集装箱码头泊位、岸桥协调调度优化

合集下载

集装箱码头连续泊位与岸桥联合调度

集装箱码头连续泊位与岸桥联合调度
量符 号定义 : 是一个充分大的正整数 : 是岸桥水 平移 动的速度 , 单 O 引言 米/ 分钟 ” ; △z 是一 个贝位沿码头岸线方 向的水平长度 是泊位 泊位调度和岸桥调度常作为码头运作 的两个独立的环节 . 当集装 位是 “ 箱码 头处于繁忙状态时 . 船舶按照最 优的靠泊计划靠泊 后 . 存在岸桥 偏移 系数 ; 是泊位总长 ( 每1 0 米一个单位 ) ; △d 是相邻两条船舶之 △t 是泊位重叠 区域的相邻靠泊 的两条船舶 的安全 间 不能 立即服务 . 需要在泊位进一步等 待岸桥的情况 . 浪费了宝贵 的时 间的安全距 离: 6 是船 i 的最 优靠泊位置 : G是船 i 到港时 间; 间 国内外对港 V I 泊位分配的优化研究 和岸桥调度的优化研究已取得 隔。船 的相关属 性 : 重要 进展 . 但研究 只局 限于泊位与岸桥的单 独调度 。协调调度优化不 一和 一分别是 船 i 允许 同时作业 的岸桥数量的最大值 和最小值 : 上任务 n的装卸 台时 ; 厶是船 i 的长度。 决策变量定义 : b 是船 仅同时解决 了集装箱码头作业优化的两个核心子问题 . 同时由于泊位 是船 i △6 是船 i 偏移最佳 靠泊位置 的距 分配和岸桥 调度互相影响 . 协调优化相 比 单 独研究强调 了系统优化 的 在泊位坐标轴上的实际停靠位置 : / X b i = I b 一 ; r f 是实际分 配给船舶 i 的岸桥 的数量 : f 船i 上任务 n 统一性和协 调性 , 大大增强 了优化效果 。 因此, 为计划周期 内的到港船 离 , | s 是船 i 在港开始服 务的 时间 ; E 是船 i 在 港结束 服务 的时 舶分配泊位和岸桥 以及岸桥在装卸任务间的调度时 . 应将 泊位资源和 的位置 ; s 是船 i 上任务 / Z 开始服务的时间 ; 曰 是船 i 上任务 n 结束 服务 岸桥资源联系起来 . 统筹协调 。对于连续泊位下为船舶配置泊位和将 间 ; t 是当岸桥 k 为任务 n 服务 ,使得所有需要移动 的岸桥 移动 特定 的岸桥在任务 问调度 的研 究 . 是缩短船 舶在港时间 、 提高港 口经 的时间 ; 至恰当的位置所用 的时间 。h 设为 1 , 如果船 i 在船 i : 的左侧 , 并 且 济效益的关键 . 具有重要 的意义 至少有一个单位时 间是相 同的 , 否则 为 O 设为 1 , 如果 船 i 。 比船 i : 1 问题 描 述 早靠泊 , 并且至少有 一个单位 的泊位 区域是相 同的 , 否则 为 0 ; 设 船舶抵港前 . 码头调度计 划部 门根据计划船舶到港时间和相关信 为 1 , 如果 船 i 上 的任务 n在时间 f 被岸桥 k服务 , 否则为 0 ; Y 设 为 息为船舶安排泊位和岸桥计划 . 使船舶总在港时间最小。 由于船舶停 1 , 如果船 i 在时间 i 被 岸桥 k 服务 , 否则 为 0 ; 设为 1 , 如果 i 上的 靠 的泊位 不同 . 该泊位附近的岸桥工作 状态不同 . 导致船舶 的服务时 任务 R 2 的开始 时间在 n 的结束 时间之后 . 否则为 O : 与岸桥 k状态相 间不 同。 泊位决策影 响岸桥分配和调度决策 . 从而影响船舶在港 时间。 设 为岸桥状态 变化 的期数 ; 三 Gr 是岸 桥 k在第 期 的 对 于所有抵港的船舶而言 , 其在港 时间由三部分构成 : 一 是等待泊位 关 的变量是 : 位置 ; c 是岸桥 k 在第 期开始空闲 , 可以进行 作业 的时刻 。 的时间. 二是等待岸桥 的时间 . 三是岸桥作业 的时间 . 3模型建立 国内外 学者对 集装箱码头 的泊位 分配和岸桥调度 问题的单独研 2 究 比较广泛 . 但对连续泊位分配和多条船舶的岸桥联合调度 问题研究 的甚少。M e i s e l [ 等 在连续泊位与岸桥 的调度 中. 重点考虑了岸桥 的生 产效率这一现实 问题 ,考虑 了分配岸桥的数量 与生产效率 的递减关 系. 并将实际靠泊位置与最优靠泊位置的距 离转化 为对岸桥 生产效率 的影响。Z h a n g e t a 1 . 对连续泊位 和特定岸桥的调配问题建立了混合 整数规模模 型, 并设计 了次梯 度优化算法求解 . 对一个实 际算例 的求 解进一步验证了算 法。李娜等【 3 l j c 寸 连续泊位和岸桥联合动态调度问题 做 了较深入的研 究。将上述三部分在港时间联合在一个模 型中 . 对泊 位调度 、 岸桥分配和岸桥调度三个环节集成优化 董 良才等 研究了单 船岸桥调度问题 , 在模 型中 , 根据作业类型和舱盖板构造 . 把每一个贝 位 的作业分成多个作业单 元 . 以便能达到多 台作业岸桥作业量的均衡 化。 在算法求解 中, 设计 了基于“ 挤出式” 编码 的遗传算法。 L i a n g 等【 辞

集装箱码头泊位与岸桥联合动态调度

集装箱码头泊位与岸桥联合动态调度

泊位调度问题的基本假设包括 : ①每条船的计划作
1 泊位与岸桥联合调度问题 _ 3
业时间是己知的;②每条船必须且仅被服务 1 ; 次 ③每
个泊位在同一时间只能服务 1 艘船舶, 且不考虑作业中 的移泊 ; ④泊位必须满足船舶的物理约束 , 如满足水深、 岸线长度等要求。
船舶在港时I 、 司由船舶到港后的等待时间和装卸作
适合用于求 解该问题。泊 位、岸桥单独优化与联合优化效果的比较结果指出, 对系统进行联合优化, 有利于提高集装
箱码头运行效率。
关键词 :泊位 ;岸桥 ;联合调度 ;动态调度 ;遗传算法 中图分类号 :U1 9 2 6. 6 文献标志码 :A 文章编号 :17 ~7 8 (0 11 —0 0 —6 6 3 102 1)1 89
业的时间 2 部分组成 。 在泊位和岸桥调度过程中, 等待 时间与作业时间存在一定的相互制约现象。 泊位与岸桥 的联合调度就是指通过分配合理的泊位 , 选择恰当的靠
1 岸桥调度问题 . 2 岸桥调度是在既定的泊位分配方案下, 根据到港船
舶装卸作业量和离港时间等约束 , 为船舶分配若干岸桥 完成船舶的装卸任务。缩短岸桥闲置时间、最小化船舶 在港装卸作业时间是岸桥调度的主要优化目标 , 同时需 要满足一些现实约束 。
A s a tB s n h r n s t aoao dat losa tf t a ae Q )ceun , e ya c C b t c: ae r do te ur tt c l tna u cnt is o h q y r ( C s dl gt nmiQ c e a l ci n c a i rn r e u c n h i h d
泊顺序 , 进而配备相应的岸桥 , 并确定岸桥数量 , 将岸 桥与泊位看作一个协调作业的整体, 在等待时间和作业

集装箱码头泊位、岸桥和集卡协同调度优化

集装箱码头泊位、岸桥和集卡协同调度优化

集装箱码头泊位、岸桥和集卡协同调度优化田星;孟庆柱【摘要】针对集装箱码头泊位、岸桥和集卡的协同调度问题,考虑了船舶到港的先后顺序、实际操作过程中岸桥和集卡的相关约束,以物流作业总成本最低为目标,构建了一个数学模型.通过分析我国T集装箱码头实际操作过程中船舶待卸载集装箱量与分配的岸桥数量之间的关系,设置了一个常数k,对每艘船分配的岸桥数进行预处理,即每艘船分配的岸桥数等于船舶待卸载的集装箱数量与常数k的比值,将该模型转化为一个整数线性规划数学模型.然后以该码头的真实数据为算例,运用商业软件ILOG CPLEX进行求解,在可接受的时间内求得了最优解,并将求得的结果与实际操作过程进行对比,表明得到的最优解在实际操作过程中是可行的,验证了模型的有效性和准确性.【期刊名称】《物流技术》【年(卷),期】2018(037)003【总页数】6页(P32-36,130)【关键词】集装箱码头;泊位;岸桥;集卡;协同调度;整数线性规划【作者】田星;孟庆柱【作者单位】武汉理工大学物流工程学院,湖北武汉 430063;天津东方海陆集装箱码头有限公司,天津 300456【正文语种】中文【中图分类】F550.6;U691.31 引言对集装箱码头来说,泊位、岸桥和集卡是三种重要的基础资源,泊位分配、岸桥配置和集卡调度对提高集装箱码头的运作效率至关重要。

泊位分配的目的是为了更好地利用有限的泊位资源,减少船舶在港产生的费用;岸桥是码头上比较昂贵的资源,岸桥调度指在满足岸桥位置约束的条件下合理配置岸桥的数量,以减少岸桥的闲置时间,提高岸桥的利用率;集卡运输集装箱在岸桥和堆场之间移动,集卡数量过多,会造成空间有限的堆场的拥堵,同时增加集卡的闲置率,降低集卡的作业效率,而集卡数量不足,会造成集装箱运输的延迟,从而降低了岸桥的作业效率。

这三种资源紧密相关、具有联动关系,每种资源的调度都会对其它资源的调度产生影响。

对港口来说,在原有硬件基础设施上,单独对其中某种资源进行调度优化,并不能实现所有资源的最优化利用,不能达到集装箱码头整体物流作业效率的最优化。

港口集疏运体系的协同优化与智能调度

港口集疏运体系的协同优化与智能调度

港口集疏运体系的协同优化与智能调度港口作为国际贸易的重要节点,承载着货物进出口的集散和转运任务。

港口的运作效率直接影响着国际物流的畅通与顺利进行。

为了更好地提高港口运营效率,协同优化与智能调度成为了当下亟需解决的问题。

一、港口协同优化的重要性传统的港口运营模式存在着很多问题,如各环节之间信息传递不畅、作业不协同、效率低下等。

这不仅导致货物集疏运效率降低,还会给港口运营企业造成经济损失。

因此,港口协同优化成为了提高港口运营效率的关键。

港口协同优化的核心是优化各个环节之间的协同作业。

通过科学合理地分配人力资源、技术设备以及储运空间等资源,使各个环节之间的作业有机地衔接起来,实现高效运营。

这要求港口运营企业在信息、技术、设施等方面进行全面的优化和升级。

二、港口智能调度提高效率随着信息技术的迅速发展,港口智能调度成为了提高港口运营效率的重要手段。

通过引入智能调度系统,可以实现对港口各项作业的自动控制和智能化管理。

首先,智能调度系统可以对货物进出口、集装箱装卸、泊位申请等环节进行实时监控和管控。

通过实时数据采集和分析,系统能够及时发现问题和短板,并及时调整作业计划,提高作业效率。

同时,系统还可以根据历史数据和运行状态,为港口作业提供智能预测和优化方案,提前做好资源准备。

其次,智能调度系统可以实现各个环节之间的协同作业。

通过数据共享和信息互通,各个环节可以实现实时的信息共享和资源调度。

比如,集装箱装卸的作业时刻可以与货物的进出口时间、运输工具的到达时间等进行自动关联,从而实现集装箱的快速装卸和转运。

三、挑战与改进然而,港口集疏运体系的协同优化与智能调度面临着一些挑战。

首先,港口运营企业需要加强信息系统和技术设备的升级,提高系统的稳定性和可靠性。

其次,港口各个环节之间的数据共享和信息互通还存在一些技术难题,需要在数据安全和隐私保护方面进行进一步的研究和探索。

再次,由于港口作业涉及多个主体的协同合作,需要建立起一个统一的标准和规范体系,以减少协同作业中的摩擦和冲突。

岸桥移动约束的连续泊位和岸桥集成调度

岸桥移动约束的连续泊位和岸桥集成调度

Co n t i n u o u s b e r t h a nd q ua y c r a n e i n t e g r a t e d s c h e d u l i ng
wi t h q u a y c r a n e t r a v e l i n g r e s t r i c t i o n
r e a l i z e r a t i o n a l d i s t r i b u t i o n o f q u a y c r a n e s i n q u a n t i t y t h r o u g h e x p a n d i n g t h e e x i s t i n g b e r t h a n d q u a y c r a n e
i n t e g r a t e d s c h e d u l i n g m o d e l s .T h e n ,b y a n o b j e c t i v e f u n c t i o n t h a t c a n m i n i m i z e t h e s h i p d e l a y c o s t a n d
t he q u a y c r a n e t r a v e l i n g c o s t ,t h e b e r t h a nd q u a y c r a n e i n t e g r a t e d s c he d ul i n g mi x e d i n t e g e r p r o g r a mmi n g
第3 4卷 第 4期
2 0 1 3年 1 2月 Leabharlann 上 海 海 事 大 学 学

Vo 1 . 3 4 No . 4 De c. 2 01 3

连续泊位调度与岸桥配置协同优化

连续泊位调度与岸桥配置协同优化

桥交叉 等现 实约 束 , 设计 了启 发式算 法 , 照船 舶预 按 计到港 时 间逐 一 配置 。文献 [ 1 和文献 [ 2 均考 虑 1] 1]
了船舶 优先权 对 泊位 配 置 的影 响 , 都 是 针对 离 散 但
的泊位 调度 问题 。
调 度 与岸桥 配置 的协 同优 化 问题 。
关键词 : 通运输经济学 ; 续泊位调度 , 桥配置 , 交 连 岸 混合 整 数 规 划 , 发式 算 法 启 中 图分 类 号 : 6 . 2 U1 9 6 文 献标 志码 : A
C o d n tdOp i z t n o o t u u e t n u yC a eAl c t n o r iae t miai fC n i o sB rh a d Q a r n l a i o n o o
1 问题 建模
1 1 建 模 假 设 .
时的需 求 ; 和 r 分 别 为船 i 许 同时作业 岸桥 r 允 的最 大数 量 和 最 小 数 量 ; A ET 为 船 i预 计 到港 时
间; a为多 台岸 桥 同 时工 作 的干 扰 系 数 ; 为 泊位 偏
移 系数 ; 为 一个 充分 大 的正整数 。 M 对 于船 i ∈V , 策 变 量 定 义 为 : 船 i的 船 决 b为
为便于计 算 , 将泊 位 划 分 为每 1 一 个单 位 , 0m
时 间 划 分 为 每 1h一 个 单 位 , 成 以 泊 位 为 横 轴 、 构 时
间为纵 轴 的二 维 坐标 系 ( 图 1 。泊位 配置 即可 理 见 )
解 为 : 每个 船舶 找到 一个 空 闲区域 , 足船 舶长度 为 满
头 在泊 位坐 标轴 上 的实 际 停 靠位 置 ; B S 和 F 分 . B 别 为船 i 在港 开始 服务 和结束 服务 的时 间 ; b 为船 A i 移 最 佳 靠 泊 位 置 的距 离 , b — l 。对 于 偏 A 一b l b 船 i EV 的各 变 量 均 已知 。此外 , 有 三 个 二 元 决 还

《集装箱码头泊位—岸桥—集卡调度优化研究》范文

《集装箱码头泊位—岸桥—集卡调度优化研究》范文

《集装箱码头泊位—岸桥—集卡调度优化研究》篇一一、引言在现今的全球化经济体系中,集装箱运输已经成为贸易往来和国际物流的重要组成部分。

一个高效且运作流畅的集装箱码头不仅影响港口的运营效率,而且影响整个供应链的效率。

其中,泊位、岸桥和集卡是集装箱码头运作的关键环节。

本文旨在研究并优化这些环节的调度问题,以提高码头的整体运作效率。

二、集装箱码头泊位调度优化泊位调度是集装箱码头运作的基础,它直接影响到船舶的停靠时间、装卸效率以及后续的物流环节。

优化泊位调度的关键在于合理安排船舶的停靠位置和停靠时间,以最大限度地减少船舶等待时间和提高装卸效率。

对于泊位调度的优化,我们提出了一种基于实时数据和预测数据的调度算法。

该算法可以根据船舶的大小、预计的装卸时间、码头的实时运作情况等因素,动态地分配泊位。

同时,我们还可以利用大数据和人工智能技术,对历史数据进行深度分析,以预测未来一段时间内的船舶到达情况和码头运作情况,从而提前进行泊位的优化调度。

三、岸桥调度优化岸桥是连接船舶和码头的关键设备,其调度效率直接影响码头的整体效率。

在优化岸桥调度的过程中,我们首先要确定每台岸桥的装卸能力,并根据船舶的装卸需求和岸桥的可用性,合理地分配装卸任务。

此外,我们还可以利用智能化的调度系统,对岸桥进行动态调度。

该系统可以根据实时的装卸进度、船舶的离港时间、岸桥的维护情况等因素,自动调整岸桥的调度计划,以确保装卸任务的及时完成。

四、集卡调度优化集卡是连接码头和堆场的桥梁,其调度效率直接影响到码头的物流效率和堆场的存储效率。

优化集卡调度的关键在于合理安排集卡的运输路线和运输时间,以减少空驶率、提高装卸效率。

我们可以通过建立集卡调度模型,根据实时的货物信息、堆场的情况、集卡的数量和位置等因素,制定出最优的运输路线和运输时间。

同时,我们还可以利用物联网技术和智能调度系统,对集卡的运行情况进行实时监控和调度,以确保集卡的高效运行。

五、综合优化策略在实际的码头运作中,泊位、岸桥和集卡的调度是相互关联、相互影响的。

《集卡调度下的集装箱码头场桥调度及堆场分配问题》范文

《集卡调度下的集装箱码头场桥调度及堆场分配问题》范文

《集卡调度下的集装箱码头场桥调度及堆场分配问题》篇一一、引言随着全球贸易的不断发展,集装箱码头作为货物运输的关键节点,其作业效率与整体物流的顺畅性息息相关。

在集装箱码头作业中,场桥作为核心设备,负责集装箱的装卸与转运,而集卡则承担着集装箱在码头内部的运输任务。

本文将重点探讨集卡调度下的集装箱码头场桥调度及堆场分配问题,旨在提高码头作业效率,优化资源配置。

二、场桥调度问题及重要性场桥调度是集装箱码头作业中的关键环节,它涉及到集装箱的装卸、转运以及与集卡、堆场的协同作业。

合理的场桥调度能够确保集装箱的快速、准确转运,减少作业等待时间,提高码头的吞吐能力。

然而,由于码头作业环境的复杂性,如船舶靠泊时间的不确定性、集装箱数量的动态变化等,使得场桥调度成为一个具有挑战性的问题。

三、集卡调度与场桥调度的关系集卡作为码头内部的运输工具,其调度与场桥调度紧密相关。

集卡负责将集装箱从堆场运至场桥下进行装卸作业,因此集卡的调度效率直接影响到场桥的作业效率。

在集卡调度中,需要考虑的因素包括集卡的数量、行驶路径、与场桥的协同等。

通过合理的集卡调度,可以减少集卡的空驶和等待时间,提高码头的整体作业效率。

四、堆场分配问题及其影响堆场是集装箱码头的重要组成部分,用于存放待装卸的集装箱。

堆场分配是指根据集装箱的类型、目的地等信息,合理安排堆存位置。

合理的堆场分配能够提高码头的作业效率和资源利用率,减少场桥的作业距离和时间。

然而,由于码头作业的动态性和不确定性,堆场分配问题也具有一定的复杂性。

五、集卡调度下的场桥调度及堆场分配策略针对集卡调度下的场桥调度及堆场分配问题,本文提出以下策略:1. 优化集卡调度:通过智能调度系统,实时掌握集卡的数量、位置和状态信息,合理安排集卡的行驶路径和任务。

同时,采用先进的通讯技术,实现集卡与场桥、堆场之间的信息共享和协同作业。

2. 智能场桥调度:利用现代信息技术和人工智能算法,对场桥的作业任务进行智能分配和优化。

港口码头作业流程的优化与协调

港口码头作业流程的优化与协调

港口码头作业流程的优化与协调一、作业流程优化1.设立作业流程标准:制定详细而规范的港口作业流程标准,包括作业前、中、后的各项操作要求,明确各环节责任人和时间节点,统一作业方式。

2.使用信息化系统:建立港口信息化管理系统,整合各项作业流程信息,提供实时数据分析和管理决策支持,提高作业效率和监督能力。

3.优化作业设备配置:根据实际需求,合理配置作业设备,提高装卸效率。

同时,采用先进的智能设备和技术,如自动化装卸机械、无人驾驶车辆等,减少人工操作,提高安全性和效率。

4.制定作业指导手册:为各岗位的作业人员制定详细的作业指导手册,包括操作规范、安全规定、应急处理等内容,提高作业标准化和专业化水平。

5.进行作业流程评估:定期对作业流程进行评估,分析存在的问题和瓶颈,寻找优化的空间和解决方案,及时调整流程,不断提高作业效率和质量。

6.加强作业人员培训:通过培训提升作业人员的专业技能和操作水平,提高工作效率和减少操作错误,确保作业高效完成。

二、作业流程协调1.增加沟通与协作:港口内各部门之间应加强沟通和协作,定期召开联席会议,共同讨论和解决作业中存在的问题,确保各项作业流程协调一致。

3.构建信息共享平台:建立信息共享平台,包括各种作业信息和数据的共享,提供给各相关部门使用和参考,提高港口作业流程的信息化和集约化水平。

4.推动相关部门合作:与海关、边检、船舶代理等相关部门建立良好的合作关系,加强信息交流和数据共享,提前做好协调工作,减少作业中的等待时间和耽误。

5.加强与供应链合作:与港口物流、货主、货代等供应链各环节合作,共同优化物流流程,提前做好预测和计划,协调资源和信息,提高整个供应链的流程效率。

总结起来,港口码头作业流程的优化与协调需要相关部门之间的密切合作、信息共享以及作业流程的标准化和专业化。

通过不断的改进和调整,可以提高港口作业效率和质量,为港口发展和供应链的顺畅运作提供有力保障。

基于泊位计划的集装箱码头岸桥动态调度优化

基于泊位计划的集装箱码头岸桥动态调度优化

分 考虑 岸桥 不 能 交叉作 业 、 卸 任务 有作 业顺 序要 求 等现 实约 束 下 , 此 问题 构 建 了非 装 对
线 性数 学规 划模 型 , 于 问题 自身 的特 点设计 了基 于任 务排 序 的 染 色体 结构 , 基 用遗传 算 法进行 求 解.通过 与 文献 中单 船 的调 度 结果 的 对 比 、 单船 岸 桥 调 度 与 多船 动 态岸 桥 调 度 结 果的 对 比 , 以及 多船 动 态岸桥 调 度 的仿 真 实验 , 明 了模 型及 算法 的有 效性 . 证 关 键词 : 系统工程 ; 路运 输 ; 水 岸桥 分 配 ; 态调 度 ; 线性规 划 ; 动 非 遗传 算 法
中图分 类号 : U 9 64 文献 标识 码 : A
n Opi z t n o a a eDy a i c e u i g Ba e n t miai fQu yCr n n m c S h d l s d o o Be t c e uls i n a n r Te m i a rh S h d e n Co t i e r n l
摘 要 : 所 谓基 于泊位 计划 的 集装 箱码 头岸 桥 动 态调 度 问题 , 指 在 计 划周 期 内 , 每 是 在
艘 船舶 均 已安排 了靠泊 时 间和 靠泊位 置 的前 提 下 , 有 限 的岸 桥 资 源 在船 舶 上 的装 卸 将
任 务 间进. 动 态分 配与 排序 , 彳 亍 以最 大限 度 地减 少计 划 期 内所有 船 舶 的 滞 港 时 间.在 充
第 1卷 第3 1 期
21 0 1年 6月 பைடு நூலகம்
交通 运输 系统 工程 与信 息
J u n lo r n p rai n S se n i e rn n n omain T c n l g o r a f a s o tt y tms E gn e i g a d I f r t e h o o y T o o

单船岸桥分配与调度集成优化模型

单船岸桥分配与调度集成优化模型

单船岸桥分配与调度集成优化模型郑红星;吴岳;涂闯;刘进平【摘要】针对集装箱码头泊位确定条件下的单船岸桥(QC)分配和调度问题,建立了线性规划模型.模型以船舶在泊作业时间最短为目标,考虑多岸桥作业过程中的干扰等待时间与岸桥间的作业量均衡,并设计了嵌入解空间切割策略的改进蚁群优化(IACO)算法进行模型求解.实验结果表明:与可用岸桥全部投放使用的方法相比,所提模型与算法求得结果平均能够节省31.86%的岸桥资源;IACO算法与Lingo求得的结果相比,船舶在泊作业时间的平均偏差仅为5.23%,但CPU处理时间平均降低了78.7%,表明了所提模型与算法的可行性和有效性.【期刊名称】《计算机应用》【年(卷),期】2015(035)001【总页数】6页(P247-251,261)【关键词】岸桥分配和调度;整数线性规划;作业量均衡;干扰等待时间;船舶在泊作业时间;改进蚁群优化算法【作者】郑红星;吴岳;涂闯;刘进平【作者单位】大连海事大学交通运输管理学院,辽宁大连116026;大连海事大学交通运输管理学院,辽宁大连116026;大连海事大学交通运输管理学院,辽宁大连116026;大连海事大学交通运输管理学院,辽宁大连116026【正文语种】中文【中图分类】F224;TP18在集装箱码头中,当待作业船舶靠泊后,该船的岸桥(Quay Crane, QC)分配与调度方案将直接影响船舶的在泊作业时间,这是当前研究集装箱码头的热点问题之一。

针对集装箱码头单船岸桥调度问题,国内外很多学者都对其进行了深入研究。

其中Kim等[1]采用分支定界法(Branch and Bound, B&B)和贪婪随机适应性搜索算法(Greedy Randomized Adaptive Search Procedure, GRASP)对单船作业的岸桥调度问题进行了研究,最后验证了GRASP更有效;但是该文献中为船舶分配的岸桥数量最多为3台,有一定的局限性。

《集装箱码头泊位—岸桥—集卡调度优化研究》范文

《集装箱码头泊位—岸桥—集卡调度优化研究》范文

《集装箱码头泊位—岸桥—集卡调度优化研究》篇一一、引言在现今的全球化经济体系中,集装箱运输已经成为世界货物流通的关键组成部分。

随着集装箱吞吐量的日益增加,如何实现码头泊位、岸桥及集卡的高效调度,成为了港口物流领域研究的热点问题。

本文将针对集装箱码头泊位—岸桥—集卡调度优化进行研究,旨在提高码头的作业效率和服务质量。

二、研究背景集装箱码头的作业效率直接影响到港口的吞吐能力及物流成本。

在码头作业中,泊位分配、岸桥操作及集卡调度是三个关键环节。

这三个环节的协同作业对于提高码头整体作业效率具有重要意义。

然而,在实际操作中,由于各种因素的影响,如船舶到港时间的不确定性、岸桥和集卡资源的有限性等,往往导致作业效率低下,甚至出现拥堵现象。

因此,对集装箱码头泊位—岸桥—集卡调度进行优化研究具有重要的现实意义。

三、研究内容1. 泊位分配优化泊位分配是码头作业的第一步,合理的泊位分配能够为后续的岸桥操作和集卡调度提供良好的基础。

本研究将通过建立数学模型,考虑船舶到港时间、船舶大小、预计作业时间等因素,优化泊位分配策略,以实现码头的空间和时间资源的最大化利用。

2. 岸桥操作优化岸桥是码头装卸作业的关键设备,其操作效率直接影响到整个码头的作业效率。

本研究将通过对岸桥操作流程进行详细分析,找出影响操作效率的瓶颈环节,并提出相应的优化措施。

同时,将利用现代信息技术,如物联网、大数据等,实现岸桥操作的智能化和自动化,提高操作效率。

3. 集卡调度优化集卡是码头内部运输的关键工具,其调度效率直接影响到码头的物流效率。

本研究将通过建立集卡调度模型,考虑集卡的数量、行驶路径、装卸点等因素,优化集卡调度策略,以实现码头内部物流的高效运输。

同时,将利用现代物流技术,如路径规划算法、智能调度系统等,提高集卡调度的智能化水平。

四、研究方法本研究将采用定性和定量相结合的研究方法。

首先,通过文献综述和实地调研,了解集装箱码头泊位—岸桥—集卡作业的现状和存在的问题。

集装箱码头泊位-堆场-闸口的周期协同分配

集装箱码头泊位-堆场-闸口的周期协同分配

集装箱码头泊位-堆场-闸口的周期协同分配集装箱码头是连接陆路运输和海上运输的重要环节,其中泊位、堆场和闸口是码头运作的三个基本环节。

这三个环节的有效协同分配对于提高码头的运行效率、降低运输成本具有重要意义。

本文将针对集装箱码头的泊位、堆场和闸口的周期协同分配进行分析和探讨。

一、泊位泊位是集装箱码头接收和发送船舶的场所,是集装箱进出口的重要环节。

泊位的合理分配能够优化船舶调度,提高作业效率。

泊位的周期分配需要考虑以下因素:1.船舶的到港时间和离港时间:根据不同船舶的到港时间和离港时间,合理分配泊位,使得船舶能够按时进出港口,减少等待时间和拥堵。

2.船舶的吞吐量:根据船舶的吞吐量,合理分配泊位的数量和类型。

大型船舶需要大型泊位进行靠泊,并配置足够的设备和人力资源,以满足船舶的作业需求。

3.集装箱的类型和数量:根据集装箱的类型和数量,合理安排泊位的使用。

不同类型的集装箱需要不同类型的泊位,如普通箱、冷藏箱等。

同时,根据集装箱的数量,合理安排泊位的使用顺序,以提高作业效率。

二、堆场堆场是集装箱码头存放集装箱的场所,是集装箱装卸、存储和调度的重要环节。

堆场的周期分配需要考虑以下因素:1.集装箱的装卸时间:根据集装箱的装卸时间,合理分配堆场的使用。

装卸时间短的集装箱可以优先安排在靠近码头的位置,以减少运输时间和提高作业效率。

2.集装箱的存储时间:根据集装箱的存储时间,合理安排堆场的使用。

存储时间短的集装箱可以优先安排在靠近闸口的位置,以便于及时出闸。

3.堆场的空间利用率:根据堆场的空间利用率,合理分配集装箱的堆放路径。

可以采用堆场巡回制度,定期调整集装箱的堆放位置,以保持堆场的空间利用率。

三、闸口闸口是集装箱码头进出口集装箱的通道,是集装箱进出港口的重要环节。

闸口的周期分配需要考虑以下因素:1.集装箱的进出口运输需求:根据集装箱的进出口运输需求,合理分配闸口的使用。

可以根据进出口集装箱的比例,调整闸口的开放时间和闸口的数量,以满足进出口集装箱的运输需求。

集装箱码头岸桥与集卡装卸协作优化

集装箱码头岸桥与集卡装卸协作优化
Z AHNG Xi a o , HAN Xi a o - l o n g
( L o g i s t i c s R e s e a r c h C e n t e r , S h a n g h a i Ma r i t i me U n i v e r s i t y , S h a n g h a i 2 0 0 1 3 5 , C h i n a )
摘要 :岸桥 与集卡是 集装 箱港 口装卸过程 中的重要机械, 其配置情 况关 系到整个港 口的作业效率 。为了提 高集装 箱码
作业效率 ,针对 集装 箱在码 头堆 场分区堆放的情况和码头泊位装卸作业 的状 态要 求,考虑 了岸桥作 业时间和 集卡运输

提 出了集装 箱码 头集卡 与岸桥协作优化模 型 ,该模型以总时 间最 小为 目标 。算例结果表 明,该模型 为码 头集装 箱装
业优 化 问题 提 供 了 决 策 支持 。
关键词 :岸桥 ; 集卡 ;装卸 ; 协作优化
中图分类号 :U 6 5 6 . 1 3 5 文献标志码 :A 文章编号 :1 0 0 2 — 4 9 7 2 ( 2 0 1 3 ) 0 3 — 0 1 2 4 — 0 5
Co l l a bo r a t i v e o p t i mi z a t i o n o f qu a y c r a ne a nd y a r d t r u c k i n c o nt a i ne r t e r mi na l
年 3月 期 总第 4 7 7期
水运 工程
Po r t& W a t e r wa y Eng i ne e r i n g
Ma r .2 0l 3 No .3 Se r i a岸桥 与集卡装卸协作优化术

连续泊位下泊位分配与岸桥动态调度的联合优化

连续泊位下泊位分配与岸桥动态调度的联合优化
关 键 词 :连 续 泊位 ; 泊位分配; 岸 桥 动 态调 度 ; 联 合 调 度 中 图 分 类 号 :U 6 9 1 . 3 文 献 标 志码 :A 文 章 编 号 :1 0 0 2 — 4 9 7 2 ( 2 0 1 3 ) 0 4 — 0 0 8 3 — 0 6
Co o r d i n a t e dห้องสมุดไป่ตู้ o pt i mi z a t i o n o f c o nt i nuo us be r t h a l l o c a t i o n a n d qu a y c r a ne d y na mi c s c he du l i ng
c o s t s o f d e l a y c o mp l e t i o n t a s k s , d e v i a t i n g f r o m t h e o p t i ma l b e r t h i n g l o c a t i o n a n d q u a y c r a n e mo v e me n t . B e r t h i n g
2 01 3卑 4 Y l
水 运 工 程
P or t& Wa t e r wa y En g i n ee r i n g
Ap r . 2 0 1 3
No . 4 Se r i a lNo . 478
第 4期
总第 4 7 8期
连 续 泊 位 下 泊 位 分 配 与 岸 桥 动态 调 度 的联 合 优 化 水
ma k e f u l l u s e o f q u a y c r a n e r e s o u r c e s , d y n a mi c s c h e d u l i n g o f q u a y c r a n e i s t a k e n i n t o a c c o u n t a n d c o mb i n e d wi t h

《集卡调度下的集装箱码头场桥调度及堆场分配问题》范文

《集卡调度下的集装箱码头场桥调度及堆场分配问题》范文

《集卡调度下的集装箱码头场桥调度及堆场分配问题》篇一一、引言随着全球贸易的不断发展,集装箱码头作为货物运输的重要枢纽,其作业效率直接关系到整个物流系统的运行效率。

在集装箱码头作业中,场桥和堆场的合理调度是提高码头作业效率的关键环节。

本文将重点探讨集卡调度下的场桥调度及堆场分配问题,分析其重要性及影响因素,以期为相关领域的研究和实践提供有益的参考。

二、集卡调度与场桥调度的关系集卡作为连接码头各环节的重要纽带,其调度直接影响到场桥的作业效率和堆场的利用率。

集卡负责将集装箱从船上运至堆场或从堆场运至其他运输工具,其调度策略的优劣直接关系到场桥的装卸效率和作业时间。

因此,集卡调度与场桥调度是相互依存、相互影响的。

三、场桥调度的策略与方法场桥调度是集装箱码头作业的核心环节之一,其调度的合理与否直接影响到码头的整体作业效率。

在集卡调度的基础上,场桥调度的策略与方法主要包括以下几个方面:1. 优化装卸顺序:根据集装箱的种类、目的港、装船顺序等信息,合理安排装卸顺序,以减少场桥的空驶时间和等待时间。

2. 动态调整作业区域:根据堆场的实际情况和集卡的到达情况,动态调整场桥的作业区域,以实现资源的合理配置和高效利用。

3. 引入智能调度系统:通过引入先进的智能调度系统,实现场桥调度的自动化和智能化,提高调度的准确性和效率。

四、堆场分配的策略与问题堆场分配是集装箱码头作业的另一个关键环节,其合理与否直接关系到码头的存储能力和作业效率。

在集卡调度的背景下,堆场分配的策略与方法主要包括以下几个方面:1. 考虑集装箱的存储特性:根据集装箱的尺寸、重量、存储时间等因素,合理安排堆场的空间布局,以提高存储效率和作业效率。

2. 动态调整堆场布局:根据码头的实际情况和集卡的运输情况,动态调整堆场的布局和空间分配,以实现资源的优化配置。

3. 解决冲突与拥堵问题:在堆场分配过程中,需要解决由于设备过多或操作不当导致的冲突与拥堵问题,以确保码头的顺畅运行。

集装箱码头连续泊位与岸桥联合调度

集装箱码头连续泊位与岸桥联合调度
2013 年 第 9 期
SCIENCE & TECHNOLOGY INFORMATION
○高校讲坛○
科技信息
集装箱码头连续泊位与岸桥联合调度
余刘海 庞洪静 (上海海事大学 物流工程学院,中国 上海 201306)
【摘 要】为提高集装箱码头运作效率,在计划周期内,将有限的泊位和岸桥资源合理的分配给船舶,并在船舶上的装卸任务间进行动态调 度,提出了基于任务的连续泊位与岸桥协调调度的模型,通过遗传算法对该模型进行求解。 本文通过实例,验证了该模型和算法的有效性。
隔。 船 i 的 相 关 属 性 :bi0 是 船 i 的 最 优 靠 泊 位 置 ;Ci 是 船 i 到 港 时 间 ;
r max i

r min i
分别是船
i
允许同时作业的岸桥数量的最大值和最小值 ;min
是船 i 上任务 n 的装卸台时;Li 是船 i 的长度。 决策变量定义:bi 是船 i
在泊位坐标轴上的实际停靠位置;△bi 是船 i 偏移 最 佳 靠 泊 位 置 的 距 离,△bi=|bi- bi0|;ri 是实际分配给船舶 i 的岸桥的数量;lin 船 i 上任务 n
【关键词】泊位分配;岸桥调度;联合调度;遗传算法
0 引言
泊位调度和岸桥调度常作为码头运作的两个独立的环节,当集装 箱码头处于繁忙状态时,船舶按照最优的靠泊计划靠泊后,存在岸桥 不能立即服务,需要在泊位进一步等待岸桥的情况,浪费了宝贵的时 间。国内外对港口泊位分配的优化研究和岸桥调度的优化研究已取得 重要进展,但研究只局限于泊位与岸桥的单独调度。 协调调度优化不 仅同时解决了集装箱码头作业优化的两个核心子问题,同时由于泊位 分配和岸桥调度互相影响,协调优化相比单独研究强调了系统优化的 统一性和协调性 ,大大增强了优化效果 。 因此,为计划周期内的到港船 舶分配泊位和岸桥以及岸桥在装卸任务间的调度时,应将泊位资源和 岸桥资源联系起来,统筹协调。 对于连续泊位下为船舶配置泊位和将 特定的岸桥在任务间调度的研究,是缩短船舶在港时间、提高港口经 济效益的关键,具有重要的意义。

《集装箱码头泊位—岸桥—集卡调度优化研究》范文

《集装箱码头泊位—岸桥—集卡调度优化研究》范文

《集装箱码头泊位—岸桥—集卡调度优化研究》篇一一、引言集装箱码头作为全球物流网络的重要节点,其泊位、岸桥和集卡等设备的调度效率直接关系到整个物流系统的运行效率。

随着全球贸易的日益增长,如何优化集装箱码头的调度系统,提高装卸效率,减少物流成本,已成为业界和学术界关注的热点问题。

本文旨在研究集装箱码头泊位、岸桥及集卡调度优化问题,通过理论分析和实证研究相结合的方法,提出一种更为高效的调度优化方案。

二、集装箱码头调度现状分析集装箱码头的调度系统主要由泊位分配、岸桥调度和集卡调度三部分组成。

当前,大多数码头的调度仍采用人工调度和半自动化调度相结合的方式,存在着一定的问题和挑战。

首先,泊位分配不够合理,可能导致船舶等待时间过长或泊位利用不均衡;其次,岸桥的装卸效率受多种因素影响,如设备性能、人员操作等;最后,集卡的调度效率直接影响着整个码头的物流效率。

三、泊位分配优化研究针对泊位分配问题,本文提出一种基于智能算法的优化方案。

首先,建立泊位分配的数学模型,考虑船舶大小、预计停留时间、码头作业量等因素;然后,采用遗传算法或模拟退火算法等智能算法进行求解,以实现泊位的合理分配。

通过仿真实验,证明该方案能有效提高船舶的泊位效率和减少船舶等待时间。

四、岸桥调度优化研究岸桥作为集装箱码头装卸的核心设备,其调度效率直接影响到整个码头的作业效率。

本文提出一种基于设备状态监测和人员操作的岸桥调度优化方案。

首先,通过引入传感器技术对岸桥设备进行实时监测,掌握设备性能和状态;其次,结合人员操作经验和智能算法,制定合理的装卸顺序和作业计划;最后,通过实时调整和优化,提高岸桥的装卸效率。

五、集卡调度优化研究集卡作为连接码头和岸桥的重要工具,其调度效率直接影响到整个码头的物流效率。

本文提出一种基于物流信息平台的集卡调度优化方案。

首先,建立物流信息平台,实现码头、岸桥、集卡等信息的实时共享;其次,通过智能算法对集卡的任务进行合理分配和调整,以实现集卡的高效调度;最后,通过实时监控和评估,不断优化集卡的调度方案。

集装箱码头岸桥调度优化模型及算法

集装箱码头岸桥调度优化模型及算法

集装箱码头岸桥调度优化模型及算法1. 引言集装箱码头是现代物流运输中不可或缺的一环,而岸桥调度问题则是集装箱码头运营管理中的关键问题。

岸桥调度优化模型和算法的研究,旨在提高集装箱码头的运营效率、减少岸桥资源的浪费,从而降低运营成本,满足不断增长的物流需求。

本文将就集装箱码头岸桥调度优化模型及算法展开深入探讨。

2. 岸桥调度的重要性集装箱码头作为货物的重要中转站点,岸桥调度的合理性和高效性直接影响到整个物流系统的运行效率。

通过优化岸桥调度,可以实现以下几个方面的目标:2.1 提高货物吞吐量合理的岸桥调度能够更好地分配岸桥资源,使得不同岸桥的工作负荷均衡,避免一些岸桥过度负荷而造成运营瓶颈。

这样可以提高货物的吞吐量,加快物流流程,提升码头的运输效率。

2.2 降低服务时间岸桥调度优化能够减少船舶、集装箱车辆和岸桥之间的等待时间,提前预判和规划岸桥作业计划,减少作业环节的空闲和重复。

这样可以加快集装箱的装卸速度,降低货物的滞留时间,提供更及时的服务。

2.3 减少资源浪费通过优化岸桥调度安排,可以降低岸桥资源的浪费。

合理安排岸桥的工作时间和区域,可以减少岸桥的空闲和闲置,提高整体的资源利用率。

这样可以避免不必要的能源消耗和设备磨损,减少运营成本。

3. 岸桥调度优化模型岸桥调度优化模型是针对岸桥调度问题建立的数学模型,通过对问题的建模和求解,得到最优或较优的岸桥调度方案。

常见的岸桥调度优化模型包括:3.1 静态模型静态模型是在岸桥调度问题的基本框架下,基于静态数据进行建模和优化。

静态模型通常考虑岸桥作业的时间窗口约束、岸桥作业能力和船舶作业的顺序等因素。

常用的求解方法包括启发式算法、线性规划和整数规划等。

3.2 动态模型动态模型是在岸桥调度问题的基本框架下,考虑到实际运营中的动态变化因素进行建模和优化。

动态模型通常包括集装箱车辆的动态到港时间、船舶的实际到港时间和集装箱数量的动态分布等因素。

常用的求解方法包括模拟退火算法、遗传算法和禁忌搜索算法等。

自动化集装箱码头核心设备调度算法库技术要求

自动化集装箱码头核心设备调度算法库技术要求

自动化集装箱码头核心设备调度算法库
技术要求
目前我国在涉及自动化集装箱码头营运过程中的调度、管理与控制以及系统优化等方面与国外还存在着较大的差距。

自动化集装箱码头智能化装备协调运作优化算法库包括泊位分配、岸桥调度、堆场计划、发箱顺序与配载、AGV 作业、场桥作业、道口检查与选位、场桥调度、提箱、统计等分类模型可扩展库,遗传算法、粒子群算法等多种自动化集装箱码头模型求解的通用智能算法。

(1)算法内容
➢自动化集装箱码头AGV调度算法
➢自动化集装箱码头轨道吊调度算法
➢自动化集装箱码头双小车岸桥调度算法
(2)性能要求
➢拥有贴近实际的各类生产调度模型,如堆场计划模型、智能选位模型等。

➢能对码头做出各种预测,如自动化码头短周期内设备协调调度。

➢能对码头的运作方式做出定量的评估,如设备效率、船舶在港时间等。

➢能对码头不同的生产调度方式进行比较,如不同的堆场计划模型进行比较;
(3)文档要求
➢算法源码
➢算法设计文档。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

The optimization of container berths and shore bridge coordination schedulingMartin EAbstractThe global economic development, the container quickly raised up into exports. Rapid growth of the import and export cargo throughput brings to the container terminal larger benefits at the same time increase the burden of the port, have higher requirements on the terminal operation efficiency. How is the existing equipment of container terminals, reasonable resource allocation and scheduling, is common problem facing the container terminal. Therefore, how to improve the terminal facilities such as the maximum utilization of resources, to meet the increasing port demand, improve their competitive advantage, and has more practical meaning to improve the working efficiency of the container terminal. The main content of this study is berth, gantry cranes and set card co-allocation research, has plans to all ship to the port assignments during mathematical model is established with the target of minimum cost, according to the characteristics of the scale model by genetic algorithm, finally validates the effectiveness of the model.Keywords: System engineering; Water transportation; Gantry cranes allocation; Dynamic scheduling;1 IntroductionContainer terminal logistics is an organic system, made of interactive and dy namic components, such as containers, ships, berths, yards, tracks, quay cranes and yard cranes trucks, labors and communications, in a limited terminal space. It is a complex discrete event dynamic system related to kinds of complicated problems in l ogistics transport field.Berth scheduling (berth allocation) refers to the vessel arrival before or after according to each berth free condition and physical condition of the constraint for ship berthing berth and berthing order. To port berth scheduling optimization research has made important progress, but research is only limited to the single scheduling berth and shore bridge. Of berth scheduling problem in recent years has been based on simple berth scheduling considering more factors, but only for gantry cranes operatingsequence when performing a specific loading and unloading of microscopic optimization. Container ships in the port of time depend on how well the berth scheduling on one hand, on the other hand depends on the completion of tasks of gantry cranes loading and unloading time. Gantry cranes loading and unloading time tasks assigned by the Shore Bridge and gantry cranes scheduling two link form. Gantry cranes allocation is reasonably allocated to the ship to shore bridge. Scheduling is a bridge across the river shore bridge between loading and unloading task scheduling. For container terminal how to out of berth allocation, and collaborative scheduling shore bridge set card effective allocation and the arrangement of the container yard, etc are the main factors influencing the efficiency of port operations.2 Literature reviewBerth, gantry cranes and set card configuration and operation quality directly determines the operational efficiency of container ports. Container port whether can meet customer demand depends on whether the scheduling of a better, affecting the competitiveness of the port. So how to coordinate the three configurations and scheduling caused the wide attention of scholars both at home and abroad. Most experts and scholars in different circumstances port hardware facilities according to the different methods of berth, gantry cranes, set card and etc were studied. In recent years, the berth, shore and set scheduling and allocation problem of study to become a hot topic, scholars in a wide range of further research.2.1 Research on berth allocation problemEdmond will berth allocation problem as queuing theory for the first time, and establish the mathematical model research berth allocation problem. Lai and Shih to adopt rules first come first service berth allocation problem, and design the corresponding heuristic algorithm for the optimization of the mathematical model of the berth allocation, and to obtain the berth allocation to wait for the mooring time, and the average berth utilization indicators for evaluation. Prove the feasibility of obtained berth allocation scheme. Kiin mixed integer programming model is established to study the for large container ship berth allocation problem to determinethe ship docked location and time, the design of simulated annealing algorithm to solve the model. Since then, many scholars study of berth allocation problem scheme compared with Kim. Imai respectively studied and dynamic to static to the port to port berth allocation problem, at the same time the berth allocation in the process of container ship is introduced into the berth time priority, berth allocation was studied for the ship to port. Later, Mr Imai and Sun to adopt continuous geographical space to study the method of continuous berth allocation, established the mathematical model of the minimum vessel waiting time and operation time and coefficient using LaGrange relaxation algorithm to solve. Hansen, considering the schedule and ship docked preference location problems, such as setting the berth scheduling optimization goal for waiting time while minimizing of the ship. At the same time describes what preference position of the ship is. Lee also adopt the rules of first come first service to research into the port ship berth allocation problem, design the corresponding heuristic algorithm to solve the berth allocation model. After this, Lee and ship at the port of all research cycle to overall in the shortest time continuous berth allocation problem for the target research, through random greedy adaptive search algorithm to solve the model.2.2 Research on Shore Bridge factors problemDiazole in 1989 for the first time put forward the concept of gantry cranes scheduling by the author and a mixed integer programming model was established to solve the model to determine the distribution of each ship to the shore bridge. Park and Kim first studied the static to the port of berth and gantry cranes scheduling problem. Lim under interference constraint made the gantry cranes scheduling decisions made by a branch and bound method will be a period of time the latest ship to minimize the departure time of this algorithm ability is limited but simulated annealing method feasible solution can be obtained for the same question then also has used the genetic algorithm and greedy algorithm. Mussel and had to use a more realistic shore bridge resources use function to replace the method of linear hypothesis this paper proposes a new model to improve insufficient corrected simulation in the study of land bridge in front of the interference constraint error and put forward aimproved model than other algorithms are good before fast branch and bound method based on one-way operations. Bierwirth to before 2010 to berth allocation problem, task allocation problem shore bridge, gantry cranes scheduling problem of research literature made a detailed statistics and investigation and study analysis. Ship movement were studied using genetic algorithm reaches the case of fixed alongside berths and gantry cranes scheduling problem, homework and assumes that each ship shore bridge number is fixed, the optimization goal to minimize shipping time in Hong Kong. At present scholars to container terminal berth allocation, gantry cranes scheduling and allocation, set operations such as path planning are detailed studies. They mainly from the perspective of time and economic cost and so on, studies the optimization of container terminal handling operation link research, makes the anticipated goal of optimal. But can be seen from the collected literature at home and abroad, the research of the container terminal although in-depth and meticulous, but there are still insufficient. At present study mainly just to container terminal operation of a single link a job scheduling optimization, or are the two assignments link joint scheduling optimization research. However, container terminal berth allocation, shore bridge distribution and collection card is a complete operating system. If is simply the optimization study of a job link, can only reach a certain optimal operation link, it is difficult to achieve with other assignments link affinity. In the whole container operating system does not make the overall optimal.3 Container terminal operation analyses(1) ChannelChannel is refers to the container ship in the in and out of the container terminal area can satisfy container ships and other water traffic tools (tug, etc.) the requirements of the safe navigation channel.(2) AnchorageAnchorage is used for container ships waiting for berthing of ships docked or for a variety of water homework need water. Main floor including loading and unloading of anchorage, anchorage, shelter, water diversion fault, fault and quarantine and so on, this article proposed tracing refers to anchor it wrong, is to wait for container vesselsinto anchored into the dock before berth waters.(3) BerthBerth is to point to inside the container terminal for container vessels, loading and unloading to the docking area by the sea, for the container ship safety and to meet the need of loading and unloading operation waters and space. Have a certain length of call with berthing waters adjacent quay wall line, referred to as the shoreline. Berth coastline length meet the requirement of container ship loading and unloading and berthing safety distance, depth of berth satisfies the requirement of container ship's draft. Container port berths are mainly divided into two forms. Berth discrete and continuous berths. Discrete berth: container terminal of the coastline of the corresponding berth waters is divided into a number of different lengths of part, at the same time there can be only one ship in a garage to accept service, and any ship berthing of ships in the harbor cannot take up two berths at the same time. Continuous berth: in the container terminal to the coastline of the corresponding vessel berthing water not to break up, to the port container ship in meet the demands of the depth and the captain of the ship to draft cases, can be arbitrary parked in container terminal coastline of the corresponding boundary waters.(4) Gantry cranesLand refers to the coast side of container loading and unloading of the bridge crane, is a special hoisting machinery container wharf apron loading and unloading of containers, container terminal is the only direct contact with berthing ships operating equipment, is one of the most important resources in container terminals and scarce resources. Gantry cranes loading and unloading efficiency and quality of high and low will directly affect the length of the container vessel in operation time, at the same time also affect other container terminal operation link configuration and scheduling. Among them, the land bridge is mainly divided into orbit type gantry cranes and tired gantry cranes. Orbit type gantry cranes, coastline of gantry cranes are all in the same orbit, land bridge between the mobile can not appear the phenomenon such as cross. Tyred Gantry cranes can move than rail type gantry cranes move large range. But at present most of the container terminal mainly Is to use rail type gantry cranes, so inthis paper, we study the land bridge for track type gantry cranes.(5) Set cardSet card can achieve a container in the container yard and onshore bridge between the yard and mobile, collection card is container terminal based on the shipping container truck. Set card according to the different main purpose transportation of container terminal is divided into inside and outside sets card two types of collection card. Set inside the card, is to realize the gantry cranes loading and unloading of containers and a bridge on the stacking yard box between the means of transport. Of all the set inside of the container terminal equipment configuration, scheduling the most complex number of mobile devices. Outside the set of CARDS, sonograms are directly from the port to the shore bridge shipment, or from the shore bridge directly discharging to the container truck outside of a container terminal. (6) YardImport and export container yard is the function of container terminal is used to store the site area, close distance tend to berth. Container terminal will stay according to the purpose of import and export container shipping and shipping time factors such as different, in order to facilitate access to the specified container, the container yard area is divided into multiple box. Due to the container depot in box area position is different, so each box area the distance from the need to load and unload ships size is different. Packing storage location and the distance between the ship dock berths will also affect the level of set card transport time, thus affecting the entire pier loading and unloading efficiency of the system. Can be inferred from this, container storage location is the operation efficiency of container terminals also has a great influence. (7) BridgeThe role of a bridge is similar to the gantry cranes and container loading and unloading transportation tool. Just a bridge job is located in container yard. A bridge, it is within the container yard stacking, move the box and the box operation of loading and unloading equipment. Will set card transport imported within the container stack to the designated container terminal yard box area or take out the box of export containers of area specific location set card, to the specific land bridge loadingoperations.(8) The work facilities such as container yard behindBehind the container yard operation facilities mainly make mouth, control room, maintenance shop, container freight station and other facilities. Describes the mouth, is the container and the container cargo of containers of intersection, and container terminal, both inside and outside dividing line of responsibility. Due to the gate is the container of in and out of the harbor, in the mouth is set between the container of relevant documents, related to container number and seal number and container exterior condition for inspection operations such as link.Berth allocation problems Scope and classification schemeIn berth allocation problems, we are given a berth layout together with a set of v essels that have to be served within a planning horizon. The vessels must be moored within the boundaries of the quay and cannot occupy the same quay space at a time. I n he basic optimization problem, berthing positions and berthing times have to be ass igned to all vessels, such that a given objective function is optimized. A variety of o ptimization models for berth allocation have been proposed in the literature to captur e real features of practical problems. In Bierwirth and Meisel (2010), we have propos ed a scheme for classifying such models according to four attributes, namely a spatia l attribute, a temporal attribute, a handling time attribute, and the performance measur e addressed in the optimization. The values each attribute can take are listed in Fig. 1 Spatial attributeThis attribute concerns the berth layout, which is either a discrete layout (disc), a co ntinuous layout (cont), or a hybrid layout (hybr). In case of disc, the quay is partitio ned into berths and only one vessel can be served at each single berth at a time. In cas e of cont, vessels can berth at arbitrary positions within the boundaries of the quay. F inally, in case hybr, the quay is partitioned into berths, A particular form of a hybrid berth is an indented berth where large vessels can be served from two oppositely loc ated berths. The spatial attribute is extended by item draft, if the BAP-approach addit ionally considers a vessel’s draft when deciding on its berthing position.Temporal attributeThis attribute describes the arrival process of vessels. The attribute reflects static arri vals (stat), dynamic arrivals (dyn), cyclic arrivals (cycl), and stochastic arrival times (s toch). In case of stat, we assume that all vessels have arrived at the port and wait fo r being served. In contrast, in case of dyn, the vessels arrive at individual but determi nistic arrival times imposing a constraint for the berth allocation. In case cycl, he ves sels call at terminals repeatedly in fixed time intervals according to their liner schedu les. In case stoch, the arrival times of vessels are stochastic parameters either define d by continuous random distributions or by scenarios with discrete probability of occ urrence. Cyclic and stochastic arrival times are considered in a number of recent pub lications and, therefore, we have extended the original classification scheme with reg ard to these cases. The temporal attribute is completed by value due, if a due date i s preset for the departure of a vessel or if a maximum waiting time is preset for a ves sel before the service has to start.Handling time attributeThis attribute describes the arrival process of vessels. The attribute reflects static arri vals (stat), dynamic arrivals (dyn), cyclic arrivals (cycl), and stochastic arrival time s (stoch). In case of stat, we assume that all vessels have arrived at the port and wait f or being served. In contrast, in case of dyn, the vessels arrive at individual but deter ministic arrival times imposing a constraint for the berth allocation. In case cycl, h e vessels call at terminals repeatedly in fixed time intervals according to their liner sc hedules. In case stoch, the arrival times of vessels are stochastic parameters either de fined by continuous random distributions or by scenarios with discrete probability o f occurrence. Cyclic and stochastic arrival times are considered in a number of recent publications and, therefore, we have extended the original classification scheme wit h regard to these cases. The temporal attribute is completed by value due, if a due dat e is preset for the departure of a vessel or if a maximum waiting time is preset for a vessel before the service has to start.Handling time attributeThis attribute describes the way how handling times of vessels are given as an input t o the problem. It takes value fix, if the handling times of vessels are known and considered unchangeable. Value pos indicates that handling times depend on the berthin g positions of vessels and value QCAP indicates that handling times are determine d by including QC assignment decisions into the BAP. In case of value QCSP, the ha ndling times are determined by incorporating the QC scheduling within the BAP. I n order to classify the recent literature properly, we have inserted case stoch as a ne w attribute for the scheme. Again, handling times can be subject to either discrete or c ontinuous random distributions. A similar extension of our scheme is also suggeste d by Carlo et al. (2013), who also open it to further sources of influence on vessel han dling times, like operations of transfer vehicles and yard cranes. However, as we har dly find instantiations of these cases in the literature, we refrain from extending the s cheme in further directions.Performance measureThis attribute considers the performance measures of a berth allocation model. Mos t models consider to minimize the port stay time of vessels. This is reached by differ ent objective functions, e.g. when minimizing waiting times before berthing (wait), m inimizing handling times of vessels (hand), minimizing service completion times (co mpl), or minimizing tardy vessel departures (tard). If soft arrival times are given, als o a possible speedup of vessels (speed) is taken into consideration at the expense of a dditional bunker cost. Other models aim at reducing the variable operation cost of a t erminal by optimizing the utilization of resources (res) like cranes, vehicles, berth sp ace, and manpower. An often considered feature is to save horizontal transport capac ity by finding berthing positions for vessels close to the yard, which is why we inclu de this goal by its own value pos. Rarely met performance measures are summarize d by value misc(miscellaneous). The introduced measures are either summed up for al l vessels in the objective function. Alternatively, if the minimization of the measure fo r the worst performing vessel is pursued, i.e. a min–max objective is faced. Vessel-sp ecific priorities or cost rates are shown by weights. Different weights w1 to w4 addre ss combined performance measures.Literature overviewIn the relevant literature, we have found and classified 79 new models for berth allocation, most of them published after 2009. Fig. 2 shows the BAP models devel oped by researchers since 1994 by year of their publication, including also those app roaches reviewed in Bierwirth and Meisel (2010). The figure shows that the interest i n berth allocation started with the early papers of Hoffarth (1994) and Imai, Nagaiw a, and Tat (1997). However, the growth of publications followed the pioneering pape r of Park and Kim (2003), who combined berth allocation and QC assignment for th e first time, and the early survey on container terminal operations by Steenken et a l. (2004). In particular, journal publications scaled up to ten and more per year after 2 010. To the mid of 2014, already 13 new journal papers have been published or acce pted for publication. The continuous effort spend on research in berth allocation confi rms it as a well-established field today, which still shows potential for future researc h.With Table 1, we also provide an overview of the methods that are used for solv ing the BAP models. Note that only the most successful method presented in a pape r appears in the table. It is not surprising that heuristic approaches dominate as the B AP is known to be NP-hard in both, the discrete and the continuous case, see e.g. Li m (1998) and Hansen and Oǧuz (2003). Exact methods are applied in only one fourt h of the approaches, ranging from MILP formulations combined with standard solver s to highly sophisticated branching-based algorithms. Among the heuristic approache s, Genetic Algorithms and Evolutionary Algorithms take the by far largest share wit h 40 percent, see Fig. 3(left). The rest of the methods comprise other meta-heuristic s like Tabu Search and Simulated Annealing as well as problem specific heuristics lik e local search techniques and greedy rules. The richness of BAP models favors meta-heuristic approaches as they allow handling various problem features flexibly. On th e other hand, a systematic evaluation of algorithms is hindered by the strong heterog eneity of BAP models. Although comparing models is definitely necessary for assessi ng the suitability of methods, the comparison of alternative models formulated by dif ferent research groups is just emerging slowly, see Buhrkal, Zuglian, Ropke, Larse n, and Lusby (2011),Umang, Bierlaire, and Vacca (2013), and Imai, Nishimura, an d Papadimitriou (2013). To make this process sustainable, ommonly accepted BAP benchmark instances are needed to provide authors with the opportunity to evaluate the ir work. However, the current benchmarks are either not general enough to fulfill thi s aim or they are merely used in small substreams of the entire research field. Defini ng benchmark problems for general berth allocation problems that fulfill the principle s of comparability, unbiasedness, and reproducibility remains an open topic for futur e research.In the following, we abstain from reviewing all papers listed in Table 1 individu ally. Instead, the next subsection discusses those papers in more detail that contain n ovel features of which we think they might receive particular attention in the future.。

相关文档
最新文档