1探索勾股定理
北师版八年级数学上册第一章 勾股定理1 探索勾股定理
式中,涉及三个量,可“知二求一”.如果在直角
三角形中,已知两边的比值和另一边时,通常引入
一个辅助量,建立方程来求未知的边 .
2.运用勾股定理时,若分不清哪条边是斜边,则要分
类讨论,写出所有可能情况,以免漏解或错解 .
知1-练
例1 [母题 教材P4习题T1]在Rt△ABC中, ∠A,∠B,∠C 的对边分别为a,b,c,∠C=90° . (1)已知a=3,b=4,求c; (2)已知c=13,a=5,求b.
a2=c2-b2; b2=c2-a2
知1-讲
图示
感悟新知
知1-讲
勾股定理把“形”与 “数”有机地结合
基本思想
起来,即把直角三角形这个“形”与三 边关系这一“数”结合起来,它是数形
结合思想的典范
感悟新知
特别提醒
知1-讲
1. 在 Rt △ ABC 中,∠ C=90°,∠ A,∠ B,∠C的
对边分别为a,b,c,则有关系式a2+b2=c2. 在此关系
特别提醒
知2-讲
通过拼图验证定理的思路:
1. 图形经过割补拼接后,只要没有重叠、没有空隙,面积就不
会改变;
2. 根据同一种图形的面积的不同表示方法列出等式;
3. 利用等式性质变换验证结论成立.
即拼出图形→写出图形面积的表达式→找出等量关系→恒等变
形→推导结论.
续表 方法
伽菲尔德 总统拼图
图形
知2-讲
知1-练
感悟新知
1-1.在 Rt △ ABC 中,∠ C=90 °,∠ A,∠ B,∠ C知1-练 的对边分别为 a,b, c. 若 a ∶ b=3 ∶ 4,c=75, 求 a, b. 解:设a=3x(x>0),则b=4x. 由勾股定理得a2+b2=c2, 则(3x)2+(4x)2=752,解得x=15(负值已舍去). 所以a=3×15=45,b=4×15=60.
1.1.1探索勾股定理 北师大版数学八年级上册
121.52 + 68.52 ≈ 139.72
售货员没有搞错.
课堂小结
内容
直角三角形两直角边的平方和等于斜边的平方
勾
股
定
理
如果直角三角形两直角边分别为a,b,斜边为c,
字母表示
那么 a2 b2 c2
第一章 勾股定理
课程结束
北师大版八年级(初中)数学上册 授课老师:孙老师
C A
B
C Aa c
b B
(3)如果直角 三角形的两直角边 分别为 1.6 个单位 长度和 2.4 个单位 长度,上面所猜想 的数量关系还成立 吗?说明你的理由.
(每个小正方形的面积为单位 1)
1.6 2.4
直角三角形两直角边的平方和等于斜边的平
方,这就是著名的“勾股定理”.
如果用a,b和c分别表示直角三角形的两直角
第一章 勾股定理
1 探索勾股定理(1)
北师大版八年级(初中)数学上册 授课老师:孙老师
复习回顾 三角形
定义
由不在同一条直线上的三条线段首尾顺次 相接组成的平面图形.
角 三角形的内角和是 180°.
边 两边之和大于第三边,两边之差小于第三边.
直角 三角形
定义 有一个角是 90°的三角形是直角三角形.
角
直角三角形的两个锐角互余;两个锐角互余 的三角形是直角三角形.
边?
新课导入 我们知道,任意三角形的三条边必须满足定理:三角形 的两边之和大于第三边.
对于一些特殊的三角形,是否还存在其他特殊的关 系?
新知探究
(1)在纸上画若干个直角三角形,分别测量 它们的三条边,看看三边长的平方之间有怎样的 关系. 与同伴进行交流.
B
左图
1.1_探索勾股定理_公开课课件1 (4)
a
b
c
证明1 :
该图2002年8月在北京召开的国际数学家大会的会标 示意图,取材于我国古代数学著作《勾股圆方图》。
大正方形的面积可以表示为
2
a
1 也可以表示为 (b a ) 4 ab 2 c 1 2 ∵ c2= (b a ) 4 ab 2 b =b2-2ab+a2+ 2ab =a2+b2
40
A
90
B
C
160 40
答:两孔中心A,B的距离为130mm.
谈谈你的收获!
1.这节课你的收获是什么? 2.理解“勾股定理”应该注 意什么问题? 3.你觉得“勾股定理” 有用吗?
教师寄语
要养成用数学的思维去解读世界的习惯。 只有不断的思考,才会有新的发现;只 有量的变化,才会有质的进步。 其实数学在我们的生活中无处不在, 只要你是个有心人,就一定会发现在我 们的身边,我们的眼前, 还有很多象 “勾股定理”那样的知识等待我们去探 索,等待我们去发现……
理.科学家们由此推想,如果火星上有具有智慧的生 物的话,他们也许能够知道勾股定理.
规律发现 落实新知
毕达哥拉斯是古希腊著名的哲学家、 数学家、天文学家,相传2500多年前,一 次,毕达哥拉斯去朋友家作客.在宴席上, 其他的宾客都在尽情欢乐,高谈阔论,只有 毕达哥拉斯看着朋友家的方砖地发起呆来. 原来,朋友家的地是用一块块等腰直角三角 形形状的砖铺成的,黑白相间,非常美观大 方.主人看到毕达哥拉斯的样子非常奇怪, 就想过去问他.谁知毕达哥拉斯突然恍然大 悟的样子,站起来,开心地跑回家去了.
勾
弦
股
勾
股
1.基础练习之出谋划策
1、如图,一个高3 米,宽4 米的大门,需 在相对角的顶点间加一个加固木条,则木条的 长为 ( C)
第一章1 探索勾股定理第2课时
17
【举一反三】 1.(2024·宿州质检)如图,将长为8 cm的橡皮筋放置在水平桌面上,固定两端A和B, 然后把中点P垂直向上拉升3 cm至点C,则橡皮筋被拉长了 ( C )
A.4 cm
B.3 cm
C.2 cm
D.1 cm
18
2. (2024·沈阳质检)如图,某港口P位于东西方向的海岸线上.“远航”号、“海天”号 轮船同时离开港口,“远航”号以每小时12 nmile的速度沿北偏东60°方向航行,“海 天”号以每小时16 n mile的速度沿北偏西30°方向航行,2小时后,“远航”号、“海天” 号分别位于M,N处,则此时“远航”号与“海天”号的距离为____4_0___n mile.
22
3.(8分·模型观念、运算能力、应用意识)如图,台风过后,一希望小学的旗杆在离 地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米. (1)求出旗杆在离底部多少米的位置断裂; 【解析】(1)设AB=x米, 因为AB+AC=16米, 所以AC=(16-x)米, 在Rt△ABC中,∠ABC=90°,BC=8米, 由勾股定理得:AC2=AB2+BC2, 即(16-x)2=x2+82,解得x=6. 答:旗杆在离底部6米的位置断裂.
A.4
B.8
C.12
D.16
7
新知要点 2.勾股定理的简单应用 实际应用的问题,如大树折断、方位角等问题,可以借助勾股定理解决.
8
对点小练
2.如图,在A村与B村之间有一座大山,原来从A村到B村,需沿道路A→C→B(∠C=90°)
绕过村庄间的大山,打通A,B间的隧道后,就可直接从A村到B村.已知AC=6 km,BC=
8 km,那么打通隧道后从A村到B村比原来减少的路程为
《第三章1探索勾股定理》作业设计方案-初中数学鲁教版五四制12七年级上册
《探索勾股定理》作业设计方案(第一课时)一、作业目标1. 使学生理解勾股定理的概念及其在日常生活中的应用。
2. 通过动手操作和实际问题分析,培养学生对勾股定理的直观感受和运用能力。
3. 强化学生的数学逻辑思维和问题解决能力。
二、作业内容1. 预习勾股定理的背景及基本概念:要求学生阅读教材中关于勾股定理的介绍,了解勾股定理的历史渊源和基本概念,并尝试理解勾股定理的证明过程。
2. 勾股定理的初步应用:让学生选择几组不同的直角三角形边长,验证勾股定理的正确性,记录计算结果,并总结观察到的规律。
3. 小组合作问题探讨:以小组为单位,学生围绕生活中常见的与勾股定理相关的场景(如建筑物高度测量、篮球框尺寸判断等)进行讨论,提出自己的看法并合作制定出问题解决方案。
4. 实践操作:利用身边的材料(如硬纸板、尺子等)制作直角三角形模型,通过实际操作加深对勾股定理的理解。
三、作业要求1. 认真完成预习任务,对勾股定理的背景和概念有清晰的认识。
2. 在验证勾股定理时,应保证选择的边长符合直角三角形的性质,并准确记录计算结果。
3. 在小组探讨过程中,每个学生应积极参与讨论,尊重他人的意见,并以严谨的逻辑思维来表述自己的观点。
4. 实践操作要求规范使用材料和工具,完成三角形模型的制作,并注意安全事项。
5. 所有作业需按时提交,字迹清晰、整洁。
四、作业评价1. 评价标准:根据学生对勾股定理的理解程度、计算结果的准确性、小组合作的表现以及实践操作的规范性进行评价。
2. 评价方式:教师批改作业时,结合学生的预习笔记、计算结果、小组讨论记录以及实践操作的作品进行综合评价。
3. 鼓励性评价:对于表现优秀的学生给予表扬和鼓励,激发学生的学习积极性;对于存在不足的学生给予指导和帮助,促进其进步。
五、作业反馈1. 教师将批改后的作业发回给学生,指出存在的问题及改进建议。
2. 组织学生进行课堂讨论,分享彼此在完成作业过程中的心得体会和学习收获。
1.1 探索勾股定理(第1课时) 八年级上册北师大版
(图中每个小方格代表一个单位面积)
探究新知
思考2 怎样求出C的面积?
C A
B
图1
分割成若干个直角边为整数的三角形 S正方形C = 4×12×3×3 =18(单位面积)
(图中每个小方格代表一个单位面积)
探究新知
练一练 通过对图1的学习,
求出图2正方形A,B,C中面积
各是多少?
C A
解:正方形A的面积是4个 单位面积,正方形B的面积 是4个单位面积,正方形C 的面积是8个单位面积.
探究新知
素养考点 1 利用勾股定理求直角三角形的边长
例1 如果直角三角形两直角边长分别为 BC=5厘米,AC=12厘米,
求斜边AB的长度.
A
解:在Rt△ABC中根据勾股定理, AC²+BC²=AB², AC=12,BC=5
b
c
所以12²+5²=AB²,
C aB
所以AB²=12²+5²=169, 所以AB=13厘米. 答:斜边AB的长度为13厘米.
勾股树
A
B
素养目标
3.学生初步运用勾股定理进行简单的计算和实际的 应用. 2.在探索过程中,学生经历了“观察-猜想-归纳” 的教学过程,将形与数密切联系起来. 1.通过数格子的方法探索勾股定理;学生理解勾股定 理反映的是直角三角形三边之间的数量关系.
探究新知
知识点 勾股定理的探索
做一做
在纸上画若干个直角边为整数的直角三角形, 分别测量它们的三条边长,并填入下表.看看三边长 的平方之间有怎样的关系?与同伴进行交流.
_2_4___,斜边为上的高为__4_._8__.
A D
C
B
课堂检测
基础巩固题
第1讲 探索勾股定理与一定是直角三角形吗(学生版)
第1讲 探索勾股定理与一定是直角三角形吗 1.掌握勾股定理的作用:(1)已知直角三角形的两边求第三边。
(2)已知直角三角形的一边,求另外两边的关系。
2.根据情境或条件构造出直角三角形,从而利用勾股定理解决实际问题,充分体现数学学以至用的特点。
3.会用勾股定理逆定理判定三角形是不是直角三角形.4.理解勾股数的概念,并能准确判断一组数是不是勾股数 知识点01 勾股定理直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为a b ,,斜边长为c ,那么222a b c +=.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:222a c b =-,222b c a =-, ()222c a b ab =+-. 【知识拓展1】勾股定理的简单应用例1.如图,△ABC 中,∠ACB =90°,分别以AC 、AB 为边向外作正方形,面积分别为S 1,S 2,若S 1=2,S 2=5,则BC 2=_____.知识点02 勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.知识精讲目标导航方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.【知识拓展2】勾股定理的证明例2.三国时代东吴数学家赵爽(字君卿,约公元3世纪)在《勾股圆方图注》一书中用割补的方法构造了“弦图”(如图1,并给出了勾股定理的证明.已知,图2中涂色部分是直角边长为,a b,斜边长为c的4个直角三角形,请根据图2利用割补的方法验证勾股定理.【知识拓展3】勾股定理与折叠问题例3.如图,将等腰直角三角形ABC (90ABC ∠=︒)沿EF 折叠,使点A 落在BC 边的中点1A 处,6BC =,那么线段AE 的长度为A .5B .4C .4. 25D .154 【即学即练】 已知,如图,折叠长方形(四个角都是直角,对边相等)的一边AD 使点D 落在BC 边的点F 处,已知8AB cm =,BC 10cm =,求EC 的长.知识点03勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:① 3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果(a b c 、、)是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.【知识拓展4】勾股数例1.(1)下列各组数据中,是勾股数的是( )A .3,4,5B .1,2,3C .8,9,10D .5,6,9 (2)下列各组数中,是勾股数的是( )A .12,8,5B .0.30.40.5,,C .9,12,15D .111,,6810知识点04 如何判定一个三角形是否是直角三角形首先确定最大边(如c ).验证2c 与22a b +是否具有相等关系.若222c a b =+,则△ABC 是∠C =90°的直角三角形;若222c a b ≠+,则△ABC 不是直角三角形.要点诠释:当222a b c +<时,此三角形为钝角三角形;当222a b c +>时,此三角形为锐角三角形, 其中c 为三角形的最大边.【知识拓展5】直角三角形的判定例2.(1)下列条件中,能判断ABC 是直角三角形的有( )①A B C ∠+∠=∠;②A B C ∠-∠=∠;③::2:5:3A B C ∠∠∠=;④23A B C ∠=∠=∠;⑤1123A B C ∠=∠=∠;⑥::3:4:5AB AC BC =. A .5个 B .4个 C .3个 D .2个(2)如图,根据下列条件,不能判断ABD △是直角三角形的是( )A .20,70DB ∠=︒∠=︒ B .5,12,13AB AD BD ===C .AC BC DC ==D .3,8B D BAD D ∠=∠∠=∠ 知识点05 勾股定理的逆定理如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形.要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.【知识拓展6】勾股定理逆定理的应用例3.古埃及人曾用下面的方法得到直角:如图他们用13个等距的结把一根绳子分成等长的12段,一个工匠同时握住绳子的第1个结和第13个结,两个助手分别握住第4个结和第8个结,拉紧绳子,就会得到一个直角三角形,其直角在第4个结处.(1)你能说说其中的道理吗?(2)仿照上面的方法,你能否只用绳子,设计一种不同于(1)的直角三角形(在图2中,只需画出示意图.)【即学即练】如图,在Rt ABC中,∠ACB=90°,AB=13,AC=12,点D为ABC外一点,连接BD,CD,测得CD=4,BD=3,求四边形ABDC的面积.能力拓展一、单选题1.(2020·河南郑州市第七初级中学八年级月考)勾股定理是几何中的一个重要定理,在我国算书《网醉算经》中就有“若勾三,股四,则弦五”的记载.如图1,是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,BC=5,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为( )A.121 B.110 C.100 D.90二、填空题AB=,2.(2020·江西南昌市·八年级月考)如图,由两个直角三角形和三个正方形组成的图形,已知25 24AC=其中阴影部分面积是_____________平方单位.3.(2020·嵊州市马寅初初级中学八年级期中)如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=13,EF=7,那么AH等于_____.三、解答题4.(2020·海南海口市·)我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述);(2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求()2a b +的值.题组A 基础过关练一、单选题1.(2021·安徽合肥市·合肥38中八年级期中)下列各组数中,是勾股数的是( )A .0.6,0.8,1B .3,4,5C .111,,345D .1,2,52.(2021·全国八年级专题练习)图中字母所代表的正方形的面积为625的选项为( ) A .B .C .D .3.(2021·山东济南市·八年级期末)下列几组数中,能作为直角三角形三边长度的是( )分层提分A .2,3,4a b c ===B .5,6,8a b c ===C .5,12,13a b c ===D .7,15,12a b c ===题组B 能力提升练一、单选题1.(2021·河南安阳市·八年级期中)如图,以Rt ABC 的三边为直角边分别向外作等腰直角三角形.若3AB =,则图中阴影部分的面积为( )A .3B .92C .32D .35 2.(2021·北京海淀区·北大附中)勾股定理是人类早期发现并证明的重要数学定理之一,这是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端.下面四幅图中,不能证明勾股定理的是( ) A . B . C . D .3.(2021·广西钦州市·浦北中学八年级月考)ABC 中,90ACB ∠=︒,则三个半圆的面积关系是( )A .123S S S +>B .123S S S +=C .123S S S +<D .222123s S S +=二、填空题4.(2021·陕西西安市·八年级期末)如图是一棵勾股树,它是由正方形和直角三角形排成的,若正方形A ,B ,C ,D 的边长分别是4,5,3,4,则最大正方形E 的面积是___.5.(2021·甘肃酒泉市·八年级期末)如图,台阶A 处的蚂蚁要爬到B 处搬运食物,它爬的最短距离是_____.三、解答题6.(2021·河北邯郸市·八年级期末)中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展.现用4个全等的直角三角形拼成如图所示“弦图”.Rt ABC 中,90ACB ∠=︒,若AC b =,BC a =,请你利用这个图形说明222+=a b c ;7.(2021·陕西铜川市·八年级期末)如图,铁路上A 、D 两点相距25km ,B ,C 为两村庄,AB AD ⊥于A ,CD AD ⊥于D ,已知15km AB =,10km CD =,现在要在铁路AD 上建一个土特产品收购站P ,使得B 、C 两村到P 站的距离相等,则P 站应建在距点A 多少千米处?题组C 培优拔尖练1.(2021·广东八年级专题练习)若ABC 的三边长a 、b 、c 满足222681050a b c a b c ++=++-,那么ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形2.如图,长方形纸片ABCD 中,6AB cm =,8BC cm =,现将其沿EF 对折,使得点C 与点A 重合,则AF 的长为( )A .254 B .6 C .74 D .2343.如图,在三角形纸片ABC 中,∠C =90°,AC =18,将∠A 沿DE 折叠,使点A 与点B 重合,折痕和AC 交于点E,BC=12,则EC的长为__________.4.在一次“构造勾股数”的探究性学习中,老师给出了下表:其中m、n为正整数,且m>n.(1)观察表格,当m=2,n=1时,此时对应的a、b、c的值能否为直角三角形三边的长?说明你的理由.(2)探究a,b,c与m、n之间的关系并用含m、n的代数式表示:a=___,b=___,c=___.(3)以a,b,c为边长的三角形是否一定为直角三角形?如果是,请说明理由;如果不是,请举出反例.。
1.1.1探索勾股定理(教案)
-掌握勾股定理的证明方法:讲解几何拼贴法和代数推导法两种证明方法,帮助学生理解定理的严谨性。
举例:在直角三角形ABC中,设a、b分别为直角边,c为斜边,则勾股定理可表示为:a² + b² = c²。
4.培养学生的数学文化素养,了解勾股定理的历史背景,感受数学在人类文明发展中的价值,激发学生学习数学的兴趣。
三、教学难点与重点
1.教学重点
-理解并掌握勾股定理的概念:勾股定理是指直角三角形中,直角边(即“勾”和“股”)的平方和等于斜边(即“弦”)的平方。重点讲解直角三角形的边长关系,使学生明确勾股定理的核心内容。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理是指直角三角形中,直角边的平方和等于斜边的平方。它是解决直角三角形边长计算问题的关键。
2.案例分析:接下来,我们来看一个具体的案例。通过计算直角三角形的边长,展示勾股定理在实际中的应用,以及它如何帮助我们解决问题。
另外,小组讨论的环节也让我看到了学生们的合作精神和解决问题的能力。他们能够积极地参与到讨论中,提出自己的见解,也能倾听同伴的意见。不过,我也观察到有些小组在讨论时可能会偏离主题,需要我适时地引导他们回到正题上。这可能提示我在设置讨论主题时,需要更加明确和具体,以便学生们能够更有针对性地展开讨论。
此外,我觉得在课程中增加实验操作环节是一个不错的尝试,它能够让学生们通过动手实践来加深对勾股定理的理解。但在操作过程中,我也发现有些学生对于实验的步骤和目的不够清晰,导致实验效果不尽如人意。因此,我需要在下一次的实验前,更详细地解释实验步骤和目的,确保每个学生都能够从实验中获得收获。
北师大版数学八年级上册1《探索勾股定理》说课稿1
北师大版数学八年级上册1《探索勾股定理》说课稿1一. 教材分析《探索勾股定理》是北师大版数学八年级上册第一单元的一节重要内容。
本节课的主要任务是让学生通过探究、验证勾股定理,培养学生的逻辑思维能力和创新能力。
教材通过引入古希腊数学家毕达哥拉斯的故事,激发学生的学习兴趣,接着引导学生通过实际操作,探索勾股定理的证明方法。
教材内容丰富,既有理论探究,又有实践操作,使学生在学习过程中充分体验到数学的趣味性和实用性。
二. 学情分析八年级的学生已经具备了一定的数学基础,对几何图形的认识和逻辑推理能力有一定的掌握。
但学生在学习过程中,往往对理论性的知识感到枯燥乏味,缺乏学习的积极性。
因此,在教学过程中,教师需要注重激发学生的学习兴趣,引导学生主动参与课堂讨论,提高学生的学习积极性。
三. 说教学目标1.知识与技能:让学生掌握勾股定理的内容,了解勾股定理的证明方法,能够运用勾股定理解决实际问题。
2.过程与方法:通过观察、操作、猜想、验证等过程,培养学生的逻辑思维能力和创新能力。
3.情感态度与价值观:让学生感受数学的趣味性和实用性,激发学生学习数学的兴趣,培养学生的团队协作精神。
四. 说教学重难点1.教学重点:让学生掌握勾股定理及其证明方法。
2.教学难点:引导学生探索勾股定理的证明方法,培养学生的创新能力。
五. 说教学方法与手段在本节课的教学过程中,我将采用问题驱动法、分组讨论法、情境教学法等教学方法,结合多媒体课件、几何画板等教学手段,引导学生主动参与课堂讨论,提高学生的学习积极性。
六. 说教学过程1.导入新课:通过讲述毕达哥拉斯的故事,激发学生的学习兴趣,引出本节课的主题。
2.探究勾股定理:让学生分组进行实际操作,观察直角三角形的三条边之间的关系,引导学生猜想勾股定理。
3.验证勾股定理:引导学生运用几何画板等工具,验证猜想的正确性。
4.讲解勾股定理:教师对勾股定理进行详细讲解,让学生掌握定理的内容。
5.应用勾股定理:让学生运用所学知识解决实际问题,巩固所学内容。
北师大版八年级上册第一章探索勾股定理精讲
勾股定理第一节 探索勾股定理●应知 基础知识1、勾股定理(1)勾股定理的内容:在直角三角形中,两直角边的 等于 的平方.(2)勾股定理的表示方法:如果直角三角形的两直角边分别为,a b ,斜边为c ,那么有 。
2、理解(1)勾股定理存在和运用的前提条件是在直角三角形中,如果不是直角三角形,那么三边之间不存在这种关系。
(2)勾股定理把“图形”与“数量”有机地结合起来,即把直角三角形的“形”与三边关系的“数”结合起来,是数形结合思想的典型代表之一。
(3)利用勾股定理,可以在直角三角形中已知两边长的情况下,求出未知的第三边长。
一般情况下,用,a b 表示直角边,c 表示斜边,则有:222222222a b c b c a a c b +==-=- 在运用勾股定理求第三边时,首先应确定是求直角边还是求斜边,在选择利用勾股定理的原形公式还是变形公式。
【例1】在ABC ∆中,90C ︒∠=, (1)若3,4,a b ==则c = ; (2)若6,10a c ==,则b = ;(3)若:3:4,15a b c ==,则a = ,b = 。
【例2】已知直角三角形的两边长分别是3和4,如果这个三角形是直角三角形,求以第三边为边长的正方形的面积。
3、勾股定理的验证至少掌握勾股定理的三种验证方法,并从中体会到这种验证方法所体现的数学思想。
【例3】2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾 股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图所 示).如果大正方形的面积是13,小正方形的面积是1,直角三角形较短直角边为a ,较长 直角边为b ,那么2()a b 的值为( ).A .13B .19C .25D .169 ●应会 基本方法1、如何利用勾股定理求长度利用勾股定理求长度,关键是找出直角三角形或构造直角三角形,把实际问题转化为直 角三角形问题。
在已知两边求第三边时,关键是弄清已知什么边,要求什么边,用平方和还 是平方差。
探索《勾股定理》说课稿
探索《勾股定理》说课稿探索《勾股定理》说课稿范文(精选5篇)探索《勾股定理》说课稿1一、教材分析:勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。
教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。
据此,制定教学目标如下:1、理解并掌握勾股定理及其证明。
2、能够灵活地运用勾股定理及其计算。
3、培养学生观察、比较、分析、推理的能力。
4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。
二、教学重点:勾股定理的证明和应用。
三、教学难点:勾股定理的证明。
四、教法和学法:教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。
切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。
通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。
五、教学程序本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:(一)创设情境以古引新1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。
这样引起学生学习兴趣,激发学生求知欲。
2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。
数学第一单元
弦股勾1.1《探索勾股定理》(1)导学案【学习目标】在方格纸上计算面积的方法探索勾股定理,掌握勾股定理,并能运用勾股定理解决一些实际问题。
【重点】掌握勾股定理,并能运用勾股定理解决一些实际问题。
【难点】探索勾股定理。
【新课学习和探究】1、导入新课:P 22、探索发现图三图1 图2图四观察图形完成下列问题: 如果正方形 A 边长为a ,则其面积为______;正方形 B 边长为b , 则其面积为________;正方形 C 边长为c ,则其面积为_______;你能发现正方形A 、B 、C 围住的直角三角形的两直角边长a 、b ,斜边c 之间有怎样的关系。
(小组讨论) 结论:_____________________3、画一画:在草稿纸上,以cm 3、cm 4为直角边画一个直角三角形,并测量斜边的长度,前面的结论对这个三角形还成立吗?4、归纳:勾股定理:直角三角形两直角边的平方和等于斜边的平方。
222a b c += 或 222AC BC AB +=注:① 作用:知道直角三角形的任意两边可以求出第三边。
②我国古代把直角三角形中较短的直角边称为勾., 较长的直角边称为股.,斜边称为弦.. 【巩固练习】1、【新课学习和探究】中“导入新课”中的答案为_______米。
2、正方形A 的面积为______,正方形B 的面积为______。
【例题精讲】如图,强台风使得一根旗杆在离地面9m 处折断倒下,旗杆顶部落在离旗杆底部12m 处.旗杆折断之前有多高?【巩固练习】求出下列直角三角形中未知边的长度。
(要求写出简单过程)(1) (2)【课堂小结】本节课有哪些收获? 【课后作业】1、在△ABC 中,∠C =90°, (l )若 a =5,b =12,则 c = ; (2)若c =15,a =9,则b =.2、直角三角形的斜边长为17cm ,一条直角边长为15cm ,则直角三角形的面积为_________cm 23、如图,求等腰△ABC 的面积。
第一章 勾股定理
第一章勾股定理1.1 探索勾股定理第1课时探索勾股定理基础题知识点1 认识勾股定理1.下列说法正确的是( D )A.若a,b,c是△ABC的三边,则a2+b2=c2B.若a,b,c是Rt△ABC的三边,则a2+b2=c2C.若a,b,c是Rt△ABC的三边,∠A=90°,则a2+b2=c2D.若a,b,c是Rt△ABC的三边,∠A=90°,则c2+b2=a22.在Rt△ABC中,斜边长BC=3,AB2+AC2+BC2的值为(A)A.18 B.9C.6 D.无法计算3.若一个直角三角形的两条直角边长都为1,则它的斜边长的平方是(C)A.12B.1C.2 D.44.(淮安中考)如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为(A)A.5B.6C.7D.255.已知在Rt△ABC中,∠C=90°.(1)若a=3,b=4,则c=5;(2)若a=6,c=10,则b=8;(3)若c=25,b=15,则a=20.知识点2 勾股定理的简单应用6.如图,做一个宽80厘米,高60厘米的长方形木框,需在相对角的顶点加一根加固木条,则木条的长为(B) A.90厘米B.100厘米C.105厘米 D.110厘米7.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了4步路(假设2步为1米),却踩伤了花草.8.已知等腰三角形的底边长为6,底边上的中线长为4,求等腰三角形的腰长.解:如图,因为AD是BC的中线,所以BD =12BC =3,AD ⊥BC.在Rt △ABD 中,由勾股定理,得 AB 2=AD 2+BD 2=42+32=25. 所以AB =5,即腰长为5.知识点3 利用勾股定理求面积9.(深圳校级期中)图中字母所代表的正方形的面积为144的选项为(D)10.如图,Rt △ABC 中,∠C =90°,若AB =15 cm ,则正方形ADEC 和正方形BCFG 的面积为(C)A .150 cm 2B .200 cm 2C .225 cm 2D .无法计算中档题11.(资阳中考)如图,点E 在正方形ABCD 内,满足∠AEB =90°,AE =6,BE =8,则阴影部分的面积是(C) A .48 B .60 C .76 D .8012.如图,若∠BAD =∠DBC =90°,AB =3,AD =4,BC =12,则CD =(B) A .5 B .13 C .17 D .1813.如图,已知△ABC 中,AB =17,AC =10,BC 边上的高AD =8,则边BC 的长为(A)A .21B .15C .6D .以上答案都不对14.在Rt △ABC 中,∠C =90°,已知a ∶b =3∶4,c =100,其中a ,b ,c 分别为∠A ,∠B ,∠C 的对边,则b 的长为(C)A .30B .60C .80D .12015.如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为64,则正方形⑤的面积为(B)A .2B .4C .8D .1616.如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,以点A 为圆心,AC 长为半径画弧,交AB 于点D ,则BD =2.17.如图,小明将一张长为20 cm ,宽为15 cm 的长方形纸剪去了一角,量得AB =3 cm ,CD =4 cm ,则剪去的直角三角形的斜边长为20cm.18.如图所示,已知在△ABC 中,∠ACB =90°,AB =5 cm ,BC =3 cm ,CD ⊥AB 于点D ,求CD 的长.解:因为△ABC 是直角三角形,AB =5 cm ,BC =3 cm , 由勾股定理有 AC 2=AB 2-BC 2,所以AC =52-32=4(cm).又因为S △ABC =12AB ·CD =12BC ·AC ,得CD =AC ·BC AB =125 cm.所以CD 的长是125cm.综合题19.在△ABC 中,AB =20,AC =15,BC 边上的高等于12,求△ABC 的周长. 解:①如图1,BD =202-122=16,CD =152-122=9,所以BC =BD +CD =16+9=25.所以周长为AB +BC +CA =20+25+15=60.图1 图2②如图2,BD=202-122=16,CD=152-122=9,所以BC=BD-CD=16-9=7.所以周长为AB+BC+CA=20+7+15=42.所以△ABC的周长为60或42.第2课时 验证勾股定理及其计算基础题知识点1 验证勾股定理1.历史上对勾股定理的一种证法采用了下列图形:其中两个全等的直角三角形边AE 、EB 在一条直线上.证明中用到的面积相等关系是(D)A .S △EDA =S △CEBB .S △EDA +S △CEB =S △CDEC .S 四边形CDAE =S 四边形CDEBD .S △EDA +S △CDE +S △CEB =S 四边形ABCD2.用如图1所示的4个形状、大小完全一样的直角三角形拼一拼,摆一摆,可以摆成如图2所示的正方形,你能利用这个图形验证勾股定理吗?解:观察图形我们不难发现,大的正方形的边长是(a +b),里面小的正方形的边长为c.大正方形面积可以表示为(a +b)2,也可以表示为12ab ×4+c 2.对比这两种表示方法,可得出(a +b)2=12ab ×4+c 2.整理得c 2=a 2+b 2.因此利用这个图形可以验证勾股定理.知识点2 勾股定理的简单应用3.为了迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小王搬来一架长为2.5米的木梯,准备把梯子架到2.4米高的墙上,则梯脚与墙角的距离为(A) A .0.7米 B .0.8米 C .0.9米 D .1.0米4.在一块平地上,张大爷家屋前9米远处有一棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时会砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答(A) A .一定不会 B .可能会C .一定会D .以上答案都不对5.某天我国海监船驶向钓鱼岛海域执法时,海监船甲以15海里/时的速度离开港口向北航行,海监船乙船同时以20海里/时的速度离开港口向东航行,则它们离开港口2小时后相距50海里.6.如图是一个外轮廓为长方形的机器零件平面示意图,根据图中标出的尺寸(单位:mm),计算两圆孔中心A 和B 的距离为100mm.7.如图是某小区一健身中心的平面图,活动区是面积为200 m 2的长方形,休息区是直角三角形,请你求出半圆形餐饮区的面积.解:AD 的长为20020=10(m).由勾股定理可得DE =6 m.所以半圆形餐饮区的面积S =12π×(6÷2)2=92π(m 2).答:半圆形餐饮区的面积为92π m 2.中档题8.如图1是边长分别为a ,b 的两个正方形,经如图2所示的割补可以得到边长为c 的正方形,且面积等于割补前的两正方形面积之和.利用这个方法可以推得或验证勾股定理.现请你通过对图2的观察指出下面对割补过程的理解不正确的是(B)A .割⑤补⑥B .割③补①C .割①补④D .割③补②9.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a ,较短直角边为b ,则ab 的值是(A) A .4 B .6 C .8 D .1010.一辆装满货物,宽为2.4米的卡车,欲通过如图所示的隧道,则卡车的外形高必须低于(A) A .4.1米 B .4.0米 C .3.9米 D .3.8米11.如图,将一根20 cm 长的细木棒放入长、宽、高分别为4 cm 、3 cm 和12 cm 的长方体无盖盒子中,则细木棒露在盒外面的最短长度是7cm.12.《中华人民共和国道路交通安全法》规定:小汽车在城市街路上行驶速度不得超过70 km/h.如图,一辆小汽车在一条城市道路上直道行驶,某一时刻刚好行驶到路对面车速检测仪的正前方30 m 处,过了2 s 后,测得小汽车与车速检测仪间距离为50 m .这辆小汽车超速了吗?解:这辆小汽车超速了. 依题意得AB =50 m , AC =30 m ,由勾股定理得BC =AB 2-AC 2=502-302=40(m). 小汽车速度为40÷2=20(m/s)=72(km/h).因为小汽车在城市街路上行驶速度不得超过70 km/h , 所以这辆小汽车超速了.13.4个全等的直角三角形的直角边分别为a 、b ,斜边为c.现把它们适当拼合,可以得到如图的图形,利用这个图形可以验证勾股定理,你能说明其中的道理吗?请试一试.解:图形的总面积可以表示为: c 2+2×12ab =c 2+ab ,也可以表示为:a 2+b 2+2×12ab =a 2+b 2+ab ,所以c 2+ab =a 2+b 2+ab ,即a 2+b 2=c 2.综合题14.为了向建国六十八周年献礼,某校各班都在开展丰富多彩的庆祝活动,八年级(1)班开展了手工制作竞赛,每个同学都在规定时间内完成一件手工作品.陈莉同学在制作手工作品的第一、二个步骤是: ①先裁下了一张长BC =20 cm ,宽AB =16 cm 的长方形纸片ABCD ; ②将纸片沿着直线AE 折叠,点D 恰好落在BC 边上的F 处. 请你根据①②步骤解答下列问题:计算EC ,FC 的长.解:因为△ADE 与△AFE 关于AE 对称, 所以△ADE ≌△AFE. 所以DE =FE ,AD =AF.因为BC =20 cm ,AB =16 cm , 所以CD =16 cm ,AD =AF =20 cm.在Rt△ABF中,由勾股定理,得BF=12 cm.所以FC=20-12=8(cm).因为四边形ABCD是长方形,所以∠C=90°.设CE=x,则DE=EF=16-x,在Rt△CEF中,由勾股定理,得(16-x)2=64+x2. 解得x=6.所以EC=6 cm.1.2 一定是直角三角形吗基础题知识点1 直角三角形的判别1.在△ABC 中,AB =3,AC =4,BC =5,则该三角形为(B) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形2.在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c 且a 2-b 2=c 2,则下列说法正确的是(C) A .∠C 是直角 B .∠B 是直角 C .∠A 是直角 D .∠A 是锐角3.如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 的形状为(A)A .直角三角形B .锐角三角形C .钝角三角形D .以上答案都不对4.木工做一个长方形桌面,量得桌面的长为60 cm ,宽为32 cm ,对角线长为68 cm ,则这个桌面合格(填“合格”或“不合格”).5.如图,在△ABC 中,AB =13,BC =10,BC 边上的中线AD =12.求: (1)AC 的长度; (2)△ABC 的面积.解:(1)因为AD 是BC 的中线,BC =10, 所以BD =CD =5.因为52+122=132,所以AD 2+BD 2=AB 2. 所以∠ADB =90°. 所以∠ADC =90°.所以AC =AD 2+CD 2=144+25=13.(2)S △ABC =12CB ·AD =12×10×12=60.知识点2 勾股数6.下列几组数中,为勾股数的一组是(D)A .0.3,0.5,0.4B .-15,8,7C .21,45,20D .15,20,257.有一组勾股数,知道其中的两个数分别是17和8,则第三个数是15.8.将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你写出两组不同于以上所给出的基本勾股数:如5,12,13;7,24,25等.9.如图,四边形ABDC 中,∠A =90°,AB =4,AC =3,CD =13,BD =12,求这个四边形的面积.解:连接BC.在△ABC 中,∠A =90°,AB =4,AC =3,由勾股定理,得BC 2=AC 2+AB 2=32+42=25,则BC =5. 在△BDC 中,CD =13,BD =12,BC =5, BD 2+BC 2=122+52=169,CD 2=132=169,所以BD 2+BC 2=CD 2,即△BDC 为∠CBD =90°的直角三角形.所以四边形ABDC 的面积为12AB ·AC +12BC ·BD =12×4×3+12×5×12=36.中档题10.满足下列条件的△ABC ,不是直角三角形的是(D)A .b 2=c 2-a 2B .a ∶b ∶c =3∶4∶5C .∠C =∠A -∠BD .∠A ∶∠B ∶∠C =3∶4∶511.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,其中正确的是(C)12.小红要求△ABC 中最长边上的高,测得AB =8 cm ,AC =6 cm ,BC =10 cm ,则可知最长边上的高是(B) A .48 cm B .4.8 cm C .0.48 cm D .5 cm13.如图,分别以三角形三边为直径向外作三个半圆,如果较小的两个半圆面积之和等于较大的半圆面积,那么这个三角形为(B) A .锐角三角形 B .直角三角形 C .钝角三角形D .锐角三角形或钝角三角形14.如图,方格中的点A ,B 称为格点(横线的交点),以AB 为一边画△ABC ,其中是直角三角形的格点C 的个数为(B)A .3B .4C .5D .615.观察下列一组勾股数:6,8,10;8,15,17;10,24,26;12,35,37;…;a ,b ,c.根据你的发现,写出当a =20时,b =99,c =101.16.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,且满足c +a =2b ,c -a =12b ,则△ABC 是什么特殊三角形?解:因为c +a =2b ,c -a =12b ,所以(c +a)(c -a)=2b ·12b.所以c 2-a 2=b 2,即a 2+b 2=c 2.所以△ABC 为∠C =90°的直角三角形.综合题17.如图,在△ABC 中,∠ABC =90°,AB =6 cm ,AD =24 cm ,BC 与CD 的长度之和为34 cm ,其中点C 是直线l 上的一个动点,请你探究当点C 离点B 有多远时,△ACD 是以DC 为斜边的直角三角形.解:因为BC 与CD 的长度之和为34 cm , 所以设BC =x cm ,则CD =(34-x)cm.因为在△ABC 中,∠ABC =90°,AB =6 cm ,所以AC 2=AB 2+BC 2=62+x 2.因为△ACD 是以DC 为斜边的直角三角形,AD =24 cm ,所以AC 2=CD 2-AD 2=(34-x)2-242.所以62+x 2=(34-x)2-242. 解得x =8, 即BC =8 cm.答:当点C 离点B8 cm 时,△ACD 是以DC 为斜边的直角三角形.1.3 勾股定理的应用基础题知识点1 勾股定理在生活中的应用1.如图,湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为(C)A.30米B.40米C.50米D.60米2.一个圆柱形的油桶高120 cm,底面直径为50 cm,则桶内所能容下的最长的木棒长为(D)A.5 cm B.100 cmC.120 cm D.130 cm3.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A处出发先往东走8 km,又往北走2 km,遇到障碍后又往西走3 km,再向北走到6 km处往东拐,仅走了1 km,就找到了宝藏,则门口A到藏宝点B的直线距离是(D)A.20 kmB.14 kmC.11 kmD.10 km4.你听说过亡羊补牢的故事吧.为了防止羊的再次丢失,牧羊人要在高0.9 m,宽1.2 m的长方形栅栏门的相对角顶点间加固一条木板,则这条木板至少需1.5_m长.5.一渔船从A点出发,向正北方向航行5公里到B点,然后从B点向正东方向航行12公里至C点,则AC长为13公里.6.如图是一个滑梯示意图,若将滑梯AC水平放置,则刚好与AB一样长,已知滑梯的高度CE=3 m,CD=1 m,求滑道AC的长.解:设AC的长为x m.因为AC=AB,所以AB=AC=x m.因为EB=CD=1 m,所以AE=(x-1)m.在Rt△ACE中,AC2=CE2+AE2,即x2=32+(x-1)2.解得x=5.所以滑道AC的长为5 m.7.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶端A在AC上运动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,求滑竿顶端A下滑多少米?解:因为AB=DE=2.5,BC=1.5,∠C=90°,所以AC=AB2-BC2= 2.52-1.52=2.因为BD=0.5,所以在Rt△ECD中,CE=DE2-CD2= 2.52-(CB+BD)2= 2.52-(1.5+0.5)2=1.5.所以AE=AC-EC=0.5.答:滑竿顶端A下滑了0.5米.知识点2 立体图形中两点之间的最短距离8.如图,若圆柱的底面周长是30 cm,高是40 cm,从圆柱底部A处沿侧面缠绕一圈丝线到顶部B处作装饰,则这条丝线的最小长度是(D)A.80 cm B.70 cmC.60 cm D.50 cm9.如图是棱长为1的正方体木块,一只蚂蚁现在A点,若在B处有一食物,它想尽快吃到食物,设蚂蚁沿正方体表面爬行的最短路程为a,则a2=5.中档题10.已知小龙、阿虎两人均在同一地点,若小龙向北直走160公尺,再向东直走80公尺后,可到神仙百货,则阿虎向西直走________公尺后,他与神仙百货的距离为340公尺(C)A.100 B.180C.220 D.26011.(济南中考)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)为(D)A.12 m B.13 mC.16 m D.17 m12.(东营中考)如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行10米.13.如图是延安某地一个农家的窑洞的洞门示意图,其上方为半圆形,若长方形的对角线AC =2.5米,AD =1.5米,则洞口的面积为4.5平方米(π取3).14.如图,长方体的高为3 cm ,底面是正方形,边长为2 cm ,现有一苍蝇从A 点出发,沿长方体的表面到达C 点处,则苍蝇所经过的最短距离为5_cm.15.如图,圆柱的底面周长为6 cm ,AC 是底面圆的直径,高BC =6 cm ,点P 是BC 上一点,且PC =23BC.一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是多少?解:画侧面展开图,如图, 因为圆柱的底面周长为6 cm , 所以右图中AC =3 cm. 又因为PC =23BC ,所以PC =23×6=4(cm).在Rt △ACP 中,AP 2=AC 2+CP 2,得AP =5 cm. 所以蚂蚁爬行的最短距离是5 cm.综合题16.印度数学家什迦罗(1141年~1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.解:如图,由题意知,AC=2,AD=0.5.在Rt△ACD中,由勾股定理,得CD2=AC2-AD2=22-0.52=3.75. 设湖水深BD为x尺,则BC为(x+0.5)尺.在Rt△BCD中,由勾股定理,得BD2+CD2=BC2,即x2+3.75=(x+0.5)2,解得x=3.5.答:湖水深3.5尺.小专题(一) 利用勾股定理解决最短路径问题——教材P19T12的变式与应用【教材母题】(教材P19T12)如图,长方体的长为15 cm,宽为10 cm,高为20 cm,点B离点C的距离是5 cm,一只蚂蚁要沿着长方体的表面从点A爬到点B,需要爬行的最短路程是多少?解:①把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1:所以BD=CD+BC=10+5=15(cm),AD=20 cm.在Rt△ABD中,根据勾股定理,得AB=AD2+BD2=202+152=25(cm).②把长方体的上侧表面剪开与右面这个侧面所在的平面形成一个长方形,如图2,所以BD=CD+BC=20+5=25(cm),AD=10 cm.在Rt△ABD中,根据勾股定理,得AB=AD2+BD2=102+252=725(cm).③把长方体的上侧表面剪开与后面这个侧面所在的平面形成一个长方形,如图3,所以AC=CD+AD=10+20=30(cm).在Rt△ABC中,根据勾股定理,得AB=AC2+BC2=302+52=925(cm).因为25<725<925,所以最短路程是25 cm.1.如图是一个三级台阶,它的每一级的长、宽、高分别为20 dm、3 dm、2 dm,A和B是这个台阶的两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,问蚂蚁沿着台阶面爬行到B点的最短路程是多少?解:经分析,如图,应把台阶看成是纸片折成的,拉平(没高度)成一张长方形(宽为3×3+2×3=15 dm,长为20 dm)的纸.所以AB2=152+202=625(dm2).所以AB=25 dm,即蚂蚁沿着台阶面爬行到B点的最短路程是25 dm.2.(青岛中考改编)如图,圆柱形玻璃杯,高为12 cm,底面周长为18 cm,在杯内离杯底3 cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离的平方是多少?解:如图,将杯子侧面展开,作点A关于EF的对称点A′,连接的A′C即为最短距离.A′C2=A′D2+CD2=92+132=250(cm2).小专题(二) 利用勾股定理解决折叠问题1.如图所示,有一块直角三角形纸片,∠C =90°,AC =4 cm ,BC =3 cm ,将斜边AB 翻折,使点B 落在直角边AC 的延长线上的点E 处,折痕为AD ,则CE 的长为(A) A .1 cm B .1.5 cm C .2 cm D .3 cm2.如图,长方形ABCD 的边AD 沿折痕AE 折叠,使点D 落在BC 上的点F 处,已知AB =6,△ABF 的面积是24,则FC 等于(B)A .1B .2C .3D .43.如图,有一张直角三角形纸片,两直角边AC =5 cm ,BC =10 cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CD 的长为(D) A.252cm B.152 cm C.254cmD.154cm4.如图,在长方形纸片ABCD 中,AB =8 cm ,把长方形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,若AF =254 cm ,则AD 的长为(C)A .4 cmB .5 cmC .6 cmD .7 cm5.(铜仁中考)如图,在长方形ABCD 中,BC =6,CD =3,将△BCD 沿对角线BD 翻折,点C 落在点C ′处,BC ′交AD 于点E ,则线段DE 的长为(B) A .3 B.154 C .5D.1526.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE 为折痕,则EB′=1.5.7.如图,在Rt△ABC中,∠C=90°,BC=6 cm,AC=8 cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB 边的C′点,那么△ADC′的面积是6_cm2.8.如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的点B′处,点A的对应点为点A′,且B′C=3,求AM的长.解:连接BM,B′M.因为四边形ABCD为正方形,所以∠A=∠D=90°.由题意,得DB′=9-3=6,BM=B′M.设AM=x,则DM=9-x.由勾股定理,得x2+92=BM2,(9-x)2+62=B′M2,所以x2+92=(9-x)2+62,解得x=2,即AM的长为2.章末复习(一) 勾股定理基础题知识点1 勾股定理及其验证1.在△ABC 中,∠A 、∠B 、∠C 的对应边分别是a 、b 、c ,若∠A +∠C =90°,则下列等式中成立的是(C)A .a 2+b 2=c 2B .b 2+c 2=a 2C .a 2+c 2=b 2D .c 2-a 2=b 22.如图是一张直角三角形的纸片,两直角边AC =6 cm ,BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为(B)A .4 cmB .5 cmC .6 cmD .10 cm3.下列选项中,不能用来证明勾股定理的是(D)知识点2 直角三角形的判别4.在△ABC 中,AB =12 cm ,AC =9 cm ,BC =15 cm ,则S △ABC 等于(A)A .54 cm 2B .108 cm 2C .180 cm 2D .90 cm 25.下列说法中,错误的是(D)A .在△ABC 中,∠C =∠A -∠B ,则△ABC 为直角三角形B .在△ABC 中,若∠A ∶∠B ∶∠C =5∶2∶3,则△ABC 为直角三角形 C .在△ABC 中,若a =35c ,b =45c ,则△ABC 为直角三角形D .在△ABC 中,若a ∶b ∶c =3∶2∶4,则△ABC 为直角三角形6.已知如图,在△ABC 中,AB =25,BC =14,BC 边上的中线AD =24,试说明△ABC 是等腰三角形.解:因为AB =25,AD =24, BD =12BC =12×14=7,AD 2+BD 2=242+72=625=252=AB 2,所以△ADB 为直角三角形,且∠ADB =90°, 即AD ⊥BC.在Rt △ADC 中,AC=AD2+CD2=242+72=625=25,所以AB=AC.故△ABC是等腰三角形.知识点3 勾股定理的应用7.一条河的宽度处处相等,小强想从河的南岸横游到北岸去,由于水流影响,小强上岸地点偏离目标地点200 m,他在水中实际游了520 m,那么该河的宽度为(C)A.440 m B.460 mC.480 m D.500 m8.如图,铁路MN和公路PQ在点O处交汇.公路PQ上A处距离O点240米,距离MN这条铁路的距离是120米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,A处受噪音影响的时间是多少?解:作AD⊥MN,并作AB=AC=200 m交MN于点B、C.因为AD=120 m,所以BD=2002-1202=160(m),BC=160×2=320(m),t=0.32÷72×3 600=16(s).答:A处受噪音影响的时间是16 s.中档题9.已知一个直角三角形的两边长分别为6和8,则第三边长的平方是(D)A.100 B.28C.10或14 D.100或2810.在△ABC中,AB=n2+1,AC=2n,BC=n2-1(n>1),则这个三角形是(C)A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形11.某会会标如图所示,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和为5,则中间小正方形的面积是(A)A.1 B.2C.4 D.612.在△ABC中,∠C=90°,周长为60,斜边与一条直角边的比为13∶5,则这个三角形的三边长分别为26,24,10.13.(泰州中考)如图,长方形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP 沿BP翻折至△EBP, PE与CD 相交于点O,且OE=OD,则AP的长为4.8.14.古希腊的哲学家柏拉图曾指出,如果m表示大于1的整数,a=2m,b=m2-1,c=m2+1,那么a,b,c为勾股数.请你说明理由.你能利用这个结论得出一些勾股数吗?解:因为a 2=4m 2,b 2=m 4-2m 2+1,c 2=m 4+2m 2+1,a 2+b 2=c 2,所以△ABC 是直角三角形,∠C 为直角.又m 为大于1的整数,故2m ,m 2-1,m 2+1都是正整数,因此,a ,b ,c 为勾股数.利用这个结论可以得出勾股数:如4,3,5;8,15,17等.15.小明把一根长为160 cm 的细铁丝弯折成三段,将其做成一个等腰三角形风筝的边框ABC ,已知风筝的高AD =40 cm ,你知道小明是怎样弯折铁丝的吗?解:设腰长AB =AC =x ,则BC =160-2x ,BD =12BC =80-x. 在Rt △ABD 中,AB 2=BD 2+AD 2,即x 2=(80-x)2+402.解得x =50.所以AB =AC =50 cm ,BC =160-2×50=60(cm).所以小明先量取铁丝50 cm 弯折一次,再量取50 cm 弯折一次,然后将铁丝的两端点对接即可得到等腰三角形风筝的边框ABC.综合题16.如图,一根长度为50 cm 的木棒的两端系着一根长度为70 cm 的绳子,现准备在绳子上找一点,然后将绳子拉直,使拉直后的绳子与木棒构成一个直角三角形,这个点将绳子分成的两段各有多长?解:分两种情况:①如图1,当∠B =90°时,设BC =x cm ,则AC =(70-x)cm.在Rt △ABC 中,AC 2=AB 2+BC 2,即(70-x)2=502+x 2,解得x =1207, 则AC =70-x =3707.②如图2,当∠C =90°时,根据勾3股4弦5可知这两段绳子的长度分别为30 cm 和40 cm.答:该点将绳子分成长度分别为1207 cm 和3707 cm 的两段或30 cm 和40 cm 的两段.。
1 探索勾股定理第1课时
(2)符号语言:
C 90 (已知)
B c
a
a2 b2 c2 (勾股定理) C
b
A
问题解决
如图,从电线杆离地面8m处向地面拉一条钢索, 若这条钢索在地面的固定点距离电线杠底部6m, 那么需要多长的钢索?
在直角三角形中: ∵82+62=斜边2 ∴斜边=10 ∴钢索长=10(米)
知识归纳
“勾股定理”的应用: 已知直角三角形两边,求第三边。
探索勾股定理
科学家曾经建议用“勾股定理”的图来作为与“外星人” 联系的信号。
勾股定理有着悠久的历史,古巴比伦人和古 代中国人看出了这个关系。
古希腊的毕达哥拉斯学派首先证明了这个关系。
“勾股定理”图
如图,从电线杆离地面8m处向地面拉一条钢索, 若这条钢索在地面的固定点距离电线杠底部6m, 那么需要多长的钢索?
(1)在纸上作出若干个直角三角形,分别测量它们的三 条边长,看看三边长的平方之间有什么样的关系?与 同伴进行交流。
测量法 三边长的平方之间的关系:
两直角边的平方和等于斜边的平方
(2)如图,直角三角形三边的平方分别是多少,它们满
足上面所猜想的数量关系?你是如何计算的?与同伴
进行交流。
数格子法
ⅰ.三边的平方分别是 各正方形的面积;
ⅱ.满足“两直角边的平 方和等于斜边的平方”。
(2)对于下图中的直角三角形,是否还满足这样的关 系?你又是如何计算的呢?
数格子法
ⅰ.三边的平方分别是 各正方形的面积;
ⅱ.满足“两直角边的平 方和等于斜边的平方”。
(3)如果直角三角形的两直角边分别为1.6个单位长度 和2.4个单位长度,上面所猜想的数量关系还成立吗? 说明你的理由。
北师大版数学八年级上册《探索勾股定理》教案1
北师大版数学八年级上册《探索勾股定理》教案1一. 教材分析《探索勾股定理》是北师大版数学八年级上册的一章内容。
本章通过探究直角三角形三边之间的关系,引导学生发现并证明勾股定理。
教材内容丰富,既有历史文化的传承,也有数学证明的严谨性,有助于提高学生的学习兴趣和探究能力。
二. 学情分析学生在七年级时已经学习了相似三角形、平方根等知识,为本章的学习奠定了基础。
但勾股定理的证明较为复杂,需要学生具有较强的逻辑思维能力和推理能力。
此外,学生对数学文化的认识还不够深入,需要教师在教学中加以引导。
三. 教学目标1.了解勾股定理的发现过程,感受数学文化的魅力。
2.掌握勾股定理的内容,并能运用勾股定理解决实际问题。
3.培养学生的探究能力、合作能力和数学思维能力。
四. 教学重难点1.重难点:勾股定理的证明及应用。
2.难点:理解并证明勾股定理,运用勾股定理解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究勾股定理。
2.运用历史背景法,让学生了解勾股定理的文化价值。
3.采用合作交流法,培养学生团队合作精神。
4.利用几何画板等软件,直观展示勾股定理的证明过程。
六. 教学准备1.教师准备PPT、几何画板等教学工具。
2.学生准备笔记本、尺子、圆规等学习用品。
七. 教学过程1.导入(5分钟)利用PPT展示勾股定理的历史背景,引导学生了解勾股定理的文化价值。
2.呈现(10分钟)教师通过几何画板展示直角三角形,引导学生观察并猜想勾股定理。
3.操练(15分钟)学生分组讨论,每组尝试用尺子、圆规等工具验证勾股定理。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)学生代表汇报验证结果,其他学生补充意见。
教师总结勾股定理的证明过程。
5.拓展(10分钟)教师提出一系列与勾股定理相关的问题,引导学生运用勾股定理解决实际问题。
6.小结(5分钟)教师引导学生总结本节课的学习内容,巩固勾股定理的知识。
7.家庭作业(5分钟)布置一道运用勾股定理解决问题的作业,巩固所学知识。
北师大版数学八年级上册课件 第一章 1.1 探索勾股定理(共19张PPT)
探索勾股定理(1)
2002年世界数学家大会在我国北京召开,下 图是该届数学家大会的会标:
赵爽弦图
毕达哥拉斯——神奇的发现
毕达哥拉斯(公元前 572—前497年),古 希腊著名的数学家、 哲学家.
发现了直角三角形三边 的数量关系!
探究活动1
ac
请你数一数下图正方形A、B、C各占多少个小格子? b
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。
•
求图1中正方形C的面积? 方法二:“补”
Sc
49
4
(
1 2
3
4)
C
25.
求图2中正方形C的面积?
方法一:“割”
Sc 4 ( 1 2 3) 1 2
C
13
求图2中正方形C的面积
方法二:“补”
Sc 25 4 ( 1 2 3)
2
C
13
求图2中正方2 4 5
C
13
总结归纳,得出定理
ac
勾股定理
b
如果直角三角形两直角边长分别
为a,b,斜边长为 c ,那么
a2 b2 c2
即直角三角形两直角边的平方和等于
1.这一节课我们一起学习了哪些知识 和思想方法?
2.对这些内容你有什么体会? 请你在小组内交流.
知识:勾股定理 如果直角三角形两直角边长分别为a,b,斜
边长为 c ,那么 a2 b2 c2.
方法: “割、补、拼”法求面积.
思想:1. 特殊—一般—特殊; 2. 数形结合思想.
布置作业
八年级数学上册 第一章 勾股定理 1.1 探索勾股定理(第1课时)课件
(píngfāng)
么
a2+b2=c2 .
3.在△ABC中,∠C=90°,AB=7,BC=5,则边AC的长的平方为(
A.2 B.24 C.74 D.12
为
第四页,共九页。
.如果(rúguǒ)
)
B
1.若直角三角形的三边(sān biān)长分别为6,8,m,则m2的值为( D
A.10
C.28
)
B.100
2
即阴影部分(bùfen)的面积为72π cm2.
第八页,共九页。
内容(nèiróng)总结
第一章 勾股定理。A.2 B.24
C.74
D.12。1.若直角三角形的三边长分别为
6,8,m,则m2的值为(
)。2.如图,在边长为1个单位(dānwèi)长度的小正方形组成的网格中,点
A,B都是格点,则线段AB的长度为(
C.76
D.80
C
第六页,共九页。
4.在△ABC中,∠C=90°,AB=25,AC=20,求△ABC的周长(zhōu chánɡ).
解:∵AB2=AC2+BC2,
∴BC2=AB2-AC2=252-202=152.
∴BC=15.
∴△ABC的周长(zhōu chánɡ)是25+20+15=60.
第七页,共九页。
5.求下列图中阴影(yīnyǐng)部分的面积:
(1)
(2)
解:(1)由题图,得132-122=25(cm2),则阴影部分的面积为25 cm2.
(2)设半圆的直径(zhíjìng)为d cm,由勾股定理,得d2=252-72=576,则d=24,
S
1
2
半圆= π
北师大版八年级数学上册第一章《勾股定理》教案
第一章勾股定理1 探索勾股定理第1课时勾股定理(1)1.经历测量和用数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系.2.探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单推理的意识及能力.3.利用勾股定理,已知直角三角形的两边求第三边长.4.在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想.5.经历观察与发现直角三角形三边关系的过程,感受勾股定理的应用意识.6.通过对勾股定理历史的了解,感受数学变化,激发学习热情.7.在探究活动中,体现解决问题方法的多样性,培养学生的合作交流意识和探索精神.【教学重点】探索勾股定理.【教学难点】用测量和数格子的方法探索勾股定理.一、创设情境,导入新课我们知道,任意三角形的三条边必须满足定理:三角形的两边之和大于第三边.对于等腰三角形和等边三角形的边,除满足三边关系定理外,它们还分别存在着两边相等和三边相等的特殊关系.那么对于直角三角形的边,除满足三边关系定理外,它们之间也存在着特殊的关系,这就是我们这一节要研究的问题:勾股定理.出示投影1(章前的图文P1),介绍数学家曾用这个图形作为与“外星人”联系的信号.【教学说明】通过复习旧知识,引入新课.出示投影,介绍与勾股定理有关的背景,激发学生的学习兴趣.二、思考探究,获取新知勾股定理做一做:1.在纸上画若干个直角三角形,分别测量它们的三条边,看看三边长的平方之间有怎样的关系?与同伴交流.【教学说明】学生根据教师的要求完成这个问题,自主交流发现直角三角形的性质.2.观察教材图1—2,正方形A中有个小方格,即A的面积为个面积单位.正方形B中有个小方格.即B的面积为个面积单位.正方形C中有个小方格,即C的面积为个面积单位.你是怎样得出上面结果的?在学生交流回答的基础上教师接着发问.教材图1—2中,A、B、C之间的面积之间有什么关系?【教学说明】通过观察特殊图形下方格数与正方形面积之间的转化,进一步体会探索勾股定理.归纳得出结论:S A+S B=S C.3.教材图1—3中,A、B、C之间是否还满足上面的关系?你是如何计算的?【教学说明】通过观察计算一般情况下方格数与正方形面积之间的转化,进一步加强对勾股定理的理解.4.如果直角三角形两直角边分别是1.6个单位长度和2.4个单位长度,上面所猜想的数量关系还成立吗?说明你的理由.【教学说明】渗透从特殊到一般的数学思想,充分发挥学生的主体地位,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题、解决问题的能力得到了提高.议一议:你能发现直角三角形三边长度之间的关系吗?【教学说明】学生自主探究,发现直角三角形的性质,并整合成精确的语言将之表达出来,有利于培养学生综合概括能力和语言表达能力.【归纳结论】直角三角形的两直角边的平方和等于斜边的平方.这就是著名的“勾股定理”.也就是说:如果直角三角形的两直角边为a、b,斜边为c,那么a2+b2=c2.我国古代称直角三角形的较短的直角边为勾,较长的直角边为股,斜边为弦,这便是勾股定理的由来.三、运用新知,深化理解1.在直角三角形ABC中,∠C=90°,若a=5,b=12,则c= .2.在直角三角形的ABC中,它的两边长的比是3∶4,斜边长是20,则两直角边长分别是.【教学说明】学生的完成,加深对勾股定理的理解和检测对勾股定理的简单运用,对学生的疑惑或出现的错误及时指导,并进行强化.【答案】1.13;2.12,16四、师生互动,课堂小结通过本节课的学习,你掌握了哪些新知识,还有什么困惑?【教学说明】教师引导学生回顾新知识,加强对勾股定理的理解,进一步完善了学生对知识的梳理.完成练习册中本课时相应练习.本节内容重在探索与发现,要给充分的时间让学生讨论与交流.适当的练习以巩固所学也是必要的,当然,这些内容还需在后面的教学内容再加深加广.第2课时勾股定理(2)1.经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯.2.掌握勾股定理和它的简单应用.3.通过从实际问题中抽象出直角三角形这一模型,初步掌握转化和数形结合的思想方法.4.经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法.5.在数学活动中发展了学生的探究意识和合作交流的习性;体会勾股定理的应用价值,通过本节课学习,让学生体会到数学来源于生活,又应用到生活中,增加学生应用数学知识解决实际问题的经验和感受.【教学重点】能熟练应用拼图法证明勾股定理.【教学难点】用面积证勾股定理.一、创设情境,导入新课我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需要加以论证,下面就是今天所要研究的内容.【教学说明】让学生经历从特殊到一般的数学方法,明白数学问题是需要通过一定的论证才能说明它的正确性,为后面学习证明打下埋伏.二、思考探究,获取新知勾股定理的验证及简单运用做一做:1.画一个直角三角形,分别以这个直角三角的三边为边长向外作正方形,你能利用这个图证明勾股定理的正确性吗?你是如何做的?与同伴进行交流.【教学说明】让学生进一步体会探索勾股定理的过程,体会数形结合的思想.2.为了计算教材图1—4中大正方形的面积,小明对这个大正方形适当割补后,得到教材P51—5、1—6图.(1)将所有三角形和正方形的面积用a,b,c的关系式表示出来;(2)教材图1—5、1—6中正方形ABCD的面积分别是多少?你们有哪些表示方式?与同伴进行交流.(3)你能分别利用教材图1—5、1—6验证勾股定理吗?【教学说明】学生通过各种方法验证勾股定理的正确性,加深对勾股定理的理解,又让学生体会到一题多解.【归纳结论】勾股定理的证明方法达300多种,请同学们利用业余时间探究、讨论并阅读教材P7-8的其它证明勾股定理的方法,以开阔事学们的视野.三、运用新知,深化理解1.一块长3m,宽2.2m的薄木板能否从一个长2m,宽1m的门框内通过,为什么?2.飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?【教学说明】让学生从实际生活的角度大胆的去考虑,用生活经验和学过的知识去解答.并学会把实际问题抽象为直角三角形的数学模型的过程,能够熟练地将勾股定理应用到现实生活中去.【答案】1.能,让薄木板的宽从门框的对角线斜着通过.2.分析:根据题意,可以先画出符合题意的图形.如图,图中△ABC的∠C=90°,AC=4000米,AB=5000米欲求飞机每时飞行多少千米,就要知道20秒时间里飞行的路程,即图中的CB的长,由于△ABC的斜边AB=5000米,AC=4000米,这样BC就可以通过勾股定理得出,这里一定要注意单位的换算.解:由勾股定理得BC2=AB2-AC2=52-42=9(km2)即BC=3千米飞机20秒飞行3千米.那么它1小时飞行的距离为:3600/20×3=540(千米/时)答:飞机每小时飞行540千米.四、师生互动,课堂小结通过这节课的学习,你学会了哪几种证明勾股定理的方法?还有哪些疑问?【教学说明】总结归纳帮助学生进一步掌握解决实际问题的关键是抽象出相应的数学模型.完成练习册中本课时相应练习.了解多种证明勾股定理的方法,有助于加深对勾股定理内容的理解,但这需要花一定的时间,可以让学生课外了解.并运用所学知识解决实际问题,体验数学来源于生活,生活中也蕴含着许多数学道理.2 一定是直角三角形吗1.掌握直角三角形的判别条件,并能进行简单应用.2.通过用三角形的三边的数量关系来判断三角形的形状,体验数形结合方法的应用.3.敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.【教学重点】探索并掌握直角三角形的判别条件.【教学难点】运用直角三角形判别条件解题.一、创设情境,导入新课展示一根用13个等距的结把它分成等长的12段的绳子,请三个同学上台,按老师的要求操作.甲:同时握住绳子的第一个结和第十三个结.乙:握住第四个结.丙:握住第八个结.拉紧绳子,让一个同学用量角器,测出这三角形其中的最大角.发现这个角是多少度?古埃及人曾经用这种方法得到直角,这三边满足了什么条件?怎样的三角形才能成为直角三角形呢?这就是我们今天要研究的内容.【教学说明】利用古埃及人得到直角的方法,学生亲自动手实践,体验从实际问题中发现数学,同时明确了本节课的研究问题.既进行了数学史的教育,又锻炼了学生的动手实践、观察探究的能力.二、思考探究,获取新知直角三角形的判别做一做:下面的三组数分别是一个三角形的三边a、b、c.5、12、137、24、258、15、171.这三组数都满足a2+b2=c2吗?2.分别用每组数为三边作三角形,用量角器量一量,它们都是直角三角形吗?3.如果三角形的三边长为a、b、c,并满足a2+b2=c2.那么这个三角形是直角三角形吗?【教学说明】鼓励学生大胆发言,让他们体验通过实际的计算和探究得到结论的乐趣,增强了他们勇于探索的精神.【归纳结论】如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.大家可以想这样的勾股数是很多的.今后我们可以利用“三角形三边a、b、c满足a2+b2=c2时,三角形为直角三角形”来判断三角形的形状,同时也可以用来判定两条直线是否垂直的方法.三、运用新知,深化理解1.下列几组数能否作为直角三角形的三边长?说说你的理由.(1)9,12,15;(2)15,36,39;(3)12,35,36;(4)12,18,22.2.已知△ABC中BC=41,AC=40,AB=9,则此三角形为三角形,是最大角.3.四边形ABCD中已知AB=3,BC=12,CD=13,DA=4,且∠DAB=90°,求这个四边形的面积.【教学说明】学生独立完成,能够加深判断一个三角形是直角三角形的条件的理解,帮助学生答疑解惑,及时指导,矫正强化.在完成上述题目后,引导学生完成《创优作业》中本课时的“课堂自主演练”部分.【答案】1.(1)(2)两组能作为直角三角形的三边长.∵92+122=152,152+362=392.∴这两个三角形都是直角三角形.2.直角,∠A3.解:连结BD,在△ABD中,∠DBA=90°,BD2=AB2+AD2=32+42,BD=5.在△DBC中,∵52+122=132,即DB2+BC2=DC2,∴△DBC为直角三角形,∠DBC=90°,∴S四边形ABCD=S△DAB+S△DBC=12×3×4+12×5×12=36.四、师生互动,课堂小结1.判断一个三角形是直角三角形的条件.2.今天的学习,你有哪些收获?还有哪些困惑?与同学交流.【教学说明】及时反馈教与学双边活动的结果,查漏补缺,让学生养成系统整理知识的好习惯.1.教材P10-11习题1.3第2、3、4题.2.完成练习册中本课时相应练习.这是勾股定理的逆向应用.大部分同学只要能正确掌握勾股定理的话,都不难理解.当然勾股定理的理解是关键.3勾股定理的应用1.能运用勾股定理及直角三角形的判别条件解决简单的实际问题.2.学生观察图形,勇于探索图形间的关系,培养学生的空间观念.3.在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.4.在不同条件,不同环境中反复运用勾股定理及直角三角形的判定条件,使学生达到熟练、灵活运用的程度.在解决问题的过程中,培养学生的空间观念,提高学生建立数学模型的能力.5.通过解决实际问题,提高了学生应用数学的意识和锻炼了学生与他人交流合作的意识,再次感悟勾股定理和直角三角形判定的应用价值.【教学重点】探索发现给定事物中隐含的勾股定理及直角三角表判定条件,并用它们解决生活中的实际问题.【教学难点】利用数学中的建模思想构造直角三角形,灵活运用勾股定理及直角三角形的判定,解决实际问题.一、创设情境,导入新课勾股定理的应用前几节课我们学习了勾股定理,你还记得它有什么作用吗?例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需要多长的梯子?日常生活当中,我们还会遇到下面的问题.【教学说明】回忆勾股定理,巩固旧知识,解决实际问题,完成知识的过渡,为学生学习新知识又一次打下了坚实的基础.二、思考探究,获取新知蚂蚁怎么走最近?出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的最短路程是多少?(π的取值3).(1)同学们可自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(2)如图,将圆柱侧面剪开展开成一个长方形,从A点到B点的最短路线是什么?你画对了吗?(3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱的侧面爬行的最短路程是多少?【教学说明】让学生经历把曲面上两点之间的距离转化为平面上两点之间线段最短更为直观,再次利用勾股定理解决生活中较为复杂的实际问题,使所学的知识得到充分运用.【归纳结论】我们知道,圆柱的侧面展开图是一长方形.好了,现在咱们就用剪刀沿母线AA′将圆柱的侧面展开(如下图).我们不难发现,刚才几位同学的走法:哪条路线是最短呢?你画对了吗?第(4)条路线最短.因为“两点之间的连线中线段最短”.三、运用新知,深化理解1.甲、乙两位探险者,到沙漠进行探险.某日早晨8∶00甲先出发,他以6千米/时的速度向东行走.1小时后乙出发,他以5千米/时的速度向北进行,上午10∶00,甲、乙两人相距多远?2.如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?【教学说明】学生独立解决,把生活中的实际问题转化为解直角三角形,对学生所学的知识进行强化,以利于教师及时纠正.【答案】1.分析:首先我们需要根据题意将实际问题转化成数学模型.解:(如图)根据题意,可知A是甲、乙的出发点,10∶00时甲到达B点,则AB=2×6=12(千米);乙到达C点,则AC=1×5=5(千米).在Rt△ABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙两人相距13千米.2.分析:从题意可知,没有告诉铁棒是如何插入油桶中,因而铁棒的长是一个取值范围而不是固定的长度,所以铁棒最长时,是插入至底部的A点处,铁棒最短时是垂直于底面时.解:设伸入油桶中的长度为x米,则应求最长时和最短时的值.(1)x2=1.52+22,x2=6.25,x=2.5所以最长是2.5+0.5=3(米).(2)x=1.5,最短是1.5+0.5=2(米).答:这根铁棒的长应在2~3米之间(包含2米、3米).四、师生互动,课堂小结通过本节课的学习,你掌握了哪些知识?还有哪些疑问?【教学说明】学生梳理知识,加强教与学的互通,进一步提高课堂教学的效果.1.教材P14~15第1、2、3、4题.2.完成练习册中本课时相应练习.这节课的内容综合性比较强,可能有些同学掌握得不是太好,今后要继续加强这方面的训练.本章归纳总结1.掌握勾股定理和如何判断一个三角形是直角三角形,能灵活运用它们解决实际问题.2.通过梳理本章知识点,回顾解决实际问题中所涉及的数形合的思想和逆向思维思考问题,以便能熟练灵活运用.3.让学生养成把已有的知识建立联系的思维习性,积极参与数学活动,在活动中学会思考、讨论、交流和合作,激发他们的求知欲望.4.用勾股定理和如何判断一个三角形是直角三角形解决简单问题.【教学难点】能理解运用勾股定理解题的基本过程;掌握在复杂图形中确定相应的直角三角形,根据勾股定理建立方程.一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,构建知识结构框架,让学生比较系统地了解本章知识及它们之间的相互联系.二、释疑解惑,加深理解1.勾股定理的证明勾股定理的证明方法有多种,一般是采用剪拼的方法,它把“数与形”巧妙地联系起来,是几何与代数沟通的桥梁,同时也为后面的四边形、圆、圆形变换、三角函数等知识的学习提供了方法和依据.说明:利用面积相等是证明勾股定理的关键所在.2.勾股定理中的分类讨论在勾股定理的实际运用中,如果不明给出直角三角形中有两条边的长,要求第三条边的长就需要分两种情况讨论,即第一种情况是告诉两条直角边长求斜边,第二种情况是告诉一条直角边和斜边长求另一条直角边.3.曲面两点间的距离问题在解决曲面中两点间的距离时,往往是要将曲面问题转化为同一平面内两点之间的距离,这是解决问题的关键.三、典例精析,复习新知例1 一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕是DE(如图所示),求CD的长.【分析】设CD为x,∵AD=BD,∴AD=8-x. ∴在△ACD中,根据勾股定理列出关于x的方程即可求解.解:由折叠知,DA=DB.在Rt△ACD中,由勾股定理得AC2+CD2=AD2,若设CD=xcm,则AD=DB=(8-x)cm,代入上式得62+x2=(8-x)2,解得x=7/4=1.75(cm),即CD的长为1.75cm.例2有一个立方体礼盒如图所示,在底部A处有一只壁虎,C′处有一只蚊子,壁虎急于捕捉到蚊子充饥.(1)试确定壁虎所走的最短路线;(2)若立方体礼盒的棱长为20cm,则壁虎如果想在半分钟内捕捉到蚊子,每分钟至少要爬行多少厘米?(保留整数)【分析】求几何表面的最短距离时,通常可以将几何体表面展开,把立体图形转化为平面图形.解:(1)若把礼盒上的底面A′B′C′D′竖起来,如图所示,使它与立方体的正面(ABB′A′)在同一平面内,然后连接AC′,根据“两点间线段最短”知线段AC′就是壁虎捕捉蚊子所走的最短路线.(2)由(1)得,△ABC′是直角三角形,且AB=20,BC′=40.根据勾股定理,得AC′2=AB2+BC′2=202+402,AC′≈44.7(cm),44.7÷0.5≈90(cm/min).所以壁虎要想在半分钟内捕捉到蚊子,它每分钟至少爬行90厘米(只入不舍).【教学说明】师生共同回顾本章主要知识,对于例题中需要注意的事项教师可以适当点评,便于学生熟练加以运用.四、复习训练,巩固提高1.已知在△ABC中,∠B=90°,一直角边为a,斜边为b,则另一条直角边c满足c2= .2.在Rt△ABC中,∠C=90°,若a=12,c-b=8,则b= ,c= .3.如图所示,在△ABC中,∠ACB=90°,CD⊥AB,D为垂足,AC=2.1,BC=2.8.求:(1)△ABC的面积;(2)斜边AB的长;(3)斜边AB上的高CD的长;(4)斜边被分成的两部分AD和BD的长.【答案】1.b2-a2;2.5,13;3.解:(1)S△ABC=12AC×BC=12×2.1×2.8=2.94.(2)AB2=AC2+BC2=2.12+2.82=12.5,∴AB=3.5.(3)由三角形的面积公式得12AC×BC=12AB×CD,所以12×2.1×2.8=12×3.5×CD,解得CD=1.68.(4)在Rt△ACD中,由勾股定理得AD2+CD2=AC2,∴AD2=AC2-CD2=2.12-1.682=(2.1+1.68)(2.1-1.68)=3.78×0.42=2×1.89×2×0.21=22×9×0.214×0.21.∴AD=2×3×0.21=1.26.∴BD=AB-AD=3.5-1.26=2.24.五、师生互动,课堂小结本节复习课你能灵活运用勾股定理和如何判断一个三角形是直角三角形的解决问题吗?还有哪些不足?【教学说明】教师引导学生归纳本章主要的知识点,对于遗漏或需要强调的地方,教师应及时补充和点拨.1.复习题4.5第11、12题.2.完成练习册中本课时相应练习.勾股定理是解决线段计算问题的主要依据,它单独命题比较少见,更多时候是与其他知识综合应用,在综合题中如何找到适当的直角三角形是解题的关键.。
北师大版八年级上册初中数学教学设计1探索勾股定理
4.强调勾股定理在实际生活中的重要性,激发学生对数学学科的兴趣和热爱。
5.布置课后作业,要求学生运用勾股定理解决实际问题,巩固课堂所学知识。
五、作业布置
为了巩固学生对勾股定理的理解和应用,特布置以下作业:
1.请同学们结合课堂所学的勾股定理,选取生活中的一个直角三角形实例,如窗户、楼梯等,测量并计算出其三条边的长度,验证勾股定理的正确性。
4.能够运用勾股定理推导出相似直角三角形的性质,如比例关系等。
(二)过程与方法
1.通过实际操作,引导学生观察、思考、分析勾股定理的规律,培养学生发现问题、解决问题的能力。
2.采用小组合作、讨论交流等形式,让学生在合作中学习,提高学生的沟通能力和团队协作精神。
3.设计丰富多样的练习题,使学生在练习中巩固知识,提高运算能力和解决问题的能力。
二、学情分析
八年级学生已具备一定的数学基础,掌握了直角三角形的基本性质,能够进行简单的几何计算。在此基础上,探索勾股定理,学生需要运用已学知识,通过观察、思考、实践,发现勾股定理的规律,并学会运用勾股定理解决实际问题。
学生对勾股定理的认识可能初步来源于生活实际,如建筑、测量等领域,但对勾股定理的严谨证明和应用可能尚不熟悉。因此,在教学过程中,教师需关注以下几点:
3.学生可能会提到直角三角形的边长关系,如两条直角边的平方和等于斜边的平方。教师给予肯定,并引出本节课的主题——勾股定理。
(二)讲授新知,500字
1.教师介绍勾股定理的概念,即直角三角形两条直角边的平方和等于斜边的平方。
2.通过动画演示或实物的形式,展示勾股定理的证明过程,如代数法、几何法等,使学生直观地理解定理的原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.(a+b)(a-b)=a2-b2 B.(a+b)2=a2+2ab+b2 C.c2=a2+b2 D.(a-b)2=a2-2ab+b2
1 探索勾股定理
答案 C 大正方形的面积可以表示为c2,
也可以表示为 1 ab×4+(b-a)2,∴c2= 1 ab×4+(b-a)2,
2
2
即c2=2ab+b2-2ab+a2,∴c2=a2+b2.
项目
内容
勾股定理验 用拼图法验证勾股定理的思路:(1)图形经过割补拼接后,只要没有重叠,没有空隙,那么 证的思路 面积不会改变;(2)根据同种图形面积的不同表示方法列出等式,推导勾股定理
勾股定理验 勾股定理的验证是通过拼图法,即图形割补来完成的,探索的关键是要找面积相等,通过 证的实质 面积之间的相等关系,将“形”的问题转化为“数”的问题
图”是由四个相同的直角三角形与中间的小正方形拼成的一个大正方
形,如图1-1-6所示.如果直角三角形的直角边分别为a,b(a>b),斜边为c,那
么小正方形的面积可以表示为
(用含有a,b的式子表示),小正
方形的面积还可以表示为
(用含有a,b,c的式子表示),可以验
证一个等式:
.
图1-1-6
1 探索勾股定理
(1)若a=6,b=8,则c=பைடு நூலகம்
;
(2)若a=5,c=13,则b=
;
(3)若c=34,a∶b=8∶15,则a=
,b=
.
1 探索勾股定理
栏目索引
解析 (1)已知两直角边长a、b,则由c2=a2+b2=62+82=100,得c=10(舍负). (2)已知直角三角形的斜边长c和一条直角边长a, 则由b2=c2-a2=132-52=144,得b=12(舍负). (3)因为a∶b=8∶15,所以可设a=8k,b=15k(k>0), 因为∠C=90°,c=34,所以c2=a2+b2,即342=(8k)2+(15k)2. 所以k=2(舍负).所以a=16,b=30.
积为
.
答案 13或5 解析 以x为边长的正方形的面积为x2.当2和3都是直角边时,x2=4+9=1 3;当3是斜边时,x2=9-4=5.故答案为13或5.
1 探索勾股定理
栏目索引
4.(2017北京通州二模改编)2002年8月,在北京召开国际数学家大会,大
会的会标取材于我国古代数学家赵爽的《勾股圆方图》.其中的“弦
1 探索勾股定理
栏目索引
4.(2013四川资阳中考)如图1-1-3,点E在正方形ABCD内,满足∠AEB= 90°,AE=6,BE=8,则阴影部分的面积是 ( )
图1-1-3 A.48 B.60 C.76 D.80
1 探索勾股定理
答案 C ∵∠AEB=90°,AE=6,BE=8,
∴在Rt△ABE中,AB2=AE2+BE2=100,
2
1 探索勾股定理
栏目索引
1.如图1-1-4所示,已知Rt△ABC中,AB=4,分别以AC,BC为直径作半圆,面 积分别记为S1,S2,则S1+S2的值等于 ( )
A.2π
B.4π
C.8π
图1-1-4
D.16π
1 探索勾股定理
答案 A 在Rt△ABC中,AB2=AC2+BC2=42=16,
S1=
A.2 015 B.2 016 C.2 017 D.2 018
1 探索勾股定理
栏目索引
答案 D 设正方形A,B,C围成的直角三角形的三条边长分别是a,b,c. 如图,根据勾股定理,得a2+b2=c2,一次“生长”后,SA+SB=SC=1.第二次“生 长”后,SD+SE+SF+SG=SA+SB=SC=1,推而广之,“生长”了2 017次后形成的 图形中所有的正方形的面积和是2 018×1=2 018.故选D.
栏目索引
1 探索勾股定理
知识点三 勾股定理及其简单应用 3.如图1-1-2,阴影部分是一个正方形,该正方形的面积为 (
栏目索引
)
A.25 cm2
B.5 cm2
图1-1-2 C.313 cm2
D.20 cm2
答案 A 设正方形的边长为a cm,由勾股定理得a2=132-122=25,∴a=5, 即正方形的边长为5,故正方形的面积为5×5=25(cm2).
图1-1-4
1 探索勾股定理
栏目索引
解析 由题意知△ABC是直角三角形,由勾股定理知AC2=BC2+AB2, ∵AC=50米,BC=40米, ∴AB2=AC2-BC2,∴AB=30米. 如图1-1-5所示,过B点作BD⊥AC于点D,
图1-1-5 BD的长度即为B点到直线AC的距离.
∵△ABC的面积= 1 ·AB·BC=1 ·AC·BD,
图1-1-2 图1-1-2(1)中,正方形C的面积可看成是4个直角三角形与1个小正方形的 面积和;图1-1-2(2)中,正方形C的面积可看成是大正方形与4个直角三角 形的面积差. 答案 (1)16;16 (2)9;9 (3)25 (4)SA+SB=SC
1 探索勾股定理
栏目索引
知识点二 验证勾股定理
∴S阴影=S正方形ABCD-S△ABE=AB2-
1 2
×AE×BE=100-
1 2
×6×8=76,故选C.
栏目索引
1 探索勾股定理
栏目索引
1.如图,已知三个正方形中的两个正方形的面积分别为S1=25,S3=169,则
另一个正方形的面积S2为
.
答案 144 解析 由S1+S2=S3得S2=S3-S1=169-25=144.
答案 (1)10 (2)12 (3)16;30
点拨 在直角三角形中,已知斜边长及两条直角边长的比,设出两条直 角边长,用一个参数表示,结合勾股定理可求出两直角边长.
1 探索勾股定理
栏目索引
知识点一 勾股定理的探索 1.测量你的两块直角三角尺的三边的长度,并将各边的长度填入下表:
三角尺 1 2
直角边a
图1-1-3① 16
9
25
图1-1-3② 4
9
13
(2)三个正方形A,B,C的面积之间的关系为SA+SB=SC. (3)三个正方形围成的一个直角三角形的三边长之间的关系:直角三角
形两直角边的平方和等于斜边的平方.
1 探索勾股定理
知识点三 勾股定理及其简单应用
栏目索引
1 探索勾股定理
栏目索引
例3 如图1-1-4所示,隔湖有A、B两点,AB⊥BC于点B,测得AC=50米,BC =40米.求A、B两点间的距离.你能求出B点到直线AC的距离吗?
栏目索引
答案 (a-b)2;c2-2ab;a2+b2=c2
解析 由题意知,小正方形的边长为a-b,因此小正方形的面积=边长×边 长=(a-b)2;小正方形的面积还可以表示为大正方形的面积-4个直角三角
形的面积.而4个直角三角形的面积=4× 1 ab=2ab,大正方形的面积=c2,所
2
以小正方形的面积=c2-2ab.因此(a-b)2=c2-2ab,整理得a2+b2=c2.
2
2
1 探索勾股定理
∴AB·BC=AC·BD,
∴BD= AB BC = 30 40 =24(米).
AC
50
答:A、B两点间的距离为30米,B点到直线AC的距离为24米.
栏目索引
1 探索勾股定理
栏目索引
题型 利用勾股定理求三角形边长
例 在△ABC中,角A,B,C所对边的长分别为a,b,c,∠C=90°.
1 2
AC 2
2
π=
8
·AC2,
S2=
1 2
BC 2
2
π=
8
·BC2,
∴S1+S2= (AC2+BC2)= ×16=2π.
8
8
栏目索引
1 探索勾股定理
栏目索引
2.(2017广西防城港期中)如图1-1-5,在Rt△ABC中,∠ACB=90°,若AB=15, 则正方形ADEC和正方形BCFG的面积和为 ( )
直角边b
斜边c
关系
根据已经得到的数据,请猜想三边的长度a、b、c之间的关系. 解析 根据实际测量结果猜想a2+b2=c2,注意测量值均为近似值.
1 探索勾股定理
栏目索引
知识点二 验证勾股定理 2.利用四个全等的直角三角形可以拼成如图1-1-1所示的图形,这个图形 被称为弦图.通过该图形,可以验证公式 ( )
长为2,则S1+S2+S3=
.
1 探索勾股定理
栏目索引
答案 12 解析 设AH=a,AE=b,EH=c,则c=2且a2+b2=c2,所以S1+S2+S3=(a+b)2+c2+(a -b)2=2(a2+b2)+c2=3c2=3×22=12.
1 探索勾股定理
栏目索引
3.已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若
1 探索勾股定理
栏目索引
3.(2016江西宜春高安期中)已知Rt△ABC中,∠C=90°,a+b=14,c=10,则
Rt△ABC的面积等于
.
答案 24
解析 在△ABC中,∠C=90°, ∴a2+b2=c2,即(a+b)2-2ab=c2, ∵a+b=14,c=10, ∴196-2ab=100,即ab=48, 则Rt△ABC的面积为 1 ab=24.
1 探索勾股定理