10. 相关与回归分析
第十章 直线回归与相关分析
115 125 128 143 132 121 129 112 120 130 125.5
135 137 128 127 155 132 148 117 134 132 134.5
图10-2 NaCl含量对单位叶面积干物重影响的散点图
Y . X X
含义是:对于变量X的每一个值,都有一个Y 的分布,这个分布的平均数就是该线性函数。
ˆ a bX Y
回归截距 与x值相对应的依变量y的点估计值
此方程称为Y对X的直线回归方程(linear regression equation),画出的直线称为回归线 ( regression line)。
ˆ Y a bx
ˆi ) 2 L ( yi y
i 1 n
Y
最小
编号 1 2 3 4 5 血球体积x /mm3 45 52 56 48 42 红血球数y /106 6.53 6.30 9.52 7.50 6.99 6 7 8 9 10 编号 血球体积x /mm3 35 58 40 39 50 红血球数y /106 5.90 9.49 6.20 6.55 8.72
n n
整理后得:
an b xi yi i1 i1 n n n a xi b xi2 xi yi i1 i1 i1
解正规方程得:
x y ( x )( y ) / n b x ( x ) / n ( x x)( y y) = S S ( x x)
第二节:一元线性回归 1 散点图的绘制
2 一元正态线性回归模型 3 直线回归方程的参数估计和回归方 程的建立 4 直线回归的假设检验
5 直线回归的方差分析
6 直线回归的意义( 自学)
相关分析和回归分析
即r (x x)( y y) 或r (x x)( y y)
n x y
(x x)2 ( y y)2
•协方差的意义
①显示x与y是正相关还是负相关 协方差为负,是负相关, 协方差为正,是正相关。 ②协方差显示x与y相关程度的大小 当相关点在四个象限呈散乱的分布,相关程度很低 当相关点分布在x与y的平均值线上时,表示不相关 当相关点靠近一直线,表示相关关系密切 当相关点全部落在一直线,表示完全相关
2、相关图被形象地称为相关散点图 3、因素标志分了组,结果标志表现为组平均数,
所绘制的相关图就是一条折线,这种折线又叫 相关曲线。
三、相关系数的计算:
1、符号系数:把两个同平均值的离差数列做对称 比较。
①如果一个数列的离差与另一个数列的离差有很 多同号,就可以认为这两标志之间存在正相关。
②如果大多数为异号,就可以认为他们之间存在 负相关。
.............b
xx x
y x
2
y
xy
1 n
x
y
x2
1 n
x2
当出现权数时:
方程为:a f b xf yf ................a xf b x2 f xyf
解得:a y bx
•相关系数的r的推导公式:
r
n xy x y
n x2 x2 n y2 y2
r
xy nxy
(
x2
2
nx )
y2
2
ny
r
xy x y
统计学第七章 相关与回归分析
(四)按变量之间的相关程度分为完全相关、不完全相 关和不相关。
二、相关关系的测定
(一)定性分析,相关表,相关图 判断现象间有无相关关系是一个定性认 识问题,单纯依靠数学方法是无法解决的。 因此,进行相关分析必须以定性分析为前 提,这就要求研究人员首先必须根据有关 经济理论,专业知识,实际经验和分析研 究能力等。对被研究现象在性质上作出定 性判断。 相关表是将相关变量的观察资料,按照 其对应关系和一定顺序排列而成的表格。
Se
y
2
a y b xy n2
(7- 12)
这个公式可以直接利用前面计算回归系 数和相关系数的现成资料。以表7-1的资 料计算如下:
Se y 2 a y b xy n2 56615-30.3 731-28.36 1213 10 2 65.02 8 2.85 (万件)
2
或
y- y R= 1- 2 y y
ˆ 式中,y 为y的多元线性趋势值或回归估计值。
若变量间呈曲线(非直线)相关,则应
计算相关指数来测定变量间相关的密切程度。
ˆ y y y y
2 2
Ryx
( 7-7)
R
ˆ y y
由表7-4资料计算相关系数如下:
r
n xy x y n x x
2 2
n y y
2 2
2
10 1213-15.1 731
2
10 26.25-15.1 10 56615-731 1091.9 1091.9 38.49 31789 6.2 178.3 1091.9 0.988 1105.5
相关分析与回归分析
客观现象的相互联系,可以通过一定的数量关系反映出来。
(2)回归分析是相关分析的深入和继续。
一、表格法(相关表法)
(一)简单相关表
n x y x y 编制方法:先将自变量的值按照从小到大的顺序排列出来,然后将因变量的值对应列上而排列成表格。
以x为自变量,y为因变量建立直线回归方程,并说明回归系数的经济意义。
※●很显复示 相明x关和:显y自事变:正量相两r关的个还以是取上负。相值关;为正或为负取决于分子。
1、协方差 的作用 3=1、0+两2个x 变量完全r相=0关. 时,则相2 关系数为(
)
6、下列回归方程中,肯定错xy 误的是(
)
A.x的数值增大时,y值也随之增大
显示x和y事正相关还是负相关; (5※、2)产回品归单分位析成是本相与关产分品析产的量深之入间和的继关续系。一般来说是( ) 第※※三绝显节 对值示回在归0x分. 析和与一y元相线性关回归程度的大小; 1一2x、、相关相关r=系关0.的概系念和数种类计算的简便公式
第二节 相关关系的判断
(二)相关系数的计算
rxy2
(xx)(yy) n
xy
(xx)2
(yy)2
n
n
n :资料项数
x
(xx)2 表示 x变量的标准差 n
y
(yy)2 表示 y变量的标准差 n
2 xy
(xx)(yy)表示 x、y两个变量数列的协方 n
第二节 相关关系的判断
r (xx)(yy) (xx)2 (yy)2
第一节 相关分析的意义和种类
3、根据相关的形式不同划分,分为线性相关和非线性相关。 ●线性相关:即直线相关。 ●非线性相关:即曲线相关。 4、根据相关的程度分为不相关、完全相关(函数关系)和不完全 相关。 三、相关分析的主要内容 1、确定现象之间有无关系。 2、确定相关关系的表现形式。 3、测定相关关系的密切程度和方向。
相关与回归分析
对相关系数的说明
(1)相关系数受样本容量n的影响,样本容量要求以 n≥30为宜。
(2)相关系数不是等距量表值,更不是等比量表值。不 能说r=0.5是r=0.25的两倍。 (3)存在相关关系不一定存在因果关系。 (4)计算相关系数要求成对数据,任意两个个体之间的 观测值不能求相关。
(5)没有线性相关,不一定没有关系,可能是非线性的。
第十二章 相关与回归分析
一、相关分析概述
客观事物之间的关系大致可归纳为两大类,即 函数关系:两事物之间的一种一一对应的关系,如商品的 销售额和销售量之间的关系。 共变关系:两事物之间本身没有直接的关系,但它们都受 第三种现象的影响而发生变化。例如春天出生的婴儿与春 天栽种的小树,就其高度而言,表面上看来都在增长,好 像有关,其实,这二者都是受时间因素影响在发生变化, 在它们之间并没有直接的关系。 相关关系:两事物之间的一种非一一对应的关系,例如家 庭收入和支出、子女身高和父母身高之间的关系等。它们 之间存在联系,但又不能直接做出因果关系的解释。相关 关系又分为线性相关和非线性相关。 相关分析是分析事物之间相关关系的数量分析方法。
职工的工作种类与工作价值
工作价值 Y 经济取向型 成就取向型 人际关系取向型 合计:FX
工作种类 X
工人 100 30 20 150 技术人员 70 60 10 140 管理人员 50 20 40 110
【毕业论文】相关分析和回归分析
相关分析和回归分析客观事物之间的关系分为函数关系和统计关系,函数关系也就是我们通常所说的一一对应的关系,而统计关系是指两事物之间的一种非一一对应的关系,即当一个变量x取一定值时,另一变量y无法依确定的函数取唯一确定的值。
事物之间的统计关系是普遍存在,且有的关系强,有的关系弱。
相关分析和回归分析都是以不同方式测度事物之间统计关系的有效工具。
实际应用中。
这两种分析方法经常互相结合渗透。
一、相关分析相关分析通过图形和数值两种方式,能够有效的揭示事物之间统计关系的强弱程度。
1、散点图能直观的显示数据之间的相关关系,可以利用曲线将点散布的主要轮廓描述出来,使数据的主要特征更突出。
如下图:研究04年四层金指的报废面积与入仓面积的相关关系上图看出:数据集中分布在直线周围,说明是高度正相关的。
2、相关系数散点图能直观的展现变量之间的统计关系,但并不精确。
相关系数以数值的方式精确的反映了两个变量间线形相关的强弱程度。
➢ R=yyxx xy L L L ,其中xx L =∑=--ni ix x12)(,∑=----=ni i i xy y y x x L 1))((,∑=--=ni i yy y y L 12)(.➢ 相关系数R 的取值在-1~+1之间。
➢ R>0表示两变量之间存在正的线性相关关系;R<0表示两变量之间存在负的线性相关关系。
➢ R=1表示两变量存在完全正相关;R=-1表示两变量存在完全负相关;R=0表示两变量不存在线性相关关系。
➢ |R|>0.8表示两变量之间具有较强的线性关系;|R|<0.3表示两变量之间的线性相关关系较弱。
上例中,R=0.974,说明报废面积与入仓面积之间是强正相关的。
二、一元线性回归在实际应用中,我们常常需要考虑某一现象与影响它的最主要因素的关系,回归分析不仅可以揭示变量x 对变量y 的影响大小,还可以由回归方程进行预测和控制。
一元线性回归是最简单的回归模型。
练习--相关与回归分析
第十一章 相关与回归分析一、填空题1. 社会经济现象间的关系分为两种类型:一种是 ,另一种是 。
2. 在相关关系中,当给定一个X 值时,Y 值不是唯一确定的,而可能同时出现几个不同的数值并在一定范围内围绕其 上下波动。
3. 按相关的程度可分为 、 和 。
4. 相关系数的取值在 之间,其绝对值在 之间属于中度相关。
5. 回归分析就是根据变量X 与Y 之间的关系,建立两个变量之间的直线关系近似表达式进行 和 的。
6. 直线回归中总变差等于 和 之和。
7. 回归系数b 与相关系数r 的符号应 ,当b 大于0时,表明两变量是 。
8. 在相关分析中,要求两个变量都是随机的,而在回归分析中,要求自变量是 ,因变量是 。
9. 设变量x 与y 之间的相关系数r = - 0.92, 这说明这两个变量之间存在着 相关。
10. 在线性回归分析中,只涉及一个自变量的回归称为 ;涉及多个自变量的回归称为 。
二、 判断题1. 如果变量x 与y 之间的相关系数r = 0,表明这两个变量之间不存在任何相关关系。
( )2. 设两个变量的一元线性回归方程为c Y = -10 + 0.5x,由此可以判定这两个变量之间存在着负相关关系。
( )3. 在其他条件不变的情况下,可决系数2R 越大,估计标准误差X Y S .也越大,回归直线的拟合程度就越低。
( )4. 如果回归系数为零,则相关系数必为零。
( )5. 对相关系数进行显著性检验,即检验总体相关系数ρ是否为零。
若ρ=0表示变量X 与Y 间存在线性相关关系。
( )6. 回归变差反映的是由于x 与y 之间的线性关系而引起的y 的变差。
( )7. 相关系数r 与可决系数2R 的取值范围是一致的。
( )8. 相关关系侧重于考察变量之间的关系密切程度,回归分析则侧重于考察变量之间的数量变化规律。
( )9. 我国的GDP 与印度的人口之间的相关系数大于0.8,因此两者具有高度正相关关系。
( )10. 拟合回归直线的目的在于用直线上的点来代表所有的相关点。
相关分析、回归分析、时间序列分析
1.2 相关分析类型和运用
1.2.1 皮尔逊相关(Pearson)直线相关
1. 定义: Pearson相关 (积差相关)是英国统计学家皮尔逊于20世纪初提出的一 种计算相关的方法。是一种运用较为普遍的计算相关系数的方法,也 是揭示两个变量线性相关方向和程度最常用和最基本的方法。
1.2.3 肯得尔相关(Kendall)等级相关
分析两个变量之间的相关,也可以用Kendall等级相关分析法。用一 个统计量来衡量以一个变量的等级为标准时,另一个变量的等级与它 不一致的情况。
不仅可以对两个变量作等级相关分析,还可以对多个变量作等级相关 分析。
Kendall等级相关系数也在-1与1之间变动。当 =0时,表示两变
(Pi P )(Qi Q ) (Pi P )2 (Qi Q )2
1.2 相关分析类型和运用 1.2.2 斯皮尔曼相关(Spearman)秩相关
4. Spearman相关系数ρ的假设检验: (1)当n≤50时,查“rs界值表” (2)当n>50时,用 t 检验
t检验法
1.2 相关分析类型和运用
1.1 认识相关关系 1.1.4 研究相关关系的工具:
1.1 认识相关关系 1.1.4 研究相关关系的工具:
散点图
(a)完全正相 (b)完全负相关 (c)无相关关系 关
(d)非线性关系 (e)正相关
(f)负相关
对不同类型的变量应采用不同的相关系数来度量。
双变量关系强度测量的主要指标 定类
定序
定类
Classical Statistical Analysis Method I
Correlation analysis,analysis of regression,analysis of time series
回归分析与相关分析联系区别
回归分析与相关分析联系区别
一、定义:
1.回归分析:回归分析是一种用于研究变量之间关系的统计方法,旨
在通过一个或多个自变量与一个因变量的关系来预测和解释因变量的变化。
2.相关分析:相关分析是一种用于度量两个变量之间线性关系的统计
方法,通过计算相关系数来判断变量之间的相互关联程度。
二、应用领域:
1.回归分析:回归分析广泛应用于社会科学、经济学、市场营销等领域,常用于预测、解释和因果推断等研究中,也可以用于探索性数据分析
和模型诊断。
2.相关分析:相关分析适用于自然科学、医学、环境科学等领域,可
用于分析变量之间的关联,评估变量之间的相关性以及预测未来的变化趋势。
三、应用步骤:
1.回归分析的应用步骤通常包括:确定研究问题、收集数据、选择适
当的回归模型、进行模型拟合和参数估计、模型诊断和解释回归结果等。
2.相关分析的应用步骤通常包括:明确研究目的、收集数据、计算相
关系数、进行假设显著性检验、解释相关结果和绘制相关图等。
四、结果解释:
1.回归分析的结果解释主要包括判断拟合度(如R-squared)、解释
变量的显著性和系数大小、诊断模型的合理性、进行预测和因果推断等。
2.相关分析的结果解释主要包括相关系数的显著性、方向(正相关或负相关)和强度(绝对值的大小),还可通过散点图等图形来展示变量之间的线性相关关系。
第5章 相关分析和回归分析作业答案(1)
第5章相关分析和回归分析作业答案1.当变量x按一定数值变化时,变量y也近似地按固定数值变化,这表明变量x和变量y之间存在着( 3 )①完全相关关系②复相关关系③直线相关关系④没有相关关系2.单位产品成本与其产量的相关:单位产品成本与单位产品原材料消耗量的相关( 2 )①前者是正相关,后者是负相关②前者是负相关,后者是正相关③两者都是正相关④两者都是负相关3.相关系数r的取值范围( 2 )①-∞<r<+∞②-1≤r≤+1③-I<r<1 ④0≤r≤+14.当所有观测值都落在回归直线y=a+bx上,则x 与y之间的相关系数( 4 )①r=O.②r=1 ③r=-1 ④IrI=15.相关分析与回归分析,在是否需要确定自变量和因变量的问题上( 1 )①前者无须确定,后者需要确定②前者需要确定,后者勿需确定③两者均需确定④两者都无需确定6.—元线性回归模型的参数有( 2 )①一个②两个③三个④三个以上7.直线相关系数的绝对值接近1时,说明两变量相关关系的密切程度是( 1 )①完全相关②微弱相关③无线性相关④高度相关8.年劳动生产率x(千元)和工人工资y(元)之间的回归方程为y=10+7Ox,这意味着年劳动生产率每提高1千元时,工人工资平均( 1 )①增加70元②减少70元③增加80元④减少80元9.下面的几个式子中,错误的是( 1,3 )①y=-40-1.6x r=0.89 (说明:正相关,x前面的系数应该为正值)②y=-5-3.8x r=-0.94③y=36-2.4x r=0.96④y=-36+3.8x r=0.9810.相关系数r与回归系数b的关系可以表达为( 1 )①r=b*σx/σy ②r=b*③r=b* ④r=b*11.下列关系中,属于正相关关系的有( 1 )①合理限度内,施肥量和平均单产量之间的关系②产品产量与单位产品成本之间的关系③商品的流通费用与销售利润之间的关系.④流通费用率与商品销售量之间的关系12.直线相关分析与直线回归分析的联系表现为( 1 )①相关分析是回归分析的基础②回归分析是相关分析的基础③相关分析是回归分析的深入④相关分析与回归分析互为条件13.如果估计标准误差Sy=O,则表明( 1 )①全部观测值和回归值都相等②回归值等于Y 、③全部观测值与回归值的离差之和为零④全部观测值都落在回归直线上14.进行相关分析,要求相关的两个变量( 1 )。
统计学教案习题10直线相关与回归
第十章 直线相关与回归一、教学大纲要求(一) 掌握内容⒈ 直线相关与回归的基本概念。
⒉ 相关系数与回归系数的意义及计算。
⒊ 相关系数与回归系数相互的区别与联系。
(二)熟悉内容⒈ 相关系数与回归系数的假设检验。
⒉ 直线回归方程的应用。
⒊ 秩相关与秩回归的意义。
(三)了解内容 曲线直线化。
二、学内容精要(一) 直线回归 1. 基本概念直线回归(linear regression)建立一个描述应变量依自变量变化而变化的直线方程,并要求各点与该直线纵向距离的平方和为最小。
直线回归是回归分析中最基本、最简单的一种,故又称简单回归(simple regression )。
直线回归方程bX a Y+=ˆ中,a 、b 是决定直线的两个系数,见表10-1。
表10-1 直线回归方程a 、b 两系数对比ab含义回归直线在Y 轴上的截距(intercept )。
表示X 为零时,Y 的平均水平的估计值。
回归系数(regression coefficient ),即直线的斜率。
表示X 每变化一个单位时,Y 的平均变化量的估计值。
系数>0 a >0表示直线与纵轴的交点在原点的上方b >0,表示直线从左下方走向右上方,即Y 随X 增大而增大 系数<0 a <0表示直线与纵轴的交点在原点的下方b <0,表示直线从左上方走向右下方,即Y 随X 增大而减小系数=0 a =0表示回归直线通过原点 b =0,表示直线与X 轴平行,即Y 不随X 的变化而变化计算公式X b Y a -=XX XY l l X X Y Y X X b =---=∑∑2)())(( 2. 样本回归系数b 的假设检验(1)方差分析;(2)t 检验。
3. 直线回归方程的应用(1)描述两变量的依存关系;(2)用回归方程进行预测; (3)用回归方程进行统计控制;(4)用直线回归应注意的问题。
(二) 直线相关 1. 基本概念直线相关(linear correlation )又称简单相关(simple correlation ),用于双变量正态分布资料。
统计学原理-第六章--相关与回归分析习题
A+1 B 0 C 0.5 D [1]5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( )A线性相关还是非线性相关B正相关还是负相关C完全相关还是不完全相关D单相关还是复相关6.某校经济管理类的学生学习统计学的时间()与考试成绩(y)之x间建立线性回归方程y c=a+b。
经计算,方程为y c=200—0.8x,该方程参数x的计算( )A a值是明显不对的B b值是明显不对的C a值和b值都是不对的 C a值和6值都是正确的7.在线性相关的条件下,自变量的均方差为2,因变量均方差为5,而相关系数为0.8时,则其回归系数为:( )A 8B 0.32C 2D 12.58.进行相关分析,要求相关的两个变量( )A都是随机的B都不是随机的C一个是随机的,一个不是随机的D随机或不随机都可以9.下列关系中,属于正相关关系的有( )A合理限度内,施肥量和平均单产量之间的关系B产品产量与单位产品成本之间的关系C商品的流通费用与销售利润之间的关系D流通费用率与商品销售量之间的关系10.相关分析是研究( )A变量之间的数量关系B变量之间的变动关系C变量之间的相互关系的密切程度D变量之间的因果关系11.在回归直线y c=a+bx,b<0,则x与y之间的相关系数( )A =0B =lC 0<<1D -1<<0r r r r12.在回归直线yc=a+bx中,b表示( )A当x增加一个单位,,y增加a的数量B当y增加一个单位时,x增加b的数量C当x增加一个单位时,y的均增加量D当y增加一个单位时,x的平均增加量13.当相关系数r=0时,表明( )A现象之间完全无关B相关程度较小C现象之间完全相关D无直线相关关系14.下列现象的相关密切程度最高的是( )A某商店的职工人数与商品销售额之间的相关系数0.87B流通费用水平与利润率之间的相关关系为-0.94C商品销售额与利润率之间的相关系数为0.51D商品销售额与流通费用水平的相关系数为-0.8115.估计标准误差是反映( )A平均数代表性的指标B相关关系的指标C回归直线的代表性指标D序时平均数代表性指标三、多项选择题1.下列哪些现象之间的关系为相关关系( )A家庭收入与消费支出关系B圆的面积与它的半径关系C广告支出与商品销售额关系D单位产品成本与利润关系E在价格固定情况下,销售量与商品销售额关系2.相关系数表明两个变量之间的( )A线性关系B因果关系C变异程度D相关方向E相关的密切程度3.对于一元线性回归分析来说( )A两变量之间必须明确哪个是自变量,哪个是因变量B回归方程是据以利用自变量的给定值来估计和预测因变量的平均可能值C可能存在着y依x和x依y的两个回归方程D回归系数只有正号E 确定回归方程时,尽管两个变量也都是随机的,但要求自变量是给定的。
回归分析与相关性检验方法
回归分析与相关性检验方法引言回归分析和相关性检验方法是统计学中常用的两种分析方法。
它们主要用于研究变量之间的关联程度和预测某一变量对其他变量的影响。
在实际应用中,回归分析和相关性检验方法具有广泛的应用领域,例如经济学、医学、社会科学等。
本文将对回归分析和相关性检验方法进行详细介绍,并给出相应的案例应用。
一、回归分析回归分析是一种统计学方法,用于研究因变量和一个或多个自变量之间关系的强度和方向。
回归分析有两种基本类型:简单线性回归和多元线性回归。
1. 简单线性回归简单线性回归是指当因变量和自变量之间存在一种线性关系时使用的回归分析方法。
简单线性回归的模型可以表示为:$y = \\beta_0 + \\beta_1x + \\epsilon$,其中y表示因变量,x表示自变量,$\\beta_0$和$\\beta_1$是回归系数,表示截距和斜率,$\\epsilon$表示误差项。
简单线性回归的关键是通过最小二乘法估计回归系数,然后进行显著性检验和模型拟合度的评估。
通过显著性检验可以确定回归系数是否显著不为零,进而得出自变量对因变量的影响是否显著。
2. 多元线性回归多元线性回归是指当因变量和多个自变量之间存在一种线性关系时使用的回归分析方法。
多元线性回归的模型可以表示为:$y = \\beta_0 + \\beta_1x_1 +\\beta_2x_2 + ... + \\beta_nx_n + \\epsilon$,其中y表示因变量,x1,x2,...,x n表示自变量,$\\beta_0, \\beta_1, \\beta_2, ..., \\beta_n$表示回归系数,$\\epsilon$表示误差项。
多元线性回归的关键也是通过最小二乘法估计回归系数,并进行显著性检验和模型拟合度的评估。
多元线性回归可以通过检验回归系数的显著性,判断各个自变量是否对因变量产生显著影响。
二、相关性检验方法相关性检验方法是用于检测变量之间关系的非参数统计学方法。
统计学课后习题答案第七章相关分析与回归分析
统计学课后习题答案第七章相关分析与回归分析(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第七章相关分析与回归分析一、单项选择题1.相关分析是研究变量之间的A.数量关系B.变动关系C.因果关系D.相互关系的密切程度2.在相关分析中要求相关的两个变量A.都是随机变量B.自变量是随机变量C.都不是随机变量D.因变量是随机变量3.下列现象之间的关系哪一个属于相关关系A.播种量与粮食收获量之间关系B.圆半径与圆周长之间关系C.圆半径与圆面积之间关系D.单位产品成本与总成本之间关系4.正相关的特点是A.两个变量之间的变化方向相反B.两个变量一增一减C.两个变量之间的变化方向一致D.两个变量一减一增5.相关关系的主要特点是两个变量之间A.存在着确定的依存关系B.存在着不完全确定的关系C.存在着严重的依存关系D.存在着严格的对应关系6.当自变量变化时, 因变量也相应地随之等量变化,则两个变量之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系7.当变量X值增加时,变量Y值都随之下降,则变量X和Y之间存在着A.正相关关系B.直线相关关系C.负相关关系D.曲线相关关系8.当变量X值增加时,变量Y值都随之增加,则变量X和Y之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系9.判定现象之间相关关系密切程度的最主要方法是A.对现象进行定性分析B.计算相关系数C.编制相关表D.绘制相关图10.相关分析对资料的要求是A.自变量不是随机的,因变量是随机的B.两个变量均不是随机的C.自变量是随机的,因变量不是随机的D.两个变量均为随机的11.相关系数A.既适用于直线相关,又适用于曲线相关B.只适用于直线相关C.既不适用于直线相关,又不适用于曲线相关D.只适用于曲线相关12.两个变量之间的相关关系称为A.单相关B.复相关C.不相关D.负相关13.相关系数的取值范围是≤r≤1 ≤r≤0≤r≤1 D. r=014.两变量之间相关程度越强,则相关系数A.愈趋近于1B.愈趋近于0C.愈大于1D.愈小于115.两变量之间相关程度越弱,则相关系数A.愈趋近于1B.愈趋近于0C.愈大于1D.愈小于116.相关系数越接近于-1,表明两变量间A.没有相关关系B.有曲线相关关系C.负相关关系越强D.负相关关系越弱17.当相关系数r=0时,A.现象之间完全无关B.相关程度较小B.现象之间完全相关 D.无直线相关关系18.假设产品产量与产品单位成本之间的相关系数为,则说明这两个变量之间存在A.高度相关B.中度相关C.低度相关D.显著相关19.从变量之间相关的方向看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和无相关20.从变量之间相关的表现形式看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和无相关21.物价上涨,销售量下降,则物价与销售量之间属于A.无相关B.负相关C.正相关D.无法判断22.配合回归直线最合理的方法是A.随手画线法B.半数平均法C.最小平方法D.指数平滑法23.在回归直线方程y=a+bx中b表示A.当x增加一个单位时,y增加a的数量B.当y增加一个单位时,x增加b的数量C.当x增加一个单位时,y的平均增加量D.当y增加一个单位时, x的平均增加量24.计算估计标准误差的依据是A.因变量的数列B.因变量的总变差C.因变量的回归变差D.因变量的剩余变差25.估计标准误差是反映A.平均数代表性的指标B.相关关系程度的指标C.回归直线的代表性指标D.序时平均数代表性指标26.在回归分析中,要求对应的两个变量A.都是随机变量B.不是对等关系C.是对等关系D.都不是随机变量27.年劳动生产率(千元)和工人工资(元)之间存在回归方程y=10+70x,这意味着年劳动生产率每提高一千元时,工人工资平均A.增加70元B.减少70元C.增加80元D.减少80元28.设某种产品产量为1000件时,其生产成本为30000元,其中固定成本6000元,则总生产成本对产量的一元线性回归方程为:=6+ =6000+24x=24000+6x =24+6000x29.用来反映因变量估计值代表性高低的指标称作A.相关系数B.回归参数C.剩余变差D.估计标准误差二、多项选择题1.下列现象之间属于相关关系的有A.家庭收入与消费支出之间的关系B.农作物收获量与施肥量之间的关系C.圆的面积与圆的半径之间的关系D.身高与体重之间的关系E.年龄与血压之间的关系2.直线相关分析的特点是A.相关系数有正负号B.两个变量是对等关系C.只有一个相关系数D.因变量是随机变量E.两个变量均是随机变量3.从变量之间相互关系的表现形式看,相关关系可分为A.正相关B.负相关C.直线相关D.曲线相关E.单相关和复相关4.如果变量x与y之间没有线性相关关系,则A.相关系数r=0B.相关系数r=1C.估计标准误差等于0D.估计标准误差等于1E.回归系数b=05.设单位产品成本(元)对产量(件)的一元线性回归方程为y=,则A.单位成本与产量之间存在着负相关B.单位成本与产量之间存在着正相关C.产量每增加1千件,单位成本平均增加元D.产量为1千件时,单位成本为元E.产量每增加1千件,单位成本平均减少元6.根据变量之间相关关系的密切程度划分,可分为A.不相关B.完全相关C.不完全相关D.线性相关E.非线性相关7.判断现象之间有无相关关系的方法有A.对现象作定性分析B.编制相关表C.绘制相关图D.计算相关系数E.计算估计标准误差8.当现象之间完全相关的,相关系数为B.-1 E.-9.相关系数r =0说明两个变量之间是A.可能完全不相关B.可能是曲线相关C.肯定不线性相关D.肯定不曲线相关E.高度曲线相关10.下列现象属于正相关的有A. 家庭收入愈多,其消费支出也愈多B.流通费用率随商品销售额的增加而减少C.产量随生产用固定资产价值减少而减少D.生产单位产品耗用工时,随劳动生产率的提高而减少E.工人劳动生产率越高,则创造的产值就越多11.直线回归分析的特点有A.存在两个回归方程B.回归系数有正负值C.两个变量不对等关系D.自变量是给定的,因变量是随机的E.利用一个回归方程,两个变量可以相互计算12.直线回归方程中的两个变量A.都是随机变量B.都是给定的变量C.必须确定哪个是自变量,哪个是因变量D.一个是随机变量,另一个是给定变量E.一个是自变量,另一个是因变量13.从现象间相互关系的方向划分,相关关系可以分为A.直线相关B.曲线相关C.正相关D.负相关E.单相关14.估计标准误差是A. 说明平均数代表性的指标B.说明回归直线代表性指标C.因变量估计值可靠程度指标D.指标值愈小,表明估计值愈可靠E.指标值愈大,表明估计值愈可靠15.下列公式哪些是计算相关系数的公式16.用最小平方法配合的回归直线,必须满足以下条件A.(y-y c )=最小值B.(y-y c )=0C.(y-y c )2=最小值D.(y-y c )2=0E.(y-y c )2=最大值222222)()(.)()())((...))((.y y n x x n y x xy n r E y y x x y y x x r D L L L r C L L L r B n y y x x r A xxxy xy yy xx xy y x ∑-∑⋅∑-∑∑⋅∑-∑=-∑⋅-∑--∑===--∑=σσ17.方程y=a+bxcA.这是一个直线回归方程B.这是一个以X为自变量的回归方程C.其中a是估计的初始值D.其中b是回归系数是估计值18.直线回归方程y=a+bx中的回归系数bcA.能表明两变量间的变动程度B.不能表明两变量间的变动程度C.能说明两变量间的变动方向D.其数值大小不受计量单位的影响E. 其数值大小受计量单位的影响19.相关系数与回归系数存在以下关系A.回归系数大于零则相关系数大于零B.回归系数小于零则相关系数小于零C.回归系数等于零则相关系数等于零D.回归系数大于零则相关系数小于零E.回归系数小于零则相关系数大于零20.配合直线回归方程的目的是为了A.确定两个变量之间的变动关系B.用因变量推算自变量C.用自变量推算因变量D.两个变量相互推算E.确定两个变量之间的相关程度21.若两个变量x和y之间的相关系数r=1,则A.观察值和理论值的离差不存在的所有理论值同它的平均值一致和y是函数关系与y不相关与y是完全正相关22.直线相关分析与直线回归分析的区别在于A.相关分析中两个变量都是随机的;而回归分析中自变量是给定的数值,因变量是随机的B.回归分析中两个变量都是随机的;而相关分析中自变量是给定的数值,因变量是随机的C.相关系数有正负号;而回归系数只能取正值D.相关分析中的两个变量是对等关系;而回归分析中的两个变量不是对等关系E.相关分析中根据两个变量只能计算出一个相关系数;而回归分析中根据两个变量只能计算出一个回归系数三、填空题1.研究现象之间相关关系称作相关分析。
统计学课后习题答案第七章相关分析与回归分析
第七章相关分析与回归分析一、单项选择题1.相关分析是研究变量之间的A.数量关系B.变动关系C.因果关系D.相互关系的密切程度2.在相关分析中要求相关的两个变量A.都是随机变量B.自变量是随机变量C.都不是随机变量D.因变量是随机变量3.下列现象之间的关系哪一个属于相关关系A.播种量与粮食收获量之间关系B.圆半径与圆周长之间关系C.圆半径与圆面积之间关系D.单位产品成本与总成本之间关系4.正相关的特点是A.两个变量之间的变化方向相反B.两个变量一增一减C.两个变量之间的变化方向一致D.两个变量一减一增5.相关关系的主要特点是两个变量之间A.存在着确定的依存关系B.存在着不完全确定的关系C.存在着严重的依存关系D.存在着严格的对应关系6.当自变量变化时, 因变量也相应地随之等量变化,则两个变量之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系7.当变量X值增加时,变量Y值都随之下降,则变量X和Y之间存在着A.正相关关系B.直线相关关系C.负相关关系D.曲线相关关系8.当变量X值增加时,变量Y值都随之增加,则变量X和Y之间存在着A.直线相关关系B.负相关关系C.曲线相关关系D.正相关关系9.判定现象之间相关关系密切程度的最主要方法是A.对现象进行定性分析B.计算相关系数C.编制相关表D.绘制相关图10.相关分析对资料的要求是A.自变量不是随机的,因变量是随机的B.两个变量均不是随机的C.自变量是随机的,因变量不是随机的D.两个变量均为随机的11.相关系数A.既适用于直线相关,又适用于曲线相关B.只适用于直线相关C.既不适用于直线相关,又不适用于曲线相关D.只适用于曲线相关12.两个变量之间的相关关系称为A.单相关B.复相关C.不相关D.负相关13.相关系数的取值范围是≤r≤1 ≤r≤0≤r≤1 D. r=014.两变量之间相关程度越强,则相关系数A.愈趋近于1B.愈趋近于0C.愈大于1D.愈小于115.两变量之间相关程度越弱,则相关系数A.愈趋近于1B.愈趋近于0C.愈大于1D.愈小于116.相关系数越接近于-1,表明两变量间A.没有相关关系B.有曲线相关关系C.负相关关系越强D.负相关关系越弱17.当相关系数r=0时,A.现象之间完全无关B.相关程度较小B.现象之间完全相关 D.无直线相关关系18.假设产品产量与产品单位成本之间的相关系数为,则说明这两个变量之间存在A.高度相关B.中度相关C.低度相关D.显着相关19.从变量之间相关的方向看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和无相关20.从变量之间相关的表现形式看可分为A.正相关与负相关B.直线相关和曲线相关C.单相关与复相关D.完全相关和无相关21.物价上涨,销售量下降,则物价与销售量之间属于A.无相关B.负相关C.正相关D.无法判断22.配合回归直线最合理的方法是A.随手画线法B.半数平均法C.最小平方法D.指数平滑法23.在回归直线方程y=a+bx中b表示A.当x增加一个单位时,y增加a的数量B.当y增加一个单位时,x增加b的数量C.当x增加一个单位时,y的平均增加量D.当y增加一个单位时, x的平均增加量24.计算估计标准误差的依据是A.因变量的数列B.因变量的总变差C.因变量的回归变差D.因变量的剩余变差25.估计标准误差是反映A.平均数代表性的指标B.相关关系程度的指标C.回归直线的代表性指标D.序时平均数代表性指标26.在回归分析中,要求对应的两个变量A.都是随机变量B.不是对等关系C.是对等关系D.都不是随机变量27.年劳动生产率(千元)和工人工资(元)之间存在回归方程y=10+70x,这意味着年劳动生产率每提高一千元时,工人工资平均A.增加70元B.减少70元C.增加80元D.减少80元28.设某种产品产量为1000件时,其生产成本为30000元,其中固定成本6000元,则总生产成本对产量的一元线性回归方程为:=6+ =6000+24x=24000+6x =24+6000x29.用来反映因变量估计值代表性高低的指标称作A.相关系数B.回归参数C.剩余变差D.估计标准误差二、多项选择题1.下列现象之间属于相关关系的有A.家庭收入与消费支出之间的关系B.农作物收获量与施肥量之间的关系C.圆的面积与圆的半径之间的关系D.身高与体重之间的关系E.年龄与血压之间的关系2.直线相关分析的特点是A.相关系数有正负号B.两个变量是对等关系C.只有一个相关系数D.因变量是随机变量E.两个变量均是随机变量3.从变量之间相互关系的表现形式看,相关关系可分为A.正相关B.负相关C.直线相关D.曲线相关E.单相关和复相关4.如果变量x与y之间没有线性相关关系,则A.相关系数r=0B.相关系数r=1C.估计标准误差等于0D.估计标准误差等于1E.回归系数b=05.设单位产品成本(元)对产量(件)的一元线性回归方程为y=,则A.单位成本与产量之间存在着负相关B.单位成本与产量之间存在着正相关C.产量每增加1千件,单位成本平均增加元D.产量为1千件时,单位成本为元E.产量每增加1千件,单位成本平均减少元6.根据变量之间相关关系的密切程度划分,可分为A.不相关B.完全相关C.不完全相关D.线性相关E.非线性相关7.判断现象之间有无相关关系的方法有A.对现象作定性分析B.编制相关表C.绘制相关图D.计算相关系数E.计算估计标准误差8.当现象之间完全相关的,相关系数为B.-1 E.-9.相关系数r =0说明两个变量之间是A.可能完全不相关B.可能是曲线相关C.肯定不线性相关D.肯定不曲线相关E.高度曲线相关10.下列现象属于正相关的有A.家庭收入愈多,其消费支出也愈多B.流通费用率随商品销售额的增加而减少C.产量随生产用固定资产价值减少而减少D.生产单位产品耗用工时,随劳动生产率的提高而减少E.工人劳动生产率越高,则创造的产值就越多11.直线回归分析的特点有A.存在两个回归方程B.回归系数有正负值C.两个变量不对等关系D.自变量是给定的,因变量是随机的E.利用一个回归方程,两个变量可以相互计算12.直线回归方程中的两个变量A.都是随机变量B.都是给定的变量C.必须确定哪个是自变量,哪个是因变量D.一个是随机变量,另一个是给定变量E.一个是自变量,另一个是因变量13.从现象间相互关系的方向划分,相关关系可以分为A.直线相关B.曲线相关C.正相关D.负相关E.单相关14.估计标准误差是A.说明平均数代表性的指标B.说明回归直线代表性指标C.因变量估计值可靠程度指标D.指标值愈小,表明估计值愈可靠E.指标值愈大,表明估计值愈可靠15.下列公式哪些是计算相关系数的公式16.用最小平方法配合的回归直线,必须满足以下条件A.?(y-y c )=最小值B.?(y-y c )=0C.?(y-y c )2=最小值D.?(y-y c )2=0E.?(y-y c )2=最大值17.方程y c =a+bx222222)()(.)()())((...))((.y y n x x n y x xy n r E y y x x y y x x r D L L L r C L L L r B n y y x x r A xx xy xy yy xx xy yx ∑-∑⋅∑-∑∑⋅∑-∑=-∑⋅-∑--∑===--∑=σσA.这是一个直线回归方程B.这是一个以X为自变量的回归方程C.其中a是估计的初始值D.其中b是回归系数是估计值18.直线回归方程y c=a+bx中的回归系数bA.能表明两变量间的变动程度B.不能表明两变量间的变动程度C.能说明两变量间的变动方向D.其数值大小不受计量单位的影响E. 其数值大小受计量单位的影响19.相关系数与回归系数存在以下关系A.回归系数大于零则相关系数大于零B.回归系数小于零则相关系数小于零C.回归系数等于零则相关系数等于零D.回归系数大于零则相关系数小于零E.回归系数小于零则相关系数大于零20.配合直线回归方程的目的是为了A.确定两个变量之间的变动关系B.用因变量推算自变量C.用自变量推算因变量D.两个变量相互推算E.确定两个变量之间的相关程度21.若两个变量x和y之间的相关系数r=1,则A.观察值和理论值的离差不存在的所有理论值同它的平均值一致和y是函数关系与y不相关与y是完全正相关22.直线相关分析与直线回归分析的区别在于A.相关分析中两个变量都是随机的;而回归分析中自变量是给定的数值,因变量是随机的B.回归分析中两个变量都是随机的;而相关分析中自变量是给定的数值,因变量是随机的C.相关系数有正负号;而回归系数只能取正值D.相关分析中的两个变量是对等关系;而回归分析中的两个变量不是对等关系E.相关分析中根据两个变量只能计算出一个相关系数;而回归分析中根据两个变量只能计算出一个回归系数三、填空题1.研究现象之间相关关系称作相关分析。
第10章相关分析及回归分析
第八章相关与回归分析一、本章重点1.相关系数的概念及相关系数的种类。
事物之间的依存关系,能够分为函数关系和相关关系。
相关关系又有单向因果关系和互为因果关系;单相关和复相关;线性相关和非线性相关;不相关、不完全相关和完全相关;正相关和负相关等类型。
2.相关分析,着重掌握如何画相关表、相关图,如何测定相关系数、测定系数和进行相关系数的推断。
相关表和相关图是变量间相关关系的生动表示,对于未分组资料和分组资料计算相关系数的方式是不同的,一元线性回归中相关系数和测定系数有着紧密的关系,取得样本相关系数后还要对整体相关系数进行科学推断。
3.回归分析,着重掌握一元回归的大体原理方式,一元回归是线性回归的基础,多元线性回归和非线性回归都是以此为基础的。
用最小平方式估量回归参数,回归参数的性质和显著性査验,随机项方差的估量,回归方程的显菁性査验, 利用回归方程进行预测是回归分析的主要内容。
4.应用相关与回归分析应注意的问题。
相关与回归分析都有它们的应用范围,必需明白在什么情形下能用,什么情形下不能用。
相关分析和回归分析必需以定性分析为前提,不然可能会闹岀笑话,在进行预测时选取的样本要尽可能分散,以减少预测误差,在进行预测时只有在现有条件不变的情形下才能进行,若是条件发生了转变,原来的方程也就失去了效用。
二、难点释疑本章难点在于计算公式多,不容易记忆,所以更要注重计算的练习。
为了辜握大体计算的内容,最少应认真理解书上的例题,做完本指导书上的全数计算题。
初学者可能会感到本章公式多且复杂,难于记忆,其实只要抓住Lxx、Lxy. Lyy 这三个记号,记住它们的展开式,几个主要的公式就不难记忆了。
若是能自己把这些公式推证一下,弄清其关系,那就更易记住了。
三、练习题(一)填空题1事物之间的依存关系,按照其彼此依存和制约的程度不同,能够分为()和()两种。
2.相关关系按相关关系的情形可分为()和();按自变量的多少分()和();按相关的表现形式分()和();按相关关系的紧密程度分()、()和();按相关关系的方向分()。
回归与相关分析PPT课件
yi y 2
(dfT=
i
• 离回归平方和SSE(剩余平方和,残差平 方和):
SSE yi yˆi 2
i
n-2)
第23页/共93页
(dfE=
•回归平方和SSR:
SS=R 1) i yˆi y 2
(dfR
SSR的意义:根据等式SSy=SSE+SSR可知, 如果SSR的值较大,SSE的数值便比较小,说 明回归的效果好;反之,如果SSR的值较小, SSE的数值便比较大,说明回归的效果差。
yˆ 1散点图和回归直线图
y ( ug / kg )
21 20 19 18 17 16 15
3
y = 10.987+1.5508x R2 = 0.6516
x ( ug / L )
4
5
6
7
某农药的水中含量与
鱼体中含量的关系
第21页/共93页
三、线性回归的显著性检验
第17页/共93页
(四)一元线性回归方程建立的基本步 骤(4步)
• 根据资料计算8个一级数据
• Σx , Σx2, x , Σy , Σy2 , y , Σxy , n
• 计算3个二级数据:SSx , SSy , SP
• 计算参数的估计值a和b,并写出回归方程
a y bx b SP SSx
yˆ a bx
第31页/共93页
• 2、β的置信区间
• b 的标准误为:sb se SSx
•而
b
t
sb
t (n 2)
• 所以 β的置信区间为:
(b t sb , b t sb )
第32页/共93页
•(二)对α+βx的区间估计 • 对α+βx的区间估计,即是对总体 均值(期望值)的区间估计。 • 当x=xi 时,估计标准误为:
第10章 直线回归与相关分析
回归方程的基本条件(性质): 回归方程的基本条件(性质): 性质1 性质1 性质2 性质2 性质3 性质3
ˆ 最小; Q = ∑( y − y)2 = 最小;
ˆ ∑( y − y) = 0
; 。
回 归 直 线 通 过 点 (x, y)
2
ˆ Q = ∑( yi − yi ) = ∑[ yi − (a + bxi )]
二、直线回归的显著性检验
回归关系的假设测验: 回归关系的假设测验: 对于样本的回归方程,必须测定其来自无 对于样本的回归方程,必须测定其来自无 直线回归关系总体的概率大小。只有当这种概 直线回归关系总体的概率大小。 率小于0.05或0.01时,我们才能冒较小的危 或 率小于 时 险确认其所代表的总体存在着直线回归关系。 险确认其所代表的总体存在着直线回归关系。 这就是回归关系的假设测验 。 回归关系的假设测验有两种方法: 测验或F 回归关系的假设测验有两种方法:t测验或F测验
由于x变数的实测区间为[31.7,44.2], 由于x变数的实测区间为[31.7,44.2], [31.7 在应用=48.5-1.1x于预测时,需限定x 在应用=48.5-1.1x于预测时,需限定x的区间 =48.5 于预测时 为[31.7,44.2];如要在x<31.7或>44.2的 [31.7,44.2];如要在x 31.7或 44.2的 区间外延,则必须有新的依据。 区间外延,则必须有新的依据。
整理后可得: 整理后可得:
na + ( ∑ xi )b = ∑ yi ( ∑ xi ) a + ( ∑ x i ) b = ∑ x i y i
2
上式叫做a与b的正规方程组 正规方程组。 正规方程组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10 相关与回归分析研究两个或多个变量之间的关系时,常常用到相关分析和回归分析。
本章介绍在SPSS 中进行相关分析和回归分析的计算方法。
10.1 双变量相关分析若两变量是计量资料且均服从正态分布,其相关密切程度可用Pearson积差相关系数(简单相关系数)描述,而等级资料或不满足正态性的计量资料相关性研究是使用Spearman 和Kendall相关系数。
在SPSS中,先对两变量作正态性检验,再选择菜单Analyze→Correlate (相关)→Bivariate(两两相关),进行相关分析。
例10-1某研究所研究某种代乳粉的营养价值时,用10只大白鼠作试验,得到大白鼠进食量(g)和增加体重(g)的数据如表10-1,试研究进食量与增加体重的相关关系。
表10-1 大白鼠进食量与增加体重编号 1 2 3 4 5 6 7 8 9 10进食量820 780 720 867 690 787 934 679 639 820增重165 158 130 180 134 167 186 145 120 158 解:首先建立配对格式数据文件如图10-1。
经检验两变量均服从正态分布;选择菜单Analyze→Correlate→Bivariate,弹出Bivariate Correlations对话框,见图10-2;将左边框中的变量x、y送入Variables框中;单击OK。
图10-1 例10-1数据文件图10-2 Bivariate Correlations对话框图10-2对话框中,Correlation Coefficients(相关系数)框中,Pearson:皮尔逊积差相关系数,系统默认;Kendall’s tau-b:肯德尔等级相关系数;Spearman:斯皮尔曼等级相关系数。
若选择Flag significance Correlations(标记显著性),则用“**”、“*”分别表示P≤0.01、0.01<P≤0.05。
主要结果见图10-3,Pearson相关系数r=0.940、P=0.000<0.001,可以认为大白鼠进食量与增加体重呈正向直线相关。
图10-3 例10-1计算结果图10-4 例10-2计算结果例10-2测得2~7岁急性白血病患儿的血小板数x与出血症状y资料如表10-2所示。
研究血小板数x与出血症状y之间有无联系。
表10-2 血小板数x与出血症状y资料x 54270 13790 16500 31050 42600 12160 74240 106400 126170 129000 143880 200400 y +++++-+++++----+++-解y是等级资料,将等级-、+、++、+++分别用0、1、2、3表示,将表10-2中数据建立成2列12行的数据文件。
仿例10-1操作,在图10-2所示Bivariate Correlations 对话框中选中Kendall’s tau-b和Spearman。
运行结果见图10-4。
Kendall相关系数=-0.377、P=0.117>0.05,Spearman相关系数=-0.422、P=0.172>0.05,不能认为2~7岁急性白血病患儿的血小板数与出血症状之间有直线关系。
10.2 偏相关分析多变量相关分析时,有时需要在剔除其它变量影响的情况下,研究两个变量之间的相关关系,这就是偏相关分析。
经偏相关分析计算出的相关系数为偏相关系数。
偏相关系数在原始数据是随机的多元正态分布时才是有效的,在计算偏相关系数前应该先检验各变量的正态性。
偏相关分析不分自变量和因变量。
在SPSS中选择菜单Analyze →Correlate→Partial(偏相关)命令,可以完成偏相关分析的计算。
例10-310名17岁女生的体重x1(kg)、胸围x2(cm)、胸围的呼吸差x3(cm)、肺活量y(ml)的数据如表10-3所示。
试分析y与x1、x2、x3的关系。
表10-3 女中学生的数据编号 1 2 3 4 5 6 7 8 9 10x135 40 40 42 37 45 43 37 44 42x269 74 64 74 72 68 78 66 70 65x30.7 2.5 2 3 1.1 1.5 4.3 2 3.2 3y 1600 2600 2100 2650 2400 2200 2750 1600 2750 2500解将表10-3中数据建立成10行4列的数据文件,如图10-5。
经检验四个变量均服从正态分布;选择菜单Analyze→Correlate→Partial(偏相关),弹出Partial Correlations对话框,见图10-6;将计算偏相关系数的变量(y、x3)送入Variables (检验变量)框中、扣除影响的变量(x1、x2)送入Controlling(控制变量)框中;单击Options按钮,选中Zero-order correlations(零阶相关系数),则可以输出简单相关系数,单击Continue;单击OK。
图10-5 例10-3数据文件图10-6 Partial Correlations对话框图10-7 例10-3计算结果输出结果见图10-7。
y与x3的简单相关系数为0.729,在剔除x1、x2影响后,y与x3的偏相关系数是0.321。
再选择Partial命令,这次将y、x2送入Variables框,x1、x3送入Controlling框,单击Options按钮,取消Zero-order correlations。
可得剔除x1、x3影响后y与x2的偏相关系数为0.558,y与x2的简单相关系数为0.586(见图10-7)。
类似计算,剔除x2、x3影响后y与x1的偏相关系数为0.565,y 与x 1简单相关系数为0.695。
在3个简单相关系数中y 与x 3的最大(0.729),而剔除其它变量的影响后,在3个偏相关系数中y 与x 3的最小(0.321),y 与x 1、y 与x 2的偏相关系数接近(0.565、0.558),说明y 与x 1、x 2的相关关系接近,y 与x 3的相关关系最不密切。
10.3 一元线性回归一元线性回归分析研究一个自变量和一个因变量之间是否存在线性关系以及存在什么样的线性关系,建立一元线性回归方程:ˆya bx =+。
在SPSS 中选择菜单Analyze →Regression (回归)→Linear (线性回归)命令可以完成一元线性回归的计算。
例10-4 对例10-1中大白鼠的进食量与增加体重进行回归分析。
解:数据文件同例10-1。
选择菜单Analyze →Regression →Linear ,弹出Linear Regression (线性回归)主对话框,将因变量y 送入Dependent (因变量)框中,自变量x 送入Independent (s )(自变量)框中,如图10-8所示;单击OK 。
图10-8 Linear Regression 主对话框主要输出结果见图10-9、10、11。
图10-9输出回归模型摘要,相关系数r =0.940,决定系数r 2=0.883,调整的决定系数r 2=0.868,剩余标准差=7.879。
图10-10输出回归方程的方差分析,F =60.197,P =0.000<0.001,回归方程有高度统计学意义。
图10-11输出回归方程的参数估计,回归方程的常数项(Constant )是-17.357,回归方程的斜率(回归系数)是0.222,据此可以写出回归方程:ˆ17.3570.222yx =-+。
表中还用t 检验对截距和回归系数进行了检验,其中对截距的检验中,t =-0.780,P =0.458,不能拒绝“截距为0”的原假设。
对回归系数的检验中,t =7.759,P =0.000,拒绝“回归系数为0”的原假设,t =7.759的平方就等于方差分析中的F 值,在一元线性回归中,对回归系数的t 检验、方差分析以及例10-1中的相关性检验完全等价。
表中还给出标准化的回归系数(StandardizedCoefficients )为0.940。
图10-9 例10-4回归模型摘要图10-10 例10-4回归方程的方差分析图10-11 例10-4回归方程的参数估计图10-8所示Linear Regression 主对话框其他选项的说明:单击Statistics 按钮,弹出如图10-12所示的线性回归统计量对话框,可以选择输出的统计量。
单击Save 按钮,弹出如图10-13所示的线性回归保存对话框,可以选择要保存为新变量的统计量。
单击Plots 按钮,弹出线性回归绘图对话框,可指定绘制残差图、正态概率图等。
单击Options 按钮,弹出的线性回归选项对话框将在后面的逐步回归中讲解。
图10-12 线性回归统计对话框图10-13 线性回归保存对话框10.4 多元线性回归多元线性回归分析研究多个自变量和一个因变量之间是否存在线性关系以及存在什么样的线性关系,建立多元线性回归方程:01122ˆm m y b b x b x b x =++++。
在SPSS 中选择菜单Analyze →Regression →Linear (线性回归)可以完成多元线性回归的计算。
例10-5 对例10-3中体重x 1、胸围x 2、胸围的呼吸差x 3、肺活量y 进行回归分析。
解:数据文件同例10-3。
选择菜单Analyze →Regression →Linear (线性回归),弹出如图10-8所示的Linear Regression 主对话框,将因变量y 送入Dependent (因变量)框中,自变量x 1、x 2、x 3均送入Independent (s )(自变量)框中;单击OK 。
输出结果的格式和例10-4类似。
由回归方程的方差分析,F =5.617,P =0.035<0.05,拒绝0123:0H βββ===,所以1β、2β、3β不全为0,拟合的回归方程有统计学意义。
由图10-14知,0β、1β、2β、3β的估计值 b 0、b 1、b 2、b 3分别为-3035.536、60.932、37.808、101.379,据此可以写出回归方程:123ˆ3035.53660.93237.808101.379yx x x =-+++。
由图10-14中回归系数的t 检验,P 均>0.05,不能否定i β(i =1、2、3)为0的假设,这与方差分析的结果有出入,所以要对自变量作进一步的筛选(见下一节逐步回归)。
图10-14 例10-5回归方程的参数估计10.5逐步回归多元线性回归方程中,可能有的自变量对因变量的影响很强,而有的影响很弱,甚至完全没有影响,这就需要对自变量进行筛选,尽可能将回归效果显著的自变量选入回归方程,将作用不显著的自变量剔除在外。