非正数,y为负数,∴x≤0,y<0,即,解得﹣2<m≤2;(3)∵﹣2<m≤2,∴|m﹣2|+|3﹣m|=2﹣m+3﹣m=5﹣2m.24.解:(1)设该网店甲种羽毛球每筒的售价是x元,乙种种羽毛球每筒的售价是y元,依题意得:,解得:.答:该网店甲种羽毛球每筒的售价是60元,乙种种羽毛球每筒的售价是45元.(2)①设购进甲种羽毛球m筒,则购进乙种羽毛球(200﹣m)筒,依题意得:,解得:75<m≤78.又∵m为正整数,∴m可以为76,77,78,∴该网店有3种进货方案,方案1:购进76筒甲种羽毛球,124筒乙种羽毛球;方案2:购进77筒甲种羽毛球,123筒乙种羽毛球;方案3:购进78筒甲种羽毛球,122筒乙种羽毛球.②选择进货方案1可获得的利润为(60﹣50)×76+(45﹣40)×124=1380(元);选择进货方案2可获得的利润为(60﹣50)×77+(45﹣40)×123=1385(元);选择进货方案3可获得的利润为(60﹣50)×78+(45﹣40)×122=1390(元).∵1380<1385<1390,∴在①的条件下网店选择方案3获利最多,最多利润是1390元.。
八年级数学下册第二章一元一次不等式与一元一次不等式组一元一次不等式北师大版
2.4.1一元一次不等式学习目标1.理解并掌握一元一次不等式的定义;2.会解简单的一元一次不等式,并能在数轴上表示其解集.自主导学温故知新1、解一元一次方程:2、将下列不等式的解集分别表示在数轴上:(1)(2)知识点一:一元一次不等式1、观察下列不等式:(1) 6+3x>30 (2) x+17<5x (3) x≥5 (4)这些不等式有哪些共同点?一元一次不等式的定义:尝试练习1.下列不等式中,属于一元一次不等式的是()A.4>1 B.3x-<4 C.D.4x-3<2y-7知识点二:解一元一次不等式(仔细研读课本P46-47完成下列题目)解不等式,并把它的解集表示在数轴上.解:去分母,得去括号,得移项,得合并同类项,得系数化为1,得这个不等式的解集在数轴上的表示如图所示:尝试练习:解下列不等式,并把它们的解集表示在数轴上(1) (2)合作探究1.若是关于x的一元一次不等式,则该不等式的解集为.2、求不等式4(4x+1)24的正整数解。
巩固作业1.下列不等式中,属于一元一次不等式的是()A.4>1 B.3x-24<4 C.D.4x-3<2y-7 2.与不等式有相同解集的是()A.3x-3<(4x+1)-1 B.3(x-3)<2(4x+1)-1 C.2(x-3)<3(2x+1)-6 D.3x-9<4x-43.不等式的解集是()A.x可取任何数 B.全体正数 C.全体负数 D.无解4.不等式2x-1≥3x一5的正整数解的个数为 ( )A.1 B.2 C.3 D.45.不等式与的解集相同,则.6、解下列不等式,并把它们的解集分别表示在数轴上;(1) 5x<20 (2) <1(3) x-22(x+1) (4) <学习目标1.进一步熟练掌握解一元一次不等式;2.会利用一元一次不等式解决简单的应用题.自主导学温故知新解下列不等式,并把它们的解集分别表示在数轴上。
(1)(2)利用一元一次不等式解决简单的实际问题1、某种商品进价为200元,标价300元出售,商场规定可以打折销售,但其利润不能少于5﹪。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 一元一次不等式与一元一次不等式组1.不等式一、基本知识1、不等式的定义:用……连接起来的式子。
(熟记5种不等号);2、几种常见的不等式:(1)绝对不等式;(2)条件不等式;(3)矛盾不等式;3、用不等式表示不等关系;(正数,负数,非负数,同号,异号,纯小数,不大于等表示方法);二、基本知识巩固与拓展1、下列关系式中,不属于不等式的是( )x ≥、A B 、 -1>0 C 、x 2+1≠0 D 、-x -12、在数轴上有理数a,b 的位置如图2.1.1,那么(a -b)(a+b)0(填“<”“>”或“≤”“≥”。
3、赋予不等式:2x+3y>18以具体意义。
4、根据下列语句列出不等式(1)、a -1不是正数;(2)y 的一半至少等于8;(3)m 与3和的平方是非负数5、某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小宁得分超过90分,设他答对x 道题,则根据题意可列出不等式 。
6、一根弹簧长度为15cm ,在弹性限度内,每挂1kg 的物体,弹簧伸长的0.5cm ,那么至少挂多少千克重的物体才能使弹簧长度超过20cm?2、不等式的基本性质一、不等式的性质1、不等式两边都加(或减)同一个整式,不等号的方向不变。
2、不等式两边都乘(或除以)同一个正数,不等号的方向不变。
3、不等式两边都加(或减)同一个负数,不等号的方向改变。
4、对称性;传递性。
会用字母表示上面的性质。
二、基本练习1、若a>b,根据不等式性质填空 (1) 3a3b 。
(2) 4a -4b-(3) -2a -1-2b -12、关于x 的不等式2<(1-a )x 的解集为:21x a <-,则a 的取值范围是。
3、a 、b 、c 在数轴上位置如图2.2.1,则下列不等式中正确的是( ) A 、cb>ad B 、ac>ab C 、cb<ab D 、c+b>a+b4、当a<0时,6+a6-a 。
5、已知ab=4,若-2≤b ≤-1,则a 的取值范围为( )。
A 、a ≥-4 B 、a ≥- 2 C 、-4≤a ≤-1 D 、-4≤a ≤-26、由m<n 得到ma 2<na 2的条件是( )A 、a>0B 、a<0C 、a ≠0D 、a 为任意实数7、小王从一个鱼摊上买了3条鱼,平均每条a 元,又从另外一个鱼摊上买了2条鱼,平均每条b 元,后来他又以每条2a b+元的价格把鱼全部卖给小刘,结果小王赔了钱,原因是( )A 、a>bB 、a<bC 、a=bD 、与a 、b 的大小没关系8、比较大小 (1)2252 5.m m m -+-+与2(2)434a+1a a -+-、与。
9、有一个两位数,十位上的数字为a ,个位上数字为b ,如果把这个两位数的个位与十位上的数字互换,得到的两位数小于原来的两位数,那么a 与b 的大小关系是怎样的?请说明理由。
2222a 2a 211023b b -+-+、比较与的大小。
11a 1).(1),a 1,1x b bx a ba a ->>--、已知不等式(如果它的解集是求的取值范围;(2)如果它的解集是x<求的取值范围。
2.1.1图2.2.13、不等式的解集一、基本知识1、不等式的解:能使不等式成立的未知数的值。
2、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
3、解不等式4、不等式的解集的两种表示方法(1)用不等式表示;(2)用数轴表示; 二、基本练习1、下列说法不正确的是( )A 、所有小于2的整数都是不等式x+3<5的解;B 、x=-1是不等式-2x>1的一个解;C 、x2+1<0,没有解; D 、x<-1是-2x>1的解集2、关于x 的不等式ax<5a(a ≠0),它的解集为( )A 、x<5B 、x>-5C 、当a>0时,x<5D 、以上均不正确3、满足不等式x≥-5的x最小值是a,满足不等式x≤6的x的最大整数是b,则ab =240,21x y mx y x y m y x -=⎧+>⎨-=⎩、在方程组中,未知数、满足求:的取值范围。
若不等式3x+a ≥ 7的解集为x ≥4,那么a 的取值范围是。
5、求不等式:3x -5≥7的解集,并在数轴上表示出来.6、某公司要印刷宣传材料印刷厂提出:每份材料收1.2元印刷费,另外收1500元的制版费,该公司拿出6000元用于印刷宣传材料,那么最多可以印多少份?321,,p431x y p x y x y x y p +=+⎧<⎨+=-⎩7、已知关于的方程组的解满足求:4、一元一次不等式一、基础知识点1、一元一次不等式的概念2、一元一次不等式的概念的解法3、列一元一次不等式解决实际问题 二、知识巩固与拓展12115x 122(43)2232x x x +-≤-<-、解下列不等式,并将其解集在数轴上表示出来。
()、 -………………()、 1-x25x 42+≥、写出不等式42--()0的正整数解。
ax+22333x 23xx x a =->、已知是关于的不等式的一个解,求的取值范围。
4、某校七年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满。
(1)求该校的大小寝室每间各住多少人?(2)预测该校今年招收新生不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?5、八年1班的同学为“希望工程”共捐款500元,准备购买甲、乙两种图书共12套,已知甲种图书每套45元,乙种图书每套40元,这些钱最多能买甲种图书多少套?5、一元一次不等式与一次函数一、基本知识点1、利用一次函数的图象解一元一次不等式kx+b>0(或kx+b<0)2、利用一次函数的图象解一元一次不等式k 1x+b 1>k 2x+b 2(或k 1x+b 1x<k 2x+b 2 )3、利用一次函数的图象解一元一次不等式解答实际问题。
二、知识应用与拓展112211x 20;21(2)x 20;21(3)x 20;2y x x x x =++>+=+<、作出函数的图象,通过图象回答下列问题:()取哪些值时,取哪些值时,取哪些值时,2、利用图像法解不等式-x+2>x+43、某商场计划投资一笔资金采购一批紧俏商品,经过市场调查发现:如果月初出售可获利25%,并把本利再投资其它商品,到月末又可获利10%,如果月末出售可获利40%,但要付出900元仓储费,请问如何购销获利最多。
4、如图2.5.1,直线l 1:y=x+1与直线l 2: y=mx+n 相交于点(a ,2则关于x 的不等式x+1≥mx+n 的解集为 。
5、甲乙两家体育用品商店出售同样的乒乓球拍和乒乓球。
乒乓球拍每副定价20元,乒乓球每盒定价5元,现两家商店搞促销活动,甲店:每买一副球拍赠送1盒乒乓球;乙店:按定价的9折优惠,某班需要购球拍4副,乒乓球若干盒(不少于4盒)。
请用给你学过的知识说明怎样选购合算。
6、某校实行学案式教案,需印刷若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙不需要,两种印刷方式的费用y (元)与印刷份数(x )份之间的关系如图2.5.2所示。
(1)填空:甲种收费方式的函数关系是 。
乙种收费方式的函数关系是。
(2)该校某年级每次需印刷100~450(含100和450)份学案,选择哪种印刷方式比较合算。
7、学校采购一批演出服装,A,B 两家公司都愿意成为这批服装的供应商,两家公司生产的这款演出服的质量和单价都相同,男装每套120元,女装每套100元,经洽谈:A 公司优惠条件是全部服装按单价打七折但是校方承担2200元的运费;B 公司优惠条件是男女装均按每套100元打八折,公司承担运费。
学校女生人数是男生的2倍少100人,如果设参加演出的男生有x份) 2.5.2图人。
(1)分别写出学校购买A,B 两公司服装所付的总费用y 1(元)和y 2(元)与参加男生人数x 之间的函数关系;(2)问:该学校购买哪家制衣公司的服装比较合算?请说明理由。
8、某公司推销一种产品,设x (件)是某推销员推销产品的数量,y (元)是推销费,如图2.5.3(1)求y 1与y 2的函数关系。
(2)解释图中表示的两种方案是如何付推销费的。
(3)如果你是推销员,应如何选择付费方案?6、一元一次不等式组一、基本知识点:1、一元一次不等式组的概念:同一未知数的几个一元一次不等式合在一起就组成了……2、一元一次不等式组解集的概念;3、一元一次不等式组的解法;4、一元一次不等式组的的应用。
二、知识巩固与拓展1、如果-2a 、1-a、a三个数在数轴上所对应的点从左到右依次排列,则a的取值范围为x22x<1,a+b 220a x b ⎧+≥⎪≤⎨⎪-<⎩、如果不等式组的解集是0那么的值为。
3521x a x a x -≥⎧⎨->⎩、已知关于的不等式组只有四个整数解,则实数的取值范围为。
x m<042m x m ⎧⎨+>⎩-2、不等式组有解,则的取值范围为。
52x =6x x 、-6-2,则的取值范围是。
62x 6x 5A x 、在直角坐标系中,点(-,-)在第四象限,则的取值范围为 。
7、解下列不等式组3(2)45x 3)2312122(9)3(1)123x x x x x x x --≥⎧≤⎧⎪⎨⎨++>>-⎩⎪⎩ (1)(--()、()-……() (3)x-1<2x+1<4x-38、某校有若干住宿生,分住若干件宿舍,若每间住4人,则有21人无处住,若每间住7人,则有1间不空也不满,求住宿生人数。
0,026x y mx y m x y +=⎧><⎨-=⎩9、在方程组中,已知,求的取值范围。
10、李大叔收货洋葱30吨,黄瓜13吨。
现计划租用甲,乙两种货车共10辆将这两种蔬菜运往外地销售,已知一辆甲种货车可装洋葱4吨和黄瓜1吨,一辆乙种货车可装洋葱和黄瓜各2吨。
(1)李大叔安排甲,乙两种货车时有几种方案?请你帮助设计出来。
(2)若甲种货车每辆要付出运费2000元,乙种货车每辆付运费1300元,请你帮助李大叔算一算应选哪种方案,才能使运费最少?最少运费是多少?11、设A 是由2×4个整数组成的2行4列的数表,如果某一行(或某一列)各数之和为负数,则改变改行(或该列)中所有数的符号,称为一次“操作”。
(1)数表A 如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为负整数,请写出每次“操作”后所得的数表;(写出一种方法即可)(2)数表A如表2所示,若经过任意一次“操作”以后,便可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数a的值。