人教版初二数学上册《函数PPT课件》

合集下载

八年级数学19.1《函数》(共70张PPt)

八年级数学19.1《函数》(共70张PPt)

的值为a时的函数值。
【例题】
【例】一辆汽车的油箱中现有汽油50L,如果不再加油,那 么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增 加而减少,平均耗油量为0.1L/km. (1)写出表示y与x的函数关系的式子. (2)指出自变量x的取值范围. (3)汽车行驶200km时,油箱中还有多少汽油? 【解析】(1)行驶里程x是自变量,油箱中的油量y是x的 函数,它们的关系为 y=50-0.1x.像y=50-0.1x这样,用关 于自变量的数学式子表示函数与自变量之间的关系,是描 述函数的常用方法,这种式子叫做函数的解析式.
【备选例题】(2017·内江中考)在函数y= x 3 中, x4 自变量x的取值范围是 ( )
A.x>3
C.x>4
B.x≥3
D.x≥3且x≠4
【解析】选D.∵x-3≥0,∴x≥3,∵x-4≠0,∴x≠4, 综上,x≥3且x≠4.
【微点拨】 确定自变量取值范围的方法
(1)函数解析式是整式,自变量的取值范围是任意实数.
【观察发现】
共同特征:
1.都有两个变量.
2.其中的一个变量取定一个值,另一个变量的值也唯一 确定. 我们称另一个变量是这个变量的函数.
例如:对于函数y = 2 x ,取定x=3,y有唯一的
值6与x=3对应,此时我们把6叫做当自变量的做当自变量
【自主解答】(1)表中反映了弹簧长度与所挂砝码质量 之间的关系;其中所挂砝码质量是自变量,弹簧长度是
所挂砝码质量的函数.
(2)弹簧的原长是18cm;当所挂砝码质量为3g时,弹簧长 24cm.
(3)根据表中数据可知,砝码质量每增加1g,弹簧的长度
增加2cm. 【互动探究】你能知道在弹性限度内,x=10g时,弹簧的 长度吗? 提示:当x=10时,y=18+2×10=38,故当x=10g时,弹簧的 长度为38cm.

八年级函数ppt课件ppt课件

八年级函数ppt课件ppt课件
感谢各位观看
递减。
周期性是指函数值按照一定 的周期重复出现。
04
05
对称性是指函数图象是否关 于某条直线对称。
02
一次函数
一次函数的定义
01
一次函数是形如y=kx+b的函数, 其中k和b是常数,k≠0。
02
一次函数表示的是一条直线,当 k>0时,函数图像为上升直线; 当k<0时,函数图像为下降直线 。
一次函数的图像
商家经常使用函数来计算商品打折后 的价格,例如,购买金额超过一定阈 值后,可以享受一定的折扣率。
在物理和体育领域中,物体的运动轨 迹可以用函数来表示,例如抛物线、 直线等。
工资计算
工资计算中,员工的工资往往与工作 时间、职位等级等因素有关,这些因 素之间的关系可以用函数来表示。
函数在数学中的应用
01
一次函数的图像是一 条直线,其斜率为k ,截距为b。
图像上的点满足函数 表达式,即当x取某 值时,y的值等于该 点的纵坐标。
通过给定的函数表达 式,可以在坐标系中 画出该函数的图像。
一次函数的性质
一次函数的图像是直线,且斜率 为k。
当k>0时,函数为增函数,即随 着x的增大,y的值也增大;当 k<0时,函数为减函数,即随着
物理现象
物理现象中的许多关系可 以用函数来表示,例如重 力加速度与高度之间的关 系。
化学反应
化学反应中的反应速率和 反应进程可以用函数来表 示,例如反应速率与反应 物浓度的关系。
生物进化
生物进化中的基因频率和 种群数量的变化可以用函 数来表示,例如种群增长 曲线和自然选择的影响。
THANK YOU
正比例函数的定义与图像
正比例函数的定义

初二数学(人教版)-认识函数的图象-2PPT课件

初二数学(人教版)-认识函数的图象-2PPT课件

函数变化规律
当 0 ≤ t ≤ 3 时, T 随 t 增大而减小
当14< t ≤ 24时, T 随 t 增大而减小
你从图象中可以得到哪些信息呢?
从3时到14时, 图象 从左到右呈上升状态.
0t3
你从图象中可以得到哪些信息呢?
图象特征
函数变化规律
在 3~14 之间 从左到右上升
当 3< t ≤ 14时, T 随 t 增大而增大
问题:
如图,是自动测温仪 记录的图象,它反映了 北京的春季某天,气温 T 如何随时间 t 的变化 而变化.
(t,T)
函数的图象
记录下数据: t=0及此时的T= -1
函数的图象
记录下数据: t=0及此时的T= -1
转化为坐标: ( 0,-1)
函数的图象
记录下数据: t=0及此时的T= -1 转化为坐标: ( 0,-1)
如图,小明的家和食堂图书馆在同一直线上,小明从家 去食堂吃早餐,接着去图书馆读报,然后回家.下图反映 了这个过程中小明离家的距离y和时间x之间的对应关系.
小明离家的距离y
(x,y)
是时间x的函数吗?
C AB
D E
分析: 组成图象的 五条线段反映了 什么实际意义呢?
如图,小明的家和食堂图书馆在同一直线上,小明从家去 食堂吃早餐,接着去图书馆读报,然后回家.下图反映了 这个过程中小明离家的距离y与时间x之间的对应关系.
行驶时间 t(单位:min)之间的函数关系如图所示:
s/km 48
FC
哪一个是表示
甲组的行进过程
呢?
18
AE B
D
O 10 20 30 40 50 60 70 t/min
甲组乘汽车行驶的路程 s(单位:km)与行驶时间 t

新人教版初中数学八年级上册《14.1.3函数的图象》PPT

新人教版初中数学八年级上册《14.1.3函数的图象》PPT

2、点A(1,m )在函数 y 2 x 的图象上,则点 A的坐标是
(1,2) 。 3、P104练习第1题。
正方形的面积 S 与边长 2 x 的函数关系式是 S=x , 自变量 x 的取值范围 是 x >0 。 如何画出它的图象呢?
1、列表
x S 0 0.5 1 1.5 2 2.5 3 0 0.25 1 2.25 4 6.25 9
s=60t
y=10x
Hale Waihona Puke l =10+0.5x解析式法 (关系式法)
r
s

S=x(5-x)
图象法
横坐标 x 表示时间, 纵坐标 y 表示心脏部位的 生物电流。
中国人口数统计表
年 份 1984 1989 1994 1999 人口数(亿) 10.34 11.06 11.76 12.52
列表法
如何画出函数的图象呢? 例1、作出下列函数的图象: (1) y = x+1
6 ( 2) y x
(3) y =
2 x
1、列表
表中给出一些自变量的值 并计算其对应的函数值。
2、描点
在平面直角坐标系中以自 变量为横坐标,相应的函数值 为纵坐标描出表格中的各点。
3、连线 用平滑的线条(直线或曲 线)连接这些点。
我们把这种方法称为描点法。
函数图象定义:
一般地,对于一个函数, 如果把自变量和函数的每一对 对应值分别作为点的横坐标和 纵坐标,那么在坐标平面内由 这些点组成的图形,叫做这个 函数的图象。
t(时) 0 1 2 3 4 5
y(米) 10 10.05 10.10 10.15 10.20 10.25
(1) 由记录表推出这5小时中水 位高度 y (米)随时间 t (时)变 化的函数解析式,并画出函数 图象。

八年级函数ppt课件ppt课件

八年级函数ppt课件ppt课件
八年级函数ppt课件
CATALOGUE
目 录
• 函数基本概念 • 一次函数与正比例函数 • 反比例函数 • 二次函数及其图像和性质 • 函数在实际问题中应用举例 • 总结回顾与拓展延伸
01
CATALOGUE
函数基本概念
函数定义与性质
函数定义
详细解释函数的定义,包括函数 的概念、定义域、值域等。
实际问题中的综合应用
在某些实际问题中,可能需要同时考虑反比例函数和一次函数的关系。例如,在研究电路中电流、电 压和电阻之间的关系时,可能需要同时考虑欧姆定律和反比例函数来描述这种关系。通过综合应用这 两种函数,可以更全面地理解和解决这类问题。
04
CATALOGUE
二次函数及其图像和性质
二次函数表达式及图像特点
导入
通过实际问题引入最大( 小)值的概念,如利润最 大化、成本最小化等。
建立函数模型
将实际问题转化为函数模 型,明确目标函数和约束 条件。
求解方法
介绍求解最大(小)值问 题的常用方法,如导数法 、不等式法等,并举例说 明其应用。
方案设计类问题解决方法与策略
导入
通过实际问题引入方案设计类问 题的概念,如产品设计、工程规
03
工程中的速率与时间关系
在工程问题中,有时需要计算某个任务在不同速率下完成所需的时间。
当任务量一定时,速率与时间成反比关系。因此,可以用反比例函数来
描述这种关系。
反比例函数与一次函数综合应用
图像交点问题
当反比例函数与一次函数在同一坐标系中作图时,可能会存在交点。这些交点满足两个函数的方程组 ,因此可以通过解方程组来求解交点的坐标。
函数性质
介绍函数的奇偶性、单调性、周 期性等基本性质,并举例说明。

八年级数学上册教学课件《函数》

八年级数学上册教学课件《函数》
数学 八年级 上册
4.1 函数
4.1 函数
导入新知
万物皆变
4.1 函数
行星在宇宙中的位置随时间而变化
导入新知
4.1 函数
气温随海拔而变化
导入新知
4.1 函数
汽车行驶里程随行驶时间而变化
导入新知
4.1 函数
为了更深刻地认识千变万化的世界,本节课,我们将 学习有关一种量随另一种量变化的知识,共同见证事物变
(2)y是x的函数吗?为什么? 答:不是,因为y的值不是唯一的.
课堂检测
基础巩固题
4.1 函数
5.表格列出了一项实验的统计数据,表示小球从高度x(单位:m) 落下时弹跳高度y(单位:m)与下落高度x的关系,据表可以写 出的一个关系式是 y=0.5x .
课堂检测
能力提升题
4.1 函数
据省统计局发布,2017年我省有效发明专利数比2016年增长 22.1%.假定2018年的年增长率保持不变,2016年和2018年我 省有效发明专利分别为a万件和b万件,则( B ) A.b=(1+22.1%×2)a B.b=(1+22.1%)2a C.b=(1+22.1%)×2a D.b=22.1%×2a
的热力学温度T是多少?
(2)给定一个大于-273 ℃的t值,你都能求出相应的T
值吗?
探究新知
4.1 函数
探究新知
(1)当t分别为-43 ℃, -27 ℃,0 ℃,18 ℃时,相应的
热力学温度T是多少?
解:当t为-43℃时, T= -43+273=230(℃);
当t为-27℃时, T= -27+273=246(℃);
把自变量x的值代 入关系式中,即 可求出函数的值.

新人教版八年级数学上册第14章一次函数精品课件ppt

新人教版八年级数学上册第14章一次函数精品课件ppt
我们现在已经知道了正比例函数关系式的特点,那么 它的图象有什么特征呢?
Copyright 2004-2009 版权所有 盗版必究
活动三.共同探究,理解知识 1.例题.画出下列正比例函数的图象,并进行比较,寻找两个 函数图象的相同点与不同点,考虑两个函数的变化规律. 1.y=2x 2.y=-2x
学生通过活动,了解正比例函数图象特点及函数变化规 律,让学生自己动手、动口、动脑,经历规律发现的整个过 程,从而提高各方面能力及学习兴趣.并能正确画图、积极 探索、总结规律、准确表述.
x -3 -2 -1 0 1 2 3 y 6 4 2 0 -2 -4 -6
画出图象如图(1). (2)y=-2x的自变量取值范围可以是全体实数,列表表示几组对应 值:画出图象如图(2).
Copyright 2004-2009 版权所有 盗版必究
(3)分析比较两个图象的共同点和不同点 1)共同点:都是经过原点的直线. 2)不同点:函数y=2x的图象从左向右呈上升状态,即随着x的 增大y也增大;经过第一、三象限.函数y=-2x的图象从左向 右呈下降状态,即随x增大y反而减小;经过第二、四象限.
一九九六年,鸟类研究者在芬兰给一只燕鸥뼈မ鸟) 套上标志环.4个月零1周后人们在2.56万千米外的澳 大利亚发现了它. (1)这只百余克重的小鸟大约平均每天飞行多少千米 (精确到10千米)? (2)这只燕鸥的行程y(千米)与飞行时间x(天)之间有 什么关系? (3)这只燕鸥飞行1个半月的行程大约是多少千米?
Copyright 2004-2009 版权所有 盗版必究
活动四.自己动手,课堂练习
在同一坐标系中,画出下列函数的图象,并对它们进行
比较.(1)y=0.5x
(2)y= -0.5x

(人教版八年级上)函数图象课件

(人教版八年级上)函数图象课件

-2 A -1 0 (-1, -0.5) -1
2
3
4
5x
归纳
函数图象的画法: 1、列表 2、描点 3、连线
在自变量取值范围内选定一些值.通过 函数关系式求出对应函数值列成表格.
建立直角坐标系,以自变量的值为横坐标, 相应的函数值为纵坐标,描出表格中数值 对应的各点 按照横坐标从小到大的顺序把描出的点用 平滑曲线依次连接起来
3、画出函数 y = x + 0.5 的图象 解:1、列表
x … -3 -2 -1 0 1 2 3
… …
y … -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5
2、描点
3、连线
y
7 6 5
y= x+0.5
4
3
2 C 1 1
D
(2, 2.5)
(1, 1.5)
B
-5 -4 -3
(0, 0.5)
2、思考:
(1)下图是一种古代计时器──“漏壶”的示意图, 在壶内盛一定量的水,• 从壶下的小孔漏出,壶壁内画 水 出刻度.人们根据壶中水面的位置计算时间.用x• 示时 表 间,y表示壶底到水面的高度.下面的哪个图象适合表示 y与x的函数关系?(暂不考虑水量变化对压力的影响)
(2)a是自变量x取值范围内的任意一个值, 过点(a,0)画y轴的平行线,• 图中曲线相 与 交.下列哪个图中的曲线表示y是x的函数?为什 么?
14.1.3函数的图象
太和中心学校 曾英志
函数的图象教学目标
• 会画函数图象 • 能看懂函数图象
复习
• 1、函数有哪几种表示形式? • 2、正方形的边长是a面积是s,面积s随 边长a变化而变化,写出它们的函数关系 式。

人教版初中八年级上册数学课件 《函数的图像》一次函数名师示范课件

人教版初中八年级上册数学课件 《函数的图像》一次函数名师示范课件
解:
小明先走了约3分钟, 到达离家250米处的 一个阅报栏前看了5 分钟报,又向前走了 2分钟,到达离家 450米处返回,走了 6分钟到家。
27
四、中考实战
甲,乙两同学骑自行车从A地沿同一条路到B地,已知
乙比甲先出发.他们离出发地的距离s/km和骑行时间
t/h之间的函数关系如图所示,给出下列说法:
x
2022/12/1
我们来总结归纳一下描点法画函数图象的一般 步骤
第一步:列表.在自变量取值范围内选定一些值.通过 函数关系式求出对应函数值列成表格.
第二步:描点.在直角坐标系中,以自变量的值为横 坐标,相应函数值为纵坐标,描出表中对应各点.
第三步:连线.按照坐标由小到大的顺序把所有点用 平滑曲线连结起来.
从函数图象可以看出,直线从左向右上升,即当x 由小变大时,y=x+0.5随之增大.
18
例3:在下列式子中,对于x的每个确定的值。y有唯
一的对应值,即y是x的函数.请画出这些函数的图
象。
(1)y=x+0.5
(2)y= 6 (x>0) x
解: (1)y=x+0.5

x … -3 -2 -1 0 1 2 …
2022/12/1
温度
北京的春季某天气温T随时间t变化而变化的规律如图 所示:
1.哪个时间温度最高?是多少度?
2.哪个时间温度最低?是多少度?
3.什么时间段温度在下降?什么时间段温度
在上升?
T/℃
4.曲温线度与在x零轴度的以交下点的表时示间什长么呢??还是在零度以
上的时间长?
8
4
O
3
14
2022/12/1
22

人教版八年级上册数学优秀公开课《一次函数课件PPT》

人教版八年级上册数学优秀公开课《一次函数课件PPT》
解:y=
典例解析 我边防局接到情报,近海处有一可疑船只
A正向公海方向行驶,边防局迅速派出快
s/海里 10 9 8 7 6 5 4 3 2 1
0
艇B追赶,如图中s1与s2分别表示两船只相
对于海岸的距离s(海里)与追赶时间t(
分)之间的关系。
s2
s1
2 4 6 8 10
t/分
(1)哪条线表示B到海岸的距离与追赶时间之间的关系? 当t=0时,s=0,所以s1表示B到海岸的距离与追赶时间 之间的关系.
(1)当销售量为2吨时, 销售收入=_2_0_0_0__元, 销售成本=_3_0_0_0_元; (2)当销售量为5吨时, 销售收入=___6_0_0_0___元,销
1000
售成本=___5_0_0_0__元;
0 1 2 3 4 5 6 7 8 X吨
(3)当销售量等于___4_吨___时,销售收入等于销售成本;
(4)当销售量_大__于__4_吨___时,该公司赢利(收入大于成本);
当销售量_小__于__4_吨___时,该公司亏损(收入小于成本)
6000
y1
y2
5000
4000
3000
y1对应的函数表达式是__y_1_=_1_0_0_0_x___
2000
y2对应的函数表达式是_y_2=_5_0_0_x_+_2_0_0_0_
因此,从A城运往C乡0吨, 运往D乡200吨;从B城运往C乡 240吨,运往D乡60吨.此时总 运费最少,为10040元.
巩固训练
Y元 6000
如图,y1反映了某公司产品的销售收入与销售 量之间的关系,y2反映了该公司产品的销售成 本与销售量之间的关系,根据图意填空:
y1

函数的概念课件新人教版八年级上PPT16页

函数的概念课件新人教版八年级上PPT16页
函数的Байду номын сангаас念课件新人教版八年级上
41、俯仰终宇宙,不乐复何如。 42、夏日长抱饥,寒夜无被眠。 43、不戚戚于贫贱,不汲汲于富贵。 44、欲言无予和,挥杯劝孤影。 45、盛年不重来,一日难再晨。及时 当勉励 ,岁月 不待人 。
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一边长为X( m ) 4 3 2.5 2 …
另一边长为
( 5-x )(m) 1 长方形面积(m2) 4

2
2.5 3

6
6.25 6
设长方形的面积为s(m2),一边长为x,怎样用含
X的式子表示长方形的面积s?
s=x(5-x)
上述三个问题有什么共同之处?
1. 每个变化的过程中都存在着两个变量.
2.当一个变量确定一个值时,另一个变量有唯一确定的值与 其对应。
__n_____是自变量,__y___是___n___的函数,
关系式是____Y_=__1_n0_6_________。
2. 一个三角形的底边为5,高h可以任意伸缩,三角形
的面积也随之发生了变化. 解:(1)面积s随高h变化的关系式s =
5h 2

其中 h 是自变量, s 是 h 的函数;
(2)自变量的取值范围是_h____0_,
a(m)的关系式,并写出a的取值范围。
60-a
S=a
2
(0 a 60)
回顾与反思
数学日记:
年月 学习课题 :

星期
自我评价:
天气:
知识归纳与整理:
悄悄话:老师我想对您说:
我的收获与困惑:
1.课本P106 2,3,4 2.预习:函数的图象
今日作业
3) y x 3 3)开平方中:被开方数为非负数.
4) y 2x 1
x2
5) y2 = x
4) 考虑全面,取公共解.
注:对于实际问题,其自变量的取值范围 还应使实际问题有意义Biblioteka .用60m的篱笆围成矩形,使矩形一边靠
墙,另三边用篱笆围成.

a
请写出矩形面积s(m2)与平行于墙的一边长
思考:1.每个问题中有几个变量?
2.同一个问题中的变量之间有什么联系? 问题1 :全运会火炬手以3米/秒的速度跑步前进传递火
炬,传递路程为S米,传递时间为t秒,填写下表:
t(秒)
12 3
4
s(米)
怎样用含t的 式子表示 s? S=3t
传_递__路__程__S_ 随着传递时间t 的变化而变化, 当 传递时间t 确定一个值时,传递路程S 就随之确定一个值。
y
o
x
(3)在下面的我国人口数统计表中,年份与人口数 可以记作两个变量x与y, 对于表中每一个确定的年 份(x),都对应着一个确定的人口数(y)吗?
函数的概念:
1. 在一个变化过程中,如果有两个变量x与y,并且 对于x的每一个确定的值,y都有唯 一确定的值与其对应, 那么我们就说 x是自变量 ,y是x的函数。
11 -3 5 207
问题:显示的数y是x的函数吗?为什么?
2、在计算器上按照下面的程序进行操作:
下表中的x与y分别是输入的6个数及相应的计算
结果:
x -2 -1 0 1 2 3
y -5 -2 1 4 7 10
上面操作程序中所按的第三个键和第四个键
应是 + 1 .
y是X的函数吗?若是,写出它的表达式(用含X的式子表示y).
2. 如果当x=a时y=b,那么b叫做当自变量的值为a时的 函数值。
例如在问题1中,时间t是自变量,里程s是t的函数。
t=1时,其函数值为3;t=2时,其函数值为6。
(1)在计算器上按照下面的程序进行操作: 输入x(任意一个数)
按键 × 2 + 5 =
显示y(计算结果)
x
1
3 -4 0 101
y
7
1. 一辆汽车的油箱中现有汽油40L,如果不
再加油,那么油箱中的油量y(单位:L)随行
驶里程x(单位:km)的增加而减少,平均耗
油量为0.1L/km。
(1)写出表示y与x的函数关系的式子。 (2)指出自变量x的取值范围。 (3)汽车行驶300 km时,油箱中还有多少油?
解:(1) 函数关系式为: y = 40-0.1x (2) 由x≥0及40-0.1x ≥0 得 0 ≤ x ≤ 400
观 察
(1)下图是自动测温仪记录的图象,随着时间t的
变化,气温T也随之变化.对于时间t每一个确定的值,
温度T都有唯一确定的对应值吗?
(2)下图是体检时的心电图.其中图上点的横坐标x表 示时间,纵坐标y•表示心脏部位的生物电流,它们是两 个变量.在心电图中,对于x的每一个确定的值,y都有 唯一确定的对应值吗?
(3)当h=3时,面积s=__7_.5___, (4)当h=10时,面积s=___2_5__;
3 . 下列各式中,请判断y是不是x的函数,为什
么? 若是,求出自变量的取值范围。 说明:自变量取值范围的确定方法:
1) y=8x
1)整式:全体实数.
2) y x
x 1
2)自变量在分母位置:使分母不等于0.
问题2
弹簧的长度与所挂重物有关.如果弹簧原长 为10cm,每1千克重物使弹簧伸长0.5cm,试填下 表。
悬挂重 物的质 量(Kg)
弹簧长 度(cm)
1
10.5
2345
11 11.5 12 12.5
怎样用含重物质量m(kg)的式子表示受力后的 弹簧长度 L(cm)?
L=10+0.5m
问题3:
用10 m 长的绳子围成长方形,若改变长 方形的长度,长方形的面积会怎样变化。
1.下列问题中哪些量是自变量?哪些量是自变量的函数?
试写出用自变量表示函数的式子。 (1)改变正方形的边长X,正方形的面积S随之改变。
___x____是自变量,__s___是___x___的函数, 关系式是____S_=__x_2__________。
(2)秀水村的耕地面积是106 m2 ,这个村人均占有耕地面积y随这个 村人数n的变化而变化。
∴自变量的取值范围是: 0 ≤ x ≤ 400
(3)当 x = 300时,函数 y 的值为:y=40-0.1×300=10
因此,当汽车行驶300 km时,油箱中还有油10L.
2. 等腰三角形ABC的周长为10, 底边BC长
为 y, 腰AB长为 x, 求:
(1)表示y与x的函数关系的式子。 (2) 自变量的取值范围; (3) 腰长AB=3时,求底边的长.
相关文档
最新文档