大学高等数学公式汇总大全 珍藏版
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
=ψ (t)在点M = ω (t)
(x0 ,
y0
,
z0
)处的切线方程:x ϕ
− x0 ′(t0 )
=
y − y0 ψ ′(t0 )
=
z − z0 ω ′(t0 )
在点M处的法平面方程:ϕ ′(t0 )(x − x0 ) +ψ ′(t0 )( y − y0 ) + ω ′(t0 )(z − z0 ) = 0
引力:F
=
k
m1m2 r2
, k为引力系数
1b
函数的平均值:y =
b
−
a
∫Байду номын сангаас
a
f
(x)dx
∫ 均方根:
1
b
f 2 (t)dt
b−a a
高等数学(下册)
空间解析几何和向量代数:
空间2点的距离:d = M1M 2 = (x2 − x1 )2 + ( y2 − y1)2 + (z2 − z1)2
向量在轴上的投影:Pr ju AB = AB ⋅ cosϕ,ϕ是AB与u轴的夹角。
��
�
�
Pr �
�ju
(a1 + �
a�2 )
=
Pr
ja1
+
Pr
ja2
a ⋅b = a ⋅ b cosθ = axbx + ayby + azbz ,是一个数量,
两向量之间的夹角:cosθ =
axbx + ayby + azbz
ax 2 + a y 2 + az 2 ⋅ bx 2 + by 2 + bz 2
2 1+ cosα sinα 1+ cosα
2 1− cosα sinα 1− cosα
·正弦定理: a = b = c = 2R sin A sin B sin C
·余弦定理: c2 = a2 + b2 − 2abcosC
·反三角函数性质: arcsin x = π − arccos x arctgx = π − arcctgx
2、过此点的切平面方程:Fx (x0 , y0 , z0 )(x − x0 ) + Fy (x0 , y0 , z0 )( y − y0 ) + Fz (x0 , y0 , z0 )(z − z0 ) = 0
3、过此点的法线方程: x − x0 = y − y0 = z − z0 Fx (x0 , y0 , z0 ) Fy (x0 , y0 , z0 ) Fz (x0 , y0 , z0 )
(arccos x)′ = − 1 1− x2
(arctgx)′
=
1
1 +x
2
(arcctgx)′
=
−
1
1 +x
2
常用基本积分表:
∫ tgxdx = − ln cos x + C
∫ ctgxdx = ln sin x + C
∫ sec xdx = ln sec x + tgx + C
∫ csc xdx = ln csc x − ctgx + C
)⋅
dy dx
隐函数F (x, y, z) = 0, ∂z = − Fx , ∂z = − Fy
∂x Fz
∂y Fz
∂F ∂F
隐函数方程组:⎩⎨⎧GF (( xx,,
y,u,v) y,u,v)
= =
0 J
0
=
∂(F,G) ∂(u, v)
=
∂u ∂G
∂v ∂G
=
Fu Gu
Fv Gv
∂u ∂v
平面外任意一点到该平面的距离:d = Ax0 + By0 + Cz0 + D A2 + B2 + C 2
空间直线的方程:x − x0 m
=
y − y0 n
=
z − z0 p
= t,其中s�
⎧x = x0 + mt = {m, n, p};参数方程:⎪⎨ y = y0 + nt
⎪ ⎩
z
=
z0
+
pt
二次曲面:
∫ dx
a2 + x2
=
1 a
arctg
x a
+C
∫ dx
x2 − a2
=
1 ln 2a
x−a x+a
+C
dx 1 a + x
∫ a2
−
x2
=
ln 2a
a−x
+C
∫ dx = arcsin x + C
a2 − x2
a
∫
dx cos2
x
=
∫ sec 2
xdx
=
tgx
+
C
∫
dx sin 2
x
=
∫
csc2
平均曲率:K = ∆α .∆α : 从M点到M′点,切线斜率的倾角变化量;∆s:MM ′弧长。 ∆s
M点的曲率:K = lim ∆α = dα =
y′′ .
∆s→0 ∆s ds
(1+ y′2 )3
直线:K = 0;
半径为a的圆:K = 1 . a
定积分的近似计算:
∫b
矩形法: f
a
(x)
≈
b
− n
a
sin 3α = 3sinα − 4sin3 α
cos3α = 4cos3 α − 3cosα
tg3α
=
3tgα − tg3α 1− 3tg 2α
·半角公式:
sin α = ± 1− cosα cos α = ± 1+ cosα
2
2
2
2
tg α = ± 1− cosα = 1− cosα = sinα ctg α = ± 1+ cosα = 1+ cosα = sinα
2!
k!
中值定理与导数应用:
拉格朗日中值定理:f (b) − f (a) = f ′(ξ )(b − a) 柯西中值定理:f (b) − f (a) = f ′(ξ )
F(b) − F (a) F ′(ξ ) 当F(x) = x时,柯西中值定理就是拉格朗日中值定理。
曲率:
弧微分公式:ds = 1+ y′2 dx,其中y′ = tgα
π
π
∫ ∫ In
=
2 0
sin n
xdx
2
=
0
cosn
xdx
=
n −1 n
In−2
∫ x2 + a2 dx = x x2 + a2 + a2 ln(x + x2 + a2 ) + C
2
2
∫ x2 − a2 dx = x x2 − a2 − a2 ln x + x2 − a2 + C
2
2
∫ a2 − x2 dx = x a2 − x2 + a2 arcsin x + C
ctg(α ± β ) = ctgα ⋅ctgβ ∓1 ctgβ ± ctgα
·和差化积公式:
sinα + sin β = 2sin α + β cos α − β
2
2
sinα − sin β = 2cos α + β sin α − β
2
2
cosα + cos β = 2cos α + β cos α − β
∂x ∂y
∂x ∂y ∂z
全微分的近似计算:∆z ≈ dz = f x (x, y)∆x + f y (x, y)∆y
多元复合函数的求导法:
z = f [u(t),v(t)] dz = ∂z ⋅ ∂u + ∂z ⋅ ∂v dt ∂u ∂t ∂v ∂t
z = f [u(x, y),v(x, y)] ∂z = ∂z ⋅ ∂u + ∂z ⋅ ∂v ∂x ∂u ∂x ∂v ∂x
若空间曲线方程为:⎪⎩⎪⎨⎧GF
( (
x, x,
y, y,
z) z)
= =
0 0
,
� 则切向量T
=
{
Fy Gy
Fz , Fz G z Gz
Fx , Fx G x Gx
Fy } Gy
曲面F
(
x,
y,
z)
=
0上一点M �
(
x0
,
y0
,
z
0
),则:
1、过此点的法向量:n = {Fx (x0 , y0 , z0 ), Fy (x0 , y0 , z0 ), Fz (x0 , y0 , z0 )}
2
2
cosα − cos β = 2sin α + β sin α − β
2
2
·倍角公式:
sin 2α = 2sinα cosα
cos 2α = 2 cos2 α −1 = 1− 2sin2 α = cos2 α − sin2 α
ctg 2α −1 ctg2α =
2ctgα
tg 2α
=
2tgα 1− tg 2α
(
y0
+
y1
+⋯
+
yn−1 )
∫b
梯形法: f
a
(x)
≈
b
− n
a
[
1 2
(
y0
+
yn
)
+
y1
+⋯+
yn−1 ]
∫b
抛物线法: f
a
(x)
≈
b−a 3n
[(
y0
+
yn
)
+
2(
y2
+
y4
+⋯+
yn−2
)
+
4(
y1
+
y3
+⋯
+
yn−1 )]
定积分应用相关公式:
功:W = F ⋅ s
水压力:F = p ⋅ A
1、椭球面:x a
2 2
+
y2 b2
+
z2 c2
=1
x2 y2 2、抛物面: + = z(, p,q同号)
2 p 2q
3、双曲面:
单叶双曲面:x 2 a2
+
y2 b2
−
z2 c2
=1
双叶双曲面:x 2 a2
−
y2 b2
+
z2 c2
=(1 马鞍面)
多元函数微分法及应用
全微分:dz = ∂z dx + ∂z dy du = ∂u dx + ∂u dy + ∂u dz
sin cos tg ctg
-sinα cosα cosα sinα -sinα -cosα -cosα -sinα sinα
cosα sinα -sinα -cosα -cosα -sinα sinα cosα cosα
-tgα ctgα -ctgα -tgα tgα ctgα -ctgα -tgα tgα
2
2
a
三角函数的有理式积分:
sin
x
=
1
2u +u
2
, cos
x
=
1− 1+
u u
2 2
, u
=
tg
x , dx 2
=
2du 1+ u2
一些初等函数:
双曲正弦 : shx = ex − e−x 2
双曲余弦 : chx = e x + e−x 2
双曲正切: thx
=
shx chx
=
ex ex
− +
e−x e−x
当u = u(x, y),v = v(x, y)时,
du = ∂u dx + ∂u dy dv = ∂v dx + ∂v dy
∂x ∂y
∂x ∂y
隐函数的求导公式:
隐函数F ( x,
y)
=
0, dy dx
=
−
Fx Fy
, d 2 y dx 2
=
∂ ∂x
(−
Fx Fy
)+ ∂ ∂y
(−
Fx Fy
∂u = − 1 ⋅ ∂(F,G) ∂v = − 1 ⋅ ∂(F,G)
∂x J ∂(x,v)
∂x J ∂(u, x)
∂u = − 1 ⋅ ∂(F,G) ∂v = − 1 ⋅ ∂(F,G)
∂y J ∂( y,v)
∂y J ∂(u, y)
微分法在几何上的应用:
⎧ x = ϕ(t)
空间曲线⎪⎨ y ⎪⎩ z
arshx = ln(x + x2 +1)
archx = ± ln(x + x2 −1)
arthx = 1 ln 1+ x 2 1− x
两个重要极限:
sin x lim = 1 x→0 x
lim(1+ 1)x = e = 2.718281828459045...
x→∞
x
三角函数公式: ·诱导公式:
函数 角A -α 90°-α 90°+α 180°-α 180°+α 270°-α 270°+α 360°-α 360°+α
xdx
=
−ctgx
+
C
∫sec x ⋅tgxdx = sec x + C
∫ csc x ⋅ctgxdx = −csc x + C ∫ a xdx = a x + C
ln a
∫ shxdx = chx + C
∫ chxdx = shx + C ∫ dx = ln(x +
x2 ± a2
x2 ± a2 ) +C
cx cy cz
代表平行六面体的体积。
平面的方程: �
1、点法式:A(x − x0 ) + B( y − y0 ) + C(z − z0 ) = 0,其中n = {A, B,C}, M 0 (x0 , y0 , z0 ) 2、一般方程:Ax + By + Cz + D = 0
3、截距世方程:x + y + z = 1 abc
� �� i
j
k �
��
� ��
c = a × b = ax ay az , c = a ⋅ b sinθ .例:线速度:v = w× r.
bx by bz
��� � � � ax ay az � � � 向量的混合积:[abc] = (a × b ) ⋅ c = bx by bz = a × b ⋅ c cosα ,α为锐角时,
大学高等数学公式汇总大全(珍藏版)
常用导数公式:
高等数学(上册)
(tgx)′ = sec2 x
(ctgx)′ = −csc2 x
(sec x)′ = sec x ⋅tgx
(csc x)′ = −csc x ⋅ ctgx
(a x )′ = a x ln a
(loga
x)′
=
1 x ln a
(arcsin x)′ = 1 1− x2
-ctgα tgα -tgα -ctgα ctgα tgα -tgα -ctgα ctgα
·和差角公式:
sin(α ± β ) = sinα cos β ± cosα sin β
cos(α ± β ) = cosα cos β ∓ sinα sin β
tg(α
±
β
)
=
tgα ± 1∓ tgα
tgβ ⋅ tgβ
2
2
高阶导数公式——莱布尼兹(Leibniz)公式:
n
∑ (uv)(n) = Cnk u (n−k )v(k )
k =0
= u (n)v + nu (n−1)v′ + n(n −1) u (n−2)v′′ + ⋯ + n(n −1)⋯(n − k +1) u v (n−k) (k) + ⋯ + uv(n)